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INTRODUCTION

WHAT IS COMPRESSIVE SENSING?
Since the term compressive sensing was coined a
few years ago [1, 2], this subject has been under
intensive investigation [3–5]. It has found broad
application in imaging, data compression, radar,
and data acquisition to name a few (see overview
in [4, 5]).

In a nutshell, compressive sensing is a novel
paradigm where a signal that is sparse in a
known transform domain can be acquired with
much fewer samples than usually required by the
dimensions of this domain. The only condition is
that the sampling process is incoherent with the
transform that achieves the sparse representa-
tion and sparse means that most weighting coef-
ficients of the signal representation in the
transform domain are zero. While it is obvious
that a signal that is sparse in a certain basis can
be fully represented by an index specifying the

basis vectors corresponding to non-zero weight-
ing coefficients plus the coefficients — determin-
ing which coefficients are non-zero would usually
involve calculating all coefficients, which requires
at least as many samples as there are basis func-
tions. The definition of incoherence usually
states that distances between sparse signals are
approximately conserved as distances between
their respective measurements generated by the
sampling process. In this sense the reconstruc-
tion problem has per definition a unique solu-
tion.

Making the compressive sensing formulation
practical hinges on two conditions:
• Is the incoherence property achievable with

a feasible sampling scheme?
• Are there computationally tractable algo-

rithms that can reconstruct the original sig-
nal from these samples?
The answers to these questions created the

field of compressive sensing and we will try to
review the basics of these answers in this article.

APPLICATIONS OF
COMPRESSED SENSING IN COMMUNICATIONS

So far compressive sensing has been successfully
applied in several signal-processing fields, specif-
ically in imaging the technology has achieved a
certain level of maturity. In communications the
range of applications so far has been rather lim-
ited, with the exception of channel estimation —
although in many variations. To cite a few exam-
ples:
• Sparse channel estimation in ultra-wide-

band, was motivated by the ability to resolve
individual arrivals or clusters of arrivals in
multipath channels [6].

• Considering mobile radio channels, each
path is characterized by a delay and a rela-
tive Doppler speed [7, 8].

• Underwater acoustic channels are known to
exhibit only few arrivals in a long delay
spread with each path having different
Doppler speed [9].
A variation on channel estimation is the com-

bination with active user detection in code divi-
sion multiple access [10] or spectrum sensing for
cognitive radios.

Another proposed application of compressive
sensing in communications is coding over the
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real numbers (vs. finite fields as commonly used
in coding theory) under a channel model that
produces few very large errors (similar to era-
sures). Although this leads to direct application
of compressive sensing algorithms and perfor-
mance guarantees [11], it is so far unclear if this
will lead to practical applications that would
replace current error correction schemes.

THIS ARTICLE
Clearly the motivation to use compressive sensing
in channel estimation is the observation that some
channels are characterized by sparse multipath —
by that we mean that there are much fewer dis-
tinct arrivals as there are baseband channel taps.
With this in mind compressive sensing promises
to estimate the channel with much less pilot over-
head or at higher accuracy with a constant num-
ber of pilots. The common assumption is that a
sparse multipath channel leads to a baseband
channel model where most taps are negligible.
We take a closer look at this and find that in a
channel modeled by specular (point) scatterers
the number of nonzero baseband taps depends
very much on what one defines as negligible.
Using instead an oversampled baseband model,
the representation of the channel becomes
ambiguous, but also more sparse.

In underwater acoustic (UWA) communica-
tions, channels are characterized by long delay
spread and significant Doppler effects. The long
channel delay spread leads to severe inter-sym-
bol interference (ISI) in single-carrier transmis-
sions, while in multicarrier approaches like
orthogonal frequency division multiplexing
(OFDM) the aforementioned Doppler effects
destroy the orthogonality of the sub-carriers and
lead to inter-carrier interference (ICI). On top
of high equalization complexity, the ISI or ICI
corresponds to a convolution with a time-varying
impulse response, leading to a large amount of
unknown channel coefficients. While it is well
recognized in the community that UWA chan-
nels are usually sparse [12], there are major
challenges to overcome when applying compres-
sive sensing to exploit channel sparsity.

As an example, we show a block-by-block
OFDM receiver that re-estimates the channel
for every OFDM symbol. To apply compressive
sensing one needs to consider the following
points:
• A channel model needs to be established

that leads to a sparse representation of the
channel coefficients, and is accurate
(enough) within the considered time inter-
val.

• When placing the pilots, one needs to
ensure that ICI from other pilots can be
observed.

• When estimating the channel based on
pilots, ICI from the unknown data symbols
has to be treated as noise.
After going through the details of applying

compressive sensing to channel estimation in
UWA multicarrier communications, we illustrate
the performance using numerical simulation and
experimental data.

The article is organized as follows. In the
next section we give a more detailed overview of
compressive sensing, and in the following section

we describe some of the popular compressive
sensing recovery algorithms. We then look at
sparse representations of multipath channels and
explain in detail the application of compressive
sensing to UWA communications. We conclude
in the final section.

Notation — We represent matrices and vectors
with bold upper and lower case letters respec-
tively, A, c; Superscripts T and H denote the
transpose and hermitian respectively, AT, AH.
With |c| we denote the Euclidean norm.

COMPRESSIVE SENSING

SPARSE REPRESENTATION
Consider a signal y ∈ CCn that can be represented
in an arbitrary basis, {ψk}n

k=1, with the weighting
coefficients xk. Stacking the coefficients into a
vector, x, the relationship with y is obviously
through the transform y = Ψx, where Ψ = [ψ1,
ψ2, …, ψn] is a full rank n × n matrix. A com-
mon n example would be a finite length, discrete
time signal that one could represent as discrete
sinusoids in a limited bandwidth. The matrix Ψ
would then be the discrete Fourier transform
(DFT) matrix.

In compressive sensing one is particularly
interested in any basis that allows a sparse repre-
sentation of y, i.e., a basis {ψk}n

k=1 such that
most xk are zero. Obviously if one knows y, one
could always choose some basis for which y =
ψk0 for some k0; then all xk,  k ≠ k0, would be
zero. This trivial case is not of interest, instead
one is interested in a predetermined basis that
will render a sparse or approximately sparse rep-
resentation of any y that belongs to some class
of signals.

EXACTLY AND
APPROXIMATELY SPARSE SIGNALS

A signal is called s-sparse, if it can be exactly
represented by a basis, {ψk}n

k=1, and a set of
coefficients xk, where only s coefficients are non-
zero. A signal is called approximately s-sparse, if
it can be represented up to a certain accuracy
using s non-zero coefficients. Since the desired
accuracy depends on the application, signals
considered as approximately sparse usually have
the property that the reconstruction error
decreases super-linearly in s, therefore any
required accuracy can be achieved by only slight-
ly increasing s.

As an example of an s-sparse signal, consider
the class of signals that are the sum of s sinu-
soids chosen from the n harmonics of the
observed time interval. Now obviously the DFT
basis will render an s-sparse representation of
any such y, i.e., taking the DFT of any such sig-
nal would render only s non-zero values xk.

An example of approximately sparse signals is
when the coefficients xk, sorted by magnitude,
decrease following a power law. This includes
smooth signals or signals with bounded varia-
tions [4]. In this case the sparse approximation
constructed by choosing the s largest coefficients
is guaranteed to have an approximation error
that decreases with the same power law as the
coefficients.
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SENSING

So far it was assumed that y is available, and
that one can simply apply the transform into
the domain of {ψk}n

k=1 to determine which xk
are relevant (non-zero). Although this case
does exist and is important for some forms of
data-compression, the real application of com-
pressive sensing is the acquisition of the signal
from m, possibly noisy, measurements zl = φl

Hy
+ vl for l = 1, …, m, where here it is assumed
that vl is zero-mean complex Gaussian dis-
tributed with variance N0 and the noiseless case
is included for N0 → 0. The signal acquisition
process can now be written using the m × n
matrix A,

where Φ = [φ1, φ2, …, φm] is an n × m matrix
and z = [z1, z2, …, zm ]T is the stacked measure-
ment vector. Since this is a simple linear Gaus-
sian model, it is well posed as long as A is at
least of rank n. By well posed we simply mean
that there exists some estimator x̂ (or ŷ  for that
matter), whose estimation error is proportional
to the noise variance; therefore as the noise vari-
ance approaches zero, the estimation error does
as well. This generally requires at least m ≥ n
measurements if y is unconstrained in CCn.

SIGNAL RECOVERY AND RIP
The novelty in compressive sensing is that for
signals y that are s-sparse in some {ψk}n

k=1, less
measurements are sufficient to make this a well
posed problem. The requirement on A to have at
least rank n is replaced by the restricted isome-
try property (RIP) (first defined in [11]) that we
will explain in the following.

For any matrix A with unit-norm columns one
can define the restricted isometry constants δs as
the smallest number such that, |Ax|2 ≥ (1 – δs)|x|2
and |Ax|2 ≤ (1 + δs)|x|2 for any x that is s-sparse.
This can be seen as conserving the (approxi-
mate) length of s-sparse vectors in the measure-
ment domain and effectively puts bounds on the
Eigenvalues of any s × s submatrix of AHA.

Now assuming that under all s-sparse vec-
tors, one chooses the estimate x̂  that has the
smallest distance to the observations, |z – Ax̂|2,
it is easily shown that the estimation error is
bounded by E{|x – x̂ |2} ≤ 2mN0/(1 – δ2s). This
uses the fact that the estimation error x~:= x –
x̂ is 2s-sparse. So we see that the signal recov-
ery problem is well-posed as long as δ2s < 1,
but since the δs are monotonic in s, δs ≤ δs+1,
and usually increase gradually, it is commonly
said that A obeys the RIP if δs is not too close
to one.

In case of approximately sparse signals, the
error caused by noisy observations is additive
with the error caused by the approximation as s-
sparse. Therefore a good choice of s needs to
consider the noise level N0, since a trade-off
exists between choosing a smaller s that increas-
es the approximation error, but decreases the
error caused by the noise due to the monotonic
nature of the δs and vice-versa.

SENSING MATRICES

While evaluating the RIP for a particular matrix
at hand is (at worst) an NP-hard problem, there
are large classes of matrices that obey the RIP
with high probability, that is δs << 1 for any s
<< m. Specifically for random matrices like i.i.d.
Gaussian or Bernoulli entries, or randomly
selected rows of an orthogonal (n × n) matrix
(e.g., the DFT), it can be shown that for m ≥
Cslog(n/s) measurements the probability that δs
≥ δ decreases exponentially with m and δ. With
other words, as long as one takes enough mea-
surements, i.e., increase m, the probability of any
such matrix obeying the RIP for a given thresh-
old δ can be made arbitrarily small. Although
the constant C is only loosely specified for the
various types of matrices, the fact that the prob-
ability decreases exponentially is encouraging as
to the number of required measurements. Fur-
thermore it is important to consider that these
bounds are on worst cases, so that on the aver-
age much fewer measurements, m, will be suffi-
cient.

ALGORITHMS
Previously we considered the estimator that
chooses the solution with minimum distance
from the observations between all s-sparse vec-
tors in CCn to show that the average estimation
error is bounded. This is in essence a combina-
torial problem, which has exponential complexi-
ty. In case s is not known, or for an
approximately sparse signal, a joint cost func-
tion has to be used that penalizes less sparse
solutions vs. a better fit of the observations.
This can be achieved using a Lagrangian formu-
lation adding a penalty proportional to s, which
is usually formulated using the zero-norm, ||x||0
that counts the non-zero elements in x. This fur-
ther increases the size of the combinatorial
problem as all s-sparse vectors for various val-
ues of s have to be considered now.

Other algorithms that reconstruct a signal
taking advantage of its sparse structure have
been used well before the term compressive
sensing was coined. The surprising discovery is
that it can be shown that several of these algo-
rithms will — under certain conditions — render
the same solution as the combinatorial approach.
These conditions largely amount to tighter con-
straints on the sparsity of x beyond identifiabili-
ty. We briefly introduce the two main types of
algorithms.

CONVEX/L1-BASED
Since the exact formulation using the zero-norm
||x||0 is not amenable to efficient optimization, an
immediate choice is its convex relaxation, lead-
ing to the following Lagrangian formulation,

where the l1-norm is defined as ||x||l1 = ∑n
k=1|xk|.

While the l1-norm has been used in various
applications to promote sparse solutions in the
past [4, references therein], it is now largely pop-
ular under the name Basis Pursuit (BP), as intro-
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duced in [13]. While originally the term BP was
used to designate the case of noiseless measure-
ments and the qualifier Basis Pursuit De-Noising
to refer to the case of noisy measurements [13],
we will generally refer to both cases simply by
BP. In statistics the Lasso algorithm is well-
known [14], which can be shown to be equivalent
to BP under appropriate parameterization.

What all these algorithms have in common is
that they lead to convex optimization problems,
which can be solved efficiently with advanced
techniques, such as interior-point methods, pro-
jected gradient methods, or iterative threshold-
ing. Due to the relaxation and numerical
accuracy the solutions will not be exactly sparse,
but will exhibit numerous small values that do
not contribute significantly to the estimation
error. If an exactly sparse solution is sought, an
additional thresholding or de-biasing stage can
remove the small components.

The discovery that there are conditions
under which convex relaxation will render the
same result as the combinatorial formulation
was the birth of compressive sensing [1, 2].
These conditions usually consider the minimum
number of measurements m required to identi-
fy an s-sparse signal with high probability, given
a certain measurement matrix. For example, in
[1] it is shown for m noiseless measurements
taken using random rows of the DFT matrix,
that if m > CMslog(n), any s-sparse signal can
be recovered with at least probability 1 –
O(n–M), where the constant CM is roughly linear
in the parameter M. One immediately notices
that this formulation closely resembles the cri-
terion for identifiability, but the constants will
take different values.

GREEDY PURSUITS
Another approach to the combinatorial problem
is based on dynamic programming. In this type
of approach the combinatorial problem is cir-
cumvented by heuristically choosing which values
of x are non-zero and solving the resulting con-
strained least-squares problem. The most popu-
lar algorithms of this type are greedy algorithms,
like Matching Pursuit (MP) or Orthogonal
Matching Pursuit (OMP), that identify the
nonzero elements of x in an iterative fashion. A
short algorithmic description of OMP would be:
1 Initialize the set of non-zero elements as

empty, the observations are set as the resid-
ual, r = z.

2 Correlate all columns of A with the residual,
AHr, choose the largest element by magni-
tude and add its index to the set of non-
zero elements.

3 With the constraint that only elements of x
are non zero that have been added to the
set previously, find an estimate x̂ that mini-
mizes |z – Ax̂|2.

4 Update the residual as r = z – Ax̂.
5 Repeat steps 2–4 until either a known s is

reached or the norm of the residual |r|2 falls
below a predetermined threshold.
This type of algorithm has been popular

mainly because it can be easily implemented and
has low computational complexity, but recently it
has been shown that this algorithm will also ren-
der the optimal solution [15], whereby the con-

straints are somewhat stronger. This has lead to
renewed interest in dynamic programming based
solutions, leading to new greedy pursuit algo-
rithms [16, references therein].

After reviewing the theory of compressive
sensing, we will next illustrate how this matches
to the task of channel estimation. To this end we
will first look at sparse representations of the
channel frequency response and then study the
specific case of underwater acoustic multicarrier
communication.

HOW SPARSE ARE
MULTIPATH CHANNELS?

MULTIPATH MODEL
Channel estimation is in essence a problem of
system identification; a known signal s(t) is
transmitted and we receive the signal r(t) that
has gone through the unknown system H. After
H has been estimated with sufficient accuracy, its
effect can be accounted for in the following data
transmission.

For simplicity, let us consider a linear time-
invariant system, which can be completely char-
acterized by its impulse response h(τ) or its
frequency response H(f), and neglect any ran-
dom noise. The frequency spectrum R(f) of the
received signal will then simply be the product of
the transmitted spectrum S(f)and the channel
frequency response H(f). Without loss of gener-
ality, assume that the signal s(t) is a multicarrier
signal defined in the frequency domain by the
complex symbols S(fk) = s[k], transmitted on the
K subcarriers fk = fc + kΔf, with k taking values
between ±K/2. The receiver samples the wave-
form and applies a DFT; the outputs will corre-
spond to sampling the waveform at frequencies
fk,

R(fk) = H(fk)s[k]

We see that to recover the transmitted signal
one will need the channel frequency response at
corresponding frequencies H(fk) (Fig. 1, top).
The underlying assumption of applying com-
pressed sensing to channel estimation is that the
channel frequency response H(fk) is sparse in
some basis, or at least approximately so. This is
usually based on the model that the impulse
response h(τ) consists of P specular (point) scat-
terers (Fig. 1, middle). The complex amplitudes
ξp include attenuation and initial phase, and the
delays τp are assumed to be less than some maxi-
mum delay spread.

The vector of interest, y, consists of the
stacked frequency response at the K subcarriers
H(fk). Now each entry of y is a linear combina-
tion of P complex phases, exp(–j2πfkτp), with
complex weighting coefficients ξp. Arranging the
complex phases in length K vectors ψp renders a
P-sparse representation of y, with xp = ξp. Since
the τp are random values from a continuous dis-
tribution, one cannot choose a (finite) basis that
will include all possible basis vectors ψp that cor-
respond to the random τp. In the following sev-
eral fixed choices of Ψ will be considered that
lead to more or less sparse representations of
the channel frequency response.
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SPARSE APPROXIMATION

Commonly the equivalent baseband model is
used; this basis simply limits the τp to be multi-
ples of the sampling time lTs, which is the inverse
of the bandwidth 1/Ts = B = KΔf. With poten-
tial delays l = 0, …, K – 1 the matrix Ψ turns
out to be the K × K DFT matrix and x turns out
to be samples at baseband rate of the bandpass
filtered version of h(τ) (the bandpass is from fc –
B/2 to fc + B/2 due to the transmitted signal).
Since the DFT matrix is a unitary transform, one
can calculate x by taking the inverse DFT of y,
which is generally not sparse. We purposefully
consider this simple case, because the optimum

s-sparse approximation of y (in the mean squared
error sense) using this basis can be trivially
determined by keeping the s largest values of the
inverse DFT of y. The first 64 values of h(l) cor-
responding to h(τ) are plotted in Fig. 1 (bot-
tom). Although there are only few large values,
there seem to be a substantial number of small-
er, but maybe not negligible values.

Next, a redundant basis is considered (which
we often refer to as dictionary), generated by
delays at a finer grained resolution of lTs/λ,
where λ is the oversampling factor relative to
baseband sampling. This is a quite natural
approximation of the continuous time τp, but
leads to an uncommon case for the compressive
sensing theory. One might think that this is the
baseband model of a system with a λ-times
larger bandwidth and that K samples were cho-
sen deterministically. The corresponding matrix
A is a K × λK partial DFT matrix, that turns out
to have quite bad sensing properties δs ≈ 1,
since neighboring columns will be highly corre-
lated. This is obvious, since when taking sam-
ples within the actual system bandwidth, it is
hard to interpolate to the frequency response
outside.

On the other hand, the goal is to approximate
the frequency response only within the system
bandwidth, this time using a redundant dictio-
nary. Therefore one seeks the basis that leads to
the smallest approximation error within the sig-
nal bandwidth using a limited number of non-
zero weighting coefficients. If within this basis
there are several possible sparse representations
leading to similar approximation errors, the
sparse approximation in this basis might be
ambiguous, but the same guarantees on the
approximation error will hold.

NUMERICAL EXAMPLE
Let us consider the same simple scenario for a
numerical study (Fig. 2). The signal y is approxi-
mated using s basis vectors as ŷs; the correspond-
ing mean squared error (MSE) is E[|y – ŷ s|2].
Naturally when using a less sparse approxima-
tion (increasing s) the MSE will decrease. For
example, for known delays the error will reach
zero for s = P. In general, how fast the MSE
reduces with s will indicate how sparse the corre-
sponding basis can approximate y. While for the
baseband model (λ = 1) there is a trivial way to
determine the optimum s-sparse approximation,
this is not the case for the redundant dictionar-
ies. Therefore the OMP algorithm is used to find
s-sparse approximations, which are not necessar-
ily optimal.

In Fig. 2 the MSE decreases similarly for all
cases up to about 10–1, this means that for this
multipath channel about 90 percent of the chan-
nel energy is concentrated in the ten strongest
channel taps. On the other hand, the baseband
model will need more than 30 non-zero channel
taps to approximate the frequency response with
a MSE of 10–2, while using a redundant basis
one needs about half that. This points towards
an interesting fact, that the baseband channel
taps are not approximately sparse in terms of a
power-law; if they would follow a power law, the
slope in the plot would be constant, while in fact
it levels off.

Figure 1. The channel frequency response H(f) maps to the impulse response
h(τ), but from a limited number of samples H(fk) only the baseband model
h(l) can be determined unambiguously; in this example there are P = 10 dis-
crete paths, and K = 256 frequency samples; all plots are magnitude only.
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SPARSE CHANNEL ESTIMATION IN
UNDERWATER ACOUSTIC

MULTICARRIER COMMUNICATIONS

In this section, we present sparse channel esti-
mation for multicarrier underwater acoustic
(UWA) communications as a concrete example
of the application of compressive sensing tech-
niques.

UNDERWATER ACOUSTIC CHANNEL
UWA channels are different from radio chan-
nels, due to the fundamental differences between
acoustic waves and radio waves. For once, the
practical bandwidths in UWA channels are limit-
ed, due to the absorption of acoustic energy at
high frequencies. Also, the speed of sound is
only about 1500 m/s in water, while electromag-
netic waves propagate at the speed of light in air
(3 × 108 m/s). As a result, UWA channels usually
have a long delay spread, even in relation to
their (low) sampling rate, for example about 20
ms in typical shallow water environments along
with a 10 kHz bandwidth, leading to 200 taps in
the baseband channel. While channel variations
happen at a similar rate to urban radio environ-
ments (tens or hundreds of milliseconds), the
symbol duration in UWA systems is orders of
magnitudes larger than that in radio systems.
Also Doppler effects caused by the slow move-
ment of seaborne vessels (or even the sea sur-
face) are magnified by the much lower sound
speed.

The key obstacle hindering satisfactory per-
formance in UWA channels is the combination
of the long delay spread and (effectively) quick
channel variations. This impacts the achievable
data rate two-fold:
• Channel estimation has to capture many

parameters due to the long delay spread
and the estimates have to be frequently
updated, consuming a large amount of
already scarce frequency/power resources.

• The assumption of a linear time-invariant
channel model holds only over a very short
time span (on the order of the delay
spread), impacting the use of efficient fre-
quency domain equalization or multicarrier
systems.
UWA channels therefore can be character-

ized as doubly (time- and frequency-) selective
channels.

As a concrete example, we will consider a
multicarrier system, specifically orthogonal
frequency division multiplexing (OFDM). The
OFDM symbol length needs to be larger than
the delay spread to avoid inter-symbol inter-
ference (ISI), which in turn make the symbols
too long to approximate the channel as fully
time-invariant. Although the rate of change is
small, the low speed of sound magnifies these
changes  to  result  in  s ignif icant  Doppler
effects in the received signal. This impairs the
orthogonality of the OFDM subcarriers, lead-
ing to inter-carrier interference (ICI). When
taking samples in the frequency domain, as
discussed earlier, every DFT output is now
potentially affected by all K transmitted sym-
bols s[k],

The ICI coefficients H(fm, fk) specify how the
s[k] affect R(fm), and V(fm) denotes the additive
noise. Stacking the R(fm), V(fm), and s[k] from
all subcarriers into vectors z, v, and s, leads to a
matrix-vector formulation as

z = Hs+ v,

where H is the channel mixing matrix.
For a multicarrier system, H is the channel

that needs to be estimated for the purpose of
channel equalization and decoding. However, H
contains K2 entries, much more than the number
of measurements in z.

SPARSE REPRESENTATION AND
DICTIONARY CONSTRUCTION

To apply compressive sensing techniques to
channel estimation in a practical system, one has
to find a suitable sparse representation of the
channel. This is helped by the unique properties
of the UWA channel: Consider two propagation
paths that differ by 1.5 meters; the correspond-
ing delay difference is 1 ms, which is already 10
times that of the baseband sampling interval
with a 10 kHz bandwidth. Hence, one expects
that in the sampled channel impulse response,
many entries will be close to zero. This makes
UWA channels intuitively sparse [12].

Let us therefore consider a channel model that
consists of P discrete paths, similar to the one in
Fig. 1, but now with time-varying amplitude and
delay. The block-by-block receiver in [9] aims to
estimate the channel based on each received

R f H f f s k V fm m k m
k

( ) = ( ) + ( )∑ , [ ] .

Figure 2. Comparison of MSE of sparse approximations of H(fk) using s terms
with various basis models; all cases lead to better approximation with larger s,
but using a redundant basis leads to significantly fewer terms; the parameters
are P = 10, K = 256.
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OFDM symbol individually, such that the receiver
is robust to rapid channel changes across OFDM
symbols. This motivates the following assumptions
on the time variability of the channel:
• The amplitude ξp of each path remains

approximately constant during each block.
• The path delays vary approximately linear

with time, τp(t) ≈ τp — apt where τp is the
delay at the start of the block and ap is the
Doppler scale factor. This means that the
signal components propagating along the
pth path will experience a Doppler shift
where frequency fk will be translated to (1
+ ap)fk.
Now, the channel matrix H is characterized

by P triplets {ξp, ap, τp}; see [9] for the exact for-
mulation. However, the exact number of paths P
is unknown and the relationship of H with ap
and τp is nonlinear, complicating the estimation
task. Sampling the delay-Doppler plane on a
grid, a linear and sparse representation of the
channel matrix can be formulated. Specifically:
• The delay dimension is discretized at a mul-

tiple of the baseband sampling rate, lTs/λ,
where l can take Nτ values to cover the
maximum possible delay.

• The Doppler scale dimension is similarly
sampled using Na values within some inter-
val |ap| ≤ amax, with step-size Δa = 2amax/Na.
With this the channel model can be expressed

as,

The received signal will then be a linear combi-
nation of up to NτNa delayed and Doppler scaled
copies of the transmitted signal with complex
weights ξp,q.

Now let the vector x contain the complex
amplitudes of all the NτNa possible paths on the
discretized delay-Doppler plane, of which many
entries shall be close to zero. With this H is a
linear function of x, and the channel to be esti-
mated has found a sparse representation in the
delay-Doppler domain after a series of approxi-
mations. One can write

which reveals the connection with the compres-
sive sensing formulation presented earlier.

PRACTICAL ISSUES
For the block-by-block multicarrier receiver, the
following two facts are not considered in the
compressive sensing theory:
• Most elements of the matrix H are (general-

ly) negligible in magnitude; specifically,
most energy is concentrated on the main
diagonal and a few off-diagonals (the mag-
nitude decreases with distance from the
main diagonal).

• Only part of the vector s is known (the
pilots).
Both facts will also affect pilot design.

Structure of Channel Matrix — Since the
channel estimation error is determined by the
relationship between the sparse estimate and the
channel coefficients, ŷ  = Ψx̂ , the estimation
error on each element of ŷ is generally of similar
variance. This means that on far off-diagonal
values of H, the estimation error will surely be
much larger than the actual value. Therefore,
one can reduce the channel estimation error by
approximating H as a banded matrix with D off-
diagonals on each side. This is equivalent to a
shorter y or removing rows of Ψ. How many off-
diagonals to keep will depend on the estimation
accuracy of x̂ and on the rate with which the
magnitude of the off-diagonal values of H
decrease.

Influence of Unknown Data — Since the
symbols that convey data are unknown to the
receiver, one has to treat them as additional
noise with a known mean and variance. There-
fore the dictionary is constructed by setting all
values s[k] = 0 if fk corresponds to a data sub-
carrier. Due to the known structure of H, it is
clear that the impact of the noise caused by the
unknown data symbol s[k] will be the strongest
on the kth entry of z. Assuming a reasonable sig-
nal-to-noise ratio (SNR), all observations related
to data subcarriers are discarded; alternatively a
colored noise model could be considered. Fur-
thermore the effect of the unknown data on
channel estimation should also be taken under
consideration in pilot design.

Pilot Design — As paths with non-zero Doppler
scale ap need to be identified based on their ICI
pattern, one needs pilots on adjacent subcarri-
ers. Conversely if one selects pilots adjacent to
data symbols, the ICI from these unknown sym-
bols will be stronger. Therefore a random pilot
assignment, as would be expected from com-
pressed sensing theory, will very likely be subop-
timal due to the specific structure of the
dictionary A = ΦHΨ. On the other hand, itera-
tive receivers are of great interest, as the data
symbols estimated in the previous round can
serve as pilot symbols for channel estimation.

Next, we will look at two specific examples of
receivers, where the first will be based on negli-
gible time-variation, while the second will assume
significant time-variation.

RECEIVER FOR TIME-INVARIANT CHANNELS
The general parameters of the considered
OFDM system will be the same for both
receivers; the bandwidth of 9.8 kHz is centered
around fc = 13kHz, and is divided into K =
1024 subcarriers, leading to a subcarrier spacing
of Δf = 9.5 Hz. This leads to an OFDM symbol
length of 1/Δf = 105 ms, during which the chan-
nel is approximated as constant, and followed by
a guard interval of 25 ms to avoid ISI. The sym-
bol length is chosen as a trade-off between
increasing the symbol length to minimize the
overhead caused by the guard interval, and a
short symbol length ensuring that the assump-
tions on the channel will hold. Out of the 1024
subcarriers 96 will be null subcarriers, half at
the edges of the signal band and half evenly
spaced among the data subcarriers. The data

z s I H v x v
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subcarriers are modulated using 16-QAM, and
each OFDM symbol is separately encoded using
a rate-1/2 nonbinary LDPC code. We will use
the block error rate (BLER) after LDPC decod-
ing plotted vs. received signal-to-noise ratio
(SNR) as the bottom line performance metric
throughout.

When assuming that the rate-of-change of the
multipath delays is negligible within an OFDM
symbol duration, ap =Δ 0 the channel is simply lin-
ear time-invariant, and matches the model in the
previous section. The corresponding receiver
uses a dictionary consisting only of delays for
channel estimation (Na = 1), and since the chan-
nel matrix H will be diagonal by definition we
set D = 0, which makes equalization simply a
scalar multiplication. To sense the channel 256
pilot subcarriers are evenly distributed between
the data (no ICI is expected). Including all over-
head, for guard interval, pilots, and coding, the
achieved data rate is 10.4 kb/s.

Earlier we saw that overcomplete dictionaries
lead to a sparser representation of the multipath
channel. We would expect that this will lead to a
reduced channel estimation error and in turn a
better bit error rate performance. We will use a
similar simulation as previously, but now with P
= 15 paths, where the inter-arrival times are dis-
tributed exponentially with mean 1 ms, leading
to an average channel delay spread of 15 ms or
about 150 baseband channel taps. The ampli-
tudes are Rayleigh distributed with the average
power decaying exponentially with the delay.
The channel parameters are constant within the
duration of one OFDM symbol and independent
between symbols.

The simulation results are shown in Fig. 3,
where we consider both OMP and BP, as well as
a conventional least-squares (LS) channel esti-
mator, which does not take advantage of channel
sparsity. We also consider the BLER perfor-
mance of a receiver with full channel state infor-
mation (CSI), which can be seen as a bound.
First, note that both compressive sensing recov-
ery algorithms gain more than 1 dB over the LS
estimator. Second, matching our previous obser-
vations that an overcomplete dictionary, λ > 1,
leads to a sparser representation, we see that
both OMP and BP benefit and translate this
gain into improved BLER performance. We
should note that this gain comes at increased
computational complexity and further studies
revealed a strongly diminishing return for even
larger values of λ. We fix λ = 2 for BP and λ =
4 for OMP in the following.

RECEIVER FOR TIME-VARYING CHANNELS
The significant changes for operation on time-
varying channels are three-fold: 352 pilots are
used that form clusters of four consecutive pilots,
channel estimation uses larger dictionaries with
Na = 15, and channel equalization involves
matrix inversion of a banded matrix with D > 0.
Due to the increased number of pilots, the data
rate is now 7.4 kb/s.

In the simulation, the Doppler rate of each
path is drawn from a zero mean uniform distri-
bution, with maximum value √

—
3σv/c, in which σv

corresponds to the standard deviation of the
platform velocity, and c is the sound speed being

set to 1500 m/s. We set σv = 0.25 m/s to model
significant Doppler spread and keep the other
settings of the simulation as before.

We plot simulation results in Fig. 4, where we
investigate the trade-off using banded matrices
(D = 1, 3) and the case where we assume that
the channel is time-invariant (D = 0). In the lat-
ter case we set again Na = 1 and also the con-
ventional LS estimator can be used. When
increasing D, there is a point when the perfor-
mance stops improving because we introduce
more channel estimation error than gained by
the more precise model. For example in Fig. 4,
the performance of BP and OMP are similar for
D = 0, but when increasing D to account for the
ICI, BP considerably outperforms OMP for larg-
er D. We conclude that the break even point for
OMP is around D = 3 as the gain diminishes
quickly, while for BP the estimation error is
lower leading to significant gains for D = 3 (the
break even point is reached at D = 5 [9]).

In summary, on significantly time-varying
channels receivers that do not account for time-
variation (D = 0) perform poorly. When esti-
mating also the rate-of-change of the channel
delays, we can reconstruct the ICI pattern and
use MMSE equalization to suppress it. In this
case we need to find a suitable level of modeled
ICI by using a banded matrix H that has the
minimum channel estimation error.

EXPERIMENTAL VALIDATION
We now will use experimental data to validate
the simulation results, which was recorded at the
Surface Processes and Acoustic Communications
Experiment (SPACE08). The experiment was

Figure 3. When considering a coded OFDM system, sparse approximation of
the channel frequency response leads to reduced channel estimation error and
in turn to improved BLER performance.
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carried out off the coast of Martha’s Vineyard,
Massachusetts, from October 14 to November 1,
2008. The water depth was about 15 meters.
Among the total six receivers, we only consider
the data collected by three receivers, labeled as
S1, S3, and S5, which were 60 m, 200 m, and
1000 m away from the transmitter respectively,
with each receiver array consisting of twelve
hydrophones. To show performance differences,
we plot the performance based on combining a
variable number of phones, as this multiphone
combining will increase the effective SNR.

We plot a measured channel response in Fig.
5; this plot is based on a matched filter, basically
calculating AHz (which is the metric OMP uses
to identify non-zero entries). The crosses are
simply the strongest peaks and are marked for
convenience. We see that there are 10–15 signifi-
cant peaks, the delay spread is about 10 ms, and
the Doppler spread is maybe σv = 0.1 m/s. Also
we should note that the correlation between
paths of the same delay with different Doppler
scales is quite high. In this sense using Na = 15,
columns of A corresponding to the same Doppler
scale are even more correlated than columns
corresponding to the same delay.

We only report performance results consider-
ing the receivers for time-varying channels, more
detailed experimental results can be found in [9].
As in the numerical simulation, we also include
the conventional LS estimator and versions of
OMP and BP with Na = 1 and D = 0. The plots
include data recorded across six consecutive days
(Oct. 22–27), each day a transmission was
recorded every two hours, leading to 72 trans-
missions in total. As each transmission included
twenty OFDM symbols, a total of 1440 OFDM
symbols are used to calculate the BLER.

Studying the results, see Fig. 6, we see gen-
erally the same trends as in our numerical
simulation. Note that the differences for non-
zero values of D are not as pronounced. This
is because the considered interval also includ-
ed several days of relatively calm weather; see
[9] for plots on specific days. Furthermore it
is interesting to see that the medium distance
of 200 m is the easiest. This is because at the
shortest  distance the Doppler and delay
spread are higher due to the geometry of the
reflections at the shallow water bottom, while
at the longest distance the received SNR is
the weakest.

In summary, the benefits of sparse channel
estimation for UWA multicarrier communica-
tions are two-fold.
• On (approximately) time-invariant channels,

both OMP and BP can reduce the estima-
tion error relative to a conventional LS esti-
mator. Intuitively, the advantage of sparse
channel estimation relative to its LS coun-
terpart comes from the fact that by exploit-
ing sparsity in the estimate, sparse channel
estimation can effectively reduce the num-
ber of unknowns. Therefore a basis that
leads to a sparser representation of the
channel can further reduce the number of
unknowns.

• On a time-varying channel, there are too
many unknown channel parameters for a
LS estimator to handle with a reasonable
amount of pilots. In contrast, using com-
pressive sensing we can identify the rele-
vant parameters and reconstruct a channel
matrix with many more unknowns than
there are pilots, that is used in equalization.
Still, even using compressive sensing it is
challenging to estimate the channel with
sufficient accuracy, so it can make sense to
limit the number of unknowns in the chan-
nel matrix using a banded structure. In this
case BP seemed to continually outperform
OMP.

Figure 4. On time-varying channels, the better estimation accuracy of BP leads
to significant gains over OMP for larger D; D = 0 corresponds to a receiver
assuming a time-invariant channel.
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CONCLUSION

Compressive sensing has made a lasting impres-
sion in the signal processing community, where
besides an intriguing theory it offers versatile
applicability to many challenging problems. In
the communications community the application
of compressive sensing has been mainly on
sparse channel estimation for various types of
channels, with extensions to multiuser and cogni-

tive radio systems. In this article, we illustrated
the application of the compressive sensing tech-
niques using a concrete example of multicarrier
underwater acoustic communications. We
showed that an overcomplete dictionary leads to
much sparser representation of a multipath
channel relative to the baseband tap-based chan-
nel model. Numerical simulations and field
results demonstrated the substantial benefits of
compressive sensing for underwater acoustic

Figure 6. BLER performance for SPACE08 data; the results are averaged over six consecutive days that include calm weather as well as
two storm cycles.
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communications over long dispersive channels
with large Doppler spread.
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