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in the bone matrix. They largely contribute to the regulation of bone remodeling
in response to mechanical and microenvironmental changes. Much has been recognized in recent years
regarding the role of osteocytes in bone homeostasis, nevertheless their ability to directly contribute to
mineral equilibrium has been neglected. In the light of the renewed interest in their biology, we revisited the
literature and discuss experimental evidence favoring the hypothesis that osteocytes are able to remove and
replace the bone matrix according to the systemic needs of the body. We also reviewed reports against this
theory, thus providing current views of what is known so far on the ability of osteocytes to mobilize bone
mineral. This re-examination of osteocytic osteolysis might stimulate new interest and open new
perspectives in osteocyte biology and in the cellular mechanisms that control bone homeostasis.

© 2008 Elsevier Inc. All rights reserved.
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Introduction

Osteocyte technology has been developed in recent years and has
allowed significant advances in the understanding of the processes
regulating bone remodeling [1–3]. These cells are now considered
central to bone homeostasis [4,5] and a number of roles have been
recognized, among which sensing of mechanical forces and micro-
environmental conditions has beenwell documented [6–9]. However,
several studies have provided substantial evidence that osteocytes
may directly contribute to ion homeostasis by their ability to alter the
perilacunar mineralized matrix. This important concept is currently
l rights reserved.
neglected, therefore we have revisited the literature and discuss with
a view to better understanding the biology of the osteocyte and to
provide new perspectives of their role in bone homeostasis.

The osteoblast/osteocyte network

Osteocytes are spider-shaped cells buried in the mineralized bone
matrix [10,11]. They provide a cellular network within the bone and
are connected each other by protoplasmic extensions, at the tip of
which gap junctions provide cell–cell communications [12]. Exten-
sions form gap junctions also with the membrane of osteoblasts and
lining cells located at the bone surface [12].

Many studies have suggested that osteocytes orchestrate bone
remodeling, regulating osteoblast and osteoclast activities [11,13–15]. In
addition, through the DMP1 [16] and FGF23[17] pathways, they form an
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endocrine organ that regulates renal phosphate reabsorption. However,
early studies underlined the abilityof osteocytes to directly contribute to
bone calcium and phosphate mobilization [18,19], through their ability
to remove [20–22] and then replace [23,24] the mineralized matrix.

Altogether osteocytes have a cellular surface estimated 400 fold
greater than that of the entire Haversian and Volkmann system, and
more than 100 fold greater than the trabecular bone surface [25–27].
This enormous surface has the potential to substantially contribute to
bone mineral homeostasis [28]. A detectable space is present between
the mineralized bone surface and the osteocyte surface, which
contains non-mineralized extracellular matrix enriched in non-
collagenous proteins and proteoglycans. This matrix facilitates the
formation of bone fluids and the regulation of osteocyte activity
through soluble factors [29]. Of note, non-collagenous proteins,
located in all areas where the bone fluid is in contact with the bone
mineral, have the ability to bind calcium ions [29]. Calcium phosphate,
the most abundant calcium salt present in bone, has a low solubility.
Binding of calcium to non collagenous proteins and phosphate
solubility are reversible processes that involve an equilibrium to
which osteocytes and lining cells may contribute. Interestingly, bone
surfaces are completely covered by cells, and thin spaces separate
them from each other, apart from the areas where gap junctions are
formed [12]. Experiments performed using lanthanum injected in vivo
ruled out that there is segregation between bone fluids and the rest of
extracellular fluids [30]. However, regulation of ion homeostasis is
likely to occur at the bone-cell surface interface, thus contributing to
the equilibrium process [31,32]. Non collagenous proteins increase
calcium solubility and, while not inhibiting calcium diffusion,
osteocytes and lining cells may affect the time for the equilibrium
between the bone fluid and the extracellular fluid to be achieved [30].

Facts that favor the bone mineral control activity of osteocytes

In 1962, Baud [33] showed by electron transmissionmicroscopy that
osteocytic lacunae have irregular borders reminiscent of osteolytic
activity. Ramp and Neuman [34] favored the concept of periosteocytic
osteolysis reasoning that osteoclastic bone resorption may account for
only 0.1% of total calcium release, thus concluding that this is not
sufficient to explain the extension of calcium regulation through bone
metabolism at any given time. More information came from animal
models. Periosteocytic osteolysis was observed in rats immobilized for
ten days by spinal cord severing, plaster cast or ischiatic nerve dissection
[35], in which destruction of lacunar wall, fragmentation of collagen
fibers and loss of mineral crystals were described. These changes were
abolished by thyroparathryroidectomy, suggesting the involvement of
parathyroid hormone (PTH). Consistently, in thyroparathyroidecto-
mized rats injected with moderate doses of PTH, radiolabeled calcium
was rapidly released from bone in a manner that did correlate with
increasing transport through the osteocyte-lining cells complex from
the bone fluid compartment rather than through osteoclast bone
resorption [36]. In a similarmodel of chronic PTH treatment in rats [37],
osteocytes appeared morphologically activated, with prominent Golgi
apparati, lysosome exocytosis and periosteocytic osteolysis, more
pronounced at one pole of the cell. Continuous infusion of PTH in rats
by amini pump for 4weeks, induced changes in cortical boneosteocytes
consistentwithperiosteocytic osteolysis [38]. These cells presentedwith
lacunae significantly larger than vehicle-treated controls, with histo-
chemically apparent tartrate resistant acid phosphatase activity,
suggestive of pericellular osteolysis caused by lysosomal enzymes.
Consistent with possible osteocytic osteolysis, Lane et al. [39] showed
that the osteocytic lacuna midsection area is significantly larger in mice
treated with prednisone compared to placebo-treated animals and to
mice subjected to ovariectomy.

In humans, a tetracycline-based histomorphometric evaluation of
iliac crest biopsies of patients affected by hyperparathyroidism versus
patients affected by hyperthyroidism, revealed the PTH, but not thyroid
hormone(s), stimulated periosteocytic osteolysis [40]. Bernard and
Meunier [41] used morphometric analysis of periosteocytic osteolysis
for diagnosis of hyperparathyroidism. Cramer et al. [42] observed
osteocytic activity and bone lining cell stimulation near tumor growth in
osteolytic metastases from lung cancer. Bonucci [43] described the
ultrastructure of osteocytes adjacent to bone metastases, noting the
presence of coastal crystals along the border of the lacunae except in
areas reminiscent of osteolytic activity. Many confluent osteocytic
lacunae were also observed in these subjects, suggestive of a process of
periosteocytic osteolysis. In bone biopsies of patients affected by renal
osteodystrophy [44] or in hemodialyzed uremic subjects [45], some
osteocyteswere found to be located in unusuallywide lacunae, showing
evidence of osteolytic activity indicated by irregularity of the lacunar
wall, presence of flocculent, granular and filamentous materials in the
pericellular space and calcifications of mitochondria. In addition,
periosteocytic osteolysiswas described by Bélanger et al. [46] inpatients
affected by Paget's disease. More recently [47], intense periosteocytic
osteolysis was described in iliac crest biopsies of monkeys subjected to
14-days spaceflight, which displayed prominent bone loss.

Periosteocytic osteolysis has been described also in many other
vertebrates, both nonmammalian andmammalian. In the snakeVipera
aspis, enlargement of osteocytic lacunae, attributed to osteolytic
activity, was observed in winter and, in breeding females, during the
period of embryo development [48]. In these animals, no internal bone
remodeling occurs during the seasonal cycle, therefore at this time
there are no newly formed osteocytes that may appear larger than
average. In addition, these enlarged osteocytes showa perilacunar area
of decreased mineral density, denominated demineralization halo,
reminiscent of mineral resorbing activity. Hibernating female brown
bats were observed to have increased periosteocytic osteolysis during
lactation [49], while golden hamsters and ground squirrels [50] show
loss of bone during hibernation especially due to periosteocytic
osteolysis [51], thus suggesting that osteocytic activity in these animals
may be significant for calcium regulation in various phases of their
lifespan. Cortical bone periosteocytic osteolysis was also observed in
green iguanas fed an experimental low calcium/normal phosphorus
diet in captivity [52]. Finally, sexual maturity in female eels was found
to induce bone decalcification with hypercalcemia and hyperpho-
sphatemia, with prominent periosteocytic osteolysis [53].

Whileperiosteocytic osteolysishasbeen supportedbymanygroups in
several animalmodels, a fewstudies have attempted to assesswhether or
not osteocytes may also have matrix deposition and mineralization
ability [54]. Jande and Belangér [55,56] proposed that osteocytes could
physiologically synthesize and then remove bonematrix components. In
histological sections of cortical bone from rats subjected to chronic PTH
treatment, Tazawa et al. [38] observed osteocyte lacunae containing a
matrix positive to hematoxylin or metachromatic for toluidine blue,
which was similar to a barely mineralized, immature bone matrix.
Therefore, this structurewas suggested to imply regeneration of the bone
matrix around the osteocyte after the lacuna was enlarged by the PTH
treatment. In an immunogold study to assess the distribution of
osteopontin McKee and Nanci [57] showed that this protein lines the
osteocytes and their processes. Interestingly, around some osteocytes
multiple bands of osteopontinwere apparent, similar to reversal lines. It
is possible that these layers are reminiscent of the timewhen the lacuna
had widened and then re-filled, suggesting that it can expand and
contract multiple times during the life span of an osteocyte.

Systematic studies performed to address whether or not osteocytes
are able to synthesize and release bone matrix components were
performed by us using laying hens [23,24], which have a tremendously
high bone turnover during the egg deposition season. In a condition of
dietary calcium repletion after a depletion period, compact bone
osteocytic lacunae were enriched in collagen fibrils apparently just
synthesized, as suggested by [3H]-proline pulse and chase experiments.
They were also surrounded by alcian blue- and toluidine blue-positive
materials and showed a fluorescent mineralization label by tetracycline



Fig. 1. Groups of White Leghorn laying hens (Gallus domesticus) were fed with a regular calcium diet (3% calcium) throughout the experiment, while other groups of 4 hens were
subjected for 7 days to a low (0.1%) calcium diet, then returned to regular calcium feeding for 5 to 7 days, according to the experimental design. At sacrifice hens were subjected to
intracardiac perfusion of phosphate buffer saline followed by 2% glutaraldehyde in phosphate buffer saline, under deep pentobarbital anesthesia, then femurs were retrieved and
dissected clean, and fixation was continued. (A) Tetracycline labeling. To assess the ability to mineralize the newly formed bone matrix, animals were injected with 40 mg/kg
tetracycline daily for 4 days and sacrificed 7 days after the last administration. Fluorescence (upper panel) and light (lower panel) micrographs of the same cortical bone field of a
treated femoral diaphysis. Large arrows: tetracycline-positive lacunae; small arrow: tetracycline-negative lacuna. Magnification 1520×. (B) Alcian blue staining. Sections were stained
with 0.1% alcian blue to detect matrix glycosaminoglycans and proteoglycans. Representative field of positive osteocytic lacunae in the cortical bone of a treated femoral diaphysis.
Magnification 1440×. (C) [3H]proline pulse and chase experiments. To obtain dynamic assessment of collagen synthesis, specimens from femoral diaphyses were harvested from hens
at the 5th day of calcium repletion or from controls and incubated inminimum essential medium supplementedwith 10% fetal calf serum and 5 μCi/ml of L-[3,4(n)-3H]-proline for 3 h,
followed by washing and incubation for further 3 h with excess cold proline. Semithin cross sections were subjected to autoradiography and counterstained with toluidine blue.
Representative field of [3H]proline-positive osteocytes in the cortical bone of a treated femoral metaphysis. Arrows: lacunae presenting with autoradiographic grains. Magnification
832×. (D) Transmission electron microscopy. Micrographs of cortical bone osteocytes from control (left panel) and treated (right panel) hens. Arrow: osmiophilic (reversal) lamina.
Note low numbers of collagen fibrils and heterochromatic nucleus in control osteocyte, and high numbers of collagen fibrils and dispersed chromatin in treated osteocyte.
Magnification 9300×. The pictures are reproduced from reference [24] with the permission of the Publisher.
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treatment (Fig.1). The studydidnot providedirectevidenceof removalof
bone matrix before the deposition phase. However, irregular lacunar
edges outside apparently newly formed collagenfibrilswere observedby
transmission electron microscopy, highly suggestive of previous matrix
removal, also supported by thewider distance between this edge and the
osteocyte surface compared to osteocytes of control animals (Fig. 1D).

Facts against the bone mineral control activity of osteocytes

In scanning electron microscopy studies, Marotti et al. [58]
proposed that the size of each osteocytic lacuna reflects the size of
the osteoblast from which the osteocyte originates, with no correla-
tion with the osteocyte activity. Boyde and Jones [59] and Boyde [60]
made a case that variation of lacunar size could not occur during the
life span of an osteocyte, and proposed that the morphologically
apparent differences observed in many studies are artifacts merely
reflecting the orientation of the cell.
In 1977, awell written report by Parfitt [61] recommended rebuttal
of the osteocytic resorption and bone flow theory. According to this
theory [62], bone is resorbed not from the surface by osteoclasts, but
internally by osteocytes, towards which bone flows through tissue
space away from bone forming surfaces. It is clear that the belief that
bone can flow is incompatible with its physical properties, therefore
no doubt that the flow theory is not applicable to this tissue. As far as
periosteocytic osteolysis is concerned, the rebuttal was based on a
number of considerations that let the Author to conclude that
alternative interpretations have to be taken into account.

Technically, Parfitt argued that it has never been demonstrated
that lacunar enlargement is due to cell shrinkage during specimen
preparation for alpharadiography, the most popular method used in
the past to demonstrate the periosteocyte osteolytic phenomenon.
The fact that larger lacunae are apparent only in treated/pathological
bone and not in controls was suggested to be due to an abnormal
chemical and physical state of the perilacunar matrix. He also argued



14 A. Teti, A. Zallone / Bone 44 (2009) 11–16
that the procedure has never been calibrated and could detect
reduction in density rather than complete mineral removal from the
matrix. Plastic embedding, extensively used for similar purposes, was
also suggested to create artifacts and lacunar enlargement in
pathological bone was again attributed to the fact that the matrix
around the osteocytes is more labile than normal. However, he did not
comment on the reason why pathological perilacunar matrices are
labile, nor was the involvement of osteocyte activity in this context
taken into account. He also stated that increased size of osteocytic
lacunae has been often misinterpreted, especially considering that
they are larger at the osteon periphery than at its center, reflecting the
original size of osteoblasts fromwhich they arise, thus supporting the
report by Marotti et al. [58].

Further evidence for rebuttal relateswith the fact that, according to
complex histomorphometric calculations, total osteocytic resorption
in the tibia of growing rats was estimated to be one tenth of the
resorbing capacity of osteoclasts [63], insufficient to guarantee
efficient ion homeostasis. This contradicts the report by Ramp and
Neuman [34] who affirmed that osteoclastic bone resorption may
account for only 0.1% of total calcium release, thus concluding that
periosteocytic osteolysis is necessary for efficient ion homeostasis.

Furthermore, Parfitt acknowledged that it is difficult to explain
how the products of osteolysis are to be removed [64] as the fluid
movement through the lacuno-canalicular systemmay be insufficient
as well [65,66], or could even be hindered in extra Haversian bone, in
Fig. 2. Cartoon showing our perspective on how an osteocyte could perform physiological
activity. In the former, periosteocytic bone could be demineralized (grey color) or reminer
balance, with no morphologically apparent changes. In this circumstance, the structure o
phosphorus is increased by pathological or experimental conditions, or due to special situa
spaces are enlarged during the osteolytic phase. The same osteocyte could replace and miner
leave minimal morphologically evident changes, which however are unlikely to alter the m
which canaliculi do not generally communicate with those of the
osteon [64]. However this did not take into account that extra
Haversian osteocytes were not observed in the phase of osteolytic
activity at any given time. In addition, it is not clear how extra
Haversian osteocytes can keep alive if they do not communicate with
the Haversian systems, given that lanthanum experiments ruled out
segregation between bone fluids at the matrix–osteocyte interface
and the rest of extracellular fluid [29,30].

Perspectives

We have herein detailed the studies pro and con the ability of
osteocytes to remove and replace significant amount of bonematrix to
become relevant for ion homeostasis. Numerous reports favored while
only a few argued against this hypothesis, focusing their rebuttal on
data interpretation rather than ad hoc experimental evidence.

Our conclusion is more in favor than against osteocytic mineral
control ability, and we agree with Wassermann and Yaeger [67] who
suggested that, in this context, physiologic activity of osteocytes could
occur sub-microscopically, perhaps involving the coastal crystals
observed in the perilacunar matrix, with no morphological changes in
lacunar size and shape. It is only in pathological conditions (hyperpar-
athyroidism, renal osteodystrophy, hemodialyzed uremic patients,
bone metastases) that the phenomenon become morphologically
recognizable, a situation that can be reproduced in animal models in
(upper panels) and pathological or experimental (lower panels) bone mineral control
alized (red color) various times to rapidly contribute to the calcium and phosphorous
f the bone would remain unaltered. In the latter, when the demand for calcium and
tions, including hibernation, pregnancy and lactation, lacunar and, perhaps, canalicular
alize the newly formed bone matrix at the end of the depletion period. This process may
echanical properties of the bone.
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particular physiological circumstances (i.e. in animals with seasonal
activities, or during pregnancy or lactation) or by experimental
manipulations (i.e. PTH or glucocorticoid treatment, low calcium
intake) (Fig. 2).

We are fully aware that most experimental evidence originated
from early studies principally based on morphological in vivo
observations. However, it is amazing how the osteocyte field was
evolving at that time and how well controlled were the studies
considered in this report. Interpretation of the results could be an
issue, as there were no cellular and molecular techniques readily
available that could definitely provide clear responses to this
important aspect of bone homeostasis. However, we believe that
current osteocyte technology and the ability to genetically manipulate
animal models should allow experiments that provide definitive
insights into the ability of osteocytes to mobilize bone mineral. This
may have an important impact for the understanding of the
pathophysiology of bone diseases and for the identification of new
therapeutic tools for both pharmacological and regenerative
medicine.
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