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Toward an Instance Theory of Automatization 

Gordon D. Logan 
University of  Illinois 

This article presents a theory in which automatization is construed as the acquisition of a domain- 
specific knowledge base, formed of separate representations, instances, of each exposure to the task. 
Processing is considered automatic if it relies on retrieval of stored instances, which will occur only 
after practice in a consistent environment. Practice is important because it increases the amount 
retrieved and the speed of retrieval; consistency is important because it ensures that the retrieved 
instances will be useful. The theory accounts quantitatively for the power-function speed-up and 
predicts a power-function reduction in the standard deviation that is constrained to have the same 
exponent as the power function for the speed-up. The theory accounts for qualitative properties as 
well, explaining how some may disappear and others appear with practice. More generally, it provides 
an alternative to the modal view of automaticity, arguing that novice performance is limited by a 
lack of knowledge rather than a scarcity of resources. The focus on learning avoids many problems 
with the modal view that stem from its focus on resource limitations. 

Automaticity is an important phenomenon in everyday men- 
tal life. Most of us recognize that we perform routine activities 
quickly and effortlessly, with little thought and conscious aware- 
ness-- in  short, automatically (James, 1890). As a result, we of- 
ten perform those activities on "automatic pilot" and turn our 
minds to other things. For example, we can drive to dinner 
while conversing in depth with a visiting scholar, or we can 
make coffee while planning dessert. However, these benefits may 
be offset by costs. The automatic pilot can lead us astray, caus- 
ing errors and sometimes catastrophes (Reason & Myceilska, 
1982). If  the conversation is deep enough, we may find ourselves 
and the scholar arriving at the office rather than the restaurant, 
or we may discover that we aren't  sure whether we put two or 
three scoops of  coffee into the pot. 

Automaticity is also an important  phenomenon in skill acqui- 
sition (e.g., Bryan & Harter, 1899). Skills are thought to consist 
largely of collections of  automatic processes and procedures 
(e.g., Chase & Simon, 1973; Logan, 1985b). For example, 
skilled typewriting involves automatic recognition of  words, 
translation of words into keystrokes, and execution of  key- 
strokes (Salthouse, 1986). Moreover, the rate of  automatization 
is thought to place important limits on the rate of  skill acquisi- 
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tion: LaBerge and Samuels (1974) claimed that beginning read- 
ers may not be able to learn to read for meaning until they have 
learned to identify words and letters automatically. 

Over the last decade, considerable progress has been made 
in understanding the nature of  automaticity and the conditions 
under which it may be acquired (for reviews, see Kahneman 
& Treisman, 1984; LaBerge, 1981; Logan, 1985b; Schneider, 
Dumais, & Shiffrin, 1984). There is evidence that automatic 
processing differs qualitatively from nonautomatic processing 
in several respects: Automatic processing is fast (Neely, 1977; 
Posner & Snyder, 1975), effortless (Logan, 1978, 1979; Schnei- 
der & Shiffrin, 1977), autonomous (Logan, 1980; Posner & Sny- 
der, 1975; Shiffrin & Schneider, 1977; Zbrodoff& Logan, 1986), 
stereotypic (McLeod, McLaughlin, & Nimmo-Smith,  1985; 
Naveh-Benjamin & Jonides, 1984), and unavailable to con- 
scious awareness (Carr, McCauley, Sperber, & Parmalee, 1982; 
Marcel, 1983). There is also evidence that automaticity is ac- 
quired only in consistent task environments, as when stimuli 
are mapped consistently onto the same responses throughout 
practice. Most of  the properties of  automaticity develop 
through practice in such environments (Logan, 1978, 1979; 
Schneider & Fisk, 1982; Schneider & Shiffrin, 1977; Shiffrin & 
Schneider, 1977). 

Automaticity is commonly viewed as a special topic in the 
study of  attention. The modal view links automaticity with a 
single-capacity model of  attention, such as Kahneman's  (1973). 
It considers automatic processing to occur without attention 
(e.g., Hasher & Zacks, 1979; Logan, 1979, 1980; Posner & Sny- 
der, 1975; Shiffrin & Schneider, 1977), and it interprets the ac- 
quisition of  automaticity as the gradual withdrawal of  attention 
(e.g., LaBerge & Samuels, 1974; Logan, 1978; Shiffrin & 
Schneider, 1977). The modal view has considerable power, ac- 
counting for most of  tile properties of automaticity: Automatic 
processing is fast and effortless because it is not subject to atten- 
tional limitations. It is autonomous, obligatory, or uncontrolla- 
ble because attentional control is exerted by allocating capacity; 
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a process that does not require capacity cannot be controlled 
by allocating capacity. Finally, it is unavailable to consciousness 
because attention is the mechanism of consciousness and only 
those things that are attended are available to consciousness 
(e.g., Posner & Snyder, 1975). 

However, there are serious problems with the modal view. 
Some investigators questioned the evidence that automatic pro- 
cessing is free of  attentional limitations (e.g., Cheng, 1985; 
Ryan, 1983). Others found evidence of attentional limitations 
in tasks that are thought to be performed automatically (e.g., 
Hoffman, Nelson, & Houck, 1983; Kahneman & Chajzyck, 
1983; Paap & Ogden, 1981; Regan, 1981). The single-capacity 
view of attention, in which the modal view is articulated, has 
been seriously challenged by multiple-resource theories, which 
argue that many resources other than attention may limit per- 
formance (e.g., Navon & Gopher, 1979; Wickens, 1984)? Oth- 
ers argued that performance may not be limited by any re- 
sources, attentional or otherwise (e.g., Allport, 1980; Navon, 
1984; Neisser, 1976). Moreover, there is growing dissatisfaction 
with the idea that automatization reflects the gradual with- 
drawal of attention (e.g., Hirst, Spelke, Reaves, Caharack, & 
Neisser, 1980; Kolers, 1975; Spelke, Hirst, & Neisser, 1976). 
Critics argue that the idea is empty unless the learning mecha- 
nism can be specified. 

The purpose of  this article is to propose a theory of automa- 
ticity that describes the nature of automatic processing and says 
how it may be acquired without invoking the single-capacity 
theory of  attention or the idea of  resource limitations. The the- 
ory is first described generally, then a specific version of the the- 
ory is developed to account for the speed-up and reduction in 
variability that accompany automatization. The theory is then 
fitted to data from two different tasks--lexical decision and al- 
phabet arithmetic--and experiments that test the learning as- 
sumptions of the theory are reported. Finally, the qualitative 
properties of  automaticity are discussed in detail, implications 
of  the theory are developed and discussed, and the theory is con- 
trasted with existing theories of  skill acquisition and automati- 
zation. 

Automatic i ty  as M e m o r y  Retrieval 

The theory relates automaticity to memorial aspects of  atten- 
tion rather than resource limitations. It construes automaticity 
as a memory phenomenon, governed by the theoretical and em- 
pirical principles that govern memory. Automaticity is memory 
retrieval: Performance is automatic when it is based on single- 
step direct-access retrieval of past solutions from memory. The 
theory assumes that novices begin with a general algorithm that 
is sufficient to perform the task. As they gain experience, they 
learn specific solutions to specific problems, which they retrieve 
when they encounter the same problems again. Then, they can 
respond with the solution retrieved from memory or the one 
computed by the algorithm. At some point, they may gain 
enough experience to respond with a solution from memory on 
every trial and abandon the algorithm entirely. At that point, 
their performance is automatic. 2 Automatization reflects a tran- 
sition from algorithm-based performance to memory-based 
performance. 

The idea behind the theory is well illustrated in children's 
acquisition of simple arithmetic. Initially, children learn to add 
single-digit numbers by counting (i.e., incrementing a counter 
by one for each unit of each addend), a slow and laborious pro- 
cess, but one that guarantees correct answers, if applied prop- 
erly. With experience, however, children learn by rote the sums 
of  all pairs of  single digits, and rely on memory retrieval rather 
than counting (Ashcraft, 1982; Siegler, 1987; Zbrodoff, 1979). 
Once memory becomes sufficiently reliable, they rely on mem- 
ory entirely, reformulating more complex problems so that they 
can be solved by memory retrieval. 

Main  Assumpt ions  

The theory makes three main assumptions: First, it assumes 
that encoding into memory is an obligatory, unavoidable conse- 
quence of attention. Attending to a stimulus is sufficient to com- 
mit it to memory. It may be remembered well or poorly, depend- 
ing on the conditions of  attention, but it will be encoded. Sec- 
ond, the theory assumes that retrieval from memory is an 
obligatory, unavoidable consequence of  attention. Attending to 
a stimulus is sufficient to retrieve from memory whatever has 
been associated with it in the past. Retrieval may not always be 
successful, but it occurs nevertheless. Encoding and retrieval 
are linked through attention; the same act of  attention that 
causes encoding also causes retrieval. Third, the theory assumes 
that each encounter with a stimulus is encoded, stored, and re- 
trieved separately. This makes the theory an instance theory and 
relates it to existing theories of  episodic memory (Hintzman, 
1976; Jacoby & Brooks, 1984), semantic memory (Landauer, 
1975), categorization (Jacoby & Brooks, 1984; M e d i n &  
Schaffer, 1978), judgment (Kahneman & Miller, 1986), and 
problem solving (Ross, 1984). 

These assumptions imply a learning mechanismmthe accu- 
mulation of  separate episodic traces with experience--that pro- 
duces a gradual transition from algorithmic processing to 
memory-based processing. They also suggest a perspective on 
theoretical issues that is fundamentally different from the 
modal perspective, which was derived from assumptions about 
resource limitations. But are the assumptions valid? Possibly. 
Each one receives some support. 

The assumption of obligatory encoding is supported by stud- 
ies of  incidental learning and comparisons of  incidental and in- 

The concept of automaticity has not been articulated well in multi- 
ple-resource theories (Navon & Gopher, 1979; Wickens, 1984). For the 
most part, investigators claim that automatic processes use resources 
efficiently, reiterating the main assumption underlying the modal, sin- 
gle-capacity view. But they don't specify which resources are used more 
efficiently. The discussion focuses on a single resource, leaving it for 
the reader to decide why that particular resource should be used more 
efficiently or whether the other resources come to be used more effi- 
ciently as well (also see Allport, 1980; Logan, 1985b). 

2 Strictly speaking, the instance theory considers performance to be 
automatic when it is based on memory retrieval whether that occurs on 
the 10th trial or the 10,000th. Early in practice, before subjects rely in 
memory entirely, performance may be automatic on some trials (i.e., 
those on which memory provides a solution) but not on others (i.e., 
those on which the algorithm computes a solution). 
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tentional learning. The evidence overwhelmingly indicates that 
people can learn a lot without intending to; incidental learning 
is usually closer to intentional learning than to chance. The in- 
tention to learn seems to have little effect beyond focusing atten- 
tion on the items to be learned (Hyde & Jenkins, 1969; Mandler, 
1967). However, the assumption of obligatory encoding does 
not imply that all items will be encoded equally well. Attention 
to an item may be sufficient to encode it into memory, but the 
quality of  the encoding will depend on the quality and quantity 
of  attention. As the levels-of-processing literature has shown, 
subjects remember the same items better when they attend to 
their semantic features rather than their physical features 
(Craik & Tulving, 1975). Dual-task studies show that subjects 
remember less under dual-task conditions than under single- 
task conditions (Naveh-Benjamin & Jonides, 1984; Nissen & 
Bullemer, 1987). 3 

The assumption of  obligatory retrieval is supported by stud- 
ies of  Stroop and priming effects, in which attention to an item 
activates associations in memory that facilitate performance in 
some situations and interfere with it in others (for a review, see 
Logan, 1980). The most convincing evidence comes from stud- 
ies of  episodic priming that show facilitation from newly 
learned associates (McKoon & Ratcliff, 1980; Ratcliff& Mc- 
Koon, 1978, 1981). The assumption of  obligatory retrieval does 
not imply that retrieval will always be successful or that it will 
be easy. Many factors affect retrieval time (Ratcliff, 1978), in- 
cluding practice on the task (Pirolli & Anderson, 1985). The 
prevailing conditions in studies of  automaticity are generally 
good for retrieval: The same items have been presented many 
times and so should be easy to retrieve. The algorithm, if used 
in parallel with retrieval, will screen out any slow or difficult 
retrievals by finishing first and providing a solution to the task. 

The assumption of  an instance representation for learning 
contrasts with the modal view. Many theories assume a strength 
representation (e.g., LaBerge & Samuels, 1974; MacKay, 1982; 
Schneider, 1985), and others include strength as one of  several 
learning mechanisms (e.g., Anderson, 1982), In instance theo- 
ries, memory becomes stronger because each experience lays 
down a separate trace that may be recruited at the time of  re- 
trieval; in strength theories, memory becomes stronger by 
strengthening a connection between a generic representation of  
a stimulus and a generic representation of  its interpretation or 
its response. 

Instance theories have been pitted against strength theories 
in studies of  memory and studies of  categorization. In memory, 
strength is not enough; the evidence is consistent with pure in- 
stance theories or strength theories supplemented by instances 
(for a review, see Hintzman, 1976). In categorization, abstrac- 
tion is the analog of  strength. Separate exposures are combined 
into a single generic, prototypic representation, which is com- 
pared with incoming stimuli. The evidence suggests that proto- 
types by themselves are not enough; instances are important in 
categorization (for a review, see Medin & Smith, 1984). The 
success of  instance theories in these domains suggests that they 
may succeed as well in explaining automatization. Experiment 
5 pits the instance theory against certain strength theories. 

The instance representation also implies that automatization 
is item-based rather than process-based. It implies that automa- 

tization involves learning specific responses to specific stimuli. 
The underlying processes need not change at all--subjects are 
still capable of  using the algorithm at any point in practice (e.g., 
adults can still add by counting), and memory retrieval may 
operate in the same way regardless of  the amount of  informa- 
tion to be retrieved. Automaticity is specific to the stimuli and 
the situation experienced during training. Transfer to novel 
stimuli and situations should be poor. By contrast, the modal 
view suggests that automatization is process-based, making the 
underlying process more efficient, reducing the amount of  re- 
sources required or the number of  steps to be executed (e.g., 
Anderson, 1982; Kolers, 1975; LaBerge & Samuels, 1974; Lo- 
gan, 1978). Such process-based learning should transfer just as 
well to novel situations with untrained stimuli as it does to fa- 
miliar situations with trained stimuli. 

There is abundant evidence for the specificity of  automatic 
processing in the literature on consistent versus varied map- 
ping. Practice improves performance on the stimuli and map- 
ping rules that were experienced during training but not on 
other stimuli or even other rules for mapping the same stimuli 
onto the same responses (for a review, see Shiffrin & Dumais, 
1981). The experiments presented later in the article provide 
further evidence. 

The theory differs from process-based views of  automatiza- 
tion in that it assumes that a task is performed differently when 
it is automatic than when it is not; automatic performance is 
based on memory retrieval, whereas nonautomatic perfor- 
mance is based on an algorithm. This assumption may account 
for many of  the qualitative properties that distinguish auto- 
matic and nonautomatic performance. The properties of  the al- 
gorithm may be different from the properties of  memory re- 
trieval; variables that affect the algorithm may be different from 
the variables that affect memory retrieval. In particular, vari- 
ables that affect performance early in practice, when it is domi- 
nated by the algorithm, may not affect performance later in 
practice, when it is dominated by memory retrieval. Thus, 
dual-task interference and information-load effects may dimin- 
ish with practice because they reflect difficulties involved in us- 
ing the initial algorithm that do not arise in memory retrieval. 

3 The assumption of obligatory encoding is similar to Hasher and 
Zacks's (1979, 1984) notion of automatic encoding of certain stimulus 
attributed (e.g., frequency of presentation, location). However, Hasher 
and Zacks assumed that encoding is not influenced by manipulations 
of attention, intention, or strategy, whereas the instance theory assumes 
only that it is obligatory. Hasher and Zacks's position was challenged 
recently by evidence that encoding can be influenced by orienting tasks 
and dual-task conditions. Greene (1984) and Fisk and Schneider (1984) 
showed that subjects remembered the frequency of stimuli presented 
during semantic orienting tasks better than the frequency of stimuli pre- 
sented during orienting tasks that focused on physical or structural fea- 
tures. Naveh-Benjamin and Jonides (1986) showed that subjects re- 
membered the frequency of stimuli presented under single-task condi- 
tions better than the frequency of stimuli presented under dual-task 
conditions (also see Naveh-Benjamin, 1987). The instance theory can 
accomodate these findings easily. It assumes that attention to an item 
will have some impact on memory; it does not assume that all condi- 
tions of attention produce the same impact. 
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This theme is developed in detail in a subsequent section of the 
article. 

The assumption that automatic and nonautomatic process- 
ing are different does not imply that they have opposite charac- 
teristics, as many current treatments of  automaticity imply. Au- 
tomatic processing may be well defined (having the properties 
of  memory retrieval), but nonautomatic processing may not be. 
The set of algorithms that are possible in the human cognitive 
system is probably unbounded, and it seems highly unlikely 
that any single property or set of  properties will be common to 
all algorithms, or even to most of them. Thus, the present the- 
ory does not endorse the strategy of defining aUtomaticity by 
listing dichotomous properties (e.g., serial vs. parallel; effortful 
vs. effortless) that distinguish it from another specific kind of 
processing (e.g., attentional, Logan, 1980; controlled, Shiffrin 
& Schneider, 1977; effortful, Hasher & Zacks, 1979; strategic, 
Posner & Snyder, 1975; and conscious, Posner & Klein, 1973). 

Quanti tat ive Properties o f  A_utomaticity 

The theory is primarily intended to account for the major 
quantitative properties of  automatization, the speed-up in pro- 
cessing and reduction in variability that result from practice. 
The speed-up is the least controversial of the properties ofauto- 
maticity. It is observed in nearly every task that is subject to 
practice effects, from cigar rolling to proving geometry theo- 
rems (for a review, see Newell & Rosenbloom, 1981). In each 
case, the speed-up follows a regular function, characterized by 
substantial gains early in practice that diminish with further 
experience. More formally, the speed-up follows a power func- 
tion, 

R T  = a + bN -c, 

where R T  is the time required to do the task, N is the number 
of  practice trials, and a, b, and c are constants. A represents the 
asymptote, which is the limit of  learning determined perhaps 
by the minimum time required to perceive the stimuli and emit 
a response; b is the difference between initial performance and 
asymptotic performance, which is the amount to be learned; 
and c is the rate of learning. The values of  these parameters vary 
between tasks, but virtually all practice effects follow a power 
function. 4 

The power-function speed-up has been accepted as a nearly 
universal description of skill acquisition to such an extent that 
it is treated as a law, a benchmark prediction that theories of 
skill acquisition must make to be serious contenders (see, e.g., 
Anderson, 1982; Crossman, 1959; MacKay, 1982; Newell & Ro- 
senbloom, 1981)J If  they cannot account for the power law, 
they can be rejected immediately. The instance theory predicts 
a power-function speed-up. 

The reduction in variability that accompanies automatiza- 
tion is not well understood, largely because most theories ne- 
glect it. The literature shows that variability decreases with 
practice (e.g., McLeod, McLaughlin, & Nimmo-Smith, 1985; 
Naveh-Benjamin & Jonides, 1984), but the form of the function 
has not been specified; there is nothing akin to the power law. 
The instance theory predicts that the standard deviation will 
decrease as a power function of  practice. Moreover, it predicts 

a strong constraint between the power function for the mean 
and the one for the standard deviation: they must have the same 
exponent, c. 

The predictions for the power law follow naturally from the 
main assumptions of  the instance theory--obligatory encod- 
ing, obligatory retrieval, and instance representation. The pre- 
dictions are developed mathematically in Appendix A. The re- 
mainder of  this section provides an informal account. 

The theory assumes that each encounter with a stimulus is 
encoded, stored, and retrieved separately. Each encounter with 
a stimulus is assumed to be represented as a processing episode, 
which consists of the goal the subject was trying to attain, the 
stimulus encountered in pursuit of  the goal, the interpretation 
given to the stimulus with respect to the goal, and the response 
made to the stimulus. When the stimulus is encountered again 
in the context of the same goal, some proportion of  the process- 
ing episodes it participated in are retrieved. The subject can 
then choose to respond on the basis of  the retrieved informa- 
tion, if it is coherent and consistent with the goals of  the current 
task, or to run off the relevant algorithm and compute an inter- 
pretation and a response. 

The simplest way to model the choice process is in terms of 
a race between memory and the algorithm--whichever finishes 
first controls the response. Over practice, memory comes to 
dominate the algorithm because more and more instances enter 
the race, and the more instances there are, the more likely it is 
that at least one of  them will win the race. The power-function 
speed-up and reduction in variability are consequences of the 
race. 

Memory Retrieval and the Power Law for Means 
and Standard Deviations 

The memory process is itself a race. Each stored episode 
races against the others, and the subject can respond on the basis 
of memory as soon as the first episode is retrieved. The race 
can be modeled by assuming that each episode has the same 
distribution of finishing times. Thus, the finishing time for a 
retrieval process involving N episodes will be the minimum of 
N samples from the same distribution, which is a well-studied 
problem in the statistics of extremes (e.g., Gumbel, 1958). Intu- 
ition suggests that the minimum will decrease as N increases, 
but the question is, will it decrease as a power function of  N? 

4 Power functions are linear when plotted in logarithmic coordinates. 
Thus, 

log(RT- a) = log(b) - clog(N). 

The power-function speed-up is sometimes called the log-log linear law 
of learning (Newell & Rosenbloom, 1981). 

Mazur and Hastie (1978) argued that learning curves were hyper- 
bolic rather than exponential and reanalyzed a great deal of data to dem- 
onstrate their point. However, (a) they analyzed accuracy data rather 
than reaction timeswand the theories of the power-function speed-up 
do not necessarily make predictions about accuracy--and (b) the hyper- 
bolic function is a power function with an exponent o f -  1, so it is a 
special case of the power law. Consequently, Mazur and Hastie's argu- 
ments and analyses do not contradict the power law. 
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It would be difficult to prove mathematically that the mini- 
mum of  N samples from every conceivable distribution de- 
creases as a power function of  N, but it is possible to prove it 
for a broad class of  initial distributions (all positive-valued dis- 
tributions). That proof  is presented in Appendix A. The power- 
function speed-up is a consequence of  two counteracting fac- 
tors: On the one hand, there are more opportunities to observe 
an extreme value as sample size increases, so the expected value 
of  the minimum will decrease. But, on the other hand, the more 
extreme the value, the lower the likelihood of  sampling a value 
that is even more extreme, so the reduction in the minimum 
that results from increasing sample size by m will decrease as 
sample size increases. The first factor produces the speed-up; 
the second factor produces the negative acceleration that is 
characteristic of  power functions. 

Intuition also suggests that variability will decrease as N in- 
creases: The losers of  the race restrict the range that the winner 
can occupy. The more losers, the more severe the restriction, 
and thus, the smaller the variability. Moreover, the same factors 
that limit the reduction in the mean limit the reduction in the 
range that the minimum can occupy, so the reduction in vari- 
ability should be negatively accelerated like the reduction in the 
mean. But does it follow a power function? And if  so, is the 
exponent the same as the one for the mean? 

The proofs in Appendix A show that the entire distribution 
of  minima decreases as a power function of  sample size, not 
just the mean of  the distribution. This implies a power-function 
reduction in the standard deviation as well as the mean. Because 
the mean and standard deviation are both functions of  the same 
distribution, the exponent of  the power function for the mean 
will equal the exponent of  the power function for the standard 
deviation. 

These predictions are unique to the instance theory. No other 
theory of  skill acquisition or automaticity predicts a power- 
function reduction in the standard deviation and constrains its 
exponent to equal the exponent for the reduction in the mean. 

The Power Law and the Race Between the Algorithm 
and Memory Retrieval 

According to the instance theory, automatization reflects a 
transition from performance based on an initial algorithm to 
performance based on memory retrieval. The transition may 
be explained as a race between the algorithm and the retrieval 
process, governed by the statistical principles described in the 
preceding section and in Appendix A. In effect, the algorithm 
races against the fastest instance retrieved from memory. It is 
bound to lose as training progresses because its finishing time 
(distribution) stays the same while the finishing time for the re- 
trieval process decreases. At some point, performance will de- 
pend on memory entirely, either as a consequence of statistical 
properties of  the race or because of  a strategic decision to trust 
memory and abandon the algorithm. 

Does the transition from the algorithm to memory retrieval 
compromise the power-law predictions derived in the preceding 
section and in Appendix A? Strictly speaking, it must. The 
proofs assume independent samples from n identical distribu- 
tions, and the distribution for algorithm finishing times is likely 

to be different from the distribution of  retrieval times. But in 
practice, the deviations from the predicted power law may be 
small. It is hard to make general analytical predictions because 
the algorithm and memory distributions may differ in many 
ways. They may have the same functional form but different 
parameters (the exponential case is analyzed in Appendix A) or 
they may have different forms. 

Any distortion that does occur will be limited to the initial 
part of  the learning curve. Once performance depends on mem- 
ory entirely it will be governed by the power law. Before t h a t - -  
during the transition from the algorithm to memory retr ieval--  
the proofs no longer guarantee a power law. 

I explored the effects of  various transitions on the power-law 
predictions through Monte Carlo simulation, using truncated 
normal distributions for the algorithm and the memory pro- 
cess. Earlier simulations showed that the means and standard 
deviations of  the minimum of  n samples from a truncated nor- 
real decreased as a power function ofn. The current simulations 
addressed whether a race against another truncated normal 
with different parameters would distort the power-function fits. 
The algorithm was represented by nine different distributions, 
factorially combining three means (350, 400, and 450 ms) and 
three standard deviations (80, 120, and 160 ms). The memory 
process was represented by two distributions with different 
means (400 and 500 ms) and the same standard deviation (100 
ms). These parameters represent a reasonably wide range of  
variation, including cases in which memory is faster and less 
variable than the algorithm, as well as cases in which it is slower 
and more variable. This is important because the outcome of  
the race will depend on the mean and standard deviation of  the 
parent distributions. Other things equal, the distribution with 
the faster mean will win the race more often. Also, the distribu- 
tion with the larger standard deviation will win more often be- 
cause extreme values are more likely the larger the standard 
deviation. 

The effects of 1 to 32 presentations were simulated. The simu- 
lations assumed that the algorithm was used on every trial (i.e., 
the "subject" never chose to abandon it in favor of  memory) 
and that each prior episode was retrieved on every trial. Thus, 
for a trial on which a stimulus appeared for the nth time, reac- 
tion time was set equal to the minimum ofn  samples, one from 
the distribution representing the algorithm and n - 1 from the 
distribution representing the memory process, There were 240 
simulated trials for each number of presentations (1-32), which 
approximates the number of  observations per data point in the 
experiments reported in subsequent sections of  the article. 

The simulations provided three types of  data: mean reaction 
times, standard deviation of  reaction times, and the proportion 
of trials on which the algorithm won the race. Power functions 
were fitted to the means and standard deviations simultaneously 
(using STEPIT, Chandler, 1965), such that the exponent was con- 
strained to be the same for means' and standard deviations as 
the instance theory predicts. If  the race with the algorithm dis- 
torts the relation between means and standard deviations, the 
constrained power functions will not fit well. 

Means and standard deviations. The simulated mean reac- 
tion times appear in Figure 1, and the standard deviations ap- 
pear in Figure 2. The points represent the simulated data and 
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Figure 1. Reaction times from simulations of a race between an algorithm and a memory retrieval process 
as a function of the number of presentations of an item. (Points represent the simulated data; lines, fitted 
power functions. Power functions are constrained to have exponents equal to those of power functions fitted 
to the standard deviations, which are plotted in Figure 2. Each panel portrays three algorithms with different 
means--350, 400, and 450 from the bottom function to the top---and the same standard deviation--80 in 
the top two panels, 120 in the middle two, and 160 in the bottom two--racing against a memory process 
with a constant mean---400 in the left-hand panels, 500 in the right--and standard deviation, 100 in all 
panels.) 

the lines represent fitted power functions, constrained to have 
the same exponent  for means and standard deviations. The  ex- 
ponents appear in Table 1. 

Two points  are impor tant  to note: First, the means and stan- 
dard deviations both decreased as the number  o f  presentations 
increased, and the trend was well fit by the constrained power 
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Figure 2. Standard deviations from the simulated race between an algorithm and a memory retrieval pro- 
cess. (Points represent the simulated data; lines, fitted power functions. Power functions are constrained to 
have exponents equal to those of power functions fitted to the means, which are plotted in Figure 1. Each 
panel portrays three different algorithms with different standard deviations--80, 120, and 160 from the 
bottom function to the top--and the same mean--350 in the top panels, 400 in the middle, and 450 in the 
bottom--racing against a memory process with a constant mean--400 in the left panels, 500 in the r ight--  
and standard deviation, 100.) 
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Table 1 
Exponents of Power Functions Fitted to the Simulated Data in 
Figures I and 2, Which Represent Races Between Various 
Memory Processes and Algorithms 

Memory = 400, 100: 
Algorithm SD 

Memory = 500, 100: 
Algorithm SD 

Algorithm 
M 80 120 160 80 120 160 

350 0.156 0.340 0.367 0.185 0.193 0.248 
400 0.251 0.301 0.465 0.227 0.252 0.251 
450 0.368 0.479 0.550 0.230 0.316 0.452 

Note. The exponent for the 400, 100 memory process is 0.302; the expo- 
nent for the 500, 100 memory process is 0.309. 

functions (r  2 ranged from .992 to 1.000 with a median of.998; 
root-mean-squared deviation between predicted and observed 
values ranged from 2.38 ms to 5.93 ms, with a median of 3.81 
ms). Thus, the race does not appear to compromise the power 
law; the instance theory can predict power functions even when 
memory retrieval must race against a faster or slower algorithm. 
Second, the race distorts the form of  the power function; the 
exponents from the constrained fits are systematically different 
from the fits to the memory process by itself. The exponents 
from the race increase in absolute magnitude as the algorithm 
mean increases and as the algorithm standard deviation in- 
crcascs. 

The simulated data illustrate the effects of  "qualitative" 
differences between the automatic and nonautomatic perfor- 
mance. Each panel has three different versions of the algorithm 
racing against a single version of the memory retrieval process, 
and in each case, initial differences due to the algorithm disap- 
pear after a few presentations. Averaged over all six panels, the 
difference between the 450-ms algorithm and the 350-ms algo- 
ri thm decreased from 97 ms on the first presentation to 15 ms 
on the 32nd presentation. If the algorithm were a memory 
search process and the different conditions corresponded to 
memory set sizes of  1 and 5, the initial slope of  24 ms/i tem (i.e., 
97/4) would approach zero (i.e., 15/4) after 32 presentations. 

Another kind of "qualitative difference" can be seen by com- 
paring the two panels in each row. In this case, differences that 
were not there initially, emerge with practice. The conditions of 
the algorithm are the same in the right and in the let~ panel, but 
the memory retrieval process is much slower in the right panel. 
Averaged over the three pairs of panels, the difference between 
right and left was - 1 ms on the first presentation and 84 ms on 
the 32rid presentation. 

The standard deviations show "qualitative differences" sim- 
ilar to those observed for the means. Initial differences due to 
the algorithm were substantially reduced as the number of  pre- 
sentations increased and memory retrieval came to dominate 
performance. Averaging over conditions, the initial difference 
between the 160-ms algorithm and the 80-ms algorithm de- 
creased to 22 ms by the 32rid presentation. 

P(algorithm firsO. Figure 3 presents a different perspective 
on the outcome of  the race, the probabilities that the algorithm 
finished first. The probabilities were affected by the mean and 

the variance of  the algorithm, increasing as the algorithm be- 
came faster and more variable. They were also affected by the 
mean of the memory process, decreasing as the memory pro- 
cess becomes faster. 

The memory process came to dominate the algorithm rela- 
tively quickly. Averaged over all conditions, the algorithm won 
the race only 21% of  the time after 16 presentations and 16% of 
the time after 32 presentations. The speed of  memory retrieval 
had a large effect on the outcome: The 400-ms retrieval process 
won 90% of the time after 16 presentations and 93% of  the time 
after 32 presentations, whereas the 500-ms retrieval process 
won only 68% of the time after 16 presentations and 76% of  the 
time after 32 presentations. 

The dominance of  the memory process after such a small 
number of  trials is important because it suggests that memory 
retrieval will eventually win the race regardless of  the speed and 
variability of the algorithm. Possibly, memory retrieval will 
come to win the race even if the algorithm becomes faster with 
practice. Thus, memory retrieval may provide a back-up mech- 
anism for automatization and skill acquisition even when skill 
and automaticity are acquired through other mechanisms. 

Memorability and the Rate of Learning 

The speed with which the memory process comes to domi- 
nate the algorithm has important implications for studies of 
automaticity: It suggests that automatization can occur very 
quickly (also see Logan, 1988; Naveh-Benjamin & Jonides, 
1984; E. Smith & Lerner, 1986). This means that it is feasible 
to study automatization in a single session, as was done in some 
of  the experiments reported in subsequent sections of this 
article. 

An important question raised by the instance theory is why 
automatization takes so long in other experiments. In search 
studies, for example, several thousand trials spanning 10 to 20 
sessions are often necessary to produce automaticity (e.g., 
Shiffrin & Schneider, 1977). The discrepancy may arise for at 
least three reasons: First, the criterion for automaticity is 
different in the previous studies. In Shiffrin and Schneider's 
search studies, automatization was not considered to be com- 
plete until the slope of the search function reached zero (but 
see Cheng, 1985; Ryan, 1983). From the present perspective, 
automatization may never be complete, in that each additional 
instance will have some effect on memory, even if its effect does 
not appear in the primary performance data (also see Logan, 
1985b). The present perspective also suggests there may be a 
shift in the direction of automaticity after only a few trials, and 
this shift may be a more important phenomenon to study than 
the zero slope addressed by Shiffrin, Schneider, and others (also 
see Logan, 1979, 1985b). 

Second, differences in the apparent rate of automatization 
may be artifacts of the way the data are plotted. Instance theory 
argues that means and standard deviations should be plotted as 
a function of the number of  trials per stimulus because each 
trial potentially adds a new instance to memory. But data are 
usually plotted against sessions, disregarding the number of  tri- 
als per stimulus. Consequently, a task with more stimuli per ses- 
sion (and thus fewer trials per stimulus) will appear to be 
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Figure 3. Probability that the algorithm finished fL,'St in the simulated race between an algorithm and a 
memory retrieval process. (Each panel portrays three algorithms with different means---350, 400, and 
450--and the same standard deviation--80 in the top two panels, 120 in the middle two, and 160 in the 
bottom two--racing against a memory process with a constant mean--400 in the left-hand panels, 500 in 
the right--and standard deviation, 100 in all panels.) 

learned more slowly than a task with fewer stimuli per session 
(and thus more trials per stimulus), even if the rate of learning 
per stimulus is equal. 

Third, differences in the rate of automatization may reflect 
the memorability of the stimuli. According to instance theory, 
stimuli that are easy to remember will show evidence of aufo- 
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maticity relatively quickly, whereas stimuli that are hard to re- 
member will take a long time to show evidence of  automaticity. 
It may be that the letter arrays studied by Shiffrin, Schneider, 
and others are hard to remember. By contrast, the simulations 
so far have assumed that each and every encounter with a stimu- 
lus is encoded and retrieved. 

The effect of  memorability can be modeled by slowing down 
the retrieval time or by varying the probability that a stimulus 
will be encoded and retrieved. Most likely, memorability has 
both effects (Ratcliff, 1978), but it is interesting to consider 
them separately. The effects of  slowing down retrieval can be 
seen in Table 1: The learning rate, as measured by the power- 
function exponent was slower for the 500-ms memory process 
than for the 400-ms memory process when they both raced 
against the same algorithm. 

The effect of  varying retrieval probability is to slow the rate 
of learning by reducing the effective number of  traces in the 
race. Reaction times and standard deviations will still decrease 
as a power function of  n, but with a smaller exponent, reflecting 
a slower rate of  learning. 6 

These analyses suggest that there may be no discrepancy be- 
tween the rate of  automatization predicted by instance theory 
and the rate observed in typical studies of  automaticity. It may 
be possible to observe automatization in a single session, as was 
suggested earlier, as long as the number of  stimuli is small and 
the stimuli themselves are easy to remember (also see Logan, 
1988; Naveh-Benjamin & Jonides, 1984; Smith & Lerner, 
1986). 

Conc lus ions  

The theoretical analyses in this section showed that the quan- 
titative properties of  automaticity can be accounted for by an 
instance theory that assumes that subjects store and retrieve 
representations of  each individual encounter with a stimulus. 
According to the instance theory, automatization reflects a shift 
from reliance on a general algorithm to reliance on memory for 
past solutions. Thus, automatization reflects the development 
of a domain-specific knowledge base; nonautomatic perfor- 
mance is limited by a lack of  knowledge rather than by the scar- 
city of  resources. 

The power-function speed-up is a statistical consequence of  
the main assumptions (obligatory encoding, obligatory re- 
trieval, and instance representation), and the theory makes new 
predictions about the reduction in variability. Standard devia- 
tions should decrease as power functions of  the number of  trials, 
and the exponents should be the same as the exponents for the 
m e a n s .  

What is interesting about the speed-up is that none of  the 
underlying processes change over practice. The algorithm stays 
the same and so does memory retrieval. Moreover, stimuli are 
encoded in exactly the same way at every point in prac t ice- -  
each trial results in the encoding and storage of  a processing 
episode. All that changes is the knowledge base that is available 
to the subject. 

It remains to be shown that the instance theory can account 
for experimental data; that is the purpose of  the next section. 

F i t t ing  T h e o r y  to  D a t a  

One of  the basic premises of  the instance theory is that non- 
automatic processes need not have anything in common, except 
that they are replaced by memory retrieval as practice pro- 
gresses. In keeping with that premise, the instance theory was 
fitted to data from two very different tasks, lexical decision and 
alphabet arithmetic. The lexical decision task is fast, relatively 
effortless, and possibly parallel, whereas the alphabet arithme- 
tic task is slow, very effortful, and clearly serial. According to 
the instance theory, after sufficient practice, both tasks should 
be performed in the same way- -by  retrieving past solutions 
from memory. This prediction was tested indirectly, by examin- 
ing the fit of  power functions to the means and standard devia- 
tions of  reaction times in both tasks and by looking for evidence 
of  item-specific learning in both tasks. The theoretical analysis 
in the preceding section makes the strong prediction that both 
means and standard deviations should decrease as power func- 
tions of  the number of  trials with the same exponent, c. The 
theoretical analysis also predicts that learning should be item- 
based; subjects learn specific responses to specific stimuli, and 
what they learn should not transfer well to different stimuli. 

These predictions are tested in Experiments 1--4. Experiment 
5 pits the instance theory against certain strength theories. 

E x p e r i m e n t  1 

Experiment 1 involved a lexical decision task. Subjects were 
presented with strings of  four letters, and their task was to indi- 
cate as quickly as possible whether or not the letter string was an 
English word. The experiment was intended to resemble typical 
studies of  the development of  automadcity, in which subjects 
are exposed to the same items repeatedly throughout practice. 
Subjects made lexical decisions on the same set of  10 words and 
I0 nonwords until each word and nonword was presented 16 
times. In this paradigm, the average lag between successive pre- 
sentations is held constant over repetitions, but the degree of  
nonspecific practice on the task increases with the number of  
repetitions. To control for nonspecific practice, subjects per- 
formed another 16 blocks oflexical decisions, but 10 new words 
and 10 new nonwords were used in each block. Further details 
of  the procedure and the results of  analyses of  variance (AN- 
OVAs) on the mean reaction times and standard deviations are 
presented in Appendix B. 

6 If the original power function has an exponent of c and some propor- 
tion p of the n episodes are stored and retrieved, then when performance 
is plotted against n, the data will follow a power function with an expo- 
nent k < c. T h a t  is, 

n k = (pn) c. 

Taking logs of both sides yields 

klogn = c(logp + logn), 

and solving for k yields 

k = c[(logp + logn)/logn]. 

K must be less than c because (logo + logn)/Iogn is less than one. 
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Experiment 2 

Experiment 2 was intended to resemble typical studies of  rep- 
etition effects in implicit and explicit memory: Subjects per- 
formed several blocks of  lexical decision trials. Within each 
block of  trials, some words and nonwords are presented once, 
some twice, some 4 times, some 6 times, some 8 times, and some 
10 times. In this paradigm, the average lag between successive 
repetitions is confounded with the number of  repetitions (being 
shorter the greater the number of  repetitions), but the degree of  
nonspecific practice is relatively constant over number of  repe- 
titions. Also, old nonwords are mixed together with new and 
old words, so there should be no benefit for nonwords if  subjects 
respond to nonwords by default. 

The mean reaction times are plotted in the top panel of  Fig- 
ure 6, and the standard deviations are plotted in the bottom 

Figure 4. Reaction times to old and new words and nonwords as a func- 
tion of the number of presentations in the lexical decision task of Exper- 
iment 1. 

The mean reaction times for new and repeated items are pre- 
sented in Figure 4. There was some evidence of  a general prac- 
tice effect, which reduced reaction times for new items slightly 
over blocks. However, the specific practice effect was much ~ 
stronger: Reaction times to repeated items decreased substan- 
tially over blocks, both absolutely and relative to the new-item 
controls. These effects were apparent for nonwords as well as 
words. 

The means and standard deviations for repeated items appear 
in Figure 5, the means in the top panel and the standard devia- 
tions in the bottom. The points represent the observed data; 
the lines represent power functions fitted to the data under the 
constraint that the mean and standard deviation should have 
the same exponent. Words and nonwords were fitted separately. 
The estimated parameters for the power functions and mea- 
sures of  goodness of  fit (r 2 and root-mean-squared deviation, or 
rmsd) appear in Table 2. Table 2 also contains parameters and 
goodness-of-fit measures for power functions fitted to means 
and standard deviations separately, to give some idea of  the 
effect of  constraining the exponent. 

z 
The data were well fit by power functions. Moreover, the con- 

strained fit was almost as good as the unconstrained fit; rmsds 
were within 2 ms. 

The contrast between repeated words and new words suggests 
that the repetition effect may be instance- or item-based, as the 
instance theory predicts. Process-based learning predicts no 
difference, yet a difference was observed. The repetition effect 
for nonwords is harder to interpret. Nonword reaction times 
could have decreased because subjects responded to them by 
remembering what they did when they last saw them, or be- 
cause subjects responded to them by default (i.e., by failing to 
find evidence that they were words), and the default response 
became faster as the word decisions became faster. The present 
experiment does not allow us to decide between these alterna- 
tives. That was a major reason for investigating other schedules 
of  repetition. 
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Figure 5. Reaction times (top panel) and standard deviations (bottom 
panel) as a function of the number of presentations in the lexical deci- 
sion task of Experiment 1. (Points represent the data; lines represent 
the best-fitting power function. Power functions for means and standard 
deviations were constrained to have the same exponent.) 
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Table 2 
Parameter Estimates From Constrained and Separate Fits of  Power Functions to Means and Standard Deviations 
of  Reaction Times in the Lexical Decision Tasks of  Experiments 1-3 

503 

Experiment 1: Learning 
Expedment 2: Experiment 3: Experiment 3: 

Repetition Mean lag 12 Mean lag 24 

Parameter Word Nonword Word Nonword Word Nonword Word Nonword 

Constrained fits 

ART 485 482 478 518 501 541 518 574 
BRT 101 216 106 143 87 141 95 115 
C 0.749 0.563 1.033 1.078 1.622 0.702 0.816 0.880 
ASD 81 46 84 95 88 89 86 99 
BSD 43 157 47 76 54 84 64 75 
r 2 0.996 0.994 0.998 0.998 0.996 0.996 0.996 0.996 
rmsd 8.9 12.2 5.6 5.6 9.5 10.2 8.6 9.6 

Separate fits 

ART 482 409 479 511 500 540 573 573 
BRT 103 280 105 148 88 142 115 115 
CRT 0.698 0.327 1.061 0.940 1.571 0.687 1.069 0.859 
ASD 85 75 82 102 88 90 61 100 
BSD 41 140 48 72 54 84 85 75 
CSD 1.063 0.970 0.919 1.601 1.748 0.724 0.387 0.928 
r 2 0.996 0.996 0.998 0.998 0.996 0.998 0.998 0.996 
rmsd 8.9 10.9 5.6 5.1 9.5 10.2 8.3 9.6 

Note. ART = asymptote for mean reaction time; BRT = multiplicative constant for mean reaction time; ASD = asymptote for standard deviation; 
BSD = multiplicative constant for standard deviation; C = exponent fitted to means and standard deviations simultaneously; CRT = exponent 
fitted to means separately; CSD = exponent fitted to standard deviations separately; r 2 = squared correlation between observed and predicted 
values; rmsd = root mean squared deviation from prediction. 

panel. The points represent the observed data, and the lines rep- 
resent fitted power functions constrained such that means and 
standard deviations have the same exponent. As in Experiment 
1, the constrained power-function fit was excellent for both the 
means and the standard deviations. The i~arameters of the con- 
strained power functions and measures of goodness of fit appear 
in Table 2. Table 2 also contains parameters and measures of 
goodness of fit for power functions fitted to the means and stan- 
dard deviations separately. Again, the constrained fit was nearly 
identical to the separate fit. 

These resuRs confirm the conclusion from Experiment 1: 
that the repetition effect is specific to individual stimuli be- 
cause repeated and new stimuli were mixed randomly in each 
block. Thus, subjects could not have adjusted speed-accuracy 
criteria, and so forth, in anticipation of repeated stimuli, as 
they could have in the previous experiment. Significantly, this 
conclusion applies to the nonwords as well as the words: Sub- 
jects responded to repeated nonwords faster than they re- 
sponded to new words, so they could not have sped up their 
reaction times to repeated nonwords by default responding. 
Thus, the data suggest that subjects remembered their previ- 
ous encounters with specific nonwords and with specific 
words, as instance theory predicts. It remains possible, how- 
ever, that the benefit from repeated presentations could be an 
artifact of the shorter lag between successive repetitions for 
stimuli that are repeated more often. Experiment 3 was in- 
tended to address that issue. 

Experiment  3 

In Experiment 3, the number of repetitions was manipulated 
by varying the number of blocks in which a word or nonword 
appeared. Some words and nonwords were presented in only 1 
block, others in 2 consecutive blocks, and others in 4, 8, and 16 
consecutive blocks. Thus, the lag between successive presenta- 
tions was held constant, like the first experiment, but old and 
new items were mixed randomly, like the second experiment. 

In addition, the mean lag between successive presentations 
was varied between subjects to see whether the confounding of 
lag with repetitions in Experiment 2 was likely to have affected 
the results. One half of the subjects had a mean lag of 12 items 
between successive presentations, and the other half had a mean 
lag of 24 items (see Appendix B for further details of the proce- 
dure). 

The data from the mean lag 12 group are presented in Figure 
7; the data from the mean lag 24 group are presented in Figure 
8. In each case, the top panel contains the mean reaction times 
and the bottom panel contains the standard deviations. The 
points represent the observed data, and the lines represent con- 
strained power functions fitted to the means and standard devi- 
ations. Mean lag had no significant effects on performance, nei- 
ther main effect nor interactions (see Appendix B). For both lag 
conditions, reaction times and standard deviations decreased 
with repetition, as the instance theory predicts. The constrained 
power functions fitted the data very well, almost as well as the 
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ations of reaction times that was predicted by the instance the- 
ory. The means and standard deviations both decreased as 
power functions of practice, and the functions had the same 
exponent. This was confirmed in each experiment. It was true 
for words and for nonwords, and it was true for three different 
schedules of repetition. The constraint between the means and 
the standard deviations amounts to predicting co-occurrence of 
different properties of automaticity, which has been a conten- 
tious issue in the recent literature (see Kahneman & Chajzyck, 
1983; Paap & Ogden, 1981; Regan, 1981 vs. Logan, 1985b; Jon- 
ides, Naveh-Benjamin, & Palmer, 1985); it will be discussed in 
detail in a subsequent section. 

Second, Experiments 1-3 indicate that the repetition effect is 
specific to individual stimuli, as the instance theory predicts. 
This was evident in the contrast between repeated items and 
new-item controls in Experiment I and in the contrast between 
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Figure 6. Reaction times (top panel) and standard deviations (bottom 
panel) as a function of  the number of  presentations in the lexical deci- 
sion task of  Experiment 2. (Points represent the data; lines represent 
the best-fitting power function. Power functions for means and standard 
deviations were constrained to have the same exponent.) 

separate fits (see Table 2 for parameter values and measures of  
goodness of  fit). 

These results indicate that the benefit from repetition is spe- 
cific to individual stimuli because the repeated stimuli that 
showed benefit were mixed randomly with new stimuli. As in 
Experiment 2, this was true for nonwords as well as words, 
which suggests that subjects remembered individual encounters 
with specific nonwords as well as words. Unlike the previous 
experiment, there was no confound between lag and the number 
of  presentations, so the increased benefit with multiple repeti- 
tions was not an artifact of  lag. Indeed, the null effect of  mean 
lag suggests that lag is not an important variable when varied 
within the limits of  Experiments 1-3. 

Discussion of Experiments 1-3 

Experiments 1-3 support several conclusions: First, they 
demonstrate a constraint between the means and standard devi- 
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Figure 7. Reaction times (top panel) and standard deviations (bottom 
panel) as a function of  the number of  presentations for the mean-lag = 
12 condition oftbe lexicai decision task in Experiment 3. (Points repre- 
sent the data; lines represent the best-fitting power function. Power 
functions for means and standard deviations were constrained to have 
the same exponent.) 
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functions for means and standard deviations were constrained to have 
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repeated and new items in Experiments 2 and 3. This specificity 
of  learning rules out process-based theories that explain autom- 
atization and skill acquisition in terms of  the development of  
general procedures that deal with new stimuli as effectively as 
old ones (e.g., Anderson, 1982; Rabbitt, 1981). Such theories 
may apply in other domains, but they are not appropriate in the 
present situation. 

Third, Experiments 1-3 demonstrate that nonwords as well 
as words can benefit from repetition. This suggests that the rep- 
etition effects are based on memory for specific episodes rather 
than adjustments to semantic memory (e.g., Feustal, Shiffrin, 
& Salasoo, 1983; Jacoby & Brooks, 1984; Salasoo, Shiffrin, & 
Feustal, 1985). It also suggests that repetition effects may derive 
from the acquisition of  associative information rather than item 
information. If  repetition affects item-specific familiarity, sub- 
jects would not be able to discriminate words from repeated 

nonwords; if words showed benefit relative to controls, non- 
words should show a cost (e.g., Balota & Chumbley, 1984). 

Exper iment  4: Alphabet  Ar i thmet ic  

Experiment 4 examined practice effects in an alphabet arith- 
metic task. Subjects were asked to verify equations of  the form 
A + 2 = C, B + 3 = E, C + 4 = G, and D + 5 = L Subjects 
typically reported that they performed the task by counting 
through the alphabet one letter at a time until the number of  
counts equaled the digit addend, and then comparing the cur- 
rent letter with the presented answer. For example, E + 5 = K 
would involve counting five steps through the alphabet (F, G, 
H, L J), comparing the Jwith the given answer, K, and respond- 
ing false. Consistent with subjects' reports, the time to verify 
alphabet arithmetic equations increases linearly with the digit 
addend (i.e., with the number of  counts). The slope of  the func- 
tion is typically 400-500 ms per count, with an intercept of  
1,000 ms (Logan & Klapp, 1988). 

This experiment was intended to provide a test oftbe instance 
theory that was very different from the lexical decision tasks 
reported earlier. Reaction times in alphabet arithmetic are 
nearly an order of  magnitude longer than reaction times in lexi- 
cal decision, and the practice effects extend over several ses- 
sions. It was also intended to mimic children's acquisition of  
addition, which involves a transition from a serial counting al- 
gorithm to memory retrieval (e.g., Ashcraft, 1982; Siegler, 
1987; Zbrodoff, 1979). Presumably, with enough practice, adult 
subjects would learn to perform the alphabet arithmetic task by 
memory retrieval instead of counting. 

Subjects were trained on 10 letters from one half of  the alpha- 
bet (either A through J, or K through T). Each letter appeared 
with four different addends (2, 3, 4, and 5) in a true equation 
and in a false equation. False equations were true plus one (e.g., 
A + 2 = D) or true minus one (e.g., A + 2 = B); the kind of  false 
equation varied between subjects. Thus, each subject experi- 
enced a total of  80 different problems during training (10 
letters • 4 digit addends • true vs. false). Each problem was 
presented 72 times; 6 times per session for 12 sessions. There 
were 480 trials per session. Further details of  the procedure can 
be found in Logan and Klapp (1988). 

The means and standard deviations of the reaction times are 
plotted in Figures 9 and 10. Figure 9 contains data from true 
responses, and Figure 10 contains data from false responses. 
The data are plotted in logarithmic coordinates so that the 
power functions (solid lines) fitted to the data (points) will ap- 
pear as straight lines. The instance theory predicts that the line 
for mean reaction times should be parallel to the line for the 
standard deviations. The slope of the line is the exponent of  the 
power function in linear coordinates, and the theory predicts 
that means and standard deviations will have the same expo- 
nent. The functions fitted to the data in Figures 9 and 10 were 
constrained to have the same exponent for the mean and stan- 
dard deviation, so the lines are parallel. The question is whether 
the points depart systematically from the parallel lines. Param- 
eters of  the fitted power functions and measures of goodness of 
fit are presented in Table 3. 

In evaluating the fits in the figures, it is important to note that 
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the log scale introduces systematic distortions. Differences are 
exaggerated at low values of  the variable and compressed at high 
values. Consequently, low values will appear to fit less well than 
high values. The standard deviations, which range from 162 ms 
to 1,408 ms, will appear to fit less well than the means, which 
range from 816 ms to 4,285 ms. Objectively, the means were 
fitted better than the standard deviations, but the difference was 
not as large as it appears in the figures. 

The power functions fit the data reasonably well for addends 

of  2, 3, and 4. The functions for means and standard deviations 
appear parallel, as they should in log-log plots if they both de- 
crease as power functions with the same exponent. Indeed, the 
constrained fits were as good as separate fits for all addends (see 
Table 3). Thus, the predictions of  the instance theory are con- 
firmed in the arithmetic task as well as in the previous lexical 
decision tasks. 

The fits were not perfect, however. The power functions for 
addends of  2, 3, and 4 tended to overestimate the last few Ore- 
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sentations. The deviation was much worse for addend = 5 
equations, where a discontinuity appeared in the learning 
curves at about 24 presentations; learning seems faster al~er the 
discontinuity than before. This discontinuity, which is inconsis- 
tent with the instance theory, cannot be accounted for easily by 
any current theory of  skill acquisition. Most theories of  skill 
acquisition predict a power-function learning curve, which is 
continuous. Thus, the evidence against the instance theory is 
also evidence against its competitors. 

The discontinuity reflects a strategy shift reported by 
many of  the subjects. Several subjects reported deliberately 
learning the 5s because they were the most difficult problems. 
Typically, subjects developed mnemonics for the 5s, which 
allowed them to respond on the basis of  memory. For ex-  
a m p l e ,  when I tried the experiment as a pilot subject, I used 
psychologists names as mnemonics: I remembered A + 5 = 
F as A.  E Sanders ,  E + 5 = J as  E.  J. Gibson, and G + 5 = 
L as Gordon Logan. These mnemonics provided an c h o r -  
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Table 3 
Parameter Estimates From Constrained and Separate Fits of Power Functions to Means and Standard Deviations 
of Reaction Times in the Alphabet Arithmetic Task of Experiment 5 

True equations: Addend False equations: Addend 

Parameter 2 3 4 5 2 3 4 5 

ART 384 195 0 0 357 362 29 0 
BRT 2052 2770 3643 4816 2371 3110 4065 5037 
C 0.317 0.255 0.238 0.327 0.327 0.324 0.282 0.319 
ASD 0 0 0 75 0 0 0 10 
BSD 828 893 1144 1346 903 1158 1249 1513 
r 2 0.968 0.960 0.908 0.867 0.960 0.960 0.949 0.895 
rmsd 59.4 82.0 148.9 206.3 72.3 87.4 116.1 193.9 

ART 133 30 5 0 0 98 97 0 
BRT 2246 2892 3679 4834 2630 3307 3976 5028 
CRT 0.251 0.228 0.241 0.328 0.245 0.274 0.269 0.319 
ASD 30 106 112 76 76 0 0 0 
BSD 889 817 1099 1334 889 1088 1274 1470 
CSD 0.383 0.332 0.303 0.321 0.416 0.547 0.290 0.301 
r 2 0.974 0.960 0.908 0.869 0.962 0.964 0.949 0.896 
rmsd 54.9 80.9 149.2 206.3 69.9 84~7 115.3 193.5 

Note. ART = asymptote for mean reaction time; BRT = multiplicative constant for mean reaction time; ASD = asymptote for standard deviation; 
BSD = multiplicative constant for standard deviation; C = exponent fitted to means and standard deviations simultaneously; CRT = exponent 
fitted to means separately; CSD = exponent fitted to standard deviations separately; r 2 = squared correlation between observed and predicted 
values; rmsd = root mean squared deviation from prediction. 

points for subjects, which made it easier for them to learn 
the 4s. 

One might model the addend = 5 data with two learning 
curves, one reflecting the inefficient mnemonic strategy from 
Trials 1-24 and another reflecting the more efficient strategy 
from Trials 25-72. I fitted separate power functions to the data 
before and after the 24th trial. As before, means and standard 
deviations were fitted simultaneously with the constraint that 
they have the same exponent. The fits were much better than 
the previous ones. For true responses, rmsd decreased from 206 
ms to 90 ms; for false responses, it decreased from 194 ms to 
88 ms. 

Thus, the addend = 5 data may be inconsistent with a strict 
interpretation of the instance theory, in which neither the algo- 
rithm nor the memory process changes over practice, but they 
are consistent with a more general view of instance theory, 
which interprets automaticity as a transition from an algorithm 
to a memory process. There seem to have been two transitions 
in the addend = 5 condition, one to an inefficient memory pro- 
cess and another to a more efficient one, reminiscent of the pla- 
teaus described by Bryan and Harter (1899). 

One final piece of evidence deserves comment. Logan and 
Klapp (1988) reported data from subsequent sessions of the ex- 
periment that bear on the instance theory. In particular, they 
ran a 13th session in which subjects were tested on the un- 
trained half of the alphabet (e.g., subjects trained on A-J were 
tested on K-T, and vice versa). Reaction times increased sub- 
stantially, compared with the previous session, and the slope of 
the function relating reaction time to the magnitude of the ad- 
dend, which had been close to zero on the previous session, in- 
creased to about 400 ms/count. This suggests that subjects 

learned specific responses to specific stimuli during training, 
which is consistent with instance- or item-based learning and 
inconsistent with process-based learning. 

To summarize, the predictions of the instance theory were 
supported in the alphabet arithmetic task as they had been in 
the lexical decision task of Experiments 1-3. Specifically, the 
training data showed that the means and standard deviations of 
reaction times decreased as power functions of practice with 
the same exponent (appearing parallel in log-log plots) and the 
transfer data showed that learning was item-based rather than 
process-based. 

Evidence of  Separate Ins tances  

The fits in the previous experiments provide evidence that is 
consistent with the instance theory, but they do not uniquely 
support it. Most theories of skill acquisition predict a power- 
function reduction in the mean (e.g., Anderson, 1982; Cross- 
man, 1959; MacKay, 1982; Newell & Rosenbloom, 1981), so 
the fits to the means are not unique. The fits to the standard 
deviations, constrained to have the same exponent as the 
means, were predicted by the instance theory and no other. But 
the fits do not disconfirm predictions of the other theories; the 
other theories simply made no prediction. Furthermore, the ev- 
idence that automaticity is specific to the stimuli experienced 
during training may rule out process-based theories of automa- 
tization, but it does not uniquely support instance theory. 
Strength theories, which assume that practice strengthens con- 
nections between generic stimuli and generic responses, can 
also predict item-based learning (e.g., Anderson, 1982; 
MacKay, 1982; Schneider, 1985). 
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The instance theory can be distinguished from strength theo- 
ries by demonstrating the existence of  separate memory repre- 
sentations of each encounter with a stimulus (see, e.g., Hintz- 
man, 1976). According to the instance theory, each prior epi- 
sode is represented in memory, whereas strength theories 
represent past history by a single strength measure, casting 
aside the details of individual episodes. The difference between 
these representational assumptions can be seen dearly in a va- 
ried-mapping design, in which subjects give different responses 
or different interpretations on different exposures to the same 
stimulus. Varied mapping typically produces little or no evi- 
dence of  learning (e.g., Schneider & Shiffrin, 1977). 

According to the instance theory, each exposure would result 
in a separate trace. At retrieval time, there are two possibilities: 
All of  the separate traces could be retrieved, but they would 
yield inconsistent or incoherent information about how the cur- 
rent stimulus should be interpreted, so the subject should ignore 
them and respond on the basis of  the algorithm. Alternatively, 
the current instructional set and the current stimulus could act 
as a compound retrieval cue and retrieve only those episodes 
that were encoded in the context of  the current instructions. In 
the first case, there would be no evidence of  learning; in the 
second case, there would be less learning than would be ob- 
served in consistent-mapping control conditions. 

By contrast, in some versions of  strength theory (e.g., Schnei- 
der, 1985), the different interpretations in varied mapping can- 
cel one another out, resulting in no net gain in strength, and 
thus, no evidence of  learning. Subjects would have no choice 
but to rely on the algorithm. Other versions of  strength theory 
might be constructed in which strength accrued separately to 
each interpretation. As with instance theory, the retrieved inter- 
pretations would conflict with each other, so the subjects should 
ignore memory and rely on the algorithm. 

The instance theory can be distinguished from the first ver- 
sion of strength theory by transferring subjects to a frequency- 
judgment task, just as instance theories of memory were distin- 
guished from strength theories by frequency judgment tasks 
(e.g., Hintzman, 1976). Instance theory predicts that subjects 
trained under varied interpretation conditions should be just as 
sensitive to the frequency with which individual stimuli were 
presented as subjects trained under consistent interpretation 
conditions, because both groups of subjects would encode rep- 
resentations of  each encounter with a stimulus. By contrast, 
strength theory would predict that subjects trained under varied 
interpretation conditions would be less sensitive to frequency 
information than subjects trained under consistent interpreta- 
tion conditions because there is no separate episodic trace rep- 
resenting each encounter with the stimulus. 

In other words, instance theory predicts a dissociation be- 
tween repetition effects and frequency judgments as measures 
of memory after varied-interpretation training, whereas certain 
strength theories predict no such dissociation. 

Experiment 5 

To test the dissociation, four groups of subjects were trained 
in the paradigm from Experiment 3 (i.e., some stimuli were pre- 
sented in 1 block, others in 2, 4, 8, or 16 consecutive blocks), 

and then transferred to a frequency judgment task. Two groups 
were trained under consistent interpretation conditions, and 
two groups were trained under varied interpretation conditions. 
To manipulate the consistency of interpretation, subjects were 
shown three kinds of  stimuli: words, pronouncible nonwords, 
and unpronouncible nonwords. Subjects could interpret these 
stimuli under lexical decision instructions, distinguishing be- 
tween words and nonwords, or under pronunciation decision 
instructions, distinguishing between pronouncible and unpro- 
nouncible letter strings. Logan (1988) showed that alternating 
between these interpretations over successive presentations im- 
paired learning, relative to consistent-interpretation controls. 

One consistent-interpretation group performed lexical deci- 
sions on each training trial, and the other performed pronuncia- 
tion decisions. The two varied-interpretation groups alternated 
between lexical decisions and pronunciation decisions over sue- 
cessive presentations of the stimuli. One group began with lexi- 
cal decisions, and the other began with pronunciation decisions. 
In the transfer task, all four groups saw new stimuli as well as 
the stimuli they were trained on, and were asked to estimate 
the frequency with which each stimulus had appeared during 
training. Further details of  the method can be found in Appen- 
dix C. 

Training results. The training data are presented in Figure 
11 as benefit scores. Benefit was calculated by subtracting reac- 
tion time for second and subsequent presentations of  a stimulus 
from reaction time for the first presentation of  a stimulus, in 
order to remove differences due to the initial algorithm and fa- 
cilitate comparisons of  learning effects between conditions. 
Benefit scores for consistent-interpretation lexical decision sub- 
jects and for varied-interpretation subjects who began with lexi- 
cal decision are presented in the top panel of Figure 11. Benefit 
scores for consistent-interpretation pronunciation subjects and 
for varied-interpretation subjects who began with pronuncia- 
tion decisions are presented in the bottom panel of  Figure 11. 
The error rates are presented in Appendix C. 

The lexical decision subjects showed more benefit for consis- 
tent interpretations than for varied interpretations. The differ- 
ence was largest for pronouncible nonwords, intermediate for 
words, and smallest for unpronouncible nonwords. The pro- 
nunciation subjects showed less clear-cut results: Consistent in- 
terpretation produced an advantage over varied interpretation 
only for pronouncible nonwords, and even that difference di- 
minished after 10 or 11 presentations. These conclusions were 
confirmed by ANOVA, reported in Appendix C. 

The results of  the lexical decision group are sufficient for the 
present purpose, which is to determine whether there is a disso- 
ciation between repetition effects and frequency judgments as 
measures of  memory following training with varied interpreta- 
tion. If  there is a dissociation, then frequency judgments follow- 
ing lexical decisions ought to be just as accurate for varied-in- 
terpretation subjects as for consistent-interpretation subjects; if 
there is no dissociation, then frequency judgments should be 
less accurate for varied-interpretation subjects than for consis- 
tent-interpretation subjects. 

Transfer results. The average frequency estimates for each 
group are presented in Figure 12. The left-hand panels present 
the data from consistent- and varied-interpretation lexical deci- 
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Figure 11. Benefit scores as a function of the number of presentations 
for consistent (solid lines) and varied (broken lines) interpretations of 
words (boxes), pronouncible nonwords (triangles), and unpronouncible 
nonwords (stars) in the lexical decision task (top panel) and pronuncia- 
tion task (bottom panel) of Experiment 5. 

sion subjects; the right-hand panels present the data from con- 
sistent- and varied-interpretation pronunciation subjects. The 
top panels present frequency estimates for words, the middle 
panels present estimates for pronouncible nonwords, and the 
bottom panels present estimates for unpronouncible nonwords. 

Frequency estimates from subjects trained with varied inter- 
pretations were very close to the estimates from subjects trained 
with consistent interpretations. If  anything, they were a little 
more accurate. Thus, in the lexical decision subjects, at least, 
there was a dissociation between frequency estimates and repe- 
tition effects as measures of  memory. These conclusions were 
confirmed by ANOVAS, reported in detail in Appendix C. 

Conclusions 

The results from the lexical decision subjects showed a disso- 
ciation between repetition effects and frequency judgments as 

measures of  memory: Consistency of  stimulus-to-interpreta- 
tion mapping had strong effects on lexical decision perfor- 
mance, but had negligible effects on frequency judgments. This 
dissociation was predicted by the instance theory, on the as- 
sumption that subjects encode separate representations of  each 
encounter with each stimulus. It would not be predicted in a 
straightforward manner by strength theories in which strength- 
ening one interpretation weakens the other, resulting in no net 
gain in strength (e.g., Schneider, 1985). 

It is possible, however, to have a theory in which multiple 
exposures to a stimulus are represented both as a strength value 
and as separate episodic traces. That sort of  theory could ac- 
count for the present results, with the strength values underly- 
ing the repetition effects and the separate traces underlying the 
frequency judgments. However, the theoretical development of  
the instance theory showed that separate traces can produce 
repetition effects, so it would not be clear whether the strength 
values or the separate traces were responsible for the repetition 
effects. A more parsimonious interpretation would be that there 
are only separate traces in memory, which produce both the 
repetition effect and the frequency judgments. The onus would 
be on the strength theorists to show that strength values did in 
fact underlie repetition effects. 

General  Discussion 

The experiments tested the instance theory in three ways: 
First, they tested the power-law predictions and found that, as 
predicted, means and standard deviations of  reaction times de- 
creased as power functions of  the number of  trials with the same 
exponent (Experiments 1-4). Second, the experiments deter- 
mined whether learning was item-based, as the instance theory 
predicts, or process-based, as the modal view predicts. The data 
supported the instance theory: Subjects learned specific re- 
sponses to specific stimuli and did not transfer well to new stim- 
uli (Experiments 1-4) or to new approaches to old stimuli (Ex- 
periment 5). Third, Experiment 5 tested the instance theory 
against certain strength theories, asking whether subjects retain 
separate representations of  each stimulus even if they don't  use 
them to support performance. The data showed evidence of  
separate representations, as the instance theory predicts. 

The success of  the theory in these three tests suggests that 
it should be taken seriously in studies of  skill acquisition and 
automaticity. The remainder of  this section discusses implica- 
tions of  the instance theory for current issues and controversies. 

Instance Theory  and the Properties o f  Automat ic i ty  

The instance theory provides a new perspective on many of  
the qualitative properties that distinguish automatic and nonau- 
tomatic processing. In some cases, the properties derive from 
the assumptions about representation and retrieval from mem- 
ory. In other cases, the differences occur because automatic and 
nonautomatic processing are based on different processes. Fac- 
tors that affect the initial algorithm need not affect the memory 
retrieval process, and vice versa. In the remainder of  this sec- 
tion, these principles are applied to several of  properties of  au- 
tomaticity. 
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Figure 12. Estimated frequencies of occurrence as a function of actual frequencies of occurrency for consis- 
tent (solid lines) and inconsistent (broken lines) interpretations of words (top panels), pronouncible non- 
words (middle panels), and unpronouncible nonwords (bottom panels) after training on the lexical decision 
task (left panels) and the pronunciation task (right panels) of Experiment 5. 

Autonomy 

Phenomenal experience and experimental data suggest that 
automatic processing is autonomous, in that it can begin and 
run on to completion without intention (for reviews, see Kah- 
neman & Treisman, 1984; Logan, 1985b; Zbrodoff & Logan, 
1986). Instance theory accounts for the autonomy by assuming 
that memory retrieval is obligatory; attention to a stimulus is 
sufficient to cause the retrieval ofaU of  the information associ- 
ated with the stimulus, whether or not the subject intends to 
retrieve it. 

The major evidence for the autonomy of  automatic process- 

ing comes from Stroop and priming studies, in which an irrele- 
vant stimulus influences the processing of  a relevant stimulus 
(but see Zbrodoff  & Logan, 1986). For example, subjects are 
slower to name colors when the colors form words that repre- 
sent irrelevant color names (BLUE in red ink; Stroop, 1935), 
and subjects make lexical decisions faster if  the target word 
(e.g., DOCTOR) is preceded by a related word (e.g., NURSE) 
than if  it is preceded by an unrelated word (e.g., BUTTER; 
Meyer & Schvaneveldt, 1971). The modal  interpretation of  
such effects is that the irrelevant stimulus activates its memory 
representation and that activation speeds or slows responses to 
related s t imul i - - in  other words, the irrelevant stimulus re- 
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trieves response-related information from memory. The 
modal interpretation also assumes that activation is not only 
obligatory but also is independent of  intention and attention; 
it occurs whether or not the subject attends to the stimulus or 
intends to process it (e.g., Logan, 1980; Neely, 1977; Posner & 
Snyder, 1975). 

Two recent findings are difficult to reconcile with the modal 
view. First, Francolini and Egeth (1980) and Kahneman and 
Henik (1981) showed that Stroop interference was stronger 
when subjects attended to the irrelevant stimulus. Kahneman 
and Henik showed subjects two words (e.g., MOST and BLUE), 
one of  which was colored (e.g., red) and one of which was black. 
The task was to name the color of  the colored word (in this case, 
red). The irrelevant color word (BLUE) interfered with color 
naming much more when it was colored, and hence was at- 
tended, than when it was black, and hence unattended. Franco- 
lini and Egeth (1980) found similar results in a numerical 
Stroop task in which subjects counted red letters or digits and 
ignored black ones; irrelevant digits interfered more when they 
were red, hence attended, than when they were black, and hence 
ignored. 

Second, M. Smith (1979; M. Smith, Theodor, & Franklin, 
1983) and Henik, Friedrich, and Kellogg (1983) showed that 
Stroop and priming effects can be completely eliminated by 
manipulating the way in which the subject processes the irrele- 
vant stimulus. M. Smith and her colleagues showed that prim- 
ing effects could be eliminated if subjects treated the priming 
stimulus as a letter string and not as a word (i.e., by searching 
for a letter within it vs. making a lexical decision). Henik et al. 
showed that Stroop effects could be eliminated in the same way. 

Both sets of  results are difficult to deal with in the modal 
interpretation of  Stroop and priming effects because an irrele- 
vant stimulus is supposed to activate its memory representation 
whether or not the subject attends to it or intends to process it. 
Instance theory can account for the attention effects (i.e., Fran- 
colini & Egeth, 1980; Kahneman & Henik, 1981) with its as- 
sumption that attention is sufficient to cause associated infor- 
mation to be retrieved from memory. Attention may not be nec- 
essary, but it is sufficient, which means that (a) information at 
the focus of  attention may be more strongly activated than in- 
formation outside the focus, and therefore may provide stronger 
retrieval cues, and (b) information at the focus will be more 
likely to activate its memory representation than information 
outside the focus. 

Instance theory would interpret the intention effects (i.e., 
Henik et al., 1983; M. Smith, 1979; M. Smith et al., 1983) as 
retrieval effects: The instruction to process the irrelevant stimu- 
lus in a different way leads subjects to use different retrieval 
cues in conjunction with the stimulus, to retrieve the required 
information from memory. The effects on subsequent process- 
ing will depend on what was retrieved and how it is related to 
the subsequent task. If subjects make a lexical decision about 
the prime, then information about the meaning of  the prime 
will be retrieved and available to influence a subsequent lexical 
decision. But if subjects search for a letter in the prime, infor- 
mation about letters will be retrieved, which may not affect a 
subsequent lexical decision. 

Stroop and priming studies are interesting because they focus 
on a different sense of automaticity than the practice studies 
that were addressed by the instance theory. Stroop and priming 
studies are concerned with the activation of  memory represen- 
tations, whereas practice studies are concerned with the use of  
activated memory representations in the performance of  tasks. 
Stroop and priming studies consider a stimulus to be processed 
automatically if it retrieves anything from memory, whereas 
practice studies consider a stimulus to be processed automati- 
cally only if it retrieves something useful from memory. The 
different senses are apparent in interpreting control conditions 
in the different paradigms: In Stroop tasks, neutral (noncolor) 
words are assumed to activate their memory representations 
automatically even though the activation has no effect on color 
naming. But in practice studies, varied-mapping control stim- 
uli are not considered to be processed automatically, even 
though they may retrieve information from memory (of. Exper- 
iment 5). 

It is tempting to think of  Stroop-type automaticity as one 
component of  the automaticity addressed in practice studies be- 
cause memory retrieval is the first step in performing a task 
automatically. One could imagine a progression from one type 
of  automaticity to the other, as a small number of  stimulus ex- 
posures may cause enough memory activation to produce 
Stroop and priming effects but not enough to provide a reliable 
basis for performing the task. However, Stroop and priming 
effects do not provide a pure measure of  memory retrieval. 
Memory retrieval affects performance by interacting with a 
subsequent decision process, just as it does in practice studies 
(e.g., Logan, 1980). The intentional and attentional effects de- 
scribed earlier suggest that the appearance of  Stroop and prim- 
ing effects depends on the relation between retrieval cues and 
decision processes, just as practice effects do. Thus, one need 
not expect Stroop and priming effects to appear sooner than 
practice effects. It may be possible to relate the two senses of  
automaticity theoretically, but that does not mean that their 
empirical manifestations will be related in a straightforward 
manner. 

Control 

Phenomenal experience suggests that automatic processing 
is closely controlled. Behavior on "automatic pilot" is usually 
coherent and goal-directed (Reason & Myceilska, 1982); skilled 
practitioners are better than novices even though they perform 
automatically (Logan, 1985b). Experimental data also suggest 
that automatic processing is closely controlled. Skilled activities 
such as speaking and typing can be inhibited quickly in re- 
sponse to an error or a signal to stop, often within a syllable or 
a keystroke after the error or stop signal (Ladefoged, Silverstein, 
& Papcun, 1973; LeveR, 1983; Long, 1976; Logan, 1982; Rab- 
bitt, 1978). Thoughts may be harder to inhibit than overt ac- 
tions (Logan, 1983, 1985a), but even they can be controlled by 
deliberately thinking of other things (Wenger, Schneider, Carter, 
& White, 1987). 

By contrast, the modal view is that automatic processing is 
not well controlled. Shiffrin and Schneider (e.g., 1977) explic- 
itly distinguish between automatic and controlled processing, 
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and the idea is implicit in other approaches (e.g., LaBerge & 
Samuels, 1974; Posner & Snyder, 1975). The main motivation 
for the modal view on control is the evidence that automatic 
processes are autonomous. But autonomy does not imply lack 
of  control. A process is autonomous if it can begin and run on 
to completion without intention (Zbrodoff & Logan, 1986); 
that does not mean it cannot be initiated and guided to comple- 
tion intentionally. 

According to the instance theory, automatic processes are 
used intentionally. Automaticity exploits the autonomy of the 
retrieval process, harnessing it so that it provides information 
that is relevant the person's goals. Thus, automatic processes 
are controlled. The retrieval process can be controlled by ma- 
nipulating retrieval cues or stimulus input, or both, and the sub- 
sequent decision process can be inhibited before it results in an 
overt response. Automatic processing may be a little harder to 
control than algorithm-based processing, but only because it 
tends to be faster and allows less time for an act of  control to 
take effect. It may be controlled differently, but it is controlled 
nonetheless (for related views, see Logan, 1985b; Neumann, 
1984). 

Effortlessness 

Phenomenal experience and experimental data also suggest 
that automatic processing is effortless (see Jonides, 198 l; Lo- 
gan, 1978, 1979; Posner & Snyder, 1975; Shiffrin & Schneider, 
1977). Typical treatments of  automaticity assume that process- 
ing capacity or cognitive resources are severely limited and that 
automatization is a way around the capacity limitations. By 
contrast, the instance theory does not assume any capacity limi- 
tations; novice performance is limited by a lack of  knowledge 
rather than by scarcity of  processing capacity or resources. Sub- 
jects perform slowly at first because they have no other way to 
perform the task. As their knowledge base builds up with prac- 
tice, they have the choice of  responding on the basis of  the algo- 
rithm or on the basis of  memory retrieval. Presumably, they do 
not switch to memory retrieval until it is faster than the algo- 
rithm and at least as reliable. 

The major experimental evidence for effortless automatic 
processing comes from dual-task experiments that show that 
practiced subjects suffer less interference from a concurrent 
task than do unpracticed subjects (e.g., Bahrick & Shelley, 
1958; Logan, 1978, 1979). The usual interpretation is that the 
practiced task requires fewer resources than the unpracticed 
task. That may be the case, but instance theory would suggest 
that the reduction in dual-task interference occurs because of  
the shift from the algorithm to memory retrieval: Because 
memory retrieval and the algorithm are different processes, 
tasks that interfere with the algorithm will not necessarily inter- 
fere with memory retrieval. The reduction in interference may 
occur only because experimenters choose concurrent tasks that 
interfere with the initial algorithm; if the concurrent task does 
not interfere with the algorithm, another concurrent task is 
chosen. So the reduction in interference may be an artifact of  
the experimenter's choice of  procedures rather than a general 
reduction in resource demands. Indeed, instance theory sug- 
gests that it may be possible to find an increase in dual-task 

interference with practice, in cases in which the concurrent task 
interferes with memory retrieval but not with the initial algo- 
rithm. Thus, instance theory predicts a shift in dual-task inter- 
ference rather than a reduction in dual-task interference (also 
see Logan, 1985b). 

Alternatively, instance theory would predict a reduction in 
dual-task interference with automatization because automati- 
zation provides subjects with more ways to do the task. Initially, 
they have only one way to perform the task--following the in- 
structed algorithm--so a concurrent task that interferes with 
the algorithm must affect their performance. After automatiza- 
tion, however, they can use the algorithm or rely on memory 
retrieval. If the concurrent task interferes with the algorithm, 
they can use memory retrieval; if it interferes with memory re- 
trieval, they can use the algorithm. In either case, their perfor- 
mance need not suffer. The general point is that automatic per- 
formance can be more flexible than nonautomatic perfor- 
mance, providing the subject with ways to avoid dual-task 
interference (also see MacKay, 1982). 

Another major line of  evidence that automatic processing is 
effortless comes from search studies that manipulate the num- 
ber of  items in the memory set, the number of  items in the dis- 
play, or both. Initially, reaction time increases linearly with the 
number of memory set or display items, but after considerable 
practice, the slope approaches zero (for a review, see Schneider 
& Shiffrin, 1977). The initial linear increase is interpreted as 
evidence that unpracticed search is effortful--search is as- 
sumed to be serial in order to minimize the momentary load on 
capacity--and the zero slope at the end of  practice is interpreted 
as evidence that search has become effortless or capacity free. 

There are many criticisms of  this interpretation (e.g., Cheng, 
1985; Ryan, 1983), but the basic findings can be handled easily 
by instance theory: Initially, performance depends on a search 
algorithm in which subjects try to find the probe item in the 
memory set or the memory item in the display. Several different 
algorithms could be used for the task, most of  which would pro- 
duce the linear increase in reaction time with memory set size 
or display size (see Townsend & Ashby, 1983). After practice, 
subjects retrieve the appropriate response directly from mem- 
ory, without searching, when given a probe or a multi-item dis- 
play as a retrieval cue (cf. Ryan, 1983; Schneider, 1985). This 
scheme provides a natural account of  memory search; whether 
it can work for visual search is not immediately clear (i.e., visual 
search may train an automatic attention response, which is not 
part of  the instance theory; Shiffrin & Schneider, 1977). The 
principle here is the same as in dual-task studies: Factors that 
affect the algorithm, such as display size or memory set size, do 
not necessarily affect memory retrieval. 

Instance theory accounts for the phenomenal experience of  
effortlessness during automatic performance by suggesting that 
memory retrieval is often easier than the algorithm. Indeed, 
subjects would not be expected to switch from the algorithm to 
memory retrieval until memory retrieval was quick and effort- 
less. 

Unconsciousness 
The evidence that automatic processes are unconscious is 

primarily phenomenal--we cannot easily introspect on the 
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things we do automatically. Traditional views have some diffi- 
culty dealing with this aspect of  automaticity because con- 
sciousness is not an easy concept to express in the information- 
processing language that dominates current theorizing (e.g., 
Carr et al., 1982; Marcel, 1983; Posner & Snyder, 1975). I sus- 
pect that the attribution of  unconsciousness to automatic pro- 
cessing stems from the belief that automatic processing is pro- 
cessing without thinking. In everyday language, for example, we 
say that we solved a problem automatically when the solution 
springs to mind without much thought or when it is the first 
thing that occurs to us. Instance theory can capture this intu- 
ition by specifying precisely what it means to think about a solu- 
tion (i.e., to compute a solution by applying an algorithm) and 
what it means to find a solution without thinking (i.e., to re- 
trieve a solution from memory), and both of  them can be ex- 
pressed easily in information-processing language. 

Another reason for believing that automatic processing may 
be unconscious is that algorithms may involve a series of  steps 
or stages on the way to a solution, each of  which may be intro- 
spected upon, whereas memory retrieval is a single-step process 
(e.g., the resonance metaphor of  Hintzman, 1986, and Ratcliff, 
1978, or the holographic retrieval process described by Eich, 
1982, and Murdock, 1982, 1983). Thus, automatic processes 
may not be available to the "mind's  eye" long enough to provide 
conscious evidence of  their inner workings. 

Poor Memory 

Phenomenal experience suggests that automatic processing 
results in poor memory for what was processed. When dis- 
tracted, we may start up from a stop light, shift gears, and attain 
cruising speed on "automatic pilot," and then find we have no 
memory of  having done so (also see Reason, 1984). There have 
not been many experimental tests of  memory for things pro- 
cessed automatically, but the few that exist support the poor- 
memory hypothesis. 

For example, Kolers (1975) investigated acquisition of  skill 
at reading spatially transformed text (rof elpmaxe) and found 
that memory for transformed texts was better than memory for 
normal texts. He attributed the difference to the automaticity 
of  normal reading. He showed as well that memory for trans- 
formed text declined as subjects acquired skill. Thus, his results 
suggested that subjects can remember stimuli they process au- 
tomatically, although not as well as stimuli they processed algo- 
rithmically. 

Fisk and Schneider (1984) had subjects search for exemplars 
of  target categories in a series of  words presented one after the 
other. One experiment examined memory early in practice, 
during controlled processing; the other examined memory fol- 
lowing automatic processing. The results were clear: Subjects 
remembered much more accurately in Experiment 1 than in 
Experiment 2. In fact, there was little evidence of  memory for 
some stimuli (novel distractors) in Experiment 2, which led Fisk 
and Schneider (1984) to conclude that automatic processing left 
no traces in memory. 7 However, automaticity was confounded 
with dual-task conditions: Experiment 1 used only single-task 
conditions, and Experiment 2 used only dual-task conditions 
(i.e., the category search task performed concurrently with a 

difficult digit search task). Thus, either automaticity or the 
dual-task conditions (or both) could have impaired memory in 
Experiment 2. One cannot tell from their experiments which 
was the important factor. The literature suggests that dual-task 
conditions may have been responsible: Recent evidence indi- 
cates that dual-task conditions at encoding severely impair  
memory (Naveh-Benjamin & Jonides, 1986). Nissen and Bul- 
lemer (1987) presented data suggesting that subjects cannot re- 
member stimuli processed in dual-task conditions. And Kol- 
ers's (1975) data suggested that subjects can remember stimuli 
processed automatically. They may not remember well, but 
they do remember. 

Typically, poor memory for stimuli processed automatically 
is interpreted as an encoding deficit--encoding is either cursory 
or not done at all. By contrast, the instance theory interprets it 
as a retrieval effect. The theory assumes that events are encoded 
in the same way on each trial, whether it be the 10th or the 
10,000th. In each case, a separate trace is created to represent 
the event. However, the traces may have a different impact on 
retrieval, depending on how many other traces there are in 
memory and depending on the retrieval task. The impact of  
trace i + 1 relative to trace i will decrease as i increases, follow- 
ing a kind of  Weber function. Adding one trace to zero makes 
more of  a difference than adding one trace to 10 or one trace to 
1,000. 

The nature of the retrieval task is also important. Some re- 
trieval tasks, like recognition and recall, require subjects to 
identify one trace out of  many. Other retrieval tasks, like the 
kind used in studies of  automaticity and categorization (e.g., 
Hintzman, 1986; Medin & Schaffer, 1978), allow subjects to re- 
spond to the whole set of  retrieved traces without focusing on 
any one in particular. In the former, competitive retrieval tasks, 
the other traces can interfere with retrieval of  the one desired 
trace, for example, by adding noise to the decision process. The 
task is like finding a particular tree in a forest; the more dense 
the forest, the harder it is to find. Performance should get worse 
as the task becomes automatic and more traces are added to 
memory. By contrast, in the latter, cooperative retrieval tasks, 
the different traces serve the same purpose, working together for 
a common goal. The task is like finding a forest; the more trees 
there are, the easier it is to find. Performance should get better 
as the task becomes more automatic and more traces are added 
to memory. 

The distinction between competitive and cooperative re- 
trieval tasks is well illustrated in the frequency paradox in recog- 
nition versus lexical decision: s Low-frequency words are recog- 
nized better than high-frequency words, but low-frequency 
words produce slower lexical decisions than high-frequency 

7 The poor memory for novel distractors may be a result of shallow 
processing and incongruity rather than automaticity. The targets were 
very familiar and the distractors were new, so a simple familiarity judg- 
ment would allow accurate performance. Subjects may not interpret 
the distractors beyond deciding they are unfamiliar, and that would not 
produce good memory. Also, memory is typically worse for no items 
than for yes items, possibly because no items are not congruent (Craik 
& Tulving, 1975). 

81 would like to thank Tom Carr for providing this example. 
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words. This paradox occurs because the tasks require different 
retrieval processes: Recognition requires subjects to discrimi- 
nate one particular exposure to a word from all other exposures 
to the word. High-frequency words have more exposures than 
low-frequency words, so a single exposure is harder to discrimi- 
nate. By contrast, lexical decision requires subjects to discrimi- 
nate any exposure to the word from no exposure. High-fre- 
quency words have more exposures, so more of them are likely 
to be retrieved, making the discrimination easier. 

Instance Theo ry  and Issues in Automatic i ty  

The instance theory provides new perspectives on the diagno- 
sis of  automaticity and the relation between automaticity and 
categorization. The perspectives are described in this section. 

Diagnosing Automaticity 

Much of  the interest in automaticity comes from studies that 
attempt to determine whether specific processes, such as letter 
encoding (Posner & Boies, 1971), lexical access (Becker, 1976), 
and abstraction of  superordinate categories (Barsalou & Ross, 
1986), are automatic. The processes are often acquired through 
experience outside the laboratory, so the assessment of  automa- 
ticity is an absolute judgment; the process is either automatic 
or not automatic. Researchers often assess the properties of au- 
tomaticity and consider a process to be automatic if it possesses 
some or all of  the properties. 

However, the diagnosis of  automaticity is fraught with prob- 
lems: Different researchers use different lists of  properties and 
disagree on the necessity and sufficiency of  the properties they 
list. For example, Posner and Snyder (1975) list only 3 proper- 
ties, whereas Hasher and Zacks (1979) list 5, and Schneider, 
Dumais, and Shiffrin (1984) list 12. Hasher and Zacks (1979) 
have argued that all properties must be present in a truly auto- 
matic process, but others are less restrictive. To make matters 
worse, some researchers have questioned the agreement be- 
tween properties, showing for example, that an obligatory pro- 
cess may be effortful (Kahneman & Chajzyck, 1983; Paap & 
Ogden, 1981; Regan, 1981). 

Automaticity is also difficult to diagnose absolutely from the 
perspective of  instance theory, because instance theory does not 
assume that any of  the properties are necessary or sufficient. 
Automaticity is defined in terms of  the underlying process-- 
automatic performance is based on memory retrieval--and not 
in terms of necessary and sufficient properties. As described 
earlier, many of  the properties may be characteristic of automa- 
ticity, but no property or set of properties define it. To deter- 
mine whether a process is automatic, one must determine 
whether it is based on memory retrieval, and that is difficult to 
do because there are no accepted criteria for deciding whether 
something is based on memory retrieval. 9 

Instance theory suggests that automaticity is both absolute 
and relative. It is absolute in that performance may sometimes 
be based entirely on memory retrieval and sometimes entirely 
on the algorithm. It is relative in that performance may be based 
on memory retrieval on some proportion of  the trials. It may be 
possible to estimate the proportion without knowing which tri- 

als were memory-based and which were algorithm-based. Auto- 
maticity is also relative in that memory strengthens progres- 
sively throughout practice, and it is appropriate to say that per- 
formance is more automatic after 10,000 trials than after 1,000 
trials, even if both performances are entirely memory-based. 
Each trial has the same impact on memory regardless of the 
number of  trials that went before it. Thus, instance theory sug- 
gests there are no limits on the degree of  automaticity that may 
be attained; automaticity may never be complete. 

It is easier to judge automaticity relatively than absolutely: 
The more automatic the performance, the faster it should be, 
the less effortful, the more autonomous, and so on (also see Lo- 
gan, 1985b). Assessments of  relative automaticity can be made 
most confidently when two performances of  the same task are 
compared, preferably at two different levels of  practice. One 
would expect practice to make a task more automatic, and the 
more practiced task is likely to be more automatic. It is more 
difficult to assess the relative automaticity of two different tasks. 
For example, one task may appear less effortful than another 
because its algorithm is easier, not because its performance is 
based more on memory retrieval. However, many of  these prob- 
lems may be minimized and sometimes avoided by a careful 
task analysis (e.g., Jonides et al., 1985). 

Automaticity and Categorization 

The instance theory of automaticity bears a strong resem- 
blance to instance theories of  categorization (e.g., Hintzman, 
1986; Jacoby & Brooks, 1984; Medin & Schaffer, 1978). In- 
stance theories of  categorization argue that subjects decide the 
category membership of  a test stimulus by comparing it with 
the instances stored in memory and assigning it to the category 
containing the most similar instances. These theories are sim- 
ilar to the instance theory of  automaticity in that both assume 
that (a) performance depends on retrieval of  specific instances 
from memory and (b) the retrieval process is cooperative, com- 
paring all of  the available traces with the test stimulus. The theo- 
ries are also similar in that they focus on learning; both automa- 
ticity and categorization are acquired abilities. 

Studies of automatization differ from studies of  category 
learning in that there is an initial algorithm that allows subjects 
to perform accurately until memory retrieval can take over. In 
category learning, there is no algorithm to "bootstrap" perfor- 
mance. Performance is inaccurate until the category is well 
learned. Studies of  category learning are also different in that 
the stimuli presented to subjects are usually very similar to each 
other and subjects are expected to exploit the similarities in 
forming categories and in generalizing to new instances. Studies 
of automatization, by contrast, often use easily discriminable 
stimuli (e.g., words or letters) and rarely test for generalization 
to new instances (but see Salasoo et al., 1985; Schneider & Fisk, 
1984). Finally, studies of  category learning usually involve sub- 

9 It may be possible to diagnose instance-based automaticity by show- 
ing better transfer to trained instances than to untrained ones. That 
requires knowing something about the subject's history with the task 
and materials, which is often not easy in practice. 
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stantially less practice than do studies of automarizarion--one 
session versus 10 or 20. 

None of  these differences seem very fundamental. Category 
learning studies could use orienting tasks to allow accurate ini- 
tial performance, and studies of  automatization could vary 
stimulus similarity and test for generalization and transfer. Cat- 
egory learning studies could investigate practice effects over the 
range used in studies of  automatization, and studies of  automa- 
tization could focus on the effects of  initial practice (e.g., Exper- 
iments 1-3). The differences could be viewed as guidelines for 
future research to bring the different areas closer together. As a 
result, automaticity might come to be viewed more as a general 
cognitive phenomenon and less as a special topic in the psychol- 
ogy of  attention. 

The current version of  the instance theory of  automatieity 
would need to be changed in order to deal with the effects of  
stimulus similarity. The current version assumes that each repe- 
tition of  the same stimulus produces exactly the same trace and 
that each different stimulus produces an entirely different trace. 
There is no cross talk between nonidentical traces to produce 
the effects seen in the studies of  category learning. To account 
for those effects, I would have to make more detailed assump- 
tions about how the trace is represented and how the retrieval 
process works (ef. Hintzman, 1986). That is an important di- 
rection for future work, but it is beyond the scope of  this article. 

The close relations between categorization and automatiza- 
tion envisioned by instance theory contrast sharply with the 
views of  Shiffrin and Schneider (1977; also see Schneider & 
Shiffrin, 1985), who argued that automatization was more than 
categorization. The main evidence for their claim is a visual 
search experiment in which subjects were trained to detect let- 
ters from one set in arrays made from another set of  letters. 
After several sessions of  practice, during which performance 
improved dramatically, Shiffrin and Schneider switched sets: 
Subjects now had to detect the former distractor letters in arrays 
made from former targets. If  automaticity depended only on 
categorization, there should be good transfer because the dis- 
crimination between targets and distractors is essentially the 
same. However, transfer was abysmal. Performance was as bad 
as it was on the initial practice session and took the same num- 
ber of  training sessions to reach pretransfer levels. 

Shiffrin and Schneider (1977) argued that automatization 
affected the targets' ability to attract attention. Well-practiced 
targets elicit an automatic attention response, which pulls atten- 
tion away from its current focus. In the transfer task, the former 
targets would pull attention away from the current targets (for- 
mer distraetors), causing failures of  detection. Extensive post- 
transfer practice would be necessary to build up the automatic 
attention responses to the current targets. Other studies pro- 
vided further evidence for automatic attention responses, so 
Shiffrin and Schneider concluded that there was more to auto- 
maticity than categorization; automaticity involved categoriza- 
tion and the automatic attention response. 

I do not deny the automatic attention response or its impor- 
tance in some cases of  automatieity. However, it is not the only 
mechanism of automaticity; I argue that memory for instances 
is another. The automatic attention response may be specific to 
visual search tasks, in which the subject must focus spatially on 

a target item. There is a cost associated with filtering out the 
distractors (Kahneman, Treisman, & Burkell, 1983), and sub- 
jects may learn to overcome that cost. I suspect that the auto- 
marie attention response may not be important in tasks that 
do not require spatial filtering, such as the lexieal decision and 
alphabet arithmetic tasks studied earlier. For those tasks, cate- 
gorization (and hence, retrieval of  instances) may be enough. 
Karlin and Bower (1976) and Jones and Anderson (1982) pre- 
sented data suggesting that categorization may be sufficient for 
automatization in memory search. 

Categorization has many properties that are important in au- 
tomaricity. In particular, categorizing an item makes available 
a host of  facts associated with category membership, permitting 
inferences that go beyond the given perceptual information 
(Murphy & Medin, 1985). When this happens quickly and 
effortlessly by a single act of  memory retrieval, it captures the 
essence of  automaticity. 

Perhaps the main motivation for distinguishing between au- 
tomatieity and categorization is the fear that categorization is 
somehow more fundamental; if automaticity is like categoriza- 
tion, then it is epiphenomenal (e.g., Cheng, 1985). I believe this 
fear is ungrounded. Automaticity and categorization are both 
fundamental constructs, reflecting different aspects of  the same 
learning process, namely, the storage and retrieval of instances. 

Process-Based Versus Instance-Based Learning 

The instance theory assumes that there is no change in the initial 
algorithm or in the memory process as practice progresses. All 
that changes with practice is the data base on which the memory 
process operates. This assumption makes the theory easy to ana- 
lyze and simulate, but it is unlikely to be true in general. The mem- 
ory process may change through forgetting or through changes in 
attention (e.g., the addend = 5 condition in Experiment 4). Or the 
algorithm may change through process-based learning. There is 
some evidence of process-based learning in the literature (Pirolli & 
Anderson, 1985; E. Smith & Lerner, 1986) and even in the present 
experiments. For example, the new-item control condition in Ex- 
periment 1 showed some improvement with practice even though 
none of the stimuli were repeated. 

Possibly, what appears to be process-based learning may ac- 
tually reflect a different sort of  instance-based learning. Sub- 
jects may be reminded of a better way to approach the task by 
retrieving an example of  an approach that was successful on 
a similar problem in the past (see Ross, 1984). Thus, process 
changes may reflect a discrete shift to a different strategy rather 
than a gradual evolution or refinement of a single process. Al- 
ternatively, subjects may parse their experience into instances 
in a different way than the experimenter imagines. In a category 
judgment task, for example, a subject who is asked to decide 
whether a trout is a fish may encode the trial as another instance 
offish rather than the first instance of trout (cf. Barsalou & Ross, 
1986), and show learning that depends on the number of  pre- 
sentations offish rather than trout.l~ It may be difficult to sepa- 

l01 would like to thank Eliot Smith for suggesting this hedge. It may 
account for two aspects of Schneider and Fisk's (1984) data that seem 
troublesome for instance theory: (a) the null effect of number of in- 
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rate these variations of  instance-based learning from true pro- 
cess-based learning, but the issue is important and the results 
may be worth the effort. Whatever the outcome, we would learn 
something important about the strategies people use in acquir- 
ing and utilizing knowledge. 

Retrieval of  instances may play an important role in process- 
based learning. Even when subjects learn an algorithm, the con- 
ditions necessary for instance-based learning are satisfied-- 
subjects may have no choice but to encode and retrieve specific 
instances. One could imagine interactions between instance- 
based and process-based learning in which retrieval of  instances 
helps eliminate ineffective variations of  the process (they would 
be less likely to finish before memory retrieval) and execution 
of  the process helps eliminate ineffective memory retrievals. 

Relat ions to Other  Theories  o f  Skill 
Acquisi t ion and Automat ic i ty  

Several existing theories predict a power-function speed-up 
from assumptions that differ substantially from the instance 
theory. Many of  the theories addressed different tasks and pro- 
cesses than the instance theory addresses, and few of  them deal 
with automaticity directly. In this section, I compare those theo- 
ries with instance theory, but I do not intend to argue that in- 
stance theory is more correct or more accurate than the other 
theories. Instead, I view the theories as addressing different situ- 
ations, and some theories may fit some situations better than 
others; it seems likely to me that humans can learn in more than 
one way. Choice among theories is something like choice among 
statistical tests. One considers the assumptions of  the statistical 
model and determines whether they can be satisfied in a given 
situation. If  so, one uses the test; if not, one chooses another test. 
Analysis of  variance, for example, is not wrong or inaccurate 
because it cannot deal with data from Bernouli trials; it is sim- 
ply inappropriate. When two different tests can be used on the 
same data, one can ask which is more powerful and more accu- 
rate, as in comparisons between parametric and nonparametric 
statistics; but first, one must be sure that the assumptions fit the 
situation. 

Crossman 

Crossman (1959) proposed a theory of  skill acquisition in 
which subjects sampled methods for performing a task until 
they found the fastest one. He assumed there was a pool of  possi- 
ble methods and that subjects would select one at random for 
each performance of  the task. Afterward, they compared the 
speed of  the method they selected with their average speed over 
several trials, and if the method was faster, they increased the 
probability of  selecting it for the next trial. In the long run, the 
fastest method would have the highest probability of  being se- 
lected. The theory predicts a power-function speed-up because 
it is easier to find a faster method early in practice than later on. 

Crossman's (1959) theory applies to situations in which there 

stances (4 vs. 8 per category) on the rate of learning and (b) the success- 
ful transfer to new instances (ranging from 60% to 90%). 

are several different methods for performing a task and subjects 
know or have available all of  the different methods when they 
first begin the task. There is no provision for learning new meth- 
ods or improving old ones as practice progresses. In this respect, 
it differs from the instance theory, which assumes that subjects 
acquire new methods (i.e., memory for past solutions) that 
strengthened over practice (i.e., by accumulating similar in- 
stances). Crossman's theory may account well for the acquisi- 
tion of  motor skills, like cigar rolling or typing, but it would not 
account for the lexical decision and alphabet arithmetic tasks 
described earlier, which involve developing and strengthening 
new methods. 

Newell and Rosenbloom 

Newell and Rosenbloom (1981; Rosenbloom & Newell, 1986) 
proposed a theory based on the idea of  chunking. They argued 
that subjects acquire responses to stimulus patterns or chunks, 
which they can execute the next time the pattern occurs. They 
assumed that subjects learned patterns at several different lev- 
els, some encompassing single elements, some encompassing 
several elements, and some encompassing the whole stimulus. 
They argued that the smaller patterns recur more frequently 
than the larger patterns (e.g., moving a single pawn vs. opening 
a chess game), so subjects will have more opportunities to mani- 
fest their learning the smaller the pattern. This principle ac- 
counts for the power-function speed-up: Subjects benefit from 
having learned the smaller patterns early in practice because 
they recur often. Later on, they will have learned most of  the 
smaller patterns and will benefit no more from subsequent oc- 
currences. Subjects will tend to benefit from larger patterns later 
in practice because they recur less often and because there are 
more of them to be learned. Thus, early learning will be rapid, 
as the smaller patterns are acquired and utilized, and later learn- 
ing will be relatively slow, as the larger patterns are gradually 
learned and gradually utilized. 

Newell and Rosenbloom's theory differs from the instance 
theory in that it assumes that there is no strengthening of  the 
response to an individual chunk once it is learned. Their theory 
applies best to situations in which the stimuli are highly pat- 
terned, allowing chunks to be formed at many different levels. 
It would not apply well to the lexical decision and alphabet 
arithmetic experiments reported earlier because the tasks could 
not be performed by breaking the stimuli down into chunks and 
responding to chunks at different levels. None of  the component 
letters predicted which response to make; subjects had to re- 
spond to the stimuli as wholes. 

MacKay 

MacKay (1982) proposed a theory in which learning occurs 
by strengthening connections between nodes in a network that 
describes the representation underlying perception and action. 
His theory produces the power-function speed-up in two ways: 
First, the connections are strengthened in proportion to the 
difference between the current strength and the maximum pos- 
sible strength. The proportion is constant over learning, which 
means that changes in strength will be greater early in learning 
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than they will be later on. Second, MacKay assumed that the 
representation was hierarchical and that the higher nodes were 
smaller in number and farther from their maximum strength 
than the lower nodes. Thus, early learning would be dominated 
by large changes in the strength of a few higher nodes, and later 
learning would be dominated by small changes in the strength 
of all nodes. 

MacKay's (1982) theory differs primarily from the instance 
theory in that it is a strength theory. It assumes that practice 
strengthens connections between generic stimuli and generic re- 
sponses, whereas the instance theory accounts for strengthening 
by encoding and retrieving separate representations of each en- 
counter with a stimulus. MacKay intended his theory to apply 
to behavior that is more complex than the behavior to which 
the instance theory has been applied (i.e., generating sentences 
vs. performing lexicat decisions), but that is not a major differ- 
ence. It should be possible to decide between his theory and 
mine empirically, with experiments like the present Experi- 
ment 5 (also see Hintzman, 1976). 

Anderson 

Anderson (1982, 1987) proposed a theory of skill acquisition 
that has several different learning mechanisms. Some involved 
translating verbal instructions into procedures for performing 
a task, others involved generalizing and differentiating existing 
procedures, and one involved simple strengthening. The most 
important mechanisms in the present context are composition 
and strengthening. 

Composition involves collapsing a series of steps into one by 
combining adjacent procedures. The amount of practice neces- 
sary to reduce a complex procedure to a single step depends on 
the number of steps and on the probability of combining adja- 
cent steps. The more steps and the lower the probability of com- 
bining, the longer it will take. Composition reduces the number 
of steps by a constant proportion on each iteration of the proce- 
dure, producing rapid learning early in practice and slower 
learning later on. 

Strengthening involves increasing the speed with which pro- 
ductions are executed. It operates mainly on composed produc- 
tions, increasing the strength on each exposure by a constant 
proportion. Strengthening and composition work together to 
produce the power-function speed-up. The other learning 
mechanisms may contribute something to the speed-up, but 
composition and strengthening are the major contributors. 

Anderson's (1982, 1987) theory differs from the instance the- 
ory in being much more detailed and embedded in a very pow- 
erful theory of general cognition. Some of its learning mecha- 
nisms are stimulus-specific, like those of instance theory, but 
others are more general, providing process-based learning. 
Thus, Anderson's theory would apply better than the instance 
theory to situations in which people learn general procedures 
rather than specific responses to specific stimuli. Anderson's 
composition process will work only when the structure of the 
task allows adjacent steps to be collapsed. It is unlikely to work 
in the lexical decision experiments reported above, in which 
one single-step process was replaced by another. Nor is it likely 
to work in alphabet arithmetic or arithmetic in general. Sub- 

jects did not learn to count by twos, then fours, and so on; in- 
stead, they switched from counting by ones to remembering. 

Schneider 

Walter Schneider has been developing a theory of automatiza- 
tion for several years (Schneider, 1985; Schneider & Detweiler, 
1987). Schneider's theory involves two kinds of learning, prior- 
ity learning, which attracts attention to display positions that 
are likely to contain targets, and association learning, which 
connects stimuli directly to responses. The mechanism underly- 
ing both kinds of learning is proportional strengthening; after 
each successful trial, priority and associative strength are both 
increased by an amount proportional to the difference between 
their current strength and the maximum possible strength. The 
power-function speed-up is a consequence of proportional 
strengthening. 

Schneider's theory differs from the instance theory in specific 
details. Schneider was concerned with the microstructure of 
skill acquisition and made what he considered to be physiologi- 
cally plausible assumptions about the underlying representa- 
tions and the processes that operate on them. So far, he has ad- 
dressed automatization only in tasks that combine visual and 
memory search, developing a detailed model of initial perfor- 
mance on those tasks. It is not obvious how his theory would 
deal with other tasks at the same level of detail (e.g., lexical deci- 
sion and alphabet arithmetic). 

Schneider also interpreted the properties of automaticity 
differently than I do, having taken a more conventional posi- 
tion. For example, he characterized nonautomatic processing 
(which he called controlled processing) as "slow, generally serial, 
effortful, capacity-limited, [and] subject-controlled" (Schnei- 
der, 1985, p. 476), whereas I argue that there may be no charac- 
teristics common to all or even to most instances of nonauto- 
matic processing. He assumed that controlled processing is nec- 
essary for learning; there is no further learning once processing 
is automatic. By contrast, I assume that learning occurs on each 
trial, whether processing is automatic or not. It may be harder 
to find evidence of learning once processing is automatic, for 
reasons I described earlier, but each trial continues to lay down 
a separate trace. 

Finally, Schneider's theory differs from the instance theory in 
assuming two learning mechanisms instead of one. His associa- 
tion-learning mechanism is similar to the learning mechanism 
in the instance theory, but there is nothing in the instance the- 
ory corresponding to his priority learning mechanism. I believe 
priority learning is important primarily in visual search, in 
which targets must be discriminated from simultaneously pre- 
sented distractors. Association learning (or instance learning) 
should be sufficient to account for situations that do not require 
such discrimination (e.g., memory search, lexical decision, and 
alphabet arithmetic). 

Despite these differences, Schneider's theory is similar to the 
instance theory in assuming that automatization reflects a tran- 
sition from algorithm-based processing ("controlled" process- 
ing) to memory-based processing. The language may be very 
different, but the underlying idea is basically the same. The most 
fundamental differences lie in the assumptions about strength- 
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ening; his is a strength theory, and mine is not. One could distin- 
guish between the theories empirically, with experiments that 
distinguish strength theories from instance theories (e.g., Ex- 
periment 5; also see Hintzman, 1976). 

Conc lud ing  Remarks  

The purpose of this article was to present an alternative to 
the modal view of automatization as the gradual withdrawal of 
attention. The instance theory accounts for many of the facts 
addressed by the modal view without assuming any resource 
limitations, attentional or otherwise. Novice performance is 
limited by a lack of knowledge rather than by a lack of re- 
sources. The theory accounts for the power-function speed-up 
that is perhaps the most stable and least controversial property 
of automatization. In doing so, it predicted a power-function 
reduction in the standard deviation and a constraint between 
the mean and standard deviation (same exponent), which was 
confirmed in each experiment. 

An important feature of the theory as developed so far is that 
it accounts for the facts of automaticity by assuming that only 
the knowledge base changes with practice. This assumption 
may strike many readers as implausible, but it accounts for a 
surprising amount of variance in a number of learning tasks. 
The theory may be viewed as a null hypothesis against which to 
evaluate competing theories that assume changes in the under- 
lying processes with practice. The main point of the fits to ex- 
perimental data is that there may not be much variance left for 
competing theories to explain. 
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A p p e n d i x  A 

F o r m a l  A n a l y s i s  o f  t h e  P o w e r - F u n c t i o n  S p e e d - U p  

The instance theory assumes that (a) each encounter with a stimulus 
is encoded into memory, (b) all prior encounters with a stimulus are 
retrieved when the stimulus is encountered again, (c) each encounter is 
stored and retrieved independently, and (d) the subject can respond as 
soon as the first trace is retrieved from memory. Assuming further that 
the distribution of  retrieval times is the same for each of  the n traces, 
reaction times can be modeled as the min imum o f n  independent sam- 
pies from the same distribution. The purpose of  Appendix A is to show 
that reaction times will decrease as a power function of  sample size, 
which leads to the prediction that means and standard deviations de- 
crease as power functions of  practice with the same exponent. Also ad- 
dressed is the race between the algorithm and memory retrieval, exam- 
ining the effect o f  the algorithm on the power-function speed-up and the 
number of  trials required for memory to dominate the algorithm. 

The distribution of  minima from an arbitrary distribution can be 
written as a function of  the initial distribution. The cumulative distribu- 
tion function is 

F~(t) = 1 - [1 - F(t)] n, (A1) 

and the probability density function is 

f (t) = n[ 1 - F(t)] n-If(t) (A2) 

(Gumbel, 1958, p. 76). However, it is difficult to derive general predic- 
tions for changes in the mean and standard deviation with sample size, 
n, that would be true for every initial distribution. Instead, we derived 
specific predictions for two initial distributions, the exponential and the 
Weibull, and we derived general predictions for the class of  positive- 
valued distributions by working backward from the asymptotic distri- 
bution of  minima. 

The exponential was chosen for the initial derivation because it is easy 
to work with; the entire model can be expressed with exponential distribu- 
tions. However, predictions from the exponential model deviate systemati- 
cally from empirical data, so aspects o f  the model were explored in a partic- 
ular ~eneralization of  the exponential, the Weibull distribution. The 
Weibull was chosen for three reasons: First, with appropriate parameter- 
ization, it resembles reaction-time distributions; second, it avoids the devi- 
ation from the data found with the exponential model; and third, as dis- 
cussed in the final section, it turns out to be an important asymptotic 
distribution of  minima from positive-valued distributions. 

T h e  E x p o n e n t i a l  D i s t r i b u t i o n  

The exponential distribution is commonly used in models of  memory 
retrieval because of  its empirical success and analytical tractability 
(Murdock, 1974; Ratcliff, 1978). Its distribution function is 

F(t) = I - exp[-wt] ,  

and its density function is 

f ( t )  = wexp[-w/].  

From Equation A 1, the distribution function for the minimum of  n 
samples from the same exponential distribution is 

F~(t) = 1 - exp[ -nwt l ,  

and from Equation A2, the density function is 

f~(t) = nexp[- (n  - l )wt]wexp[-wt]  

= (nw)exp[-nwt] .  

Thus, the distribution of  minima from an exponential distribution is 
itself an exponential distribution, with a rate constant n times larger 
than the rate constant for the initial distribution. 

The mean of  the distribution decreases as a power function of  n with 
an exponent o f -  1: 

TI = (nw) -I = (n-l)(w-l) �9 (A3) 

Since the standard deviation of an exponential distribution equals the 
mean, Equation A3 implies that the standard deviation also decreases 
as a power function of n with the same exponent, -I. This was the 
prediction tested in Experiments I--4. The exponential model makes a 
stronger prediction, that the mean equals the standard deviation. Later, 
the results are generalized to other distributions so that the exponent 
need not equal - l, and the mean need not equal the standard deviation. 

The exponential distribution permits an easy analysis of the race be- 
tween the algorithm and memory retrieval. In general, the distribution 
of the minima from two distributions, fAt) and fro(t), is 

f ( t )  = fa(t)[ 1 - Fro(t)] + fro(t)[ 1 - Fa(t)l. 

If the distribution of  finishing times for the algorithm, f~(t), and the 
memory process, fro(t), are exponential, then 

fr(t) = WaeXp[--wat]exp[--nWmt] + nWmeXp[--nWmt]exp[--wat] 

= (Wa + rlWm)eXp[--(Wa + nWm)t ]. 

The parameters of tbe resulting distribution are the sums of  the parame- 
ters o f tbe  parent distributions. The mean (and the standard deviation) 
of  the resulting distribution, 

Tr = (Wa q- l'lWm) -1 , (A4) 

decreases as n increases. If the mean for the algorithm is the same as the 
mean for memory, then the mean and the standard deviation of  the 
resulting distribution decrease as a power function of  n + 1 with an 
exponent o f -  1. To the extent that the algorithm mean differs from the 
memory mean, this relation will be distorted. However, the distortion 
will decrease as n increases and memory wins the race more often. At 
some point, memory will win virtually all the time. 

The probability that the algorithm will win the race can be derived 
easily if  the underlying distributions are exponential. If  so, memory re- 
trieval and the algorithm can be viewed as simultaneous Poisson pro- 
cesses with rates wa and nw,,,, respectively. Then the probability that the 
algorithm finishes first is 

P(algorithm first) = w,,/(wa + nWm), 

which decreases rapidly as n increases. If  the mean for the algorithm 
equals the mean for the memory process, then the probability that the 
algorithm finishes first equals 1/(n + 1); it decreases as a power function 
o fn  + I with an exponent o f -  I. 

In summary, the instance theory can be modeled as a race between 
two exponential distributions, one representing finishing times for the 
algorithm and one representing finishing times from a memory process 
with n independent traces. That model predicts (a) a power-function 
reduction in mean reaction time, (b) a power-function reduction in the 
standard deviation of  reaction times, and (c) a common exponent for 
means and standard deviations. These predictions are not  compromised 
much by the race with the algorithm, provided that the mean for the 
algorithm is reasonably close to the mean for memory retrieval. 

The exponential distribution imposes severe restrictions on the pre- 
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dictions, namely, that the exponent of the power function equals -  1 and 
that the mean equals the standard deviation. These wstrictions create 
problems for the model. Most exponents from empirical power func- 
tions are less than 1 in absolute magnitude (Newell & Rosenbloom, 
1981), and the reduction in the mean rarely equals the reduction in 
the standard deviation (see Experiments 1-4). How can the exponential 
model deal with these problems? 

One possibility is to relax (and make more realistic) the assumption 
that each and every encounter with a stimulus is stored and retrieved. 
If instead, each encounter was stored and retrieved with probability p, 
the observed power function would be 

n* = (pn)- ' .  

Taking logs of both sides yields 

klogn = -(logp + logn). 

Solving for k yields 

k = -(logp + logn)/logn, 

which is less than 1 if p is less than 1 (since logs of proportions are 
negative), and it decreases as p decreases (since logs of proportions in- 
crease in absolute magnitude as the proportion decreases); it predicts 
flower learning, the lower the probability of storage and retrieval, which 
is reasonable. 

Thus, the exponential model, supplemented by the (reasonable) as- 
sumption of imperfect storage and retrieval, predicts power functions 
with exponents less than 1 in absolute magnitude, which is commonly 
observed (Newell & Rosenbloom, 1981). However, the exponential 
model still predicts an identical reduction in the mean and standard 
deviation, which is not generally observed (see, e.g., Experiments 1-4). 

W eibu l l  D i s t r i b u t i o n  

The Weibuil distribution is a generalization of the exponential distri- 
bution. Its distribution function is 

F(t) = 1 - exp[ - ( t / ay] ,  

and its probability density function is 

f ( t )  = (c /aXt /a) ' - Iexp[- ( t /ay] .  

If c = 1, the Weibull reduces to an exponential distribution with rate 
parameter l /a .  The Weibull is a flexible distribution. The parameter c 
determines its shape, ranging from exponential when c = 1 to normal 
looking when c = 5. Intermediate values produce density functions that 
resemble reaction time distributions--truncated on the leR, with a lon~ 
tail on the right. Thus, the Weibull may provide a reasonable approxi- 
mation for retrieval times from a variety of processes. 

From Equation A 1, the distribution function for the minimum of n 
samples from the same Weibuli distribution is 

Fl(t) = 1 -- { e x p [ - ( t / a Y l }  n 

= 1 - e xp[ -n ( t / ay ]  

= 1 - exp[-((nl/Ct)/a c] 

= F(nm/Ct). 

Thus,  

a n d  

TI m n-I /cT 

O- 1 = ?l-I/c@. 

The distribution of minima from a Weibull distribution is itself a 
Weibull distribution. As sample size increases, the distribution of min- 
ima contracts as a power function of sample size with an exponent of 
- l/c.  Thus, the mean and the standard deviation and all of the quantiles 
of the distribution should decrease as power functions of n with the 
same exponent, - 1/c. Experiments 1-4 tested the equality of the expo- 
nents for means and standard deviations. 

The Weibull imposes less severe restrictions on the predicted power 
functions than does the exponential. The exponent must be the same 
for the mean and standard deviation, but it is not fixed at any particular 
value. Since c is 1 or larger in most applications, the exponents of power 
functions, - 1 / c ,  should be 1 or less, as is commonly observed (Newell 
& Rosenbloom, 1981). Moreover, the mean o fa  Weibull is not equal to 
the standard deviation. 

So far, a power-function speed-up and reduction in standard deviation 
has been predicted from two specific initial distributions. The next sec- 
tion attempts to generalize these results to the class of positive-valued 
distributions, of which the exponential and Weibull are members. 

S t a b i l i t y  P o s t u l a t e  

The power law can be generalized further by working backward from 
the asymptotic distribution of the minimum. Most readers will be famil- 
iar with the normal distribution as the asymptotic distribution of sums 
or averages; by the central limit theorem, the distribution of sums or 
averages from an arbitrary initial distribution will converge on the nor- 
real distribution as sample size increases, regardless of the form of the 
initial distribution. As it turns out, there are three distributions that are 
asymptotic in that sense for minima. The distribution of minima from 
an arbitrary initial distribution will converge on one of the three asymp- 
totic distributions as sample size increases (Gumbel, 1958). Which of 
the three it converges on depends on rather general properties of the 
initial distribution (whether the extremes are limited or unlimited). 
Only one asymptotic distribution--the third--is  relevant to reaction 
time data because it applies to random variables with only positive val- 
ues. Interestingly, the third asymptotic distribution is the Weibull. 

Proving that the asymptotic distribution of minima follows the power 
law is important because it implies that minima from any positive-val- 
ued distribution will eventually conform to the power law as sample size 
increases. At some point, the initial distribution will converge on the 
asymptote and what is true of the asymptotic distribution will be true 
of samples from the initial distribution. Before the distribution con- 
verges, the power law may be approximately correct. 

The power-law predictions derive from the stability postulate, which 
was used initially by Fr~chet (1927) and Fisher and Tippett (1928) to 
derive the three asymptotic distributions (Gumbel, 1958). The follow- 
ing proof is a condensed version of one given by Gumbel (pp. 157- 
162). It deals with the maximum rather than the minimum to simplify 
calculation, but the results apply to the minimum as well as the maxi- 
mum; what is true of t  for the maximum is true o f - t  for the minimum. 

According to the stability postulate, a distribution is stable with re- 
spect to its maximum (or minimum) if the distribution of maxima 
(minima) sampled from it retains the same form as the initial distribu- 
tion as sample size increases, changing only in its scale or in translation 
of its origin. As shown earlier, the exponential and Weibull are stable in 
this sense. Analogous to Equation A2, the distribution function for the 
maximum of n independent samples from the same distribution is 

Fn(t) = Fn(t). 

The stability postulate states that the probability that the largest value 
is t or less after n samples is equal to the probability of a linear function 
of t derived from the initial distribution. That is, 

F~(t) = FIant + bn), ( A 5 )  
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where a, and b, are both functions of n, the sample size. For the third 
asymptotic distribution, t is negative with a maximum of zero (for the 
minimum, t is positive with a minimum of zero). The additive constant, 
b,, drops out, and Equation A5 reduces to 

F"(t) = F(a.t) .  (A6) 

Equation A6 implies that raising F(t) to the mth power is the same as 
multiplying t by am; that is, 

But from Equation A6, 

Fm"(t) = F(ama.t).  

Finn(t) = F(arnnt). 

This implies the functional equation: 

a m n  = a m a n .  

The solution to Equation A7 is a power function, 

an = n ~, 

because 

Consequently, 

and 

(mn) c = (my (ny .  

F(t)" = F(nCt), 

L = .-cT, 

r = n - C ~ .  

For the third asymptotic distribution, c is positive. Thus, the scale of 
the distribution contracts as a power function of n, the sample size, 
whether we are dealing with the maximum (in which case, t is negative 
and bounded above at zero) or the minimum (in which case, t is positive 
and bounded below at zero). This means that all quantiles oftbe distri- 
bution of minima should decrease as a power function of n, and all the 
power functions should have the same exponent, -c .  In particular, the 
mean and the standard deviation should both decrease as power func- 
tions ofn with the same exponent, -c .  

Gumbel (1958) then derived the form of the three asymptotic distri- 
butions, showing that the third is a Weibull distribution. But that is 
beyond the requirements of this article. The important point for now is 
that an arbitrary distribution that is bounded on the left (i.e., has only 
positive values) will converge on the WeibuU distribution as sample size 
increases. There may be departures from the power law for small sample 
sizes, before the distribution of minima rcaehes asymptote, but after- 
ward the distribution will contract following the power law. 

A p p e n d i x  B 

M e t h o d  a n d  R e s u l t s  F r o m  E x p e r i m e n t s  1 -3  

The details oftbe method and results from the lexical decision experi- 
ments are reported in this section. 

Exper iment  1 

M e t h o d  

Subjects. In all, 24 subjects were tested. Some subjects came from 
introductory psychology courses and received course credit for partici- 
paring; some were volunteers and were paid $4 for participating. 

Apparatus and stimuli. The stimuli were four-letter words and non- 
words. The words were common nouns selected from the Kucera and 
Francis (1967) frequency norms. The words ranged in absolute fre- 
quency from 7 to 923 per million, with a mean of 56.05. The nonwords 
were constructed by replacing one letter of each word. In most cases, 
the nonwords were pronouncible. 

The stimuli were displayed on a point-plot CRT (Tektronix Model 
604, equipped with P31 phosphor), controlled by a PDP 11/03 com- 
puter. They were displayed as uppercase letters, formed by illuminating 
about 20 points in a 5 • 7 matrix. They were displayed at the center of 
the screen. Viewed at a distance of 60 cm (maintained by a headrest), 
each word and nonword subtended 2.67* X .57* of visual angle. 

Each trial began with a fixation point exposed in the center of the 
screen and a 900-Hz warning tone. The tone and fixation point were 
presented for 500 ms, followed immediately by the word or nonword 
for that trial, which was also presented for 500 ms. After the word or 
nonword was extinguished, a 1,500-ms intertrial interval began. 

Subjects responded by pressing the two outermost telegraph keys in 
a panel of eight mounted on a moveable board that sat between the 
headrest and the cKr.  

Procedure. Subjects were told that on each trial they would see a word 

or a nonword and that their task was to indicate whether a word or a 
nonword had appeared. They were told to respond as quickly as possible 
without making more than 10% errors. One half of the subjects pressed 
the right-most key of the panel of eight to indicate that they saw a word 
and pressed the left-most key to indicate that they saw a nonword, 
whereas the other half did the opposite. Subjects were not told anything 
about the schedule of stimulus repetitions or even that some stimuli 
would be repeated. 

There were two main conditions, the experimental condition, in 
which the same set of words and nonwords were exposed repeatedly, and 
the control condition, in which new words and nonwords were shown On 
each trial. Each condition involved blocks of 20 trials, 10 with words 
and 10 with nonwords. In the experimental condition, a set of 10 four- 
letter words and 10 four-letter nonwords were chosen randomly from 
the population of 340 stimuli. Each word and nonword was shown once 
per block in a different random order in each block, for a total of 16 
blocks. Thus, the lag between successive repetitions varied from 1 to 40, 
with a mean of 20. 

In the control condition, a different set of l0 four-letter words and l0 
four-letter nonwords was chosen randomly without replacement from 
the set of 340 stimuli for each of the 16 blocks. Each control stimulus 
appeared in only one block and never appeared in the experimental 
blocks. 

A different random sampling of stimuli was prepared for each subject, 
and the order of trials within blocks was randomized separately for each 
subject. 

R e s u l t s  

An ANOVA on the reaction-time data revealed the following effects: 
The main effect of number of presentations was significant, F(15, 



INSTANCE THEORY OF  AUTOMATIZATION 525 

T a b l e  B 1 
Error Rates From Lexical Decision Task in Experiment I 

Condi t ion  

Presentat ion Old word Old nonword  N e w w o r d  New nonword  

T a b l e  B 2  
Error Rates for the Lexical Decision Task in Experiment 2 

Condi t ion 

Presentat ion Word  Nonword  

1 .05 .11 .08 .06 
2 .05 .07 .07 .06 
3 .02 .07 .08 .04 
4 .02 .07 .10 .09 
5 .03 .05 .04 .05 
6 .02 .05 .04 .05 
7 .02 .05 .05 .08 
8 .04 .04 .09 .07 
9 .03 .06 .07 .08 

10 .03 .02 .10 .05 
11 .04 .06 .10 .05 
12 .03 .04 .08 .05 
13 .04 .05 .06 .04 
14 .04 .05 .05 .03 
15 .03 .03 .07 .04 
16 .03 .04 .08 .05 

345) = 7.52, p < .01, MSe = 6,809.85, as was the ma in  effect o f  control 
versus experimental  conditions, F(1, 23) = 31.15, p < .01, MSc = 
52,687.35, and the ma in  effect o f  word versus nonword, F(I ,  23) = 
43.l l, p < .01, AlSo = 31,748.23. Presentations and conditions inter- 
acted significantly, F(I  5 ,345)  = 2.92, p < .01, MS, = 7,186.63, reflect- 
ing the extra benefit f rom repeating specific stimuli in the experimental  
condition. Presentations and word versus nonword interacted signifi- 
cantly, F(15,345)  = 4 .23,p  < .01, MSe = 2,177.17, reflecting the greater 
effect o f  repetition with nonwords than  with words. In addition, there 
were significant interactions between conditions and word versus non-  
word, F( 1, 23) = 5.59, p < .01, MS, = 7,904.85, and between presenta- 
tions, conditions, and word versus nonword, F(15,345)  = 1.84, p < .05, 
MSe = 2,306.41. 

An ANOVA on the s tandard deviations revealed a significant main  
effect o f  the number  o f  presentations, F( 15, 345) = 3.44, p < .01, MSc = 
5,011.76, and a significant ma in  effect o f  control versus experimental  
conditions, F(I ,  23) = 29.30, p < .01, MSe = 19,509.57. In addition, 
there were significant interactions between presentations and condi- 
tions, F(15,345)  = 2.32, p < .01, MS~ = 5,407.23, and between presen- 
tations and word versus nonword, F(15, 345) = 2.46, p < .01, MS, = 
3,656.31. 

The  error rates are presented in Table B 1. Several subjects had error 
rates o f  zero in m a n y  cells o f  the design, so no statistical analysis was 
at tempted.  Note,  however, that  error rates tended to be lower for re- 
peated i tems than  for new i tems and lower for words than  for nonwords. 

E x p e r i m e n t  2 

Method 

Subjects. In all, 26 subjects were recruited from the population sam- 
pied in Experiment  1. 

Apparatus and stimuli. Appara tus  and stimuli were the same as in 
Exper iment  1. 

Procedure. The procedure was the same as in Exper iment  1, with the 
following exceptions: In each block o f  the experiment,  one word and 
one nonword were presented once, one was presented twice, one 4 
times, one 6 times, one 8 times, and one 10 times, for a total o f  62 trials. 
The lag between successive repetitions varied randomly. The mean  and 
range o f  lags decreased as the number  o f  repetitions increased. 

1 .06 .05 
2 .02 .04 
3 .02 .03 
4 .01 .03 
5 .02 .03 
6 .02 .02 
7 .01 .02 
8 .02 .03 
9 .00 .03 

10 .01 .02 

A different sample o f  words and nonwords was selected for each 
block, for a total o f  10 blocks. A different random sample o f  stimuli was 
used for each subject, and the order o f  trials within blocks was random- 
ized separately for each subject. 

Subjects were instructed as in Experiment  1. 

Results 

An ANOVA on the reaction t imes revealed a main  effect o f  nu m b er  o f  
presentations, F(9, 225) = 65.41, p < .0 l, MS, = 961.51; a main  effect 
o f  word versus nonword, F( l ,  25) = 60.77, p < .01, MSe = 5,276.15; 
and an interaction between presentations and word versus nonword, 
F(9, 225) = 5.28, p < .01, MSe = 650.99. 

An  ANOVA on the s tandard deviations revealed a main  effect o f  n u m -  
ber o f  presentations, F(9, 225) = 12.37, p < .01, MS, = 1,279.93, a 
main  effect o f  word versus nonword, F(I ,  25) = 14.65, p < .01, MSc = 
2,955.69, and a significant interaction between them,  F(9, 225) = 2. l l, 
p < .05, MS, = l,118.63. 

The  error rates are presented in Table B2. Again, no statistical analy- 
ses were at tempted,  but  the error rates tended to decrease with repeti- 
tion and tended to be lower for words than for nonwords. 

T a b l e  B 3  
Error Rates From Lexical Decision Task in Experiment 3 

Lag = 12 Lag = 24 

Presentat ion Word  Nonword  Word  Nonword  

1 .06 .07 .06 .04 
2 .02 .04 .02 .03 
3 .03 .05 .02 .04 
4 .03 .04 .02 .04 
5 .01 .03 .01 .04 
6 .02 .04 .04 .04 
7 .03 .03 .03 .03 
8 .04 .05 .02 .04 
9 .01 .02 .02 .02 

10 .02 .05 .02 .02 
i1 .02 .05 .02 .02 
12 .01 .02 .03 .02 
13 .04 .05 .03 .01 
14 .02 .02 .02 .02 
15 .02 .07 .03 .03 
16 .01 .02 .04 .01 
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Exper imen t  3 

Method 

Subjects. In all, 32 subjects from the population sampled in the previ- 
ous experiments served in Experiment 3. A total of 16 subjects served in 
the mean-lag- 12 condition and 16 served in the mean-lag-24 condition. 

Apparatus and stimuli. Apparatus and stimuli were the same as in 
the previous experiments. 

Procedure. The procedure was the same as in the preceding experi- 
ments with the following exceptions: Each word and nonword appeared 
once in each block of trials. Some words and nonwords appeared in 
only I block, others appeared in 2 successive blocks, others appeared in 
4, 8, and 16 successive blocks. The mean lag and the range of lags was the 
same for each number of repetitions. The mean lag was varied between 
subjects by manipulating the number of stimuli in each repetition con- 
dition presented in a single block of trials. One half of the subjects (16) 
had a mean lag of 12; only one stimulus from eaeh repetition condition 
occurred in each block, except for the 16-repetition condition, in which 
two words and two nonwords occurred in each block. Each subject ex- 
perienced four sets of 16 blocks of 12 trials. The other half of the sub- 
jects (16) had a mean lag of 24; two stimuli from each repetition condi- 
tion were presented each block, except for the 16-repetition condition, 

in which four words and four nonwords were presented each block. 
Each subject experienced two sets of 16 blocks of 24 trials. 

Each subject received a different random sample of the 340 stimuli, 
and the order of stimuli within blocks was randomized separately for 
each subject. 

Results 

An ANOVA on the reaction times revealed a significant main effect of 
repetition, F(15,450) = 17.70,p < .01,MSe = 2,333.58; for word versus 
nonword, F(I, 30) = 78.29, p < .01, MSe = 13,943.47; and for the inter- 
action between them, F(15,450) = 2.44, p < .01, MSo ffi 1,086.01. There 
was no significant effect of mean lag, F(I, 30) < 1, MSe = 218,538.63, 
and no interaction between lag and number of presentations, F(I 5, 
450) < 1, MS~ = 2,333.58, or between lag and word versus nonword, 
F(I, 30)= 1.27, MSe = 13,943.47. 

An ANOVA on the standard deviations revealed a significant main 
effect of repetition, F(15, 450) = 5.47, p < .01, MSe = 3,003.22, and a 
significant effect for word versus nonword, F(I, 30) = 11.46, p < .01, 
MSe = 5,307.10. No other effects were significant. 

The error rates appear in Table B3. No statistical analyses were at- 
tempted. Error rates tended to decrease with repetition and to be lower 
for words than for nonwords. 

A p p e n d i x  C 

Method 
D e t a i l s  o f  M e t h o d  a n d  R e s u l t s  f o r  E x p e r i m e n t  5 

Subjects. A total of 48 subjects from an introductory psychology 
class served as subjects to fulfill course requirements. 

Apparatus and stimuli. The apparatus was the same as that used 
in Experiments 1-3. The stimuli were five-letter words, pronouncible 
nonwords, and unpronouncible nonwords. The words were nouns se- 
lected from the Kucera-Francis (1967) norms to match exactly the dis- 
tribution of log frequencies of the four-letter words used in Experiments 
1-3. The average absolute frequency was 75.27 per million, with a range 
of 8 to 787. There were 340 words in total. The nonwords were made 
by substituting letters in the words, making a total of 340 pronouncible 
and 340 unpronouncible nonwords. Pronouncibility was determined 
by consensus of three native speakers of English. 

Procedure. In the training phase, subjects saw words, pronouncible 
nonwords, and unpronouncible nonwords. Some of them were pre- 
sented in only I block, others in 2 consecutive blocks, others in 4 consec- 
utive blocks, others in 8 consecutive blocks, and others in 16 consecutive 
blocks. Altogether, there were 16 stimuli of each type presented once 
and 8 stimuli of each type presented 2, 4, 8, and 16 times. Each block 
involved a total of 48 trials, and altogether, there were 16 training 
blocks. 

Subjects in the consistent interpretation groups (n = 12 per group) 
made lexical decisions or pronunciation decisions throughout the train- 
ing phase. Subjects in the varied interpretation groups alternated be- 
tween lexicai decisions and pronunciation decisions each block 
throughout training, one half beginning with lexieai decisions and one 
half beginning with pronunciation decisions. Because of the way the 
blocks were structured, subjects interpreted each stimulus in one way 
on odd-numbered presentations and the other way on even-numbered 
presentations, regardless of the total number of presentations each stim- 
ulus received. 

In the transfer phase, subjects saw the stimuli they were presented 
with in the training phase randomly intermixed with 16 new words, 16 

new pronouncible nonwords, and 16 new unpronouncible nonwords. 
The stimuli were presented one at a time in the center of the CRT for 
500 ms, and subjects gave verbal estimates of the frequency with which 
they were presented in the training phase. The experimenter sat in the 
room with the subject and typed each frequency estimate into the com- 
puter. Subjects were told that some stimuli were new and some had been 
presented 16 times, so their frequency estimates should range between 
0and 16. 

Results 

Training phase. ANOVAS were performed on the benefit scores. Two 
separate analyses were performed, one for lexical decision subjects (i.e., 
the consistent lexical decision group and the varied interpretation group 
that began with lexieal decisions) and one for the pronunciation decision 
subjects (i.e., the consistent pronunciation group and the varied inter- 
pretation group that began with pronunciation decisions). Each analysis 
involved consistent versus varied interpretation as a between-subjects 
factor, and stimulus type (word vs. pronouncible nonword vs. unpro- 
nouncible nonword) and number of presentations (3, 5, 7, 9, 11, 13, 
and 15) as within-subjects factors. The number-of-presentations factor 
included only the odd-numbered presentations, for which the same de- 
cision was made in each group. 

For lexical decision subjects, the main effect of consistent versus var- 
ied interpretation was significant, F(l ,  22) = 10.79, p < .01, MSe = 
44,573.09, as was the main effect of stimulus type, F(2, 44) ffi 5.71, p < 
.01, MSc = 11,068.67, and the main effect of number of presentations, 
F(6, 132) = 4.28, p < .0 l, MS~ = 3,297.74. There were significant inter- 
actions between presentations and stimulus type, F(12, 264) ffi 1.80, p < 
.05, MSe = 1,590.09, and between presentations, stimulus type, and 
consistent versus varied interpretation, F(12, 264) = 1.85, p < .05, 
MSc = 1,590.09. 
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Tab le  C 1 
Error Rates for Lexical Decision and Pronunciation Tasks in Experiment 5 

5 2 7  

Presentation 

Lexical decision Pronunciation 

Consistent Varied Consistent Varied 

W O R D  PRNW U P N W  WORD PRNW U P N W  W O R D  PRNW U P N W  W O R D  PRNW U P N W  

1 .11 .15 .02 .04 .12 .00 
2 .06 .16 .01 
3 .04 .16 .01 .00 .20 .00 
4 .04 .14 .02 
5 .04 .15 .02 .00 .15 .00 
6 .04 .13 .02 
7 .03 .13 .01 .02 .18 .01 
8 .04 .13 .00 
9 .01 .16 .01 .01 .04 .05 

10 .02 .18 .00 
11 .08 .16 .00 .01 .02 .03 
12 .03 .16 .00 
13 .05 .16 .00 .00 .18 .03 
14 .04 .16 .01 
15 .01 .15 .00 .05 .19 .00 
16 .05 .12 .00 

.10 .16 .02 .03 .12 .02 

.06 .18 .01 

.04 .17 .01 .00 .09 .02 

.05 .15 .02 

.03 .16 .03 .01 .06 .03 

.03 .15 .02 

.05 .15 .01 .01 .07 .04 

.04 .14 .00 

.01 .18 .01 .00 ,07 .04 

.02 .19 .00 

.06 .18 .00 .03 .07 .03 

.02 .18 .01 

.03 .18 .00 .01 .05 .04 

.03 .18 .01 

.01 .14 .00 .01 .07 .04 

.05 .09 .00 

Note. PRNW = pronouncible nonword; U P N W  = unpronouncible nonword. 

For pronunciation subjects, the main effect o f  consistent versus varied 
interpretation was not significant, F(I ,  22) < 1, MSe = 61,977.54, but 
the main effect o f  stimulus type was significant, F(2, 44) = 13.91, p < 
.01, MSo = 18,579.01. No other effects were significant. 

The error rates are presented in Table C 1. No statistical analyses were 
performed on the error rates. 

Transferphase. ANOVAS were performed on the frequency estimates. 
As before, one analysis was performed on the lexical decision groups 
and one on the pronunciation decision groups. For lexical decision sub- 
jects, there were no effects o f  consistent versus varied interpretation; 
neither the main effect, F(1, 22) = 2.99, p < .  10, MSo = 41.608, nor the 
interactions were significant. However, there were significant effects o f  
number of  presentations, F(5, 110) = 109.65, p < .01, MSe = 4.696; 
stimulus type, F(2, 44) = 10.96, p < .01, MSe = 5.861; and the interac- 

tion between presentations and stimulus type, F(10, 220) = 15.93, p < 
.01, MSe = 1.418. 

For pronunciation subjects, there were no significant effects o f  consis- 
tent versus varied interpretation; neither main effect, F(1, 22) < 1, 
MSe = 26.433, nor interactions. There were significant effects of  presen- 
tations, F(5, 110) = 220.20, p < .01, MSe = 2.817; Presentations • 
Stimulus Type, 17(10, 220) = 14.62, p < .01, MS~ = 1.189; and Group x 
Presentations • Stimulus Type, F(10, 220) = 3.25, p < .01, MS~ = 
1.189. 
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