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Abstract—This paper presents analytical expressions for the For regimes (b) and (c), closed-form expressions are available
capacity of single-user multi-antenna channels, known instanta- for Rayleigh-faded channels whose entries are 1ID (inde-
neously by both transmitter and receiver, at moderate and high - enqent identically distributed), both for arbitrary numbers

signal-to-noise ratios. Fading channels with both uncorrelated f ant 11 12 d totically in th b f
and correlated antennas are encompassed. The characterization©' antennas [1], [2] and asymptotically in the number o

is conducted primarily in the limit of large numbers of antennas, antennas [3], [4]. Also for correlated Rayleigh-faded chan-
with accompanying examples that illustrate the validity of the nels, analytical characterizations in these regimes abound,
results for even small numbers thereof. In the absence of for arbitrary numbers of antennas [5]-[7] and asymptotically
correlation, thg capacity is also tightly bounded fpr fixed numbers therein [8]-[11]. These analyses reveal how the corresponding
of antennas with compact closed-form expressions. L " . h
capacities are impacted by antenna correlation. The asymptotic
expressions, specifically, turn out to be particularly insightful
and very accurate even for small numbers of antennas [12].
The capacity of a MIMO (multi-input multi-output) channel  For regime (a), on the other hand, the capacity had been
is influenced by the degree of CSI (channel-state informatioghalyzed only for channels with 1ID entries, for arbitrary
available to both transmitter and receiver. In most instancgSmbers of antennas in [13] and asymptotically in [44].
of multi-antenna communication, the receiver can accuratgly this paper, we present a more extensive analysis that
track the instantaneous state of the channel from pilot signalscompasses correlated channels. Specifically:
that are typically embedded within the transmissions. In terms
of CSI at the transmitter, on the other hand, several scenarios capacity of uncorrelated Rayleigh-faded channels. The

are possible: bound, in compact closed-form, becomes exact at high

« In frequency-duplexed systems, where uplink and down-  sjgnal-to-noise ratio.
link are apart in frequency, the link fading is not recipro- , Asymptotically in the number of antennas, we find ex-
cal and thus the CSI must be conveyed through feedback, pressions for the capacity of Rayleigh-faded channels
which may incur round-trip delays that are nonnegligible  with either correlated or uncorrelated entries.
with respect to the coherence time of the CSI being re-
ported. Consequently, the transmitter is usually deprived Il. DEFINITIONS AND MODELS
of instantaneous CSI.

« In time-duplexed systems, in contrast, the links are recip- """ "'~
rocal as long as the coherence time of the fading procecéys'der IS
exceeds the duplex timfeThus, the transmitter may have y=ygHx+n

access to reliable CSI at low and moderate levels of . -
mobility. wherex andy are the input and output vectors whiteis

« At high levels of mobility, even in time-duplexed Systemgvhite Gaussian noise. The channel is represented by the zero-
the CSI becomes rapidl,y outdated mean random matrix/g H where the scalag is such that

I. INTRODUCTION

For arbitrary numbers of antennas, we tightly bound the

With frequency-flat fading, the baseband complex model we

In terms of the characterization of the single-user capacity, E[Tr{HHT}] = nRNT. (1)
these various scenarios are usually mapped onto distinct op-
erational regimes: The spatial covariance of the input, normalized by its energy
(a) The transmitter has instantaneous CSl. per dimension, is denoted by
(b) The transm?tter has only statistical CSI. BlxxT]
(c) The transmitter has no CSl. o= ENIE] (2)

nr

1The reciprocity applies to the radio channel but not necessarily to the filters
and amplifiers at transmitter and receiver. Differences therein may requiréThe explicit expression given in [13] for arbitrary numbers of antennas is
careful calibration. function of a parameter that must be solved for numerically.



where the normalization ensures th@{Tr{®}]=nr. From
(1) and (2), we can define the signal-to-noise ratio

E|x[]
Bl

In terms of the correlation between the entrie¥hfwe adhere

SNR =

to the widely usedseparablemodel whereby the correlation

between thei(;) and ¢’,7’) entries is expressed as [15]
E[(H);;(H)} ;] = (Or)i,in(O1);,
where ®g and ©1 are (g xngr) and (rxnTt) correlation

matrices whose entries indicate the correlation between I’ECEIY%
antennas and between transmit antennas, respectively, wiil

(+):,; denotes thei(j)-th entry of a matrix.

Ill. CAPACITY WITH CSI AT THE TRANSMITTER

The unique capacity-achieving input is zero-mean Gaussi%\n.

It is useful to decompose its covariance®dsVPVT where
V contains the eigenvectors whiR=diag{p1,p2,...,Pnr}

some constant ratig="=%, Fi' . (-) converges almost surely
.. R .
to a nonrandom limit that we note Wyi1(-). Accordingly,

for nt,ng—oo the capacity per receive antenna converges to

(6)

nR

L C(snR) — ﬂ/[logQ(SNR vA)|TdFgia(\)

IV. ANALYTICAL CHARACTERIZATION
The analysis of (4) and (6) is greatly facilitated whenever

p;>0 Vj, i.e., when the waterfill process allocates power to

every signalling eigenvector. This condition is satisfied above
a certainsnr threshold. Nonetheless, the expressions derived
er this premise usually cover—as will be illustrated—
st of thesnr range of interest to wireless communication
applications. The exception lies in channels with=ng, for
which this condition is only satisfied at higir.

Uncorrelated Channels
Let us begin by evaluating the capacity of channels with

holds the eigenvalues, each signifying the normalized powdp entries. For fixednt and ng, we present the following

allocated to the corresponding eigenvector.

With instantaneous CSI® can be made a function of

H. Capacity is achieved by signalling witW=HH thus

result.

Proposition 1: Consider a Rayleigh-faded channel with 1D
entries. The capacity (bits/s/Hz) with instantaneous CSI at the

creating a set of orthogonal parallel channels [16], [1]. Theansmitter satisfies, foir<ng,

corresponding power allocatio®, is obtained via waterfill
over the eigenvalues dI'H [17]. Hence,
nr

pj:[”_swj(HTH)r

wherev is such thatTr{P}=nr whereas);(-) denotes the
j-th eigenvalue of a matrix and]*=max(0, z). The ergodic
capacity that results is [1]

C(s\R) = E :logQ det (I + %@HTH)]

-
3 log, (1 +
=1

3

SNR

NI

with expectation over the distribution &1. Since the nonzero
eigenvalues oH'H coincide with those oHHT, the capacity

H'H
nt

=F

i [log2 (SNR VA ( 4)

Jj=1

SNR
nT

L1

nR—NT

C<nr log2(

and, fornt>ng,

ngr nt—k

) + <Z 1o nm> log,e

k=1 (=1

SNR

nR

4 1

nT—ngr

C <ngr log2(

where v is the Euler-Mascheroni constantx0.5772. For
nr=ngr=n and highsnr, in turn,

n

(z—z
Proof: See Appendix A.

Before proceeding with the analysis, we illustrate the tight-
ness of this bound.

Example 1:Depicted in Fig. 1 iSC(snr) for several num-

SNR

C =nlogy=>= +n %—7) logse + O(sig)

is unaffected by a reversal of roles between transmitter apdrs of transmit and receive antennas, both from Proposition 1

receiver [1]. Also noteworthy is that, fanr— oo, the waterfill

and from Montecarlo simulations. Because of reciprocity,

process results in a uniform power allocation over the eigefesults for ¢rxng) apply also to ¢g xnr). Note the tight
values ofH'H that are not identically zero and hence capaciyorrespondence between the closed-form expressions and the
analyses conducted with such an input become applicable simulations, for a wide range ekr and numbers of antennas.

In order to evaluate (4) asymptotically, we will need to intro-

duce the empirical cumulative distribution of the eigenvalu
of -.LH'H, defined as
)<}

HH
nr

FTI?;H(Z) = ﬁ (5)

551

Jj=

where 1{-} is the indicator function. For every channel that

we shall consider, as+ andng are driven to infinity with

Asymptotically in the number of antennas, on the other

eFwsand, the following applies. (The same asymptotic character-

ization was undertaken in [14]).

Theorem 1:Consider a channel with zero-mean IID entries,
arbitrarily distributed. Letvr, ng—o0 with 5=2T and define

nR

2min(1, 3%/2)
11— VBl -3l

SNRg =



Fig. 1. C(SNR) for an uncorrelated Rayleigh-faded channel with severdlig. 2. C(SNR) for an uncorrelated Rayleigh-faded channel with several
numbers of transmit and receive antenn@sx @), (2 x 6) and @ x 6). Solid numbers of antennas2 & 4), (2 x 6) and @ x 6). Solid lines indicate scaled
lines indicate analytical upper bound, circles indicate simulation. asymptotic expressions evaluated&at%, circles indicate simulation.

For SNRESN_RO, the capacity with instantaneous CSI at thevhich, asn—oc, converges toFe(-). The following is the
transmitter is, forg<1,

main result in the paper.
L0 — plog, (% + ﬁ) + (1-05)log, 125 — Blog,e Theorem 2:Consider a Rayleigh-faded channel whose non-
singular transmit and receive correlation matrices &¢

while, for 5>1, and ®g. Define At and Ar as variables whose respective

%C — log, (ﬁ SNR + %) + (8-1)log,y % — logye distributions areFe..(-) andFeg, (-). FOr sNR>snRy, if 5<1,
For 3=1 and highsnr, ACc— E{logQ (1 + %‘)} + Blog, (SNR + éE[ﬁ})
A C —log, SNR 1 O(shm) +3E [1og2%]

Proof: See Appendix B.

In this case, the fading is not constrained to be Rayleigw.h”e’ it 5>1,
Rather, the expressions are valid if only the entries of the chan- %C — BE[logy(1 + alr)] + log, (SNR + O‘E[i])
nel matrix are zero-mean with uniformly bounded variances. An
Example 2: The applicability of Theorem 1 is exemplified +E[log2f’7}
in Fig. 2, for the same antenna numbers arrl range used in with the expectations taken ovAr andAr while the param-
Example 1. The expressions in the theorem are evaluated vwétersy and « are solutions to
the role of 5 played byg—; and contrasted with Montecarlo
simulations. On each curve, the threshel, is also indi- EL’“IAR] =1-p E[ﬁ} =1-
cated. Notice how the asymptotic expressions, scaled by the ©
corresponding number of receive antennas, approximate vESf 5=1 and highsnr,
closely the actual capacities well below the nominal threshold.ic — log, % + Ellog, At] + Ellogy Ar] + O(ﬁ)

@l=

B. Correlated Rayleigh-faded Channels The thresholdsnry s, for <1,

Let us now extend the asymptotic analysis to channels with
transmit and receive correlations. In terms of the correlation SNRg = < — %E[ﬁ] (8)
matrices,®t and ®g, only their eigenvalues are relevant
to the capacity. We thus define their empirical eigenvaliféth « the infimum of the support &g (-) while * for 5>1,
distributions as we did in (5), i.e., for a generiaxn) SNRA — i—aE[i} )
correlation matrix®, 0~ Bn Ar

L Proof. See Appendix B.
Fo(2) =5 D 1{} (©) <=2} )
j=1

SResults on the support Gyt Ccan be found in [18] and [19].



whereas, ifd>1 and ®@1=I,
G = E[log, 2] + log, (SNR(ﬁ -1)+ E[ﬁ])
—PBlogy(1 — %)

V. CONCLUSIONS

Various analytical expressions for the capacity of multi-
antenna channels with instantaneous CSI at both transmitter
and receiver have been derived, with and without antenna
correlation. These expressions are valid $er levels above
a certain threshold that depends on the numbers of antennas
and their correlation. (The most constrained instance is that of
an equal number of transmitters and receivers, for which the

validity is restricted to highsnr.) Specific observations that
can be made are:

e For np=ng=n at highsnr,

Fig. 3. C(SNR) for a correlated Rayleigh-faded channel with-=2 and
nr=4. Also shown is the corresponding capacity with no correlation. Solid
lines indicate scaled asymptotic expressions evaluated non-asymptotically,
circles indicate simulation.

Example 3:Let nt=2 with correlation

(©r1);; = — ¢ 0:2(i—3)* .

which corresponds to Zwavelength antenna separation and a
broadside (truncated) Gaussian power azimuth spectrum with
2° root-mean-square spread [20]. Furtherigt=4 with

(®r)i; = Jo(wli —j) (10)
whereJy(-) is the zero-order bessel function of the first kind.

The correlation structure in (10) is representative of a linear,

array with1-wavelength antenna spacing and a uniform power
azimuth spectrum. Theorem 2 yields

nRr

C= Zlog2 (1 4 A (G)R)) -+ nrlog,| SNR + Z NG

C =~ nlog, SER + ZlogQ (©r1) + Zlog2

=1

(®r)

which, via Jensen’s inequality, indicates that correlation
can only diminish the higlsnr capacity, as already ob-
served in [8]. The corresponding expressionsfeeng
further reveal that this is also the case if correlation takes
place only at the end of the link with the fewest antennas.
With no correlation anthr <ng,

C ~ nrlog, ("RSNR) +O0(2%)

which coincides with the corresponding behavior if the

transmitter radiates an isotropic signal [21]. In this case,
therefore, instantaneous CSI at the transmitter yields no
first-order advantage.

Conversely, with no correlation andr>>ng,

C ~ ng log, (%SNR) +0(7x)
whereas, with an isotropic input [21],

C ~ nglogy (14 sNR) +O(52)

+ Z 10g2m (11) from which the first-order value of CSI can be quantified.
=t APPENDIXA
wherep is obtained from ) ] -
e ) Consider firstnr<ng. Under the condition thah; >0 V7,
— 3) leads to
Z 14 2@ — MR T )
=1 . 1 1 —1
, o . - y71+wTr{(HH) } (12)
Eq. (11) is plotted in Fig. 3 alongside Montecarlo simulations.
The correspondence is excellent abdve dB. which, plugged into (4), yields
Although, in their full generality, the expressions in Theo- SNR 1
rem 2 are in the form of fixed-point solutions, in many cases ¢ = nrE [1°g2 ( Ta Tr{(HTH) })}
of interest they bepome explicit. Specifically, this is the case +E [log, det(HTH)] (13)
whenever correlation takes place only at the end of the link o o
with the fewest antennas. f<1 and ®y=I, The second expectation in (13) is given by [22]
+C E[lo + Blo SNRl'B—i—Ei nr-l
~ A5 floga 2] + Bloga( ) E [log, det (H'H)] Z Y(nn — ) logye  (14)

—logy(1 - f3)



with «(-) the digamma function [23]

n—1
-+
k=1

The first expectation in (13), in turn, is upper-bounded by

(1]

v() o

nr log, (%JF%E [Tr{(HTH)‘l}]) (15)
where [24, Lemma 6]
B {E) ] = e a6

Plugging (14), (15) and (16) into (13), the bound is found. Fof6]
nt>ng, reciprocity can be exploited by reversing the roles of
nt andng. For np=ng, both bounds coincide but they are 7]
tight only at highsnr.

APPENDIXB (8]

Let us first sketch the proof of Theorem 2 fék1. For
SNR>SNRg, all the input powers are nonzero and (13) yields [9]

C BE [logz (SNRJFTI{(HTH)_I})]
+LE [10g2 det (TTH)}

With the correlation matrices nonsinguldiy{(H H)~'} in
(17) is equivalent to

(10]

17
[11]

nrt nrt [12]
1 § : 1 — 1 E : SNR
= [ — im — — ONR
n (HTH n (HTH
T = Aj( e ) SNR—o0 T = 1+SNR)\](TT )

[13]
which, asnt,ng — oo, converges almost surely to [25]

(14]
ARA 1
lim sNRE || 1+ sSNRGE Ri/\TV\T =1F {]
SNR— 00 AR ® /\T
® [15]
(18)

with ¢ satisfying the equation in the claim. The second term
) . 6
in (17), in turn, converges almost surely to [25]

%E[logQ det(HTH)] — E[log2 (1 + %")} + BE [logg%}

with « as in the claim.

For g>1, the same solution applies with andé replaced
by L anda, respectively, and witi\r and Ay interchanged.

For 5=1, the highsnr behavior coincides with the one
observed with no CSI at the transmitter [8].

To find snrg, we combine (3) and (12) obtaining

1 aia) ! 1
s 2T (B8) ) = gy
)\min ( )

nrT

(17]
(18]

(29]

(21]

(22]

where \nin(-) denotes the smallest eigenvalue. The seps)

ond term on the left-hand side converges asymptoticallgl

to (18) while the smallest eigenvalue convergesxtoFor [24]

0>1, sNry is found reciprocally using the relationship

FHHT(Z):%FHTH(Z) for z>0. [25]
Theorem 1 follows from Theorem 2 withr=1 andAr=1.

The explicit thresholdsnry emerge from those in Theorem 2

with n:(ﬁ —1)2 [25].
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