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Abstract— This paper presents analytical expressions for the
capacity of single-user multi-antenna channels, known instanta-
neously by both transmitter and receiver, at moderate and high
signal-to-noise ratios. Fading channels with both uncorrelated
and correlated antennas are encompassed. The characterization
is conducted primarily in the limit of large numbers of antennas,
with accompanying examples that illustrate the validity of the
results for even small numbers thereof. In the absence of
correlation, the capacity is also tightly bounded for fixed numbers
of antennas with compact closed-form expressions.

I. I NTRODUCTION

The capacity of a MIMO (multi-input multi-output) channel
is influenced by the degree of CSI (channel-state information)
available to both transmitter and receiver. In most instances
of multi-antenna communication, the receiver can accurately
track the instantaneous state of the channel from pilot signals
that are typically embedded within the transmissions. In terms
of CSI at the transmitter, on the other hand, several scenarios
are possible:

• In frequency-duplexed systems, where uplink and down-
link are apart in frequency, the link fading is not recipro-
cal and thus the CSI must be conveyed through feedback,
which may incur round-trip delays that are nonnegligible
with respect to the coherence time of the CSI being re-
ported. Consequently, the transmitter is usually deprived
of instantaneous CSI.

• In time-duplexed systems, in contrast, the links are recip-
rocal as long as the coherence time of the fading process
exceeds the duplex time.1 Thus, the transmitter may have
access to reliable CSI at low and moderate levels of
mobility.

• At high levels of mobility, even in time-duplexed systems
the CSI becomes rapidly outdated.

In terms of the characterization of the single-user capacity,
these various scenarios are usually mapped onto distinct op-
erational regimes:

(a) The transmitter has instantaneous CSI.
(b) The transmitter has only statistical CSI.
(c) The transmitter has no CSI.

1The reciprocity applies to the radio channel but not necessarily to the filters
and amplifiers at transmitter and receiver. Differences therein may require
careful calibration.

For regimes (b) and (c), closed-form expressions are available
for Rayleigh-faded channels whose entries are IID (inde-
pendent identically distributed), both for arbitrary numbers
of antennas [1], [2] and asymptotically in the number of
antennas [3], [4]. Also for correlated Rayleigh-faded chan-
nels, analytical characterizations in these regimes abound,
for arbitrary numbers of antennas [5]–[7] and asymptotically
therein [8]–[11]. These analyses reveal how the corresponding
capacities are impacted by antenna correlation. The asymptotic
expressions, specifically, turn out to be particularly insightful
and very accurate even for small numbers of antennas [12].

For regime (a), on the other hand, the capacity had been
analyzed only for channels with IID entries, for arbitrary
numbers of antennas in [13] and asymptotically in [14].2

In this paper, we present a more extensive analysis that
encompasses correlated channels. Specifically:

• For arbitrary numbers of antennas, we tightly bound the
capacity of uncorrelated Rayleigh-faded channels. The
bound, in compact closed-form, becomes exact at high
signal-to-noise ratio.

• Asymptotically in the number of antennas, we find ex-
pressions for the capacity of Rayleigh-faded channels
with either correlated or uncorrelated entries.

II. D EFINITIONS AND MODELS

With frequency-flat fading, the baseband complex model we
consider is

y =
√

g Hx + n

wherex and y are the input and output vectors whilen is
white Gaussian noise. The channel is represented by the zero-
mean random matrix

√
g H where the scalarg is such that

E[Tr{HH†}] = nRnT. (1)

The spatial covariance of the input, normalized by its energy
per dimension, is denoted by

Φ =
E[xx†]

1
nT

E[‖x‖2] (2)

2The explicit expression given in [13] for arbitrary numbers of antennas is
function of a parameter that must be solved for numerically.



where the normalization ensures thatE[Tr{Φ}]=nT. From
(1) and (2), we can define the signal-to-noise ratio

SNR = g
E[‖x‖2]
1

nR
E[‖n‖2] .

In terms of the correlation between the entries ofH, we adhere
to the widely usedseparablemodel whereby the correlation
between the (i,j) and (i′,j′) entries is expressed as [15]

E
[
(H)i,j(H)∗i′,j′

]
= (ΘR)i,i′(ΘT)j,j′

whereΘR and ΘT are (nR×nR) and (nT×nT) correlation
matrices whose entries indicate the correlation between receive
antennas and between transmit antennas, respectively, while
(·)i,j denotes the (i,j)-th entry of a matrix.

III. C APACITY WITH CSI AT THE TRANSMITTER

The unique capacity-achieving input is zero-mean Gaussian.
It is useful to decompose its covariance asΦ=VPV† where
V contains the eigenvectors whileP=diag{p1, p2, . . . , pnT}
holds the eigenvalues, each signifying the normalized power
allocated to the corresponding eigenvector.

With instantaneous CSI,Φ can be made a function of
H. Capacity is achieved by signalling withV=H†H thus
creating a set of orthogonal parallel channels [16], [1]. The
corresponding power allocation,P, is obtained via waterfill
over the eigenvalues ofH†H [17]. Hence,

pj =
[
ν − nT

SNR λj(H†H)

]+

(3)

whereν is such thatTr{P}=nT whereasλj(·) denotes the
j-th eigenvalue of a matrix and[z]+=max(0, z). The ergodic
capacity that results is [1]

C(SNR) = E
[
log2 det

(
I + SNR

nT
ΦH†H

)]

= E




nT∑

j=1

log2

(
1 + SNR

nT
pjλj(H†H)

)



= E




nT∑

j=1

[
log2

(
SNR νλj

(
H†H
nT

))]+


 (4)

with expectation over the distribution ofH. Since the nonzero
eigenvalues ofH†H coincide with those ofHH†, the capacity
is unaffected by a reversal of roles between transmitter and
receiver [1]. Also noteworthy is that, forSNR→∞, the waterfill
process results in a uniform power allocation over the eigen-
values ofH†H that are not identically zero and hence capacity
analyses conducted with such an input become applicable.

In order to evaluate (4) asymptotically, we will need to intro-
duce the empirical cumulative distribution of the eigenvalues
of 1

nT
H†H, defined as

FnT
H†H(z) = 1

nT

nT∑

j=1

1
{

λj

(
H†H
nT

)
≤ z

}
(5)

where1{·} is the indicator function. For every channel that
we shall consider, asnT and nR are driven to infinity with

some constant ratioβ=nT
nR

, FnT
H†H(·) converges almost surely

to a nonrandom limit that we note byFH†H(·). Accordingly,
for nT, nR→∞ the capacity per receive antenna converges to

1
nR

C(SNR) → β

∫
[log2(SNR νλ)]+dFH†H(λ) (6)

IV. A NALYTICAL CHARACTERIZATION

The analysis of (4) and (6) is greatly facilitated whenever
pj>0 ∀j, i.e., when the waterfill process allocates power to
every signalling eigenvector. This condition is satisfied above
a certainSNR threshold. Nonetheless, the expressions derived
under this premise usually cover—as will be illustrated—
most of theSNR range of interest to wireless communication
applications. The exception lies in channels withnT=nR, for
which this condition is only satisfied at highSNR.

A. Uncorrelated Channels

Let us begin by evaluating the capacity of channels with
IID entries. For fixednT and nR, we present the following
result.

Proposition 1: Consider a Rayleigh-faded channel with IID
entries. The capacity (bits/s/Hz) with instantaneous CSI at the
transmitter satisfies, fornT<nR,

C ≤ nT log2

(
SNR
nT

+ 1
nR−nT

)
+

(
nT∑

k=1

nR−k∑

`=1

1
` − nTγ

)
log2e

and, fornT>nR,

C ≤ nR log2

(
SNR
nR

+ 1
nT−nR

)
+

(
nR∑

k=1

nT−k∑

`=1

1
` − nRγ

)
log2e

where γ is the Euler-Mascheroni constant,γ≈0.5772. For
nT=nR=n and highSNR, in turn,

C = n log2
SNR

n + n

(
n∑

`=2

1
` − γ

)
log2e + O( 1

SNR )

Proof: See Appendix A.

Before proceeding with the analysis, we illustrate the tight-
ness of this bound.

Example 1:Depicted in Fig. 1 isC(SNR) for several num-
bers of transmit and receive antennas, both from Proposition 1
and from Montecarlo simulations. Because of reciprocity,
results for (nT×nR) apply also to (nR×nT). Note the tight
correspondence between the closed-form expressions and the
simulations, for a wide range ofSNR and numbers of antennas.

Asymptotically in the number of antennas, on the other
hand, the following applies. (The same asymptotic character-
ization was undertaken in [14]).

Theorem 1:Consider a channel with zero-mean IID entries,
arbitrarily distributed. LetnT, nR→∞ with β=nT

nR
and define

SNR0 =
2min(1, β3/2)
|1−√β||1− β|



Fig. 1. C(SNR) for an uncorrelated Rayleigh-faded channel with several
numbers of transmit and receive antennas: (2× 4), (2× 6) and (4× 6). Solid
lines indicate analytical upper bound, circles indicate simulation.

For SNR≥SNR0, the capacity with instantaneous CSI at the
transmitter is, forβ<1,

1
nR

C → β log2

(
SNR

β + 1
1−β

)
+ (1−β) log2

1
1−β − β log2e

while, for β>1,

1
nR

C → log2

(
β SNR + β

β−1

)
+ (β−1) log2

β
β−1 − log2e

For β=1 and highSNR,
1

nR
C → log2

SNR
e + O( 1

SNR )

Proof: See Appendix B.

In this case, the fading is not constrained to be Rayleigh.
Rather, the expressions are valid if only the entries of the chan-
nel matrix are zero-mean with uniformly bounded variances.

Example 2:The applicability of Theorem 1 is exemplified
in Fig. 2, for the same antenna numbers andSNR range used in
Example 1. The expressions in the theorem are evaluated with
the role ofβ played by nT

nR
and contrasted with Montecarlo

simulations. On each curve, the thresholdSNR0 is also indi-
cated. Notice how the asymptotic expressions, scaled by the
corresponding number of receive antennas, approximate very
closely the actual capacities well below the nominal threshold.

B. Correlated Rayleigh-faded Channels

Let us now extend the asymptotic analysis to channels with
transmit and receive correlations. In terms of the correlation
matrices,ΘT and ΘR, only their eigenvalues are relevant
to the capacity. We thus define their empirical eigenvalue
distributions as we did in (5), i.e., for a generic (n×n)
correlation matrixΘ,

Fn
Θ(z) = 1

n

n∑

j=1

1 {λj (Θ) ≤ z} (7)

Fig. 2. C(SNR) for an uncorrelated Rayleigh-faded channel with several
numbers of antennas: (2× 4), (2× 6) and (4× 6). Solid lines indicate scaled
asymptotic expressions evaluated atβ= nT

nR
, circles indicate simulation.

which, asn→∞, converges toFΘ(·). The following is the
main result in the paper.

Theorem 2:Consider a Rayleigh-faded channel whose non-
singular transmit and receive correlation matrices areΘT

and ΘR. Define ΛT and ΛR as variables whose respective
distributions areFΘT(·) andFΘR(·). For SNR≥SNR0, if β<1,

1
nR

C → E
[
log2

(
1 + ΛR

ϕ

)]
+ β log2

(
SNR + 1

ϕE[ 1
ΛT

]
)

+βE
[
log2

ϕΛT
e

]

while, if β>1,

1
nR

C → βE[log2(1 + αΛT)] + log2

(
SNR + αE[ 1

ΛR
]
)

+E
[
log2

ΛR
αe

]

with the expectations taken overΛT andΛR while the param-
etersϕ andα are solutions to

E

[
1

1+
ΛR
ϕ

]
= 1− β E

[
1

1+αΛT

]
= 1− 1

β .

For β=1 and highSNR,

1
nR

C → log2
SNR

e + E[log2 ΛT] + E[log2 ΛR] + O( 1
SNR )

The thresholdSNR0 is, for β<1,

SNR0 = 1
κ − 1

ϕE
[

1
ΛT

]
(8)

with κ the infimum of the support ofFH†H(·) while,3 for β>1,

SNR0 = 1
β κ − αE

[
1

ΛR

]
(9)

Proof: See Appendix B.

3Results on the support ofFHH† can be found in [18] and [19].



Fig. 3. C(SNR) for a correlated Rayleigh-faded channel withnT=2 and
nR=4. Also shown is the corresponding capacity with no correlation. Solid
lines indicate scaled asymptotic expressions evaluated non-asymptotically,
circles indicate simulation.

Example 3:Let nT=2 with correlation

(ΘT)i,j = e−0.2 (i−j)2

which corresponds to a2-wavelength antenna separation and a
broadside (truncated) Gaussian power azimuth spectrum with
2◦ root-mean-square spread [20]. Further letnR=4 with

(ΘR)i,j = J0(π|i− j|) (10)

whereJ0(·) is the zero-order bessel function of the first kind.
The correlation structure in (10) is representative of a linear
array with1-wavelength antenna spacing and a uniform power
azimuth spectrum. Theorem 2 yields

C ≈
nR∑

i=1

log2

(
1 + λi(ΘR)

ϕ

)
+ nT log2


SNR + 1

ϕ

nT∑

j=1

1
λ(ΘT)




+
nT∑

j=1

log2
ϕλj(ΘT)

e (11)

whereϕ is obtained from
nR∑

i=1

1

1 + λi(ΘR)
ϕ

= nR − nT.

Eq. (11) is plotted in Fig. 3 alongside Montecarlo simulations.
The correspondence is excellent above4-5 dB.

Although, in their full generality, the expressions in Theo-
rem 2 are in the form of fixed-point solutions, in many cases
of interest they become explicit. Specifically, this is the case
whenever correlation takes place only at the end of the link
with the fewest antennas. Ifβ<1 andΘR=I,

1
nR

C → βE
[
log2

ΛT
e

]
+ β log2

(
SNR

1−β
β + E[ 1

ΛT
]
)

− log2(1− β)

whereas, ifβ>1 andΘT=I,

1
nR

C → E
[
log2

ΛR
e

]
+ log2

(
SNR(β − 1) + E[ 1

ΛR
]
)

−β log2(1− 1
β )

V. CONCLUSIONS

Various analytical expressions for the capacity of multi-
antenna channels with instantaneous CSI at both transmitter
and receiver have been derived, with and without antenna
correlation. These expressions are valid forSNR levels above
a certain threshold that depends on the numbers of antennas
and their correlation. (The most constrained instance is that of
an equal number of transmitters and receivers, for which the
validity is restricted to highSNR.) Specific observations that
can be made are:

• For nT=nR=n at high SNR,

C ≈ n log2
SNR

e +
n∑

j=1

log2 λj(ΘT) +
n∑

i=1

log2 λi(ΘR)

which, via Jensen’s inequality, indicates that correlation
can only diminish the high-SNR capacity, as already ob-
served in [8]. The corresponding expressions fornT 6=nR

further reveal that this is also the case if correlation takes
place only at the end of the link with the fewest antennas.

• With no correlation andnT¿nR,

C ≈ nT log2

(
nR
nT

SNR

)
+ O(nT

nR
)

which coincides with the corresponding behavior if the
transmitter radiates an isotropic signal [21]. In this case,
therefore, instantaneous CSI at the transmitter yields no
first-order advantage.

• Conversely, with no correlation andnTÀnR,

C ≈ nR log2

(
nT
nR

SNR

)
+ O(nR

nT
)

whereas, with an isotropic input [21],

C ≈ nR log2 (1 + SNR) + O(nR
nT

)

from which the first-order value of CSI can be quantified.

APPENDIX A

Consider firstnT<nR. Under the condition thatpj>0 ∀j,
(3) leads to

ν = 1 + 1
SNRTr

{(
H†H

)−1
}

(12)

which, plugged into (4), yields

C = nTE
[
log2

(
SNR
nT

+ 1
nT

Tr
{(

H†H
)−1

})]

+E
[
log2 det(H†H)

]
(13)

The second expectation in (13) is given by [22]

E
[
log2 det

(
H†H

)]
=

nT−1∑

`=0

ψ(nR − `) log2 e (14)



with ψ(·) the digamma function [23]

ψ(n) = −γ +
n−1∑

k=1

1
k .

The first expectation in (13), in turn, is upper-bounded by

nT log2

(
SNR
nT

+ 1
nT

E
[
Tr

{(
H†H

)−1
}])

(15)

where [24, Lemma 6]

E
[
Tr

{(
H†H

)−1
}]

= nT
nR−nT

(16)

Plugging (14), (15) and (16) into (13), the bound is found. For
nT>nR, reciprocity can be exploited by reversing the roles of
nT and nR. For nT=nR, both bounds coincide but they are
tight only at highSNR.

APPENDIX B

Let us first sketch the proof of Theorem 2 forβ<1. For
SNR>SNR0, all the input powers are nonzero and (13) yields

1
nR

C = βE
[
log2

(
SNR + Tr

{(
H†H

)−1
})]

+ 1
nR

E
[
log2 det

(
H†H
nT

)]
(17)

With the correlation matrices nonsingular,Tr{(H†H)−1} in
(17) is equivalent to

1
nT

nT∑

j=1

1

λj(
H†H
nT

)
= lim

SNR→∞
1

nT

nT∑

j=1

SNR
1+SNRλj(

H†H
nT

)

which, asnT, nR →∞, converges almost surely to [25]

lim
SNR→∞

SNR E




(
1 + SNRβE

[
ΛRΛT

1 + ΛR
ϕ

|ΛT

])−1

= 1

ϕE

[
1

ΛT

]

(18)
with ϕ satisfying the equation in the claim. The second term
in (17), in turn, converges almost surely to [25]

1
nR

E
[
log2 det(H†H)

] → E
[
log2

(
1 + ΛR

ϕ

)]
+ βE

[
log2

ϕΛT
e

]

with α as in the claim.
For β>1, the same solution applies withβ and 1

ϕ replaced
by 1

β andα, respectively, and withΛT andΛR interchanged.
For β=1, the high-SNR behavior coincides with the one

observed with no CSI at the transmitter [8].
To find SNR0, we combine (3) and (12) obtaining

SNR + 1
nT

Tr
{(

H†H
nT

)−1
}

=
1

λmin

(
H†H
nT

)

where λmin(·) denotes the smallest eigenvalue. The sec-
ond term on the left-hand side converges asymptotically
to (18) while the smallest eigenvalue converges toκ. For
β>1, SNR0 is found reciprocally using the relationship
FHH†(z)= 1

β FH†H(z) for z>0.
Theorem 1 follows from Theorem 2 withΛT=1 andΛR=1.

The explicit thresholdsSNR0 emerge from those in Theorem 2
with κ=( 1√

β
− 1)2 [25].
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