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Abstract

The application of the powerful tool molecular biology has made it possible to ask questions not only
about hormone production and action but also to characterize many of the receptor molecules that
initiate responses to the hormones. We are beginning to understand how cells may regulate the
expression of genes and how hormones intervene in regulatory processes to adjust the expression
of individual genes. In addition, great strides have been made in understanding how individual
cells talk to each other through locally released factors to coordinate growth, differentiation,
secretion, and other responses within a tissue. In this review I (1) focus on developmental aspects
of the pituitary gland, (2) focus on the different components of the growth hormone axis and (3)
examine the different altered genes and their related growth factors and/or regulatory systems
that play an important physiological and pathophysiological role in growth. Further, as we have
already entered the ‘post-genomic’ area, in which not only a defect at the molecular level becomes
important but also its functional impact at the cellular level, I concentrate in the last part on some
of the most important aspects of cell biology and secretion.
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Introduction

Growth is an inherent property of life. Normal somatic
growth requires the integrated function of many of the
hormonal, metabolic, and other growth factors
involved in the hypothalamo-pituitary growth axis.
The application of the powerful tool molecular biology
has made it possible to ask questions not only about
hormone production and action but also to character-
ize many of the receptor molecules that initiate
responses to the hormones. Therefore, significant pro-
gress has been made in unravelling the events that
lead to the final cellular expression of hormonal stimu-
lation. As more details of intracellular signalling
emerge the complexities of parallel and intersecting
pathways of transduction have become more evident.
We are beginning to understand how cells may regu-
late the expression of genes and how hormones inter-
vene in regulatory processes to adjust the expression
of individual genes. In addition, great strides have
been made in understanding how individual cells talk
to each other through locally released factors to coordi-
nate growth, differentiation, secretion, and other
responses within a tissue. In this review I (1) focus
on developmental aspects of the pituitary gland, (2)
focus on the different components of the growth hor-
mone axis and (3) examine the different altered genes
and their related growth factors and/or regulatory
systems that play an important physiological and
pathophysiological role in growth. Further, as we

have already entered the ‘post-genomic’ area, in
which not only a defect at the molecular level becomes
important but also its functional impact at the cellular
level, I concentrate in the last part on some of the most
important aspects of cell biology and secretion.

Development of the pituitary gland and
its impact on hormonal deficiencies

Overview

Discovery of transcription factors responsible for pitu-
itary cell differentiation and organogenesis has had
an immediate impact on the understanding and diag-
nosis of pituitary hormone deficiencies. Importantly,
combined pituitary hormone deficiencies have been
associated with mutations in genes coding for tran-
scription factors that control organogenesis or multiple
cell lineages, whereas isolated hormone deficiencies are
often caused by transcription factors controlling late
cell differentiation. However, as there may be a strong
phenotypic variability in familial combined pituitary
hormone deficiency caused by different transcription
factors, e.g. PROP1 (prophet of Pit1), it is of high
clinical importance to have some knowledge about
the various steps in pituitary gland development
(Fig. 1) (1–12).

As summarized in Fig. 2 the formation of the pitu-
itary gland involves many factors that control various
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processes during development; these include factors for
early patterning (Fig. 2; Rathke’s pouch: dorsal, Pax-6;
ventral, Isl-1 and Brn-4; early pituitary gland: within
anterior lobe, dorsal, Pax-6, Prop-1; ventral, Isl-1,
Brn-4, Lhx-4 and GATA-2; within intermediate lobe,
Six-3 and Pax-6) and organogenesis, for control of
cell proliferation and, finally, for differentiation of indi-
vidual lineages. Some of these transcription factors con-
tribute to more than one process at different times. For
example the Pitx-1 and Pitx-2 factors contribute to very
early organogenesis, but they are also involved in late
functions such as expansion of the gonadatotroph
and thyrothroph lineages in Pitx (13) and the control
of transcription of hormone-coding genes (Figs 1 and 2).

Lineage commitment and differentiation

All lineages of the anterior and intermediate pituitary
gland derive from the epithelial cells of the Rathke’s
pouch which projects as a diverticulum from the roof

of the stomadeum – in humans – in the middle of
the fourth week (Figs 1 and 2). Molecular markers
indicate that the pouch cells are not equivalent along
the dorso-ventral axis, and this may be taken as an
indication that the commitment to different pituitary
lineages may be determined at an early developmental
stage. In mice, at stage e9.5-11.5 (embryonic days
9.5 –11.5), transcription factors such as Prop1 and
Pax6 are preferentially expressed in the dorsal pouch,
whereas factors Isl-1, Brn-4, Lhx4 and GATA-2 are pri-
marily expressed on the ventral side. Only one of these
factors, Prop1, may be a commitment factor. Prop1 is
initially expressed in the dorsal pouch and developing
anterior pituitary where the somato-lactotrophs and
definitive thyrotrophs will eventually appear (14, 15).
Further Prop1 is required for expression of Pit1 (pitu-
itary-specific transcription factor 1), which itself is
necessary for differentiation of the same lineages (16).
Therefore, if data suggest that Prop1 may commit the
dorsal pituitary to give rise to the somato-lactotroph

Figure 1 Pituitary gland development
(1–72). A detailed model of cell-lineage
determination in pituitary ontogeny is
depicted. a-MSH, a-melanocyte-stimulating
hormone; aGSU, glycoprotein hormone
alpha-subunit; FSH, follicle-stimulating
hormone; LH, luteinizing hormone; PCG,
pre-cortico-gonadotrophs; PCM, pre-cortico-
melanotrophs; PSL, pre-somato-lactotrophs;
TSHr, rostral TSH; PSLT, pre-somato-lacto-
thyrothrophs.
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and thyrotroph lineages, there is no evidence of a
counterpart of Prop1 that may commit the ventral pitu-
itary to give rise to gonadotroph or corticotroph
lineages. Isl1 and GATA-2 may be candidate factors
for this function (12, 17, 18). Based on the description
of gradients of signalling molecules and transcription
factors in and around the development of the pituitary
gland, a combinatorial model was proposed in which
these regulatory molecules define territories within
the developing gland. Only the unique combination of
signals and/or factors would be responsible for differen-
tiation towards one rather than the other lineages (19).
This model, however, reflects the fact that precise
relations among all the lineages are not clear at all
(20). As it has been recently shown that the cortico-
troph and gonadotroph lineages, which both arise
ventrally, may have a common precursor (17, 18, 21)
a simple binary model to account for all pituitary differ-
entiation events starting from a common precursor has
been proposed (Fig. 1d). This model would be consistent
with the clear commitment of the dorsal pituitary by
Prop1 to form the pre-somato-lacto-thyrothroph
precursors (PSLT), from which thyroid-stimulating
hormone (TSH), growth hormone (GH) and
prolactin (PRL) lineages will later arise through the
action of Pit1, GATA-2 and other factors. Further,
pre-corticol-gonadotrophs are committed at a similar
time, and these will later be driven to differentiate
into corticotrophs via pre-cortico-melanotrophs under

the influence of Tpit or NeuroD1, or even later into
gonadotrophs under the influence of SF1 and
GATA-2. However, for the time being it is not clear
which factors may commit the ventral pituitary to the
pre-corticol-gonadotroph fate. Signalling gradients are
also likely to be involved and affect differentiation in
this model, but these gradients may rather act in a sto-
chastic fashion on a cell-by-cell basis rather than by
defining specific territories within the developing gland.

Pituitary hormones and maintenance of
normal cell function

In addition, it is not only important to get a certain
function, but also to maintain it. Therefore, it has to
be highlighted that a specific cell function (production
of any hormone) might be lost over time because of a
lack of cellular crosstalk, as has to be suggested in
patients suffering from PROP1 gene defects in terms
of adrenocorticotrophic hormone (ACTH) production
(14). Further, not only the different transcription fac-
tors but also the distinct and well-tuned hormonal feed-
back loops (e.g. GH-releasing hormone (GHRH), GHRH
receptor, GH, GH receptor (GRH) and insulin-like
growth factor I (IGF-I)) may play a major role at the
level of maintenance of each hormonal cell activity.
As an example, GHRH receptor mutant mice (little
mice) present with a hypoplastic anterior gland and
phenotypically with dwarfism lacking GH secretion.

Figure 2 Signalling mechanism in
pituitary morphogenesis. The pituitary
promordium, Rathke’s pouch, derives
from the oral ectoderm. Signalling gra-
dients generate overlapping patterns of
transcription factor expression in pitu-
itary development. At e9.0 Sonic
hedgehog (Shh) and P-OTX/Pitx1/2 are
expressed throughout the oral ecto-
derm. BMP4 is originally present in the
ventral diencephalon, whereas
expression of FGF8 occurs at e10.5. In
this early stage Shh expression is
excluded from the Rathke’s pouch
creating a molecular compartment bor-
der between oral and pouch ectoderm.
BMP2 expression is detected at this
border region at e10.5. Expression of
the BMP antagonist chordin in the cau-
dal mesenchyme also potentially serves
to maintain a ventrodorsal BMP2 gradi-
ent. These different gradients of tran-
scription factors dorsally (Pax-6, Prop1)
and ventrally (Brn-4, Isl-1, Lhx-4,
GATA-2) based on the variability of
FGF8 and BMP2 transcription levels
are important for pituitary commitment,
and appearance of the cell lineages
necessary for later cell determination
and differentiation.
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Transcription factors of clinical importance

HESX1 The paired-like homeobox gene HESX1, a tran-
scriptional repressor, has been implicated in patients
suffering from septo-optic dysplasia (SOD), often
referred as ‘de Morsier syndrome’ (OMIM 182230). It
is characterized by the classical triad of optic nerve
hypoplasia and midline defects mainly combined with
neuro-radiological abnormalities, such as agenesis of
the corpus callosum and the absence of the septum
pellucidum and pituitary hypoplasia with consequent
panhypopituitarism. Dattani et al. (22) described the
first HESX1 gene defect (R160C) in two siblings. Impor-
tantly, the phenotype is highly variable, and may
include any two of the three classical features even in
the same family, suggesting incomplete penetrance
(Table 1) (22 –28). In addition to the two homozygous
missense mutations (R160C, I26T), three heterozygous
mutations (S170L, T181A and Q6H) have been
described in association with milder phenotypes
characterized by isolated GH deficiency (GHD) with or
without an ectopic posterior pituitary gland. Recently,
a de novo heterozygous mutation (insertion, 306/307
ins AG) within exon 2 was reported in a family from
Japan (26). This patient, however, presented with
severe combined pituitary hormone deficiency (CPHD)
including ACTH deficiency (26).

PROP1 Wu et al. (29) described four families in which
CPHD was associated with homozygosity or compound
heterozygosity for inactivating mutations of the PROP1
gene. PROP1 (prophet of Pit1) is a paired-like homeo-
domain transcription factor and originally a mutation
in this gene (S83P) was found to cause the Ames
dwarf (df) mouse phenotype (30). In mice, Prop1 gene
mutation primarily causes GH, PRL and TSH deficiency,
and in humans PROP1 gene defects also appear to be a
major cause of CPHD. In agreement with the model of
Prop1 playing a role in commitment of dorsal lineages
(GH, PRL and TSH) Prop1 mutant mice exhibit a dorsal
expansion of gonadotrophs that normally arise on the
ventral side. To date, many different missense, frame-
shift and splicesite mutations, deletions and insertions
have been reported and it has been realized that the
clinical phenotype varies not only between the different
gene mutations but also among the affected siblings

with the same mutation (1, 2). In addition, although
the occurrence of the hormonal deficiency varies from
patient to patient (1), the affected patients as adults
were not only GH-, PRL- and TSH-deficient, but also
gonadotropin-deficient (Table 1). The three tandem
repeats of the dinucleotide GA at location 296-302 in
the PROP1 gene represents a hot-spot for CPHD
(1 –3). Low levels of cortisol have also been described
in some patients with PROP1 gene mutations (31,
32). In addition, pituitary enlargement with sub-
sequent involution has been reported in patients with
PROP1 mutations (31). The mechanism, however,
underlying this phenomenon remains still unknown.

POU1F1 (PIT1) The pituitary transcription factor PIT1
is a member of the POU family of homeoproteins, which
regulates important differentiating steps during
embryological development of the pituitary gland and
regulates target gene function within the postnatal
life (33–37). Further, it is 291 amino acids in length,
contains a transactivation domain as well as two con-
served DNA-binding domains, the POU homeodomain
and the POU-specific domain (33 –37). As PIT1 is con-
fined to the nuclei of somatotropes, lactotrops and
thyrotropes in the anterior pituitary gland, the target
genes of PIT1 include GH, PRL and TSH subunits,
and the POU1F1 gene itself (38). Therefore, the defects
in the human POU1F1 gene known so far have all
resulted in a total deficiency of GH and PRL, whereas
a variable hypothyroidism due to an insufficient TSH
secretion, at least during childhood, has been described
(39 –41) (Table 1). Although it is important to stress
that the clinical variability is due to other factors
than the exact location of the mutation reported, the
type of inheritance, however, seems to correlate well
with the genotype (34, 36, 37, 41–47). Beside one
exception, which is a C-terminal-located mutation in
the POU1F1 gene (V272ter), the following rule was
deduced: mutations lying within the DNA-binding
domains, either the POU-specific domain or the POU
homeodomain, cause autosomal recessively inherited
CPHD, whereas CPHD caused by mutations outside
these two specific regions may follow the autosomal-
dominant pattern of inheritance (48, 49). Further,
the dominant-negative effect of the R271W POU1F1
form has been challenged recently by Kishimoto et al.

Table 1 Comparison of phenotypes caused by a defect of various transcription factors of the pituitary gland. LH, luteinizing hormone;
FSH, follicle-stimulating hormone.

Factor POU1F1 PROP1 LHX3 HESX1 LHX4

Hormonal deficiencies GH, PRL, TSH GH, PRL, TSH,
LH, FSH, (ACTH)

GH, PRL, TSH,
LH, FSH, (ACTH)

GH, PRL, TSH,
LH, FSH, ACTH

GH, TSH, ACTH

Imaging
Anterior pituitary gland Normal to hypo Hypo to hyper Hypo Hypo Hypo
Posterior pituitary gland Normal Normal Normal Ectopic Ectopic

Other manifestations None None Neck rotation: normal,
160–1808; patients, 75–858

Eyes, brain,
septo-optic dysplasia

Sella turcica,
skull defects
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(50). Although most cases with R271W were sporadic
and presenting with an autosomal-dominant mode of
inheritance, Okamoto et al. (35) reported a family
with normal family members who were clearly hetero-
zygous for that mutation. Therefore, further expression
studies in vitro were performed that could not confirm
its dominant-negative effect, which is in contrast to
the original report using identical experimental con-
ditions (43, 50).

LHX3 LHX3 encodes a LIM-type homeodomain protein
that contains two N-terminal tandemly repeated LIM
motifs and a C-terminal homeodomain with DNA-bind-
ing activity (51, 52). In Lhx3 2/2 mice, the Rathke’s
pouch formed but failed to differentiate, except for the
corticotroph lineage. Further, it is selectively expressed
in both anterior and intermediate pituitary in the
mature mice and is also transiently expressed in the
developing ventral neural cord brainstem (52).
The Lhx3 protein acts synergistically with the Pit1 pro-
tein to transcriptionally activate genes that control
pituitary differentiation. Two mutations in LHX3, a
missense mutation changing a tyrosine to a cysteine
(Y116C) and an intragenic deletion that results in a
truncated protein lacking the DNA-binding homeodo-
main, have been identified in humans. These mutations
were identified in patients with retarded growth and
combined pituitary hormone deficiency, except for
ACTH, and also abnormal neck (rigid cervical spine
leading to limited head rotation) and cervical spine
development were described (Table 1) (53). Further, in
some of the affected subjects severe pituitary hypoplasia
was diagnosed, whereas one patient presented at the
age of 19 years an enlarged anterior pituitary gland
that had not been documented 10 years earlier (53).

LHX4 Machinis et al. (54) reported a family with an
LHX4 germline splice-site mutation that resulted in a
disease phenotype characterized by short stature due
to GHD (as well as deficits of other anterior pituitary
hormones associated with hypoplastic anterior hypo-
physis) and by pituitary and hindbrain defects (Chiari
malformation type I; OMIM 118420) in combination
with abnormalities of the sella turcica of the central
skull base (Table 1). Most importantly, the affected sub-
jects presented with a heterozygous intronic point
mutation (G to C transversion) involving the invariant
dinucleotide (AG) of the acceptor splice site preceding
exon 5 (54).

SOX3 Sox3 is a member of the Sox family (approxi-
mately 20 genes) that encode a group of proteins carry-
ing a 79-amino-acid DNA-binding domain (HMG box)
(55). Recently, in both mice and humans, Sox3/SOX3,
which in humans is a single exon gene on the
X chromosome (Xq26-17), has been implicated in
X-linked hypopituitarism (55 –57). In humans, in
a single pedigree with X-linked GHD and mental

retardation, a polyalanine expansion (26 alanine resi-
dues instead of 15) was identified in SOX3 C-terminal
to the HMGbox domain (55). The phenotype consists
of variable mental retardation, facial anomalies and iso-
lated GHD (IGHD). The final height of the untreated
subjects ranged from 135 to 159 cm. Additionally, a
deletion of nine alanine residues within the same
polyalanine tract was found in two boys with mental
retardation, short stature, microcephaly and abnormal
faces (58). This may be a gene of high clinical as well as
scientific importance as, interestingly, another group of
patients with X-linked hypopituitarism harbours dupli-
cations of the region of the X chromosome that includes
SOX3. The phenotype in these subjects is most likely
due to the increased dosage of the gene (59).

Different components of the GH axis

The GHRH-GH axis is shown in Fig. 3. GH is regulated
by two hypothalamic peptides, GHRH, which is stimu-
latory, and GH-inhibiting factor (GHIF), which is inhibi-
tory. There are membrane receptors for both GHRH and
GHIF (somatostatin) on anterior pituitary cells. These
two peptides are in turn influenced by an array of
neurotransmitters. Pituitary GH encoded by the GH-1
gene is secreted in pulses and binds to GHR in the
liver and other target organs. Receptor occupancy
increases production and release of IGF-I. This mediator
of GH action binds to IGF-I receptors (IGF-IRs) in target
tissues such as growth plates at the end of the long
bones. There is a tight feedback control of GH release,
involving GH and IGF-I in regulation of GHIF and prob-
ably GHRH. Additional genes are of importance to the
GHRH-GH axis including pituitary transcription factors
(e.g. PIT1 and POU1F1). Further, classification of gen-
etic defects in the development of the GH axis illustrates
that basically the site of these defects, both reported and
hypothetical, may be located at any level from the
hypothalamus to the target receptors of skeletal
tissues (Fig. 3, Table 2).

Classification of isolated GHD

Structure and function of GH and CS genes

The GH gene cluster consists of five very similar genes
in the 50-to-30 order GH-1, CSHP (chorionic somato-
mammotropin pseudogene), CSH-1 (chorionic somato-
mammotropin gene), GH-2 and CSH-2, encompassing
a distance of about 65 kb on the long arm of chromo-
some 17 at bands q22-24 (Fig. 4) (73). The GH-2 gene
encodes a protein (GH-V) that is expressed in the
placenta rather than in the pituitary gland and differs
from the primary sequence of GH-N (the product of
the GH-1 gene) by 13 amino acids. This hormone
replaces pituitary GH in the maternal circulation
during the second half of pregnancy (74). The CSH-1
and CSH-2 genes encode proteins of identical
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Figure 3 Regulation of GH secre-
tion/GHRH-GH axis. GH secretion is
regulated by various factors. The
sites of derangements responsible
for various familial disorders of the
GH axis are indicated on the right.

Table 2 Alteration of the GHRH-GH axis affecting growth in
humans (differential diagnosis of IGF-I deficiency).

Hypothalamus
Transcription factors
GHRH gene

Pituitary gland
Transcription factors

TPIT
SOX3
HESX1
LHX3
LHX4
PROP1
POU1F1

GHRH receptor
GH gene cluster

GH-deficiency/bio-inactivity
GH target organs

GH receptor (primary: extracellular, transmembrane,
intracellular)

GH insensitivity
Signalling (JAK2/STAT5b/ERK)

GH insensitivity (secondary)
Malnutrition (e.g. anorexia)
Liver disease (e.g. Byler’s disease)
Chronic illness
Anti-GH antibodies

IGF-I defects
IGF-I transport/metabolism/clearance
IGF-I resistance

IGF-I receptor defect (type I)
IGF-I signalling (post-receptor defect)

Figure 4 Deletions of various loci in the GH gene cluster. The
locations and sizes of the deletions within the GH gene cluster
are indicated. Further, a schematic representation of the GH gene
cluster and its localization on the long arm of chromosome 17 is
shown. Exons, introns and untranslated sequences are depicted
by solid, open and shaded rectangles, respectively. The sizes are
indicated in kb.
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sequences, whereas CSHP encodes a protein that differs
by 13 amino acids and contains a mutation (donor
splice site of its second intron) that should alter its
pattern of mRNA splicing and, therefore, the primary
sequence of the resulting protein (73). The extensive
homology (92–98%) between the immediate flanking,
intervening and coding sequences of these five genes
suggests that this multigene family arose through a
series of duplicational events (75). With the exception
of CSHP, each gene encodes a 217-amino-acid pre-
hormone that is cleaved to yield a mature hormone
with 191 amino acids and a molecular mass of
22 kDa. The expression of GH-1 gene is controlled by

cis- and trans-acting elements and factors. In Fig. 5,
the 50 untranslated and promoter regions of the
human GH-1 gene are depicted. In addition in this
figure, well-known and putative or inferred binding
sites of transcription factors are indicated.

Familial isolated GHD

Short stature associated with GHD has been estimated
to occur in about 1/4000-1/10 000 in various studies
(76 –79). Whereas most cases are sporadic and believed
to result from environmental cerebral insults or devel-
opmental anomalies, 3–30% of cases have an affected

Figure 5 Structure of the 50 untranslated and promoter region of the human GH-1 gene. Transcription is regulated by proteins (trans-
acting factors) that bind to regulatory (cis-acting) elements. The first nucleotide of the start site is designated þ1, by convention, and
the 50 nucleotides are counted backwards from 21. Known, putative and inferred binding sites for transcription factors are indicated by
bold and underlining. In addition, the TATA box, a Chi-like element and the ATG translation initiation sites are underlined. CRE,
cAMP-responsive element; GRE, glucocorticoid-responsive element; TRE: thyroid hormone responsive element; POU1F1: Pit1
(pituitary-specific transcription factor); USF, upstream stimulatory factor; NF1, nuclear factor 1; SP1, specificity protein 1; DG, deletion
of a G. Further, the polymorphic sites are indicated.
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first-degree relative suggesting a genetic aetiology (77,
78). Since magnetic-resonance examinations detect
only about 12–20% of anomalies of either the hypo-
thalamus or pituitary gland in patients suffering from
IGHD one might assume that many genetic defects
may not be diagnosed and that a significantly higher
proportion of sporadic cases may indeed have a genetic
cause (80). Familial IGHD is associated with at least
four Mendelian disorders (Table 3). These include two
forms that have autosomal-recessive inheritance
(IGHD types IA and IB) as well as autosomal-dominant
(IGHD type II) and X-linked (IGHD type III) forms (81).

IGHD type IA IGHD type IA was first described by Illig
(82) in three Swiss children with unusually severe
growth impairment and apparent deficiency of GH.
Affected individuals occasionally have short length at
birth and hypoglycaemia in infancy but uniformly
develop severe growth retardation by the age of 6
months. Their initial good response to exogenous GH
was hampered by the development of anti-GH anti-
bodies leading to dramatic slowing of growth (82, 83).

GH-1 gene deletions In 1981, Phillips et al. (84) exam-
ined genomic DNA from the Swiss children reported
on by Illig and discovered using Southern blotting
that the GH-1 gene was missing (84). Subsequently,
additional cases of GH-1 gene deletions have been
described as responding well to GH treatment, making
the presence of anti-GH antibodies an inconsistent find-
ing in IGHD type IA patients with identical molecular
findings (homozygosity for GH-1 gene deletions) (85).
The frequency of GH-1 gene deletions as a cause of
GHD varies among different populations and the cri-
teria and definition of short stature chosen. Analysing
patients with severe IGHD (,24 to 24.5 SDS) the
prevalence reported was 9.4% in Northern Europe
(n ¼ 32), 13.6% in the Mediterranean region
(n ¼ 22), 16.6% in Turkey (n ¼ 24), 38% in Oriental
Jews (n ¼ 13), 12% in Chinese (n ¼ 26) and 0% in
Japanese (n ¼ 10) (86 –89). The sizes of the deletions
are heterogeneous, with the most frequent (70 –80%)
being 6.7 kb (86). The remaining deletions described
include of 7.6, 7.0 and 45 kb, and a double deletion
within the GH gene cluster (Fig. 4). At a molecular

level these deletions involve unequal recombination
and crossing over within the GH gene cluster at meiosis
(90, 91). Interestingly, crossing over is reported to
occur in 99% homologous regions (594 bp) flanking
the GH-1 gene, rather than in Alu repeat sequences
(91). Although Alu repeats, which are frequent sites
of recombination, are adjacent to the GH-1 gene, they
were not involved in any of the recombinational
events studied. These highly homologous regions flank-
ing the GH-1 gene were used in a PCR amplification
method to screen for gene deletions (88). Inasmuch
as the fusion fragments associated with the 6.7 kb del-
etions differ in the size of fragments produced by certain
restriction enzymes (SmaI), homozygosity and hetero-
zygosity for these deletions can easily be detected by
enzyme digestion following PCR amplification (92).
The PCR approach is rapid, requires very small quan-
tities of DNA and can even be done on filter-paper
spots of capillary blood samples.

GH-1 gene frameshift and nonsense mutations The frame-
shift and nonsense mutations diagnosed so far causing
the different types of GHD are summarized in Table 4. It
is worthwhile stressing that single base-pair deletions
and nonsense mutations of the signal peptide result in
an absent production of mature GH and are bound to
produce anti-GH antibodies on exogenous replacement
therapy.

IGHD type IB Patients with IGHD type IB are charac-
terized by low but detectable levels of GH (,7 mU/l;
,2.5 ng/ml), short stature (,22 SDS for age and
sex), significantly delayed bone age, an autosomal-
recessive inheritance (two parents of normal height;
two siblings affected), no demonstrable direct and/or
endocrine cause for IGHD, and a positive response
and immunological tolerance to treatment with
exogenous GH. This subgroup of IGHD has been
broadened and reclassified on the basis of the nature
of their GH gene defects and now includes splice-site
mutations of the GH gene; even an apparent lack of
GH has been found by RIA. The phenotype of IGHD
type IB, therefore, is more variable than type IA.
In one family, the children may resemble IGHD type
IA, whereas in other families, growth during infancy

Table 3 Types of IGHD.

Category Inheritance GH RIA Candidate gene Status

IGHD type IA Recessive Absent Human GH-1 Deletions/mutations, frameshift
IGHD type IB Recessive Low Human GH-1 Splice-site mutations

GHRH Unlikely
GHRH receptor Mutations
Trans-acting factors Mutations/deletions
Cis-acting elements Mutations/deletions

IGHD type II Dominant Low Human GH-1 Splice-site mutations, splice enhancer mutations,
missense mutations

IGHD type III X-linked Low Unknown
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is relatively normal and growth failure is not noted
until mid-childhood. Similarly, GH may be nearly lack-
ing or simply low following stimulation testing. This
heterogeneous phenotype suggests that there is more
than one candidate gene causing the disorder. Possible
candidate genes involved are noted in Table 3.

Splice-site and nonsense mutations and frameshifts within
the GH-1 gene The GH-1 gene has often been amplified
and screened for small deletions and mutations that
have been found and described (Table 4). However,
generally speaking functional studies are necessary to
prove the importance of all these alterations found in
any gene. Therefore, for instance, all the mutations

causing a suggested mRNA splicing error need trans-
fection of the mutant gene into a cultured cell system
allowing reverse transcription followed by cDNA
sequencing. Thereafter, the impact of the changes of
the amino acids encoded by the mutant genes is studied.
Studies with bovine GH mutants have shown that not
only the stability and biological activity of the mutants
may be altered but also the intracellular targeting of GH
protein products to the secretory granules important for
secretion may be deranged (110, 111).

Candidate genes in IGHD type IB Some of the
components of the GH pathway are unique to GH,
whereas many others are shared. In patients with

Table 4 Mutational spectrum of GHD.

Microdeletions

Deficiency
type Deletion Codon

GH antibodies
on treatment Reference

IA TGcCTG 210 Yes (93)
IA GGCcTGC 212 Yes PE Mullis, unpublished,

observations
II CGGggatggggagacctgtaGT 50IVS-3 del þ 28 to þ45 No (94)
IA GagTCTAT 55 No (95)

Single-base-pair substitutions in the GH-1 gene coding region

Mutation Codon nucleotide Antibodies
on treatment

Reference

IA TGG ! TAG 27 Yes (96)
Trp ! stop

IA GAG ! TAG 24 No (97)
Glu ! stop

II R183H G6664A No (98)
II V110F G6191T No (99)
II P89L C6129T No (100)
II/bio-inactivity CGC ! TGC 77 No (101, 102)

Arg ! Cys

Single-base-pair substitutions affecting mRNA splicing

50IVS-3 D exon 3 Origin Reference

II GTGAGT ! GTGAAT Yes Chile (103)
II GTGAGT ! GTGACT Yes Turkey PE Mullis, unpublished,

observations
II GTGAGT ! GTGAGC Yes Turkey, Asia (104)
II GT ! AT Yes Europe, North America,

Africa
(105)

II GT ! CT Yes Turkey (106)
II GT ! TT Yes

India
PE Mullis, unpublished,
observations

II GT ! GC Yes Germany, Holland (99)

Exon splice enhancer Yes
II ESE1m1, þ1G ! T Yes Japan (107)
II ESE1m2, þ5A ! G Yes Switzerland (108)

Intron splice enhancer Yes
II ISEm1, IVS-3 þ 28 G ! A Yes (94)
II ISEm2, IVS-3 del28–45 Yes (94)

50IVS-4
IB GT ! CT No Saudi Arabia (96)
IB GT ! TT No Saudi Arabia (109)
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IGHD, mutational changes in genes specific to the
GHRH-GH axis are of importance and there is a need
to focus on them.

GHRH gene Ours and several other laboratories have
tried to define GHRH gene alterations and have failed
so far (112, 113). Therefore, if GHRH mutations do
cause IGHD in humans, they must be very rare.

GHRH receptor gene In 1992, Mayo (114) cloned and
sequenced the rat and human GHRH receptor gene
which provided the opportunity to examine the role
of the GHRH receptor in growth abnormalities that
involve the GH axis. Sequencing of the GHRH receptor
gene in the little mouse (lit/lit) showed a single-nucleo-
tide substitution in codon 60 that changed aspartic
acid to glycine (D60G), eliminating the binding of
GHRH to its own receptor (115). As the phenotype of
IGHD type IB in humans has much in common with
the phenotype of homozygous lit/lit mice, including
autosomal-recessive inheritance, time of growth-retar-
dation onset, diminished secretion of GH and IGF-I,
proportional reduction in weight and skeletal size,
and delay in sexual maturation, the GHRH receptor
gene was searched for alteration in these patients suf-
fering from IGHD type IB (116, 117). In our laboratory,
65 children with IGHD type IB were studied, of whom
12 did not respond to exogenous GHRH. None of the
analyses revealed any structural abnormalities in
these patients (116). However, it has to be mentioned
that at that time this study was limited due to its ability
to analyze only the sequence of the extracellular
domain of the GHRH receptor gene. The GHRH receptor
is a member of a large family of heptahelical transmem-
brane receptors that couple to G proteins upon receptor
activation. Binding of GHRH to GHRH receptors
expressed on the surface of somatotroph cells activates
Gs and leads to a consequent increase in cAMP syn-
thesis that induces cellular proliferation and GH
secretion. Wajnrajch et al. (117) reported a nonsense
mutation similar to the little mouse in an Indian
Muslim kindred. Furthermore, in two villages in the
Sindh area of Pakistan, Baumann & Maheshwari
(118) reported another form of severe short stature
caused by a point mutation in the GHRH receptor
gene resulting in a truncation of the extracellular
domain of this receptor. Individuals who are homozy-
gous for this mutation are very short (27.4 SDS) but
normally proportioned. They appear of normal intelli-
gence, and at least some are fertile. Biochemical testing
revealed that they have normal levels of GHRH and GH-
binding protein (GHBP), but undetectable levels of GH
and extremely low levels of IGF-I. Later, families from
Sri Lanka, Brazil, the United States, Spain and Pakistan
were reported (119 –122). Mutations in the GHRH
receptor gene have been described as the basis for a
syndrome characterized by autosomal-recessive IGHD
and anterior pituitary hypoplasia, defined as pituitary

height more than 2 SDS below age-adjusted normal,
which is likely due to depletion of the somatotroph
cells (OMIM 139190). In a most recent report, how-
ever, certain variability in anterior pituitary size, even
in siblings with the same mutation, was described
(123).

Specific trans-acting factor to the GH gene Any alteration
to the specific transcriptional regulation of the GH-1
gene may produce IGHD type IB (Fig. 5). Mullis et al.
(124) have reported a heterozygous 211 bp deletion
within the retinoic acid receptor a gene, causing the
IGHD type IB phenotype.

IGHD type II The autosomal-dominant form of IGHD
type II (IGHD II) is mainly caused by mutations
within the first 6 bp of intervening sequences 3
(50IVS-3) (125), which result in a missplicing at the
mRNA level and the subsequent loss of exon 3, produ-
cing a 17.5 kDa human GH isoform (106). This GH
product lacks amino acids 32-71 (del32-71GH),
which is the entire loop that connects helix 1 and
helix 2 in the tertiary structure of human GH (126,
127). Skipping of exon 3 caused by GH-1 gene altera-
tions other than those at the donor splice site in
50IVS-3 has also been reported in other patients with
IGHD II. These include mutations in the exon splice
enhancer (ESE1 in exon 3 (E3); E3 þ 1G ! T,
ESE1m1; E3 þ 5A ! G, ESE1m2) and within the
suggested intron splice enhancer (ISE; IVS-
3 þ 28G ! A, ISEm1; IVS-3del þ 28-45, ISEm2)
sequences (94, 105, 107, 108, 125, 128, 129). Such
mutations lie within purine-rich sequences and cause
increased levels of exon 3-skipped transcripts (94,
105, 108, 125, 128, 129), suggesting that the usage
of the normal splicing elements (ESE1 at the 5’ end of
exon 3 as well as ISE in intron 3) may be disrupted
(94, 128, 129). The first seven nucleotides in exon 3
(ESE1) are crucial for the splicing of GH mRNA (130)
such that some nonsense mutations might cause skip-
ping of one or even more exons during mRNA splicing
in the nucleus. This phenomenon is called nonsense-
mediated altered splicing; its underlying mechanisms
are still unknown (131). In addition to the above-
described splice-site mutations that result in the pro-
duction of del32-71GH, three other mutations within
the GH-1 gene (missense mutations) are reported to
be responsible for IGHD II, namely the substitution of
leucine for proline, histidine for arginine and phenyl-
alanine for valine at amino acids 89 (P89L), 183
(R183H) and 110 (V110F), respectively (98 –100).

At the functional level, the 17.5 kDa isoform exhibits
a dominant-negative effect on the secretion of the
22 kDa isoforms in both tissue culture and transgenic
animals (132 –134). The 17.5 kDa isoform is initially
retained in the endoplasmic reticulum, disrupts the
Golgi apparatus, impairs both GH and other hormonal
trafficking (135), and partially reduces the stability of
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the 22 kDa isoform (132). Furthermore, transgenic
mice overexpressing the 17.5 kDa isoform exhibit a
defect in the maturation of GH secretory vesicles and
anterior pituitary gland hypoplasia due to a loss of
the majority of somatotropes (128, 132, 133). Trace
amounts of the 17.5 kDa isoforms, however, are nor-
mally present in children and adults of normal
growth and stature (136), and heterozygosity for the
A731 ! G mutation (K41R in the amino acid
sequence) within the newly defined ESE2 (which is
important for exon 3 inclusion) led to approximately
20% exon 3 skipping resulting in both normal as well
as short stature (128, 130). From the clinical point of
view, severe short stature (,24.5 SDS) is not present
in all affected individuals, indicating that in some
forms growth failure in IGHD II is less severe than
one might expect (99). It has been hypothesized that
children with splice-site mutations may be younger
and shorter at diagnosis than their counterparts with
missense mutations (99). Furthermore, more recent in
vitro and animal data suggest that both a quantitative
and qualitative difference in phenotype may result
from variable splice-site mutations causing differing
degrees of exon 3 skipping (98, 99, 103, 108, 125,
133, 137–141). To summarize, these data suggest
that the variable phenotype of autosomal dominant
GHD may reflect a threshold and a dose-dependency
effect of the amount of 17.5 kDa relative to 22 kDa
human GH (133, 134, 137). Specifically, this has a
variable impact on pituitary size, a variable impact on
onset and severity of GHD and, unexpectedly, the
most severe, rapid-onset forms of GHD might be sub-
sequently associated with the evolution of other pitu-
itary hormone deficiencies.

IGHD type III This reported type of IGHD is an
X-linked, recessively inherited disorder. In these families,
the affected males were immunoglobulin- as well as
GH-deficient (142, 143). Recent studies have shown
that the long arm of chromosome X may be involved
and that the disorder may be caused by mutations
and/or deletions of a portion of the X-chromosome
containing two loci, one necessary for normal immuno-
globulin production, and the other for GH expression
(144). In addition, Duriez et al. (145) reported an
exon-skipping mutation in the btk gene of a patient
with X-linked agammaglobulinemia and IGHD.

IGF-I deficiency/GH insensitivity

Because IGF-I plays a pivotal role in growth, where it
mediates most, if not all, of the effects of GH, GHD
could also be considered somehow as a IGF-I deficiency
(IGFD) (Table 2). Although IGFD can develop at
any level of the GHRH-GH-IGF axis I would like to differ-
entiate, however, between GHD (absent or low GH in
circulation) and IGFD (normal to high GH in
circulation). A variety of studies have indicated that

approximately 25% of children evaluated for idiopathic
short stature (ISS) have primary IGFD presenting with
abnormally low IGF-I in the face of normal to high GH
in circulation (146, 147). In its purest and most dra-
matic forms, primary IGFD has been identified with
three classes of molecular defect: (1) GH insensitivity
syndrome (GHIS) resulting from mutations within the
GHR gene, primarily called Laron’s syndrome (148,
149), (2) genetic defects affecting the GH signalling
pathway, mainly the Janus kinase 2 ( JAK2)/signal
transducer and activator of transcription 5b (STAT5b)
(150, 151) and (3) deletions or mutations of the IGF-I
gene itself (152). Further, the concept of dysfunctional
GH variants and/or bio-inactive GH molecules has
been proposed for years (153) and opens an interesting
platform to study the elements between GHD and IGFD,
as some of these patients excellently respond to the
exogenous GH treatment. In addition, there are reports
on abnormal GHR signalling in children with ISS in the
absence of any GHR or GH gene alteration (154, 155).

Syndrome of bio-inactive GH

The diagnosis ‘syndrome of bio-inactive GH’ has often
been discussed and suggested in short children with a
phenotype resembling IGHD but who had normal or
even slightly elevated basal GH levels in combination
with low IGF-I concentrations that increased after
treatment with exogenous GH, excluding the diagnosis
of Laron syndrome. Takahashi et al. described two cases
heterozygous for point mutations in the GH-1 gene
(R77C and D112G) (101, 156, 157). The R77C GH
mutant bound with unusually high affinity to the
GHBP and abnormally to the GHR. Further, it was
able to inhibit tyrosine phosporylation in the GH signal-
ling pathway, presumably acting in a dominant-nega-
tive fashion as a GH antagonist, as IGF-I levels were
not measurable following exogenous recombinant
human GH (rhGH) treatment. However, as the patient’s
father, who was also heterozygous for the same
mutations, was phenotypically normal and of normal
stature (101) many questions remain unanswered.
The D112G mutant involved a single A ! G substi-
tution in exon 4 in a girl with short stature (157).
The locus of the mutation was found within site 2 of
the GH molecule in binding to the GHR/GHBP, which
purportedly prevented dimerization of the GHR (157).
The patient presented with high levels of GH and low
levels of IGF-I, but responded well to the rhGH, and
not only IGF-I increased but also the height velocity,
leading to improved somatic growth (11 cm/year com-
pared to 4.5 cm/year before therapy). Therefore, the
authors claimed to report in this girl the first patient
affected with a “real” bio-inactive GH. In addition,
in a most recent report Millar et al. (137) described
several dysfunctional GH variants associated with a
significantly reduced ability to activate GHR-mediated
JAK/STAT signal transduction.
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GH insensitivity and defects in the GHR gene

Our understanding of the mechanism of action of GH
has increased significantly since the characterization
of the GHR and demonstration of a partial gene deletion
in two patients with Laron-type dwarfism by Godowski
et al. (158). GHR is a transmembrane receptor that is a
member of the cytokine receptor superfamily. It has a
soluble, circulating counterpart (GHBP) that consists
of the extracellular domain and displays GH-binding
activity in humans (159). The GHR gene was charac-
terized by Godowski et al. (158) in 1989 who demon-
strated that the coding and 30 untranslated regions of
the receptor are encoded by nine exons, numbered
2-10. Exon 2 corresponds to the secretion signal pep-
tide, exons 3-7 encode the extracellular domain, exon
8 encodes the transmembrane domain and exons 9
and 10 contain the cytoplamic domain and the 30

untranslated region. Physiologically, the biological
actions of GH are mediated through the activation of
the GHR. As each GH molecule has two highly specific
binding sites, ensuring the binding of GH to the GHR, a
homodimer structure of the receptor is formed (160).
Dimerization of the GHR following GH binding is the
first step and a key event in the activation of target
cells. Subsequently, tyrosine phosphorylation of JAK2
and STAT5 proteins plays a crucial role in the acti-
vation process, which ultimately results in gene
transcription.

The GHR has been implicated in GHIS, a rare auto-
somal-recessive GH-insensitive form of short stature,
first described in a group of Oriental Jewish children
and reviewed by Laron, which is characterized by low
serum concentrations of IGF-I and high levels of
circulating GH (148, 161, 162). In addition, GHIS is
confirmed by the failure of exogenously administered
GH to elevate levels of IGF-I or IGF-binding protein 3
(IGF-BP3) significantly. In contrast, GHBP was initially
found to be absent, but more recent reports have
suggested that some patients with GHIS may also
have normal levels of GHBP (158, 159). Genetic and
mutation analyses have verified the high molecular
heterogeneity of this syndrome; to date, more than 50
different mutations in nearly 300 cases worldwide
have been identified (162 –165). All classes of
alteration have been reported; deletion, frameshift,
nonsense, missense and splicing defects (166). Of
these, missense mutations are of particular interest as
they have the potential to provide critical information
on the structure/function relationship of the GHR and
related molecules. Patients with atypical forms of
GHIS have detectable plasma GHbinding activity,
associated with complete or partial GHIS (146, 167).
However, molecular analyses of the phenotype with
complete GHIS have revealed the existence of a mis-
sense mutation in the exoplasmic domain mainly
located in exons 2-7 that impairs first receptor action
by affecting GH binding and second, therefore,

abolishes receptor homodimerization, thereby provid-
ing in vivo evidence for the critical role of the dimeriza-
tion process in the growth-promoting action of GH
(168). Similarly, missense mutations in the cytoplasmic
region, which would not be expected to affect GH-bind-
ing activity, should contribute to the identification of
other important domains involved in signal transduc-
tion. The intracellular tyrosine kinase JAK2 is associ-
ated with the cytoplasmic tail of GHR. After GH
binding, two JAK2 molecules are brought into close
proximity resulting in cross-phosporylation of both
each other and tyrosine residues on the cytoplasmic
tail on GHR. These phospotyrosines act as docking
points for cell signalling intermediates such as STAT5
(166). STAT5 binding to phosphorylated receptor tail
then brings it into close proximity to JAK2, resulting
in its own phosphorylation by JAK2. Phospo-STAT5
dimerizes and translocates to the nucleus in which it
transactivates GH-responsive genes leading to the
observed biological effects of GH (166).

Interestingly, one patient with GHIS was reported to
have mutations located in the intracellular region
(169). Surprisingly, this patient, having very low
serum GH-binding activity, presented two mutations
on a single GHR allele (C422F and P561T), whereas
no other abnormality was detected on the remaining
allele. The P561T mutation has already been excluded
to be of any importance in causing the disorder by
simply studying a sufficiently large control group
(170). Therefore, most importantly, in vitro studies are
required to test the functional consequences of all
these identified missense mutations.

In theory, partial GHIS could encompass a wide range
of distinct phenotypes with variable degrees of GH resist-
ance (146, 171). Heterogeneity could result from a mis-
sense GHR mutation or from a quantitative GHR mRNA
defect due to a mutation in the promoter, or to abnor-
mal RNA maturation; this latter hypothesis was
indeed recently confirmed (164, 172 –174). As pre-
viously mentioned, because GHBP is basically cleaved
from the extracellular portion of the GHR, it is
common knowledge that serum GHBP concentration
is generally decreased in GHIS caused by any GHR
gene defect in exons 2-7. There are, however, several
cases of GHR defects reported associated with normal
or raised GHBP levels in patients with mutations invol-
ving extracellular, transmembrane or intracellular
domains. Duquesnoy et al. (168) reported a D152H
mutation in exon 6 causing positive GH-binding activity
but abolished GHR homodimerization. In contrast, in
two subjects with severe GHIS caused by a 50 splice
donor site mutation within IVS-8, serum GHBP was
massively increased, because the mutation resulted in
a truncated GHR molecule (175). In fact, complete
exon 8 was skipped, producing a mutant GHR protein
lacking transmembrane and intracellular domains.
The authors predicted that this mutant protein would
not be anchored in the cell membrane and would be
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measurable in the circulation as GHBP, hence explain-
ing the phenotype of severe GH resistance combined
with elevated circulating GHBP (175). Interestingly, a
similar defect was reported by Silbergeld et al. (176).
Analysis of the GHR gene performed in the proband
revealed a G ! T substitution at nucleotide 785, one
nucleotide before exon 8 (the 30 acceptor site). This
mutation, which destroys the invariant dinucleotide of
the splice acceptor site, is expected to alter GHR
mRNA splicing and to be responsible for skipping exon
8 (176). Furthermore, two defects have been described
which were associated with autosomal dominant
GHIS (177, 178). First, a single G ! C transversion in
the 30-splice acceptor site of intron 8 causing skipping
of exon 9 (177); second, a G ! A transversion at the
þ1 position of the 50-donor splice site of intron 9 caus-
ing skipping of exon 9 and a premature stop codon in
exon 10 (178). At the functional level it has been
shown that GH-induced tyrosine phosporylation of
STAT5 is inhibited and caused autosomal-dominant
GHIS (179).

Evidence is accumulating that abnormalities in the
intracellular signalling of GHR distal to the intracellu-
lar domain but proximal to IGF-I synthesis can also
cause GHIS (180). In this report, Clayton et al. (180)
described two families with a defective signalling path-
way. In the first (D152H mutation of the GHR gene)
neither STAT nor the mitogen-activated protein
kinase (MAPK) pathways were activated, whereas in
the second GH activated STAT but failed to activate
MAPK (180).

Until recently, although several patients with a phe-
notype of GHIS and a normal GHR gene have been
described and no specific molecular downstream
defect of the GHR identified (154), there is only one
patient reported so far with the clinical and biochemi-
cal characteristics of GHIS presenting a homozygous
missense mutation in the gene for STAT5b (151). As
child suffering from a IGF-I gene defect experienced
respiratory difficulties with increased oxygen require-
ments (151, 152).

Furthermore, mutations of the GHR gene were
reported recently in a study on a highly selected
group of patient with ISS (181). In this analysis, four
out of 14 children presented mutations in the region
of the GHR gene, which codes for the extracellular
domain of the receptor. One of the four children with
mutations was a compound heterozygote, with one
mutation that reduced the affinity of the receptor for
GH and a second mutation that may affect function
other than ligand binding (181). The remaining three
patients had a heterozygous mutation in the GHR
gene. However, it is of importance to stress that in
one patient the mother presented the same heterozy-
gous mutations but was of normal stature. Follow-up
studies on the possible impact of heterozygous GHR
gene mutations highlight the impact on short stature,
especially in ISS (182). Indeed, whereas many obligate

carriers of GHIS have obtained normal height, others
have not (149, 183). However, it may be a challenging
concept that GHR gene mutations are responsible for
about 5% of all ISS patients and it underscores the
fact that these mutations should be considered when
other causes of short stature have been eliminated. In
addition, abnormal GHR signalling may also underlie
ISS even in the absence of GHR gene mutations (154,
184). Although until recently it had been assumed
that GH signalling following GHR homodimerization
was mediated primarily by the JAK/STAT pathway
and that the extracellular signal regulated kinase
(ERK) pathway does not induce hepatic IGF-I pro-
duction (185), a novel dysfunctional GH variant
(I179M) exhibiting a decreased ability to activate the
ERK pathway, resulting in short stature, has been
described (186).

It could also be anticipated that, in some instances,
the GHR gene is not involved in the GH-resistant phe-
notype, a hypothesis which can be tested by means of
genetic linkage using the described intragenic GHR
polymorphisms. This could help to identify other
genes that control GHR expression or are required at
different steps of the signal transduction pathway
(187). In this regard, the availability of a possible
animal model (e.g. sex-linked dwarf chicken strains)
for Laron syndrome could open new ways in the identi-
fication of GH-inducible genes (188).

Primary defects in IGF-I

IGF-I synthesis Ours and many laboratories have
made intense searches to find gene alterations of the
IGF-I gene causing GH resistance (189, 190). In
1996, Woods et al. (152) reported a patient, a 15
year old boy, who had severe intrauterine and postnatal
growth retardation, sensorineural deafness, mental
retardation and hyperactivity, due to a homozygous
deletion of exons 4 and 5 of the IGF-I gene (152).
Importantly, the parents were heterozygous for the
same defect and possibly slightly affected as they were
rather small and presented with slightly low IGF-I
levels. This report remains up to now the only con-
firmed case of an IGF-I gene defect (191). This patient
is of particular interest in that he presents a unique
opportunity to unravel the direct effects of GH from
its indirect effects via IGF-I. Treatment for 1 year with
IGF-I improved the patient’s height velocity from 3.8
to 7.8 cm/year, normalized his GH levels and improved
his insulin sensitivity (192). In addition, focusing on
the metabolic effects it has been shown that recombi-
nant human IGF-I improved body composition and
normalized the insulin sensitivity (193).

Furthermore, there is increasing evidence that IGF-I
might be a major determinant of fetal growth. IGF-
Iknockout mice are born at 60% of their expected
weight. This raises the possibility that defects of the
IGF-I gene may contribute significantly to impaired
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fetal growth, which has been recently studied. How-
ever, Johnston et al. (184, 194) concluded that IGF-I
gene defects are likely only to be a very rare cause of
impaired intrauterine growth.

IGF-I resistance IGF-IR2/2 mice were shown to be
severely affected (birth weight was 45% of normal
weight) with the affected neonates dying from respirat-
ory depression (195, 196). More than 50 mutations of
the human insulin receptor gene have been reported
until now (197). In contrast, there is only one recent
report on two patients with IGF-IR gene alterations
(198). Patient 1 presented with a compound heterozy-
gosity for missense mutations (R108Q and K115N)
within the highly conserved ligand-binding domain of
the IGF-IR gene resulting in high GH and IGF-I serum
concentrations reflecting severe IGF-I resistance (198).
Patient 2 was heterozygous for the point mutation
C ! A leading to a stop codon (TAG; R59X) in exon 2
(198). This fact may lead to most interesting studies
in future. Patients who are haploinsufficient for the
IGF-IR gene because of an aneuploidy of chromosome
15 typically are dysmorphic and mentally as well
growth retarded (199). However, although the impact
of the loss of contiguous genes on chromosome 15 is
unclear, a clear gene-dosage effect on somatic growth
was suggested in patient 2. In addition, the parents of
patient 1 had marginal growth retardation at birth
and an adult height substantially below the population
mean. Further, many unexpected findings in these
patients are awaiting an answer: (1) bone age being
less delayed than is typical in GHD, (2) doubling of the
height velocity on exogenous GH, (3) normal mental
development and (4) highly variable phenotype (198).

IGF-I transport/clearance Two possible clinical syn-
dromes involving primary defects of IGF-I transport
could theoretically present with growth failure (12).
The first would be an excess of IGF-BPs, which might
compete with the IGF-IR for binding and, therefore,
inhibit IGF-I action. Further, in order to remain func-
tionally in circulation the normal formation of the tern-
ary complex (acid-labile subunit, IGF-BP and IGF) is
necessary. Any defect at that level might have an
impact on clearance as IGF peptides are not effectively
bound and specific half-lives are changed. Along that
line, Barreca et al. (200) reported a boy of short stature
associated with high IGF-BP1 and high IGF-II levels
responsive to exogenous rhGH treatment. They specu-
lated that the increased IGF-BP1 levels may inhibit
(1) the biological activity of IGF-I (IGF-I resistance),
(2) the formation of the 150 kDa ternary complex
(increased clearance) and (3) the feedback action on
GH (increased GH levels) resulting in reduced stature.

Cell biology/post-genomic defects

As we have already entered the ‘postgenomic’ area it is
most important to broaden our views and to focus,

having defined the possible disorders at the DNA/RNA
level, on function and to re-analyse the specific defects
at the cellular level. An example is autosomal-domi-
nant isolated GHD (IGHD II). Heterozygous GH-1 gene
mutations yielding an unfolded or misfolded GH protein
do not have to cause GHD ultimately. Some are domi-
nant and others are recessive. This fact is of importance
and suggests possible mechanisms in the secretory
pathway. Furthermore, IGHD II caused by various
gene defects may produce the same clinical phenotype.
However at the cellular level the disorder does have dis-
tinctive causes. Normally, secretory proteins are syn-
thesized on polysomes attached to the endoplasmic
reticulum and transported through its membrane into
its lumen, where the proteins fold (201). Vesicular or
tubular structures transport folded proteins to the cis-
region of the Golgi complex, and the proteins process
through the stacks of the Golgi complex to the trans-
side, after which the vesicles deliver secretory proteins
to the cell surface (202, 203). The disorder might be
caused at any (or all) of these different stages of the
secretory process (204 –206). Proteins which are not
properly folded are often retained in the endoplasmic
reticulum and thereafter targeted for degradation by
the ubiquitin/20 S proteasome pathway (207–209).
Furthermore, the defect may be within the Golgi com-
plex, as well as in the regulated secretory pathway,
thus having an effect on protein secretion (210 –
213). All these mechanisms are far from being con-
firmed and are still a major challenge to the whole
scientific community focusing on the pathway of
secretory proteins. Particularly interesting is the fact
that identical phenotypes might be caused by different
genotypes causing completely different defects at the
cellular and therefore functional levels.
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