Resour ce Kernels: A Resource-Centric Approach to
Real-Time and Multimedia Systems

Raj Rajkumar, Kanaka Juvva, Anastasio M olano and Shuichi Oikawa
Real-Time and Multimedia Laboratdry
Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
{raj+, kjuvva, amolano, shui}@cs.cmu.edu

Abstract

We consider the problem of OS resource management for
real-time and multimedia systems where multiple activities
with different timing constraints must be scheduled concur-
rently. Time on a particular resource is shared among its
users and must be globally managed in real-time and mul-
timedia systems. A resource kernel is meant for use in such
systems and is defined to be one which provides timely,
guaranteed and protected access to system resources. The
resource kernel allows applications to specify only their
resource demands leaving the kernel to satisfy those
demands using hidden resource management schemes. This
separation of resource specification from resource manage-
ment allows OS-subsystem-specific customization by extend-
ing, optimizing or even replacing resource management
schemes. As a result, this resource-centric approach can be
implemented with any of several different resource manage-
ment schemes.

We identify the specific goals of a resource kernel: applica-
tions must be able to explicitly state their timeliness require-
ments; the kernel must enforce maximum resource usage by
applications; the kernel must support high utilization of sys-
tem resources; and an application must be able to access
different system resources simultaneously. Snce the same
application consumes a different amount of time on different
platforms, the resource kernel must allow such resource
consumption times to be portable across platforms, and to
be automatically calibrated. Our resource management
scheme is based on resource reservation [25] and satisfies
these goals. The scheme is not only simple but captures a
wide range of solutions developed by the real-time systems
community over several years.

One potentially serious problem that any resource manage-
ment scheme must address is that of allowing access to mul-
tiple resources smultaneously and in timely fashion, a
problem which is known to be NP-complete[5]. We show
that this problem of simultaneous access to multiple resour-
ces can be practically addressed by resource decoupling
and resolving critical resource dependencies immediately.

Finally, we demonstrate our resource kernel’s functionality
and flexibility in the context of multimedia applications
which need processor cycles and/or disk bandwidth.

1. Motivation for Resource Kernels

Example real-time systenisclude aircraft fighters such as
F-22 and the Joint Strike fightgk9], beverage bottling
plants, autonomousehicles, live monitoring systems, etc.
These systems are typicalbuilt using timeline based ap-
proaches, production/consumptitates[9] or priority-based
schemes, where theesource demands are mapped to
specific time slots or priority levelgften in ad hoc fashion.
This mapping of resources currently available scheduling
mechanisms introducemany problems. Assumptions go
undocumented, and violations go undetected whth end
result that the system can become fragile and fail in un-
expected ways. We argue forr@source-centric approach
where the scheduling policies are complesedsumed by
the kernel, and applications neexly specify their resource
and timing requirementsThekernel will then make internal
scheduling decisionssuch that these requirements are
guaranteed to be satisfied.

Various timing constraints also arise in desktop and net-
worked multimedia systems. Multi-party video conferenc-
ing, mute but live news windows, recording dife
video/audio feeds, playback of local audio/vid#eeams to
remote participants etcan go on concurrently with normal
computing activities such ammpilation, editing and brows-
ing. A rangeof implicit timeliness constraints need to be
satisfied inthis scenario. For example, audio has stringent
jitter requirements, and video has higandwidth require-
ments [8]. Disk accessefor compilation should take lower
precedence over disk accesses for recording a live telecast.

Two points argue in favor of resource-centric kerngks
call "resource kernels":

* Firstly, operating system kernelgncluding microker-
nels) are intendetb manage resources such that applica-
tion programscan assume in practice that system resour-
ces are made available to themthsy need them. In
real-time systems, system resoursash as the disk, the
network, communication buffers, the protostack and
most obviously the processor akared. If one applica-

1This research was supported by the Defense Advanced Research Projects Agency in pareedeent E30602-97-2-0287 and in part under
agreement F30602-96-1-0160. Mr. Molano was funded by a research grant from the Community of Madrid and by thérBIBtiBnagram of Spain

under contracts TIC96-0982 and TIC97-0438.

tion is using a large portion of the systeasources, then deal with the management of multiple resourgees, con-
it implies that other applications get a less portidthe current accesses to different resources, explicit timeliness
system resources and consequently tzie longer to control, feedback about resource usage, behavioral control
execute. Inother words, their timingoehavior is ad- 0n resource overruns, managemehinteractions between
versely affected. Letting kernelske explicit control resource users, andonsiderations of portability, com-

over resource usage is therefardogical thing to do to Patibility and automation.In brief, our resource manage-
prevent such unexpected side effects. ment scheme supports the abstractions behéal-time

priority-based scheduling for periodic activities, asetvice
Secondly, our resource modehptures the essential re- schemes for aperiodics in that framework.
qguirements of many resource management policies
simple, efficient yetgeneral form. The implementation

Some of our goals (such assource centricity and por-

Fh del v o . ; tability) are similar to those of MicrosoResearch’s Rialto
of the model can actually lsne using any one of many yerme| among others. The reservation model alsoitsas

popular resource managemestthemes (both classical ¢oynterparts in networkeservation protocols as used in
and recent) without exposing the actuahderlying ATM and RSVP. However, the operating system problem
resource management scheme choserlser-level seems more compler one sense since inherently different
schemes can be usetb dynamically downgrade resource types must be dealt with, while networks essen-
(upgrade) application qualitywhen new (current) tially deal with one type (namely network packets). In
resource demands arrive (leave). This feature of th¬her sense, network reservations must be homogeneous,
resource modeleads to minimal changes from existing scalable and efficient, making its realization harder in a dif-
infrastructure while retaining flexibilityand offering ferent sense.

many benefits. Despite its originsn real-time scheduling theory, we expect
Other alternatives taesource kernels include user-centriour resource management model to dmmpatible with
and application-centric kernels: resource management schemes with their origmset-
« A usercentric kermel can emphasize multi-uselworks such as proportional fair-sharing schemes such as

o PGPS, WERQ, virtual clocksand lottery scheduling. The
capabilities, and also track and facilitate the neefls L < s
specific users.Unix in general and Unix filesystems in notion of fairness hafr long been deemed to be anti-thetic

particular can be viewed as providing such support. A{;c\)/real-tlme systems and teanagement of timeline4ss].

. !) eighted allocationschemes such as proportional fair-
the same time, Unix attempted to presemd manipulate gnaring, however, can still be appligdthe real-time model.

all system entities ddes. In resource kernels, we adopt This can be done by dynamically recomputing the weights
a similar approachand attempt to present all systemgg asnot to be proportional or fair, but instead to obtain a
resources using a uniform model fguaranteed access. fixed share of a resource wheew requests arrive or cur-
Our implementation ofhe resource kernel is orthogonal rent requests complete. Our scheme employs a different
to user-centricity, but tighter integration between the tweriod for each real-time activity, amgliarantees a "share"
may be possible.Currently, specific user-level require- of that period tothe activity. As a result, the dynamic
ments must be translated bgtermediate layers into recomputing of weights in proportional fair-share scheme
resource demands at the resource kernel interface. can be viewedis a special case of our model as having a
L . _ single (small) fixed period for all resource allocatiornhe
* Application-centric kernels are typicallgustom execu- imary difference that we see is that our work advances
tives with built-in support for thepplications they are gystem capabilities to include non-traditional resources such

intended to serve. As an example, kernels used in telgs disk bandwidth that can be usied conjunction with
communication switcheare application-centric and deal processor scheduling.

explicity with the high-performance, upgrading,
availability, billing and auditing requirements of tele-
communication paths. Conceptually, the noticofs

Finally, Blazewicz et al[5] have showrthat the problem of
scheduling activities which need multiple resources simul-
! taneously and have timeliness constraist$\P-complete.
resource kernels to guarantee timely access 10 réSOUrGRS, - ywork, we therefore strive for practical and acceptable

can be applied to suc;h kernels wsll. For e.xample,_ alternatives which can guarantaecess to different resource
consider goostscript printer. It has an executive runningy pes.

a postscript interpreter and contmfl the physical print-

ing operations. Precisely timed control amwhcurrency 1.2. Organization of the Paper

management of downloading neasint tasks in such ex- The rest of this papds organized as follows. In Section 2,
ecutives can also benefit from the suppawhilable in we present thgoals to be satisfied in designing a resource

resource kernels. kernel, and based on well-established principleseal-time
)] resource management, defines a resource reservatdel
1.1. Comparison with Related Work and its parameters. In Sectionvds describe the implemen-

A wealth of resource managemesthemes and schedulingation of our resource reservation model in tuntext of
algorithms exist fromwhich one can draw. Our resourcerocessor scheduling, and evaluate it. Section 4, we
management work builds on and significangéiytends es- detail the implementation of thesource reservation model
tablished real-time schedulingeory and derived processoiin the context of disk scheduling, and evaluate those
reservation workeeported inf25]. Thework in[25] did not schemes. IiBection 5, we addresgher issues that arise in

the context of using the resource kerngbiactice including G4. Accessto multiple resource types. The resource kernel
calibrating an application’s resource demands automaticaliyist provide access to multiplesource types such as
and in portable ways. Finally, iBection 6, we conclude processor cycles, disk bandwidth, network bandwidth, com-
with some remarks outlining our reseamintributions and munication buffers and virtual memoryThe communica-

future work. tion protocol stack on the system may potentiallywissved
L. as a resource type as well, but in most systems, they use the
2. Designing a Resource Kernel processor and hence can bwanaged by appropriate

The challenges for eesource kernel are many. We charagcheduling and allocation of processor cycles. For example,
terize these challenges below aset of goals that resource-see [23]. Traditional real-time operatingsystems provide
centric kernels should aim to satisfy. mechanisms that caonly be used to guarantee access to

2.1. Design Goals of a Resource K ernel processor cycles.

G1. Timeiness of resource usage. An app"ca‘[ion using G5. Portablllty and Autpmation. The absolute resource
the resource kernel must bble to request specific resourcélemands needetbr a given amount of work can unfor-
demands from the kernel. dfranted, the requested amourfunately vary from platform tplatform due to differences in
of resources must be guaranteed to be availmbkimely Machine speed. For examplesignal processing algorithm
fashion tothe application. An application with existingcan take 10ms on a 200MHz Pentium but take 20ma on
resource grants must also be alolelynamically upgrade or 100MHz Pentium. Ideally, applications musave the
downgrade itsresource usage (for adaptation and gracefdpility to specify their resource demandsairportable way
degradation purposes)This implies that the kernel mustsuch that thesame resource specification can be used on
support an admission control po“cy for resouctmmands. different platforms. In addltlon,_ there muestist means_ for
Conventional real-time operating systems do not provi#fee resource demands af application to be automatically
any such admission control mechanisms, even thaugh calibrated.

equivalent featurgwithout enforcement capabilities) couldge. Upward compatibility with fielded operating
be built at user level. systems. A large hostof commercial and proprietary real-

G2. Efficient resource utilization. The resource kernel time operating systems and real-time systexist. Many
must utilize system resources efficientlyor example, a ©f these systems employ a fixed priority schedufmgcy
trivial and unacceptableay to satisfy G1 would be to deny [12] to support provide real-timéehavior, and the rate-
all requests for guaranteed resource accéssther words, monotonic [18]or deadline-monotonifl 7] priority assign-
if sufficient system resources are available, the kernel mi@ent algorithmis frequently used to assign fixed priorities
allocate those resources to a requesting applicatibhis t0 tasks. Basic priority inheritan¢®83] is used on
goal implies that the admission control policy usedtiy Synchronization primitives such as mutexes and semaphores
resource kernel have provably good properti&sichproof to avoid the unbounded priority inversigmoblem when
may be analytical or empirical but owrersion of the tasks share logical resources. For example, Sqlek]s
resource kernel provides analytically proven propertitis. OS/2, Windows, Windows NT, AIXHP/UX all support the
must be noted that thigoal is subordinated to G1, in thafixed priority scheduling policy. The Java virtual machine
guaranteed resource access is the primary goalgtiods Specification also doesPriority inheritance on semaphores
to improve efficiencyand throughput cannot happen at thi supported in all thes@Ss (except Windows NT). POSIX
expense of the guarantéesTraditional real-time operating réal-time extensionsinix-derived real-time operating sys-
systems leaves the matter completely optm the tems such as QNX and LynxOS, and other proprieteay-
developers, each of whom must ubeir own schemes to time operating systems such as pSOS, VXWoMETX,
obtain better utilization for their applications. OS/9000, and iRMXsupport priority inheritance and fixed
. priority scheduling. To beaccepted, the resource kernel

G3. Enforcement and protection. The resource kernel nyst be upward compatible witthese schemes. The
must enforce the usage of resources stiuit abuse of prigrity inheritance scheme is also usecbeing considered
resources (intendeor not) by one application doest hurt {5 yse in multimedia-oriented systems [28, 40].
the guaranteedisage of resources granted by the kernel to) .
other applications. Traditional real-time operating systemsGoals G1-G4 are integral t@source kernels, while goals
such asthose compliant with the POSIX Real-Time Exten®> and G6 are for practicality and convenienGoalsG1,
sions [30] danot satisfy this goal. G2, G5and G6 can be satisfied by appropriate extensions to
traditional real-time operating systems which support fixed
priority CPU scheduling. For example, a user-lesedver

2This emphasis on guarantees and timeliness may understandably sedififbperformadmission control using a resource specification
bias the resource kernel awdyom multimedia systems. (In real-imemodel similar toours, and assign fixed priorities based on
systems, missed deadlines mpgtentially lead to system failure, andthe resource parameteuwsed by our model. However, in
possible loss oflife and/or property). However, we believe that agrder to satisfy goals Gand G4, the internals of these
multimedia applications on desktops and internet applianmzgsre, users oaerating systems need to be modified in ways simdar

will come to expect smooth video frame changes, jitterless audio, - - -
synchronized audio andideo. It is to be noted that VCR/TV/sateIIit:8 r resource kernel design and implementation.

technologies have been delivering such guaranteed tité@gvior for
years. ltseems rather illogical to expect anythilegs from computers at
least when a user iwilling to pay for it, particularly if virtual reality
environments musteem real, or for applications such as tele-medicine and
tele-surgery.

2.2. An Historical Perspective of our Real-Time 2.4. Explicit Resour ce Parameters
Resour ce M anagement M odel Our resource reservation modeimploys the following
Many deployed real-timesystems have been built ancarameters: computatiotime C every T time-units for
analyzed using the fixed priority periodtask model first managing the net utilization of a resource, a deadbirer
proposed by Liu and Laylarid8]. Thismodel employswo meeting timeliness requirements, a starttilge S of the
parameters, a maximum computation ti@eneeded every resource allocation, and, the life-time of the resource al-
periodic interval T for each activity that needs to bdocation. Werefer to these parameter< {T, D, SandL}
guaranteed. Therate-monotonic schedulingalgorithm as explicit parameters of our reservation modéie seman-
[18] assigns fixed prioriti€sbased only onT and isan tics are simple and are as follows. Each reservationbeill
optimal fixed priority scheduling algorithm. Instead ofllocatedC units of usage timevery T units of absolute
using priorities, if the €, T} model is directly used in a time. TheseC units of usage time will be guaranteedb®
real-time system, the assumptions underlying the Liu aadailable for consumption befoi2 units of time after the
Layland model can be monitored and enforced at run-tinkegining of every periodinterval. The guarantees start at
Following this strategy, the "aperiodic serverhiodel timeSand terminate at timg+ L.
[13, 37]uses atrtificiallyintroducedC andT values for new ..
"server tasks" which can then service aperiodic tasks withrp- Implicit Resource Parameter
a periodic setting. This bounded periodic usagas If various reservations were strictly independent &iagte

[25]. suffice. Howevershared resources like buffers, critical sec-

)) , o .. tions, windowing systems, filesystenmptocol stacks, etc.
We build on this proven trend by identifying, designinggre unavoidable irpractical systems. When reservations
implementing and evaluating significant kerreeitensions interact, thepossibility of "priority inversion” arises. A
to the Liu and Layland work along multiple dimensions: complete family of priority inheritancerotocols[31] is
« using arbitrary deadlindd6, 17]to obtain fine-grained known to address this problem. All these protocblare a
control timeliness of concurrent activities, common parameteB referred to as the blocking factoit
i o .) . represents themaximum (desirably bounded) time that a
+ applying the priority inheritance solutiorexplicitly to reservation instance mustait for lower priority reser-
the unbounded priority inversigeroblem when activities vations whileexecuting. If it is unbounded, a reservation
share resources [2, 31, 34], cannot meet its deadlineThe resource kernel, therefore,
implicitly derives, tracks and enforces the implicB
: . : . ' parameter for each reservation in the system. Prigoity
an%?_blelmn\g%(:h dhf\s zgt been studidiepth in the Liu reservation) inheritance is applied when reservation
a ayla odel, a blocks, waitingfor a lower priority reservation to release
« combining the schedulingf multiple resources into a (say) a lock. As we shall see Section 4.5, this implicit
single common framework observing that the problem oparameterB can also be usedo deliberately introduce
scheduling multiple resources with deadlines is kneavn Priority inversion in a controlledashion to achieve other

« dealing with new resourdgpes such as disk scheduling,

be an NP-complete problem [5]. optimizations.
2.3. The Resour ce Reservation M odel 2.6. Reservation Type . . L
The resource kernebets its name from its resource¥Vhen a reservatiomses up its allocation df within an
centricity and its ability of the kernel to interval of T, it is said to belepleted. A reservation which

. . . is not depleted is said toe anundepleted reservation. At
* apply a uniform resourcenodel for dynamic sharing of the end of the current interva) the reservation will obtain a
different resource types, new quota ofC and is said to beeplenished. In our reser-
- take resource usage specifications from applications, ~ Vation model, the behavior of a reservation between deple-
tion and replenishment can take one of three forms:

« Hard reservations: a hard reservation, on depletion, can-

« schedule contending activities on a resousesed on a not be scheduledntil it is replenished. While appearing
well-defined scheme, and constrained and very wasteful, we believe that tyyie

of reservation can act as a powerful buildoigck model

for implementing"virtual" resources, automated calibra-

tion, etc.

 guarantee resource allocations at admission time,

« ensure timelinesby dynamically monitoring and enforc-
ing actual resource usage,

The resourcekernel attains these capabilities by reserving _ o , .

resources for applications requesting them, and tracking otifsirm reservations: a firm reservation, omlepletion, can

standing reservation allocations. Based on the timelinesBe scheduled for execution only if no other undepleted

requirements of reservations, thesource kernel prioritizes ~reservation or unreserved threads are ready to run.

%vevrgr’ ?i?)orlite);g(s:gtr?/z ti?)nhilfggc?trh grr'grgh/ irﬁzﬁglaegzgu?:mre- Soft reservations: a soft reservation, on depletion, can be
P Y 9 : scheduled for executiomlong with other unreserved

threads and depleted reservations.

3A lower T yields a higher priority.

2.7. System Call Interfaceto Reservations rate-monotonic ora deadline-monotonic scheme is used
respectively. Ouadmission control policy doewt employ
(oft-used) static utilization bounds (eas given i{18])

System Call Description since they can be very pessimistic in nafdd. Instead,
Create | Create areservation port we use an exact schedulability condition whixbvides the
Request | Request resource on reservation poft best admission control fax given set of real-time threads.
Modi fy Modify current reservation parameters This algorithm is described in detail in the Appenbec-
Not i fy Set up notification ports for resourc tion 2). Thealgorithm, being a complex non-linear function
CXplTy Messages. of the thread periods, their relationships and their computa-
e ibute | otatributes a‘;{;ﬁ)sefva“"” (hard, firm tion times, does not hawe standard degree of complexity.
o P ———— However, it is .easny coded and can be compL!ted efficiently.
Gt Usage | Getthe usage on a reservation (acch The computational cosif the scheme for a wide range of
mulated or current) . thread counts is shown in Figure 3-As can be seen, the

overhead is acceptablelt is also incurred only when a

Table 2-1: A subset of the reservation system call interfadéiréad requests mew reservation (or upgrades an existing
for each resource type. reservation).

Our resourcereservations ardirst-class entities in the 3-2- Tracking Implicit Parameter B _ o
resource kernelHence operations on the reservations musf/hen a lower priority reservation blocks a higher priority
be invoked using system calls. A select sub$éte system reseryatloﬁ: the former inherits the reservation (and there-
call interface for the resource reservation model is givenfpie its priority). When the higher priority reservation
Table 2-1. Areservation modification call allows an existfinally unblocks, theinheritance is revoked. However, the
ing reservation to be upgraded or downgraded. thi g:lurathn for which the inheritance was jatace is priority
modification fails,the previous reservation parameters wiinversion. Theresource kernel tracks and accumulates the
be restored. In other words,dh application cannot obtainduration of pnontylnversmn during a reservationts If it
higher resources because system load, it will at least €xceeds the maximuid that can be tolerated by that reser-
retain its previous allocation.” A notification registration vation, a message is sent to treservation’s notification
terface allows the application to register a portwhich a port.

message will be sent by the resource kernel each ttime .

reservation is depleted. A binding interface allows a thre- Performance Evaluation

to be bound to a reservation. More than one thoeedbe

bound to a reservation. Quenyterfaces allow an applica-| Initial Reservation Upgrate to Poungraded to

tion to obtain the currerist of reservations in the system| wpe || Ci | Ti | Di |G/ || G | T | D ||l G | T | D |

the recent usage histonyf those reservations (updated 4 (ms) | (ms) | (ms) | T1 | (ms)| ms)| ms) | ") (ms)] (ms)| ms) | T

their respectivd boundaries), and the usagka reservation | Had | 8 | 80| 60| 01) 12| 8] 60 015 4 8 60 0p5

so far in its current interval. Firm 15| 80| 70| 019 19| 80| 70 024 11 8 7 04
Soft 20 80 80| 0.25] 24 80 80 0. 2 8 80 0p5

3. Processor Resour ce M anagement
In this section, we shall discuss awhluate our implemen- Table3-1: The processor reservation parameters used
tation of the resource reservation model for fitecessor for Figures 3-2, 3-3 and 3-4
resource.

L We now evaluatéhe processor reservation scheme by run-
3.1. Admission Control ning different workloads with and without the uskreser-
vations. All our experiments use BRC using a 120MHz
Pentium processor with a 256KB cache and 16MIRAM.

Description Overhead We illustrate two basic points in these experiments:
(bs) :
1. the nature of the three types of reservations, and
Processor admission control with 1 reservation 25 o .
Processor admission control with 10 reservatigns 120 2.the ﬂEXIbIIIty to upgrade and downgradﬂfferent
1SS! b vat reservations. dynamically.
Processor admission control with 20 reservatipns 195 In the experiments of Figures 3-2 and 3-3, thteeads
Processor reservation creation 150 running simultaneously in infinite loops are bound to the
(excluding admission control) three reservations listed in Table 3-In the experiment of
] o] Figure 3-2, only these three threads are runningcontrast,
Figure3-1: Processor Admission Control Policy in the experiment of Figur@-3, many other unreserved

Overhead w/ Exact Schedulability Conditionsthreads in infinite loops are alsanning in the background
and competing for the processorhe behavior of the three

Our processor reservation scheme employs a fpreatity types of reservations is illustrated between these two figures.

scheme due to its widespread populaig mentioned in
the description of goal G6 in Section 2.1). dtler words,
each reservation is assigned a fiygrity, which is equal

; ; ; ; “This terminology means that a thread bouada lower priority reser-
to its periodT or deadlineD, depending upon whether avation is blocking a thread bound to a higher priority reservation.

CPU Utilization of HARD reserve w/ Competition

CPU Utilization of HARD reserve w/o Competition

Utilization

Utilization

"
8

g

B 8
s

T n3g
S

8

s

S

b

g

o

S

g

g

o

o

2

g

o

=]

3

g

o

S

a

o

=1

=3

N O O T O O O O T N W S GY G O G
S 2o ® @ ~NKOEHLHIINONNTdAS SO
Jdd33S5s8sss3333333as833a
©

-

"

4

g

B g
o

T w3
S

8

s

8

g

4

s

8

S

g

s

S

3

q

o

S

g

g

s

8

s

s

8

—— 2

I O N N T N P TR
883588LR B82S 8888338383
dd3d33c5Sess333333333838

@)

CPU Utilization of FIRM reserve w/ Competition

CPU Utilization of FIRM reserve w/o Competition

Utilization

Utilization

Firm

Seconds

30.00

25.00

20.00

15.00

10.00

5.00

Firm

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00
-0.05

0.00

(b)

Seconds

30.00

25.00

20.00

15.00

10.00

5.00

0.00

CPU Utilization of SOFT reserve w/ Competition

CPU Utilization of SOFT reserve w/o Competition

Soft

Seconds

30.00

25.00

20.00

15.00

10.00

5.00

1

Utilization

Soft

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30

0.25 —¢
0.20
0.15
0.10
0.05
0.00
-0.05

0.00

(©

Seconds

30.00

25.00

20.00

15.00

Utilization

10.00

5.00

0.00

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55—
0.50 —
0.45—+

0.40 —
0.35—
0.15
0.10
0.05
0.00
-0.05

(©

Figure 3-3: Behavior ofreserved infinite loop

Figure 3-2: Behavior ofreserved infinite loop

threadswith unreserved competition

threadswithout unreserved competition

3-3 are running simultaneously. The completion times of

CPU Utilization with unreserved threads this same set of threadsith the background competition of

Uization Figure 3-3) whenrun without using any reservations are

oo L i plotted in Figure 3-4.The same threads which behave ex-

0.5 reviously Sot tremely predictably irFigure 3-3 now exhibit an enormous

| Moy S B v amount of seeminglyandom and practically unacceptable

ol I D IR S P O unpredictability. This demonstrates that our resource

075 g e 4 management scheme workas expected; without the

070 — et e scheme, resource usage is not predictable.

0.65—oms o % o LT PR _:..

080 =g

045 —| w58 o _ il PR - X (ms) | (ms)| (ms)

040 2 e i ' ;

AR RN - 5 20 |10 25%

S R S TR o

03035 I e B 10 | 40 30 25%

025 ———s ==l o Tl an 2

R e [10 |60 |45 16.66%

(R I L S P nq

010 —ggr——=! T e e —

0.05 = Table 3-2: The processor reservation parameters used

0.00 . .

for the experiment of Figures 3-5 and 3-6

-0.05 time (seconds)
0.00 5.00 10.00 15.00 20.00 25.00 30.00

Figure 3-4: Behavior ofunreserved infinite loop Completion Times of reserved threads
threads with unreserved competition completion time (ms)

90.00

 The first reservedhread is bound to a hard reservation
and should not consume mdtfen its granted utilization
which is initially 10%, explicitly raisedo 15% at time 7500
10, and therexplicitly dropped to 5% at time 20. As can 7.0
be seen in (a), this thread, despite runim@n infinite 65.00
loop and the presena&f many competing threads, ob- 00
tains exactly this specified usagehoth Figures 3-2 and 55.00

85.00

3_3. 50.00

45.00

* The secondreserved thread is bound to a firm reser- 4.0
vation, and is allocated 19% dhe CPU initially, 35.00

upgraded to 24% at time 10, atiden downgraded to 0%
14% at time 20. In Figur@-2-(b), when there is no *®
unreserved competitiorthis thread obtains a minimum %
of its grantEd utilization. In addition’ it obtains "Spare" 10.00 —wuverrTETEEETITETaT I Eya T EE T T T A AT T T e T T T s
idle cyclesfrom the processor since there are no un-

15.00

reserved competing threads. Howeverkigure 3-3-(b), 0.00

when there islways unreserved competition, thikread time (seconds)
obtains only itsgranted utilization. Thus, as intended, a o 0% e e =0

firm reservation behaves lileehard reservation when the Figure 3-5: Completion times of reserved threads
processor isot idle, and like a soft reservation when idle in the presence of competing threads

processor cycles are indeed available.))
We nowrun another experiment where each thread imposes

The third reserved thread is bound to a seffervation, only finite demands, buthe completion times of these
which is allocated 25% initially, upgraded to 30% at timedemands can be predictabily with explicit resource

10, and then downgraded 5% at time 20. A soft management. Theeservation parameters used for this ex-
reservation can compefer cycles left behind by any periment are listed in Figure 3-Notethat the deadlines are
threads with currently undepleted reservess a result, substantially smallethan the reservation periods giving
this threadobtains more cycles than its granted utiliza-finer grained control over timeliness. One thread for exch
tion in both Figures 3-2-(c) and 3-3-(c). It must be notedhe three reservations is created with the same period and

that the thread obtains a minimum of its granuéitiza- ~ (slightly less) computation time as it®rresponding reser-
tion duringall its instances. It can also be seen that thi¥ation. Whenusing reservations in our resource kernel, the
thread obtains morprocessor cycles in Figure 3-2 sinceCOmpletion times for each of these threadshey execute

it competes only with one thread bound to a fieser- with their different periods was time-stamped. The cor-
vation responding results are plotted in Figure 3-5. As can be seen,

. all the three threads complédteeir executions well ahead of
It must be recalled thahe three threads of Figures 3-2 antheir deadlines. Thread 2 aléms a constant completion

o Desktop multimedia systems also need to r&adn (or

~ Completion Times when unr eserved write to) disk storage relativellarge volumes of video and
completion time (ms)x:ﬁ) . oY .
audio data. Iraddition, these streams represent continuous
media streams, and must therefore be processdidebgisk

‘Period=40 thread
1.00 A

- R R = N
0.95 E %D - - 2 B Period=60 thread

PR SR R e subsystem in real-time. In other wordswibuld be prac-
090 E st I tically very useful in practice if disk bandwidth can atso

g:z : TE- ¢ % RIERE T guaranteed in addition to managing processor cycles.

075 ——§—% A et L In this section, we present a simplistic disk scheduling algo-
2;2 P 1S rithm based on earliest deadline schedulinge then im-

oed P : e prove the algorithm by exploiting "slack" in theservations

0ss I BRI H I to obtaina hybrid of earliest deadline scheduling and a tradi-
0.50 L fe.tif tlies HRTRS tional scan algorithmOur evaluations of these schemes that
045 S LR T B LR L guaranteed disk bandwidth reservatican be obtained at
2:2 : e only a small loss of system throughput.

0:30 B E : E .

4.1. Filesystem Bandwidth Specification

Our resourcespecification model for disk bandwidth is iden-
tical to that of processor cycles. In other wordsdisk
bandwidth reservation must specify a start tlha process-

g8 H o] B ol o
0.25 : T R

0.20 ; :
0.15
0.10
0.05

o g ol | o 0B pEE S 2

bombespengeD

gty of 2. E EEERNE Th ing time C to be obtained in every intervalbefore a dead-
Owﬂ“&“ = —==oes line of D. The processing time&C can be specified as # of
0.00 500 1000 1500 fime (seconds) disk blocks (as a portable specification) or in absolute disk
bandwidth time in native-platform specification.
Figure 3-6: Completion times of unreserved threads o
with Competing threads 4.2. Admission Control

Our simplest disk head scheduling schesmploys the ear-
time despite its lower priority because of harmonicity liest deadline scheduling algorithi#8]. The earliest dead-
with thread 1. The behavior of the completion timé®en line scheduling algorithm ian optimal scheduling algorithm
no reservations anesed is depicted in Figure 3-6. As can br our scheduling model and can guarantee 100% resource
seen, the same threadmve widely varying completion utilization under ideal conditions. In other wordshigher
times and also miss their deadlines rather frequently. priority reservation must be able to preeragdbwer priority
To summarize, theesource kernel provides a guarantedef®€mption preemptlvely, and; =T;. However, instan-
slice of processor resources to applications independentasfeous preemptions are not possible in didteduling. An
the behavior of other applications (includiegecution in ongoing disk block access mustmplete before the next
infinite loops). Processor cycles that are idle es8o be highest priority disk block accesequest can be issued.
selectively allocated to running tasks. This introduces a blocking (priority inversiofctor of a

_ . single filesystem block access (as [85]). Also, whenD,;
4. Disk Bandwidth Resour ce M anagement < T,, the required earlier completion tingef T, - D;, must

Traditional real-timesystems have largely avoided the usge added to the blockinfactor. A detailed discussion of
of disks. Thisis in part because they may be relatively slohis admission control policy is beyond the scagethis
for some real-time applications. However, maegl-time paper and can be found in [27].
applications can benefit from the usedifks to store and
access real-timelata (such as real-time database applicd-3. Scheduling Policy
tions). Unfortunatelythe use of aisk can (a) introduce Instances of a disk bandwidth reservation become eligible to
unpredictable latencies, and even worse (b) the alisless executesvery T, units (at times§, §+T;, § + 2T,, § + 2T,
requests must now be managed conjunction with the [TT). Consideran instance which arrivest timeS + nr;.
processor scheduling. On the processide, fixed priority T instance has a deadlinef+ T, + D, Similarly, all
algorithms allowa mix of tasks with different periodicity, instances ofall outstanding disk blandvlvidth reservations
ﬁgg Rgtnggeritgasig dsg)t:tseyrfstﬁ/rgl mu;é&gutggltshgr%ﬂﬁiml e have corresponding deadlines. After edidk block access
resource problem with deadlize% known to be ng— is completedthe disk scheduler makes another scheduling
complete [5] Some exceptions can be foundn decision. lItpicks the next ready reservation instamaéh
[1, 20, 21] but their resource specification modeisid the earliest deadline and issues a disk accessnand cor-
metrics are very different from the onese study. The responding to that instance’s nedisk access request. If

; ; ; Ny there are no pending requests, the disk remains idle.
closest schedulingnodel to ours is found if6] but its ap-

proach is one of using fixed priority scheduling, minimizing 4. The Ar chitecture of the Reserved Filesystem
blocking through the use of "chunking” anging a static The architecture of the reservéitbsystem follows a tradi-
task set. Also, only simulation studies were caroet In tional scheme. AReal-Time File Server running on top of
contrast, we use dynamic priorisgheduling, exploit block- oyr resource kernefbased on the RT-Mach microkernel)
ing instead of minimizing iand evaluate an |mpIementatlormamjlges the reserveeal-time filesystem. RT-FS has mul-

within our resource framework. In addition, wieal with tipje worker threads which receive and process filesystem
processor needs that must be dealt with concurrently .

access requests fromal-time clients. Each worker threagrocess is themepeated. If the slack of a high priority
stores the incomingequest it is processing into a commoneservation goes to zero,\till be serviced independent of
io-request queue. The workéread responsible for issuingits location. The detailed descriptiof the just-in-time al-
the current diskblock access waits for its completion. Igorithm can be found in [27].

then awakensand determines the next request based on the i

scheduling policy above. If the next request corresponds®. Perfor mance Evaluation _ _
another worker thread, thahread is signaled. Else, thelhe capability of thedisk bandwidth reservation scheme in

worker threaccontinues to service its remaining disk acce§¥ir resource kernel to satisfy demamasdisk bandwidth is
requests, if any. illustrated inFigure 4-1. One disk bandwidth reservation of

12 disk blocks every 25@hs was requesteth the presence
4.5. Exploiting 'B’: Just-In-Time Disk Scheduling of other unreserved accesdesthe disk. As can be seen
The earliestdeadline disk scheduling described abovieom the plot, thisdemand is satisfied by both the earliest
blindly picks the nextblock with the earliest deadline ir-deadline scheme and the just-in-timeheme; in fact, both
respective of the current position of ttisk head. Since thelines are flat and coincide almost completely in thet.
physical movement of the disk head dhd disk’s rotational However, the scan algorithm attempts to optimiisk
latencies constitute significantlurations of time, such throughput and pays for it bgot delivering the needed
dynamic scheduling can result in significant déslbsystem throughput of 12 blocksvery 250ms. As a matter of fact,
throughput reductions particularly under healigk traffic. the bandwidth consumption varies widély.
The reductions can be directly attributed to tinee wasted
by the diskhead moving from one end to another and the Disk Bandwidth Consumption
disk’s rotational time. In summary, the deadineS are; o sk biocks accessed each period
preferred over a block’s physical location. “Earliest Deadline

18.00 TSR T —

Traditional scanalgorithms, in contrast, re-order the disk ,,,, Scan T
request queue such that the block closesitéccurrent head 5,
position (inthe direction of movement) is accessed next. ASisqp
a result, adisk request which just arrived can be serviced 140
before another disk request which has been waitingafor 1s00
long time just becausthe latter is farther away from the 1200
head position.To summarize, the physical block location is 1100
favored over timeliness. 10.00

The earliest deadline scheduling algorithm &nel scan al-
gorithm are therefore at odds with one anothieortunately,
a hybrid scheme which can obtain all the benefits of the
earliest deadline scheduling algorittand at least part of the 4,
benefits of the scan algorithm is possible.pfiority-driven 400
scheduling, higher priority activities preempt lowarority 300
activities. Sinceboth lower and higher priority activities 200 f i i ids b4
must be schedulable in aadmission-controlled system, — woo—fidditaidi Ly
higher priority activities typically complete wellhead of 0.00 —++ = i
their deadlines. In other words, such higlpeiority ac- oo 1000 2000 000 4000 s00p MeC250mS
tivities have agood amount of "slack" in their completion

times. Basedn this observation, we presemtnew algo- Figure4-1. Disk Bandwidth consumed (# of disk blocks

] 1
[
. \ !

rithm we call "Just-in-time" disk schedulinghis algorithm read) by reserved thread. Earliest deadline and
exploits the slack available to highaariority tasks to Just-In-Time reservation schemes are flat and
schedule accesses of other disk blocks wihih closer to coincide almost completely.

the current head positich.

We also imposed heavy disk traffic conditions ameasured
the throughput obtained under the scan and eadessiline
algorithms. Thids shown in Table 4-1As can be seen, the
earliest deadlinealgorithm obtains only about 10% less
; o /. 'throughput than the scan algorithm. This is the pricketo
the current slack of higher priority reservatiaesnon-zero, paid for the predictable angliaranteed disk bandwidth ob-

another unreserved (or lower priority reserveguest can .; ; ; ; P
be scheduled if closer to the disk head. If slagkaten, the Eﬁ'lnfd by the earliest deadliagorithm (as shown in Figure

slack of higher priority reservations is reduced by ofikis

A brief description of the just-in-timdisk scheduling algo-
rithm is as follows. The maximum "slack" availablestach
disk reservation is computed whenever a new reqaesd-
mitted (or an existing reservation is deleted). At run-tiifhe

5Such "slack-stealing" has been done in the comtegtocessor schedul-
ing theory in order tgprovide better response to aperiodic activifiles. 5The pattern is more dramatic in a zoomed out view i x-axis
The optimization, cosfunctions and implementation tradeoffs seem to bmnging upto 400 periods, but the lines/points raoe clearly legible in a
different for the processor and the disk, however. relatively small black-and-white graph.

EDF with CPU Reserves

Throughput msx16
Requested| Throughput| for Earliest | Throughput
throughput | with Scan | Deadline | Degradation

(KB/s) (KB/s) Scheduling (%)
(KB/s)
1158.6 856.36 764.88 10.68%

Table4-1: Scan and EDF real-time filesystem
throughput comparison

4.6.1. Synthetic Workload Behavior with both CPU and

Disk Requirements
We next imposed a synthetic workload to determine the
completion times of disk access requests, and to study the
drop in disk throughput when the Scan policy is replaced
with a policy which attempts to satisfy timimgnstraints in
preference to enhancing disk throughput.

x T (250 ms)
As illustratedin Figure 4-2, the real-time workload tested (@) % e e el
consists of two thread$hread 1 andThread 1b. Thread 1)
reads periodically from disk and copies all the data into i SCAN with CPU Reserves
buffer A, while Thread 1b processes data previously stored
in buffer B. At the end of the period, there is a buffer switch 100
and the role of both buffers is interchanged. Bufferand o
B have the same size. We bound disk bandwidth and CPU 0ss
reserves tdhread 1, anda CPU reserve tdhread 1b, and 00— I
traced the execution in terms of completion tingeadline SO |l IRl
misses and disk utilizationThread 1 makes usef rela- pyosl I Y A
tively little cpu time and it sleeps till the beginning the 060 {‘ % H k l 1\ H % lk i\ *. 11 i 1
next period to invoke a new reamperation. Thread 1b s RINISN AARAN RGN ARIRAA CHMIT
processes the data previously stored in the buff@nth oas—y - -PHHHP AL T LTRET P
Thread 1 and Thread 1b have a period o250 ms. Also, 040 “ % E }f 1 {1 \1 ﬁ ‘1 1\ *i ’% !
Thread 1 reads 44 KBytes during each of itstances, and DS I
has a deadline of 168sfor completing its reads. Note that 025 Iy |
this deadline is shortahan its period of 25@ns, forcing a o201 l It
stringent test for the filesystemThread 1b is offset from 015
Thread 1 by 162 ms and has a deadline ofr&8 oo
T T (b) 0.00 50.00 100.00 150.00 200.00 zso.goT @soms)
Cdisk Ccpul
thread 1 L‘ - . Figure4-3: Thread 1 Completion Times

T, T, are some deadlines misses (2 out of 400: per&gisind
oz i 258). Inthese cases the task finishafter 162ms (but
thread_1b ﬁﬂ *% never after the period of 256s). Thesetwo deadline mis-
ses are due to the fact that our filesystem (extensigheof
Figure4-2: Execution patterns of Berkeley Fast FileSystem) doemt allocate blocks con-
Thread 1 andThreadlb tiguously on disk. So relativellgigh interblock seek times

out of the cylindergroup may happen from time to time
Six periodic threads each with a different perigdrying even withrequests for successive blocks within a file from

from 300ms to 640ms) and a different read-access load othe samehread. This can happen for each 1 MB of filesys-
the disk (varying from 8 KBytet 200 KBytes per periodic tem data according to the Berkeley Fall®cation algorithm
instance of the thread) were introdu@sdcompeting threadsand can lead to potential deadline misses. Accounting for
without any reserved capacion either the CPU or the diskthe worst-case interblock seek times in the admission con-
bandwidth. Weran this workload for aduration of 100 trol test would avoid this problem, but can leadxdremely
seconds andheasured the completion times of each periodiew guaranteed disk throughput. Thuast withstanding our
instance, and the total disk bandwidth consumethe admission control test, some deadlinesn be missed.
completion times are illustrated in Figure 4-3. However, as can b&een from our experiments, the deadline

If we use EDF/EDF+JIT without reservirthe CPU there misses are ratheénfrequent. Conversely, in the Scan case

there is no time to run the needed 4di6k accesses andinvolved are scheduled independent of one another as
only 248 accesses are completaithin the experiment resource decoupling. Wheasources are decoupled, for ex-
duration. Thecompletion timesare nearly always greaterample, the completion time test Section 2 can be applied
than the period itself (> 25@ns) and sometimes muchto each resource independently.

greater. This shows that EDF w/ CReberves consistently || v 21 dio-conferencin - .
> >0 . PSR - g application, the oobupling be-
meets the timeliness constraints of the real-tapplication . " o pipeline stages lies actuallytia interface be-

accessing the disk. tween stage 2 and the network (or tiework and stage 4).
Disk Throughput: The total disk bandwidth consuméd When the processor is ready to send patkets, the net-
the above experiment was 16,464 KBytes wlith EDF and work must be able to transntitem. Memory buffers on the
CPU reserve policyand 17,750 KBytes with the Scametwork interface card provide some decouplirygstoring
policy. Thisrepresents only a performance throughput lopaickets that the processor is readyramsmit, but the net-
of 7.25%. In returnhowever, the timing constraints andvork is not readyto accept yet. We address this problem
periodic bandwidth requirements are satisfied with theext.

EDF/CPU reserves policy, while they are dramaticaihy

satisfied with the Scan policy. 5.3. Processor Co-Dependency
] A phenomenon that weame processor co-dependency
5. Practical Issues provides ahint to the solution. Complete resource decou-
))) pling seems possible between any t@sources if neither of
5.1. Using Different Reservations Together them is the processor. Since the processor is the brain of the

Consider a video display applicatiavhich reads a video system, communicatiortsetween the network and the disk,
movie from thelocal disk and displays it on the screen. Th@r example, must go through the processor. fitveessor
movie is long enough thatdoes not fit into memory. As amust obtain the network packets and tisend them to the
result, subsequent video frames must be read ftendisk disk. Inother words, a coupling problem which at first sight
while frames already read inta double buffer are beingijs between thelisk and the network gets translated into two
played onthe screen. In this case, the video display alg@rependent couplings between the disk and the processor,
rithm must not only be scheduled on the Cfiere it can and between the processor and the netwdrke net result

also do decompression or special signal procesbuigalso s that as soon as the disk (or the network) denadteshtion

obtain guaranteed disk bandwidth to display the mevié from the processor, the processor must be able to provide it.
its audio track without user-perceptible jitter.

The moststraightforward way of approaching this proble

is as follows: the application consists afsingle thread _ ', SR ; S i
which binds itself toppa processor reservatio% andisk & System reservation” which is a highpsbrity reservation
banciwdth reservation wih teame period, sar tme andsfich, 406e not get depleted. As 2 result, any thread o
appropriate computation times to satisfy the appllcatlong% the highest priority as soon as possible (subject only to

needs. Therean be other threads the system which use other threads using a system reservatiowe also some-
other combinations of resources (suhthe processor and 9 y

network bandwidth). Each of these reservations need tgimes refer to the system reservation as an "immecezser-

satisfy theirassociated deadlines given by the aran@tervation" E)ecause of the im|r'n ediacy of its service. Clearly, the
Howg/er it is known that the prgblem o%‘ schepdul'mgw- use of "system reserves” muse confined to trusted ser-
! vices only (to satisfy goal G3 of resource kernels), which

current tasks on multipleesources with timeliness con- "<t betrusted to use them only sparingly for relatively
straints is NP-complet®]. As a result, onefaces the - !
dilemma of finding a practical acceptable solution, sin Iégkstt;argsg?rgggt%ant% 4T2|§0w]%ﬂrkt%r twéeggzh%rre%?rgeg_
finding an optimal solution to thproblem is very imprac- "¢y : ' gory ot Sy
tical. Weaddress this problem next tem reservation users. It must be remembénatithe usage

' ' of the system reservation will adversely affect new resource
5.2. Resour ce Decoupling requests and must be accounted for in admission tests.

Since simultaneous access to multipkesources is the We measured the time Consurﬂeﬂj components of a disk
problem we face, a natural solutiontte practical dilemma |/0 to complete a filesystem block fetoh 4KB: time spent
one faces is to try to decouple the use of differespurces, in core filesystem code = 53, timespent in filesystem
which can be used independentoofe another. An end-to- gverhead (block map queries, etc.)1#Lus, time spent in
end timing constraint problem is normaliytractable as a data copies = 13fis, time spent irdisk reserve overheads
single big problem, and is hence solved as a series of sngdheduling, updating slack, etc.) = 28§ time spent ilO
problems where eagbroblem only spans a single resource: 2550us leading to a total elapsed time of 3082 The

For example, in an audio-conferencing applicaf@#i, the CPU usage for the worker thread in filesystem is there-
first pipeline stage occuiis the sound card which transfers

data tothe processor usingeriodically self-initiated DMA

or multi-master bugransactions. A 2nd pipeline stage oc
curs on the processor to transmit the datel the next stage 7 the network interface card hardware can be configured tdnbe
occurs in the network. The end-to-end ddlayaudio is the auto-initiation mode as on the sound card, this couptirablem would

sum of the delays encounteredeiach of the audio pipeline disappear as well. This argues for better and more sophisticated support in

stages. Weefer to this strategy where each of theources interface cards andontrollers. The trend towards MMX support and
"software modems" is unfortunately in the opposite direction!

md " Immediate’ or " System"” Reservations
In our resource reservatianodel, we define the concept of

fore 532us out 0f3082ps = 17.26%. Since one worker5.7. Adaptive QoS M anagement

thread can access thésk at any given time, this representt/ser-level resourcenanagers can be built on top of a
the worst-case processor requirement imposed byeale resource kernel to react (or adapt to) to changes in applica-
time filesystem. However, due to the fact thék seeks tion, system resources and the environment. In distributed
will not be issued continuously in a genemistem, this real-time applications,such as video conferencing, the
number will be lower in practice. Otherwise, for a diskehange in qualityat one end-point typically implies that the

intensive context, this overhead is likely acceptable. other end-point must also adapt its quality correspondingly.
. . L . Such distributed adaptations muasarly happen at a larger
5.5. Calibrating an Application’s Requirements time-scale than single-node resourabocation changes.

The computation tim& needed fora reservation must be similarly, we take the position that user-level application
known in order to reserve processor time before it can BRanges happen at larger time-scale than the decisions
requested. ltis, however, unknown practically befoits made in the resource kernt dynamically schedule ac-
actual execution since it heavitiepends on a machine plattjyities on system resources. = Such user-lesesource
form on which an application program runsEven on managers can also potentially implement more complex

machines with the sam@PU and the same clock rate, theesource management po”cies thitae ones used by our
execution time may be affected the presence of cache, thgesoyurce model.

amount of memory, memory and system interface chip

sets, and other 1/O interface cards. Thus, we neettin 6. Concluding Remarks

C for the current platform by actuallyinning an application We have presented r@source-centric approach to building
on it. ObtainingC requires the kernefo support precise real-time kernels, and we cdlle resulting kernel a resource
measurement ofthe processor time consumed by a certakernel. Theresource kernel providasnely, guaranteed and
thread. Wenow discuss how this can be obtained usingotected access to resources. Wwmv compare our ap-
only our resource kernel capabilities. proach with two related approaches, and summarize our

Our resource kemel supports hard reservations aled résearch contributions.

provides current and accumulated usage on a reservatiorB Resour ce K ernels and Related Approaches
a program. The hard reservation ensures that any thr now compare theesource kernel notions with the ap-

bound to it can only run upto its specifi€d Theexecution " h
time of the application program to bealibrated is then p;%z]m:ﬁj Eli(soei(derrl;)gﬂ7](.)pe'\|rgz]negsissa¥lsée$sr rsezi]r’;lggﬁas
measured as followsA new hard reservation, named (sayl jr,ach adopt a similar model mfsource specification
“calibration”, is created, and the givapplication program and allocation, basedn the so-called {C,T} model

is boundto it just for the purpose of measuring its executlo(glriginally propdsed by Liu and Laylarjdg] Nemesisim-
time. Thereservation willget depleted by the running of theyjiiyy assumes a deadiira T before which theS units of
application programget replenished by the resource kern fme must be availableOur resource kernel also supports a

and the proceswiill repeat until the application program g ; 8 . X
: eadline shortethanT®. The Nemesis approach to dealing
completes execution. The accumulateshge on the hard ith the problem of priority inversion, @otentially sig-

{ﬁze;\/aﬁ'i%gﬂ (;:r? l'br?t'%r;n noAv\\;] yégl\?asnzgeeeé?(iﬁitéorr]ngg;gd%ficant stumbling block of multi-taskingeal-time systems,
PP 1 Prog : 9¢ is rather unclear. In our resource kerapproach, bounding
that it is certain thah program can obtain its C even Wheg

e systen s busy sice fgmaranieed 10 recene & cenai o /e 5 2 (&Y BYice o maneigerecions
amount of processor time for its execution. ' y '

where a higher priority requess blocked by a lower
5.6. Portability Of Resour ce Specifications priority activity, is unavoidable in the genei@se (such as
As mentioned above, the absolute executiome of a Ccfitical sections, non-preemptible bus transactiang finite
processor speed, etc. As a restile specification o€ in Priority inversion be eliminated, as in the use of semaphores
absolute time-units can become inherently portable. N @ priority-driven systenj31, 35]. Such durations of
Fortunately, portable time-units are availablée in the form Bfiority inversion must be bounded ariid possible min-
the number of clock tickand the number of instructionsiMized. Priority inheritance protocols have also beex
executed for @iven program segment on the processor. ¢snded todynamic priority algorithm$3, 9]. In resource
these two, the number of clock ticks is perhapsre port- kernels, we useriority mherltanc_e in the form_ of reserve
able since today’s microprocessors contain on-chip cloBkopagation [26] where a blocking thread inheritthe
tion as well be inherently scalable across chips with lawer the duration of the blocking.

higher clock speeds. Similarlg, for disk bandwidthreser- Nemesis advocatethe minimization of servers to enable
vation can specify thaumber of disk blocks to be read, orcorrect "charging”" ofresource usage to applications. The
better, the numbeof bytes to be read. The latter units wilNemesis approch is to put 'server codab client libraries,
also be portable acrogdatforms using different disk block which would then use critical sectioris enforce consis-
sizes. Implementationsf resource kernels must thereforgency requirements across multiple clients as necessary.
provide conveniencdéunctions to translate "portable time-

units" on a resource to native absolute time-units.

8A deadline longer thafiis also possible.

resource kernel notions takenautral stance on the topic ofin other words,a finer granularity of memory control be-
servers in that we (musgupport configurations with andcomes necessary.

W'thQUt servers. We do SO for two fundamenta! .reasons. The Exo-kernelhpproach advocates that all policy decisions
1. Time and space are distinct: Servers and critical sec- except foraccess protection reside in user-level programs.
tions executing in clienspace providing the given ser- However, for real-time systems, the CBtheduling policy
vice are strictly analogous in a timingredictability = must becentrally managed (at the "root") to ensure that an

sense, and differ only in a spataiganization sense. application group can satisfy its owiiming constraints.
More precisely, the blocking (a@riority version) factor This global scheduling policgannot be delegated to in-
is (almost) thesame whether a service is implementeddividual applications. On the other hand, tfe CPU

as a client library or within @erver thread. Any dif- resource management policy deemed to be a temporal
ference arises only due to spatial overhead factorrotection mechanism thaesides in the exo-kernel, the
(primarily due to less context-switching in the case offeésource kernel notiois actually compatible with the exo-
client library implementations, forexample see Kernel approach as well. Eaapplication can then build its
[24, 23]). This is hardly a fundamental questiasf ~ OW" local scheduler to use its allocated time in a way that it
fncionaity or capabity. Consicer a servise(such S%€3 fi. Howeverin practios we do, ot expect local
as adraw-in-window operation) executing in a real- hstead. we . . :
: ; : , propose a Quality of Service (Qo%nager
e, Sener ke X, The s bans requess orluming 1t usor Space (s serven on s rezoce

. AT . %ernel [22, 32]. This QoS manager can arbitrate among
will be queued up in priority ordend with supportfor competing requests when the maximatjuests of all ap-

priority inheritance toavoid unbounded priority inver- jications cannot be satisfied with the available resources.
sion problems. If implemented asclient library, the

critical section used within the library will use a mutex, 6.2. Contributions
which in turn will use a priority queue for waiting We havepresented the notion of a resource kernel, which
threads and support priority inheritarfce. provides timely and protectesccess to machine resources.
. In this approaclgeared towards real-time and multimedia
2. Sharing and interactions are in general unavoidable: operating systems, guaranteed and protected access

Concurrently running applicatioristeract not only be- . Unif L inal ificati h
cause they eventually share the same underlyysi- hiformity: a single resourcepecilication scheme can
be applied to different time-shared resource typéb

cal resources, but also because of logical requirements_ = ! o
above thephysical layer. Shared display, shared files, tlmellnes_s control. The scheme can be locally optimized
and applied for each resource type.

concurrent access to bank accounts, sharedsdataas
movies and databases amgly some examples of these « Resour ce management transparency: the useof the ex-
shared logicaresources. As a result, critical sections act resource management scheme is hidden frorapghe
which manage these sharkaical resources are un- plication programs and changed transpareadoss dif-
avoidable in the context of multi-tasking and multi- ferent implementations. The implementation of the
threaded systems. Whether thesiical sections are resource management scheme can use, anobiner
organized in client space or in a dedicated server is things, fixed priority schemesuch as rate-monotonic

only a question of convenience and flexibilityth the scheduling [18land deadline-monotonic schedulifig],
time/space distintions coming into play. Anyhasifi- dynamic priority schemes such as earliest-deadline-first
cal sections can be shortened or optimized but in [18], or processor sharing schemasch as PGPS, vir-
general cannot be eliminatéd. tual clocks or WEQ [4]. We demonstrate two vergif-

Memory implications of using a client libratyith a critical ~ ferent schemes for CPU and disandwidth management

section) and a server also need to be considered. Whene¥en thougheach uses the same resource specification
service is implemented as a server, it is relatively ¢y =~ model.

example) to wire downhat server memory for predictable
real-time performance. However, dfients used their own

libraries (with criticalsections), other relatively more com-

plex issues must beddressed. In one case, each client carficceptable performance levels. specific, reservations
have its own copy of the library leading higher memory of differentresource types can be mdependently created
usage. Incontrast, if shared (dynamicallinked) libraries ~ @nd then composedWe use the technique agsource

are used, memory usage is the same as a servegnbut decoupling[36] and management ofrocessor co-

must now beable to ensure that a shared library is wireable.dependency using higher prioritgystem reserves to
provide simultaneous access to CPU resource and

another resource typgmultaneously. We are unaware

o o)) of other OS work where simultaneous accessmm or
In the generatase of this discussion, one should replace the notion of

priority with the notion of 'scheduling attribute’ which may pegorities or more resources is addressed.

reserves with the basic concept remaining the same. * Hard resource reservation: In this resource allocation
10 ock-free protocols exist but seem to heeful only under limited scheme, the usage of a resource c_:aremnaed the al.-

conditions. located amount of the resourewen if the resource is

* Resource composability: We show that multiple
resource types can be guaranteeédhe same time with

idle. While this may sound draconisand wasteful, we . i C
expect that this will be a powerful building block for Oi,1<i<n, O<mtI2D (Z) !ﬁ <1
constructing virtual resources, whieliow untrusted ap- TUoNGg T |Tj
plications to bebuilt and run in their own resource spacein algorithmic form, the completion tim€T; of a reser-
with a pre-determined finite effect ather applications vationt, with a resource allocation can be computed as fol-
at all times. lows using a recurrence relation [10, 39].

Interactions and Disk bandwidth management: The 1. LetV\P:: C.

resource kernel is able tmonitor and control priority ! _ Wk

inversion arising from the interactions betweeal-time 2. Compute/vk’fl = !:10(g_‘g)_

tasks due to theise of common shared services. By ! EHINT,

deliberately introducing priority inversion i controlled 3. If vv}‘*l >D,, CT; := . Skipto Step 6.

fashion, we demonstrate that therengs significant loss .

of disk subsystem throughput for acceptably substantial* If Wil = Wi CT; := k. Skipto Step 6.
ranges ofdisk traffic while guaranteeing timely access to 5 k:=k+ 1. Go to Step 2.

disk bandwidth for real-time and multimedapplica-
tions. Thisis achieved using a nov@lst-in-time disk

6. If CT, < D;, 1; meets its deadline.

scheduling scheme. Guaranteeaccess to disk The completion time test is repeated for all reservations
bandwidth is obtainedt the expense of a relatively small which need to be guaranteed. Even if oegervation will
loss in throughput. miss its deadline, thadmission test will deny the newest

I incoming request.
* Flexibility of resource kernels. Our resource kernel greq

abstractions allow resource usage ke automatically 3. Admission Control Based on Rate-M onotonic
calibrated, and tde portable across different hardware Priority Assignment

platforms. The rate-monotonic priority assignment algorithm is an op-
timal fixed priority algorithm wherD; =T, [18]. Thereser-
6.3. Future Work vations are ordered in descending orbased on their rate-

Our future work will include exploring network bandwidthyonotonic priorities (i.eT; < T.,;). Theadmission control
reservation in conjunction with processor and disker- test use the scheme desclribe(lj in Section 2

vation. Networkbandwidth management hagny implica-
tions in the context of a resource kernel: protocol stagk Admission Control Based on

overhead dominates on tHePU. As a result, network Deadline-Monoctonic Priority Assignment

bandwidth management translattes both network reser- The deadline-monotonic priority assignment algorithm is an
vation and CPU management. The times during which bftimal fixed priority algorithm wheD, < T, [17]. The
network bandwidth and CPU cycles netedbe available oseryations are ordered in descending order besetieir
seem to be fairly limited, but remain to be verified. deadline-monotonic priorities (.®, < D,,). The admis-

The issue of CPU co-dependency needs tadmressed at sion controltest uses the same scheme described in Section
greater length. Additional buffer space between different2,

resource types with hardware buffers aso alleviate the

problem; this is typical of today'sardware systems with References

self-triggered DMA on sound _cards .(SUCh as th?l] R. Abbott and H. Garcia-MolinaScheduling Real-Time Trans-
SoundBlaster 16), and bus-masteringnoulti-master back- ;ionswith Disk Resident Data X Server. TechnicalReport CS-

planes such as the P®Us. Finally, distributed resourcerr-207-89, Department of Computer Science, Princeton University,
reservation imetworked systems will open up another frorFebruary, 1989.

tier of work. [2] Baker, T. P. A Stack-Based Resource Allocation Policy for Real-

Time Processed EEE Real-Time Systems Symposium, Dec., 1990.

= . . [3] Baker, T. Stack-Based Scheduling of Realtime Processesnal
1. Resour ce Specification Notation of Real-Time Systems 3(1):67--100, March 1991.

Let the set oh reservations requiringrocessor reservation
be denoted as,, 1,, [IT] 1, Eachreservatiorr; needs to

obtainC; units of time every; units of time.In addition, the } o)
[5] J. Blazewicz, W. Cellary, R. Slowinski and J. Weglarz. Scheduling

Ci units Qf re_:squrce time must be available at or bdn?"e under Resource Constraints -- Deterministic ModelsAnhals of Opera-
each perlodlc interval separated‘qy tions Research, Volume 7. Baltzer Science Publishers, 1986.

2. Admission Control Usi ng Fixed Priority Policies [6] S. J. Daigle an_d J. K. Strosnider. Disk Schedpling for Multimedia

The reservations are ordered in descending ordeheif Dati‘ Stre%msﬁr?g'”gso‘(thlf? |E Conference on High-Speed Net-

. =Y) - i Multimedia N ing, 1994.

fixed priorities such that fdr= 1 ton-1, priority(®) < T,,;. o oo ultimedia Networking , 199

In mathematical form, a necessary and sufficigandition [D.R Engler M. F. Kaashoek and J. O. Toole, Jr. Exokernel: An
’ Yy Operating System Architecture for Application-Level Resource Manage-

for the schedulability of a set of periodic tasks usingd ment. ACM Symposium on Operating System Principles , December, 1995.
priority scheduling is as follows [14]:

Appendix: Admission Control Schemes

[4] J. C. R. Bennett and H. Zhang. ¥ Worst-case Fair-Weighted
Fair-Queueing. IfProceedings of INFOCOM 96. March,1996.

[8] K. Jeffay, D. L. Stone and F. D. Smith. Kernel Support for Live
Digital Audio and Video. IrProceedings of the Second International
Workshop on Network and Ope rating System Support for Digital Audio
and Video, pages 10-21. November, 1991.

[9] K. Jeffay. Scheduling Sporadic Tasks with Shared Resources in
Hard-Real-Time Systems. Rroceedings of the 13th IEEE Real-Time
Systems Symposium, pages 89-99. IEEE, December, 1992.

[10]
System. The Computer Journal (British Computing Society)
29(5):390-395, October, 1986.

Joseph, M. and Pandya. Finding Response Times in a Real-Timg28]

[26] C. W. Mercer and R. Rajkumar. An Interactive Interface and
RT-Mach Support for Monitoring and Controlling Resource Management.
In Proceedings of the |EEE Real-Time Technology and Applications
Symposium. May, 1995.

[27] A. Molano, K. Juvva and R. Rajkumar. Real-Time Filesystems:
Guaranteeing Timing Constraints for Disk Accesses in RT-MachEHR
Real-Time Systems Symposium. December1997.

Needham, R. and Nakamura, A. An Approach to Real-Time
Scheduling: Is it really a problem for multimedid®e Third International
Workshop on Network and Operating System Support for Multimedia ,
1992.

[29] Nemesis, the kernel: Overview Dickson Reed and Robin Fairbairns,

Editors, May 20, 1997.

[11] Khanna, S., Sebree, M., and Zolnowsky, J. Real-Time Scheduling
in SUnOS 5.0.The Proceedings of USENIX 92 Winter :375-390, 1992.
[12] Klein, M. H., Ralya, T., Pollak, B., Obenza, R. and Harbour, M. G.

A Practitioner’s Handbook for Real-Time Analysis: Guide to Rate-
Monotonic Analysis for Real-Time Systems. Kluwer Academic Publishers,
1993. ISBN0-7923-9361-9.

[13] Lehoczky, J. P. and Sha, L. Performance of Real-Time Bus
Scheduling Algorithms ACM Performance Evaluation Review, Special
Issue Vol. 14, No. 1, May, 1986.

[14] Lehoczky, J. P., Sha, L. and Ding, Y. The Rate Monotonic
Scheduling Algorithm --- Exact Characterization and Average-Case Be-
havior. IEEE Real-Time Systems Symposium, Dec, 1989.

[15] Lehoczky, J. P., Sha, L., Strosnider, J. K. and Tokuda, H. Fixed
Priority Scheduling Theory for Hard Real-Time Systerfiechnical
Report, Department of Statistics, Carnegie Mellon University , 1991.

[16] Lehoczky, J. P. Fixed Priority Scheduling of Periodic Task Sets
with Arbitrary Deadlines.Proceedings of the |[EEE Real-Time Systems
Symposium, Dec., 1990.

[17] Leung, J. Y., and Whitehead, J. On the Complexity of Fixed-
Priority Scheduling of Periodic, Real-Time Taskrformance Evaluation
2(4):237-250, Dec., 1982.

[18] Liu, C. L. and Layland J. W. Scheduling Algorithms for Mul-
tiprogramming in a Hard Real Time EnvironmedACM 20 (1):46 - 61,
1973.

[19] Locke, C. D., Vogel, D. R., Lucas, L. Generic Avionics Software
Specification. Technical Report, Software Engineering Institute, Carnegie
Mellon University , 1990.

[20]
Evaluation of Two New Disk Scheduling Algorithms for Real-Time Sys-
tems. The Real-Time Systems Journal 3:307-336, 1991.

[21]
Continuous Media Storage ServelPr.oceedings of the 3rd International
Workshop on Network and Operating System Support for Audio and Video ,
November, 1992.

[22]
sor Reservation and Dynamic QOS in Real-Time Mdatthe proceedings
of Multimedia Japan 96, April, 1996.

[23]
Communication Protocol Processing in Real-Time Mdcithe proceed-
ings of |EEE Real-time Technology and Applications Symposium, June,
1996.

[24]
High-Performance Networking. FProceedings of the Fourteenth ACM
Symposium on Operating Systems Principles, pages 244-255. December,
1993.

[25]
Reserves for Multimedia Operating SystemsPrioceedings of the |[EEE
International Conference on Multimedia Computing and Systems. May,
1994.

[30] IEEE Standard P1003.4 (Real-time extensions to POS X) IEEE, 345
East 47th St., New York, NY 10017, 1991.

[31] Rajkumar, R.Synchronization in Real-Time Systems: A Priority
Inheritance Approach. Kluwer Academic Publishers, 1991. ISBN
0-7923-9211-6.

[32] R.Rajkumar, C. Lee, J. P. Lehoczky and D. P. Siewiorek. A
QoS-based Resource Allocation ModHEEE Real-Time Systems Sym-
posium , December, 1997.

[33] Sha, L., Rajkumar, R. and Lehoczky, J. P. Task Scheduling in
Distributed Real-Time System®&roceedings of |EEE Industrial
Electronics Conference, 1987.

[34] Sha, L., Rajkumar, R. and Lehoczky, J. P. Priority Inheritance
Protocols: An Approach to Real-Time Synchronizatidechnical Report
(CMU-CSs-87-181), Department of Computer Science, CMU , 1987.

[35] Sha, L., Rajkumar, R. and Lehoczky, J. P. Priority Inheritance
Protocols: An Approach to Real-Time SynchronizatitBEE Transactions
on Computers:1175-1185, September, 1990.

(36]
Scheduling Theory: A Framework for Developing Real-Time Systems.
Proceedings of the |IEEE (journal) , January, 1994.

[37] Sprunt, H.M.B., Sha, L., and Lehoczky, J.P. Aperiodic Task
Scheduling on Hard Real-Time SystenTie Real-Time Systems Journal ,
June, 1989.

[38] John A. Stankovic. Misconceptions about Real-Time Computing.

S. Chen, J. A. Stankovic, J. F. Kurose, D. Towsley. Performance Computer 21(10):10-19, Oct., 1988.

[39] Tindell, K. An Extendible Approach for Analysing Fixed Priority
Hard Real-Time Tasks. TechnicalReport YCS189, Department of Com-

P. Lougher and D. Shepherd. The Design and Implementation of puter Science, University of York, December, 1992.

[40] C. A.Waldspurger and W. E. Weihl. Lottery Scheduling: Flexible
Proportional-Share Resource Managemen®rbteedings of the First
Operating Systems Design and Implementation, pages 1-11. November,

C. Lee and R. Rajkumar and C. Mercer. Experiences with Procest994.

C. Lee and K. Yoshida and C. Mercer and R. Rajkumar. Predictable

C. Maeda and B. N. Bershad. Protocol Service Decomposition for

C. W. Mercer and S. Savage and H. Tokuda. Processor Capacity

Sha, L., Rajkumar, R. and Sathaye, S. Generalized Rate-Monotonic

Table of Contents

1. Motivation for Resource Kernels

1.1. Comparison with Related Work

1.2. Organization of the Paper
2. Designing a Resour ce Kernel

2.1. Design Goals of a Resource Kernel

2.2. An Historical Perspective of our Real-Time Resour ce M anagement M odel

2.3. The Resour ce Reservation Model

2.4. Explicit Resour ce Parameters

2.5. Implicit Resour ce Parameter

2.6. Reservation Type

2.7. System Call Interface to Reservations
3. Processor Resour ce M anagement

3.1. Admission Control

3.2. Tracking Implicit Parameter B

3.3. Performance Evaluation
4. Disk Bandwidth Resour ce M anagement

4.1. Filesystem Bandwidth Specification

4.2. Admission Control

4.3. Scheduling Policy

4.4. The Architecture of the Reserved Filesystem

4.5. Exploiting 'B’: Just-In-Time Disk Scheduling

4.6. Performance Evaluation

4.6.1. Synthetic Workload Behavior with both CPU and Disk Requirements

5. Practical 1ssues

5.1. Using Different Reservations T ogether

5.2. Resour ce Decoupling

5.3. Processor Co-Dependency

5.4." Immediate" or " System" Reservations

5.5. Calibrating an Application’s Requirements

5.6. Portability Of Resour ce Specifications

5.7. Adaptive QoS M anagement
6. Concluding Remarks

6.1. Resour ce Kernels and Related Approaches

6.2. Contributions

6.3. Future Work
Appendix: Admission Control Schemes

1. Resour ce Specification Notation

2. Admission Control Using Fixed Priority Policies

3. Admission Control Based on Rate-Monotonic Priority Assignment

4. Admission Control Based on Deadline-M onotonic Priority Assignment
References

OO UTUUNNOITUARMBADMDNWWNDNE

Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure4-1:

Figure 4-2:
Figure 4-3:

List of Figures
Processor Admission Control Policy Overhead w/ Exact Schedulability Conditions
Behavior of reserved infinite loop threads without unreserved competition
Behavior of reserved infinite loop threads with unreserved competition
Behavior of unreserved infinite loop threadswith unreserved competition
Completion times of reserved threadsin the presence of competing threads
Completion times of unreserved threads with competing threads
Disk Bandwidth consumed (# of disk blocks read) by reserved thread. Earliest
deadline and Just-In-Time reservation schemes are flat and coincide almost com-
pletely.
Execution patterns of Thread 1 and Threadlb 10
Thread 1 Completion Times 10

O©oO~N~NOO O

Table 2-1:
Table 3-1:
Table 3-2:
Table 4-1:

List of Tables
A subset of the reservation system call interface for each resour ce type.
The processor reservation parameters used for Figures 3-2, 3-3and 3-4
The processor reservation parametersused for the experiment of Figures 3-5and 3-6
Scan and EDF real-time filesystem thr oughput comparison

(@R NN Né|

