
Resource Kernels: A Resource-Centric Approach to
Real-Time and Multimedia Systems

Raj Rajkumar, Kanaka Juvva, Anastasio Molano and Shuichi Oikawa
Real-Time and Multimedia Laboratory1

Department of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
{raj+, kjuvva, amolano, shui}@cs.cmu.edu

Abstract

We consider the problem of OS resource management for
real-time and multimedia systems where multiple activities
with different timing constraints must be scheduled concur-
rently. Time on a particular resource is shared among its
users and must be globally managed in real-time and mul-
timedia systems. A resource kernel is meant for use in such
systems and is defined to be one which provides timely,
guaranteed and protected access to system resources. The
resource kernel allows applications to specify only their
resource demands leaving the kernel to satisfy those
demands using hidden resource management schemes. This
separation of resource specification from resource manage-
ment allows OS-subsystem-specific customization by extend-
ing, optimizing or even replacing resource management
schemes. As a result, this resource-centric approach can be
implemented with any of several different resource manage-
ment schemes.

We identify the specific goals of a resource kernel: applica-
tions must be able to explicitly state their timeliness require-
ments; the kernel must enforce maximum resource usage by
applications; the kernel must support high utilization of sys-
tem resources; and an application must be able to access
different system resources simultaneously. Since the same
application consumes a different amount of time on different
platforms, the resource kernel must allow such resource
consumption times to be portable across platforms, and to
be automatically calibrated. Our resource management
scheme is based on resource reservation [25] and satisfies
these goals. The scheme is not only simple but captures a
wide range of solutions developed by the real-time systems
community over several years.

One potentially serious problem that any resource manage-
ment scheme must address is that of allowing access to mul-
tiple resources simultaneously and in timely fashion, a
problem which is known to be NP-complete [5]. We show
that this problem of simultaneous access to multiple resour-
ces can be practically addressed by resource decoupling
and resolving critical resource dependencies immediately.

Finally, we demonstrate our resource kernel’s functionality
and flexibility in the context of multimedia applications
which need processor cycles and/or disk bandwidth.

1. Motivation for Resource Kernels
Example real-time systems include aircraft fighters such as
F-22 and the Joint Strike fighter [19], beverage bottling
plants, autonomous vehicles, live monitoring systems, etc.
These systems are typically built using timeline based ap-
proaches, production/consumption rates [9] or priority-based
schemes, where the resource demands are mapped to
specific time slots or priority levels, often in ad hoc fashion.
This mapping of resources to currently available scheduling
mechanisms introduces many problems. Assumptions go
undocumented, and violations go undetected with the end
result that the system can become fragile and fail in un-
expected ways. We argue for a resource-centric approach
where the scheduling policies are completed subsumed by
the kernel, and applications need only specify their resource
and timing requirements. The kernel will then make internal
scheduling decisions such that these requirements are
guaranteed to be satisfied.

Various timing constraints also arise in desktop and net-
worked multimedia systems. Multi-party video conferenc-
ing, mute but live news windows, recording of live
video/audio feeds, playback of local audio/video streams to
remote participants etc. can go on concurrently with normal
computing activities such as compilation, editing and brows-
ing. A range of implicit timeliness constraints need to be
satisfied in this scenario. For example, audio has stringent
jitter requirements, and video has high bandwidth require-
ments [8]. Disk accesses for compilation should take lower
precedence over disk accesses for recording a live telecast.

Two points argue in favor of resource-centric kernels we
call "resource kernels":

• Firstly, operating system kernels (including microker-
nels) are intended to manage resources such that applica-
tion programs can assume in practice that system resour-
ces are made available to them as they need them. In
real-time systems, system resources such as the disk, the
network, communication buffers, the protocol stack and
most obviously the processor are shared. If one applica-

1This research was supported by the Defense Advanced Research Projects Agency in part under agreement E30602-97-2-0287 and in part under
agreement F30602-96-1-0160. Mr. Molano was funded by a research grant from the Community of Madrid and by the National R&D Program of Spain
under contracts TIC96-0982 and TIC97-0438.

tion is using a large portion of the system resources, then
it implies that other applications get a less portion of the
system resources and consequently can take longer to
execute. In other words, their timing behavior is ad-
versely affected. Letting kernels take explicit control
over resource usage is therefore a logical thing to do to
prevent such unexpected side effects.

• Secondly, our resource model captures the essential re-
quirements of many resource management policies in a
simple, efficient yet general form. The implementation
of the model can actually be done using any one of many
popular resource management schemes (both classical
and recent) without exposing the actual underlying
resource management scheme chosen. User-level
schemes can be used to dynamically downgrade
(upgrade) application quality when new (current)
resource demands arrive (leave). This feature of the
resource model leads to minimal changes from existing
infrastructure while retaining flexibility and offering
many benefits.

Other alternatives to resource kernels include user-centric
and application-centric kernels:

• A user-centric kernel can emphasize multi-user
capabilities, and also track and facilitate the needs of
specific users. Unix in general and Unix filesystems in
particular can be viewed as providing such support. At
the same time, Unix attempted to present and manipulate
all system entities as files. In resource kernels, we adopt
a similar approach and attempt to present all system
resources using a uniform model for guaranteed access.
Our implementation of the resource kernel is orthogonal
to user-centricity, but tighter integration between the two
may be possible. Currently, specific user-level require-
ments must be translated by intermediate layers into
resource demands at the resource kernel interface.

• Application-centric kernels are typically custom execu-
tives with built-in support for the applications they are
intended to serve. As an example, kernels used in tele-
communication switches are application-centric and deal
explicitly with the high-performance, upgrading,
availability, billing and auditing requirements of tele-
communication paths. Conceptually, the notions of
resource kernels to guarantee timely access to resources
can be applied to such kernels as well. For example,
consider a postscript printer. It has an executive running
a postscript interpreter and control of the physical print-
ing operations. Precisely timed control and concurrency
management of downloading new print tasks in such ex-
ecutives can also benefit from the support available in
resource kernels.

1.1. Comparison with Related Work
A wealth of resource management schemes and scheduling
algorithms exist from which one can draw. Our resource
management work builds on and significantly extends es-
tablished real-time scheduling theory and derived processor
reservation work reported in [25]. The work in [25] did not

deal with the management of multiple resource types, con-
current accesses to different resources, explicit timeliness
control, feedback about resource usage, behavioral control
on resource overruns, management of interactions between
resource users, and considerations of portability, com-
patibility and automation. In brief, our resource manage-
ment scheme supports the abstractions behind real-time
priority-based scheduling for periodic activities, and service
schemes for aperiodics in that framework.

Some of our goals (such as resource centricity and por-
tability) are similar to those of Microsoft Research’s Rialto
kernel among others. The reservation model also has its
counterparts in network reservation protocols as used in
ATM and RSVP. However, the operating system problem
seems more complex in one sense since inherently different
resource types must be dealt with, while networks essen-
tially deal with one type (namely network packets). In
another sense, network reservations must be homogeneous,
scalable and efficient, making its realization harder in a dif-
ferent sense.

Despite its origins in real-time scheduling theory, we expect
our resource management model to be compatible with
resource management schemes with their origins in net-
works such as proportional fair-sharing schemes such as
PGPS, WF2Q, virtual clocks and lottery scheduling. The
notion of fairness has for long been deemed to be anti-thetic
to real-time systems and the management of timeliness [38].
Weighted allocation schemes such as proportional fair-
sharing, however, can still be applied to the real-time model.
This can be done by dynamically recomputing the weights
so asnot to be proportional or fair, but instead to obtain a
fixed share of a resource when new requests arrive or cur-
rent requests complete. Our scheme employs a different
period for each real-time activity, and guarantees a "share"
of that period to the activity. As a result, the dynamic
recomputing of weights in a proportional fair-share scheme
can be viewed as a special case of our model as having a
single (small) fixed period for all resource allocations. The
primary difference that we see is that our work advances
system capabilities to include non-traditional resources such
as disk bandwidth that can be used in conjunction with
processor scheduling.

Finally, Blazewicz et al. [5] have shown that the problem of
scheduling activities which need multiple resources simul-
taneously and have timeliness constraints is NP-complete.
In our work, we therefore strive for practical and acceptable
alternatives which can guarantee access to different resource
types.

1.2. Organization of the Paper
The rest of this paper is organized as follows. In Section 2,
we present the goals to be satisfied in designing a resource
kernel, and based on well-established principles of real-time
resource management, defines a resource reservation model
and its parameters. In Section 3, we describe the implemen-
tation of our resource reservation model in the context of
processor scheduling, and evaluate it. In Section 4, we
detail the implementation of the resource reservation model
in the context of disk scheduling, and evaluate those
schemes. In Section 5, we address other issues that arise in

the context of using the resource kernel in practice including
calibrating an application’s resource demands automatically
and in portable ways. Finally, in Section 6, we conclude
with some remarks outlining our research contributions and
future work.

2. Designing a Resource Kernel
The challenges for a resource kernel are many. We charac-
terize these challenges below as a set of goals that resource-
centric kernels should aim to satisfy.

2.1. Design Goals of a Resource Kernel
G1. Timeliness of resource usage. An application using
the resource kernel must be able to request specific resource
demands from the kernel. If granted, the requested amount
of resources must be guaranteed to be available in timely
fashion to the application. An application with existing
resource grants must also be able to dynamically upgrade or
downgrade its resource usage (for adaptation and graceful
degradation purposes). This implies that the kernel must
support an admission control policy for resource demands.
Conventional real-time operating systems do not provide
any such admission control mechanisms, even though an
equivalent feature (without enforcement capabilities) could
be built at user level.

G2. Efficient resource utilization. The resource kernel
must utilize system resources efficiently. For example, a
trivial and unacceptable way to satisfy G1 would be to deny
all requests for guaranteed resource access. In other words,
if sufficient system resources are available, the kernel must
allocate those resources to a requesting application. This
goal implies that the admission control policy used by the
resource kernel have provably good properties. Such proof
may be analytical or empirical but our version of the
resource kernel provides analytically proven properties. It
must be noted that this goal is subordinated to G1, in that
guaranteed resource access is the primary goal, and efforts
to improve efficiency and throughput cannot happen at the
expense of the guarantees.2 Traditional real-time operating
systems leaves the matter completely open to the
developers, each of whom must use their own schemes to
obtain better utilization for their applications.

G3. Enforcement and protection. The resource kernel
must enforce the usage of resources such that abuse of
resources (intended or not) by one application doesnot hurt
the guaranteed usage of resources granted by the kernel to
other applications. Traditional real-time operating systems
such as those compliant with the POSIX Real-Time Exten-
sions [30] donot satisfy this goal.

2This emphasis on guarantees and timeliness may understandably seem to
bias the resource kernel away from multimedia systems. (In real-time
systems, missed deadlines may potentially lead to system failure, and
possible loss of life and/or property). However, we believe that as
multimedia applications on desktops and internet appliances mature, users
will come to expect smooth video frame changes, jitterless audio, and
synchronized audio and video. It is to be noted that VCR/TV/satellite
technologies have been delivering such guaranteed timing behavior for
years. It seems rather illogical to expect anything less from computers at
least when a user is willing to pay for it, particularly if virtual reality
environments must seem real, or for applications such as tele-medicine and
tele-surgery.

G4. Access to multiple resource types. The resource kernel
must provide access to multiple resource types such as
processor cycles, disk bandwidth, network bandwidth, com-
munication buffers and virtual memory. The communica-
tion protocol stack on the system may potentially be viewed
as a resource type as well, but in most systems, they use the
processor and hence can be managed by appropriate
scheduling and allocation of processor cycles. For example,
see [23]. Traditional real-time operating systems provide
mechanisms that canonly be used to guarantee access to
processor cycles.

G5. Portability and Automation. The absolute resource
demands needed for a given amount of work can unfor-
tunately vary from platform to platform due to differences in
machine speed. For example, a signal processing algorithm
can take 10ms on a 200MHz Pentium but take 20ms on a
100MHz Pentium. Ideally, applications must have the
ability to specify their resource demands in a portable way
such that the same resource specification can be used on
different platforms. In addition, there must exist means for
the resource demands of an application to be automatically
calibrated.

G6. Upward compatibility with fielded operating
systems. A large host of commercial and proprietary real-
time operating systems and real-time systems exist. Many
of these systems employ a fixed priority scheduling policy
[12] to support provide real-time behavior, and the rate-
monotonic [18] or deadline-monotonic [17] priority assign-
ment algorithm is frequently used to assign fixed priorities
to tasks. Basic priority inheritance [33] is used on
synchronization primitives such as mutexes and semaphores
to avoid the unbounded priority inversion problem when
tasks share logical resources. For example, Solaris [11],
OS/2, Windows, Windows NT, AIX, HP/UX all support the
fixed priority scheduling policy. The Java virtual machine
specification also does. Priority inheritance on semaphores
is supported in all these OSs (except Windows NT). POSIX
real-time extensions, Unix-derived real-time operating sys-
tems such as QNX and LynxOS, and other proprietary real-
time operating systems such as pSOS, VxWorks, VRTX,
OS/9000, and iRMX support priority inheritance and fixed
priority scheduling. To be accepted, the resource kernel
must be upward compatible with these schemes. The
priority inheritance scheme is also used or being considered
for use in multimedia-oriented systems [28, 40].

Goals G1-G4 are integral to resource kernels, while goals
G5 and G6 are for practicality and convenience. Goals G1,
G2, G5 and G6 can be satisfied by appropriate extensions to
traditional real-time operating systems which support fixed
priority CPU scheduling. For example, a user-level server
can perform admission control using a resource specification
model similar to ours, and assign fixed priorities based on
the resource parameters used by our model. However, in
order to satisfy goals G3 and G4, the internals of these
operating systems need to be modified in ways similar to
our resource kernel design and implementation.

2.2. An Historical Perspective of our Real-Time
Resource Management Model

Many deployed real-time systems have been built and
analyzed using the fixed priority periodic task model first
proposed by Liu and Layland [18]. This model employs two
parameters, a maximum computation timeC needed every
periodic interval T for each activity that needs to be
guaranteed. The rate-monotonic scheduling algorithm
[18] assigns fixed priorities3 based only onT and is an
optimal fixed priority scheduling algorithm. Instead of
using priorities, if the {C, T} model is directly used in a
real-time system, the assumptions underlying the Liu and
Layland model can be monitored and enforced at run-time.
Following this strategy, the "aperiodic server" model
[13, 37] uses artificially introducedC andT values for new
"server tasks" which can then service aperiodic tasks within
a periodic setting. This bounded periodic usage was
adopted by the processor reservation work carried out in
[25].

We build on this proven trend by identifying, designing,
implementing and evaluating significant kernel extensions
to the Liu and Layland work along multiple dimensions:

• using arbitrary deadlines [16, 17] to obtain fine-grained
control timeliness of concurrent activities,

• applying the priority inheritance solutions explicitly to
the unbounded priority inversion problem when activities
share resources [2, 31, 34],

• dealing with new resource types such as disk scheduling,
a problem which has not been studied in depth in the Liu
and Layland model, and

• combining the scheduling of multiple resources into a
single common framework observing that the problem of
scheduling multiple resources with deadlines is known to
be an NP-complete problem [5].

2.3. The Resource Reservation Model
The resource kernel gets its name from its resource-
centricity and its ability of the kernel to

• apply a uniform resource model for dynamic sharing of
different resource types,

• take resource usage specifications from applications,

• guarantee resource allocations at admission time,

• schedule contending activities on a resource based on a
well-defined scheme, and

• ensure timeliness by dynamically monitoring and enforc-
ing actual resource usage,

The resource kernel attains these capabilities by reserving
resources for applications requesting them, and tracking out-
standing reservation allocations. Based on the timeliness
requirements of reservations, the resource kernel prioritizes
them, and executes a higher priority reservation before a
lower priority reservation if both are eligible to execute.

3A lower T yields a higher priority.

2.4. Explicit Resource Parameters
Our resource reservation model employs the following
parameters: computation time C every T time-units for
managing the net utilization of a resource, a deadlineD for
meeting timeliness requirements, a starting time S of the
resource allocation, andL, the life-time of the resource al-
location. We refer to these parameters, {C, T, D, S andL}
as explicit parameters of our reservation model. The seman-
tics are simple and are as follows. Each reservation will be
allocatedC units of usage time every T units of absolute
time. TheseC units of usage time will be guaranteed to be
available for consumption beforeD units of time after the
begining of every periodic interval. The guarantees start at
time S and terminate at timeS + L.

2.5. Implicit Resource Parameter
If various reservations were strictly independent and have
no interactions, then the explicit resource parameters would
suffice. However, shared resources like buffers, critical sec-
tions, windowing systems, filesystems, protocol stacks, etc.
are unavoidable in practical systems. When reservations
interact, the possibility of "priority inversion" arises. A
complete family of priority inheritance protocols [31] is
known to address this problem. All these protocols share a
common parameterB referred to as the blocking factor. It
represents the maximum (desirably bounded) time that a
reservation instance must wait for lower priority reser-
vations while executing. If itsB is unbounded, a reservation
cannot meet its deadline. The resource kernel, therefore,
implicitly derives, tracks and enforces the implicitB
parameter for each reservation in the system. Priority (or
reservation) inheritance is applied when a reservation
blocks, waiting for a lower priority reservation to release
(say) a lock. As we shall see in Section 4.5, this implicit
parameterB can also be used to deliberately introduce
priority inversion in a controlled fashion to achieve other
optimizations.

2.6. Reservation Type
When a reservation uses up its allocation ofC within an
interval ofT, it is said to bedepleted. A reservation which
is not depleted is said to be anundepleted reservation. At
the end of the current intervalT, the reservation will obtain a
new quota ofC and is said to bereplenished. In our reser-
vation model, the behavior of a reservation between deple-
tion and replenishment can take one of three forms:

• Hard reservations: a hard reservation, on depletion, can-
not be scheduled until it is replenished. While appearing
constrained and very wasteful, we believe that this type
of reservation can act as a powerful building block model
for implementing "virtual" resources, automated calibra-
tion, etc.

• Firm reservations: a firm reservation, on depletion, can
be scheduled for execution only if no other undepleted
reservation or unreserved threads are ready to run.

• Soft reservations: a soft reservation, on depletion, can be
scheduled for execution along with other unreserved
threads and depleted reservations.

2.7. System Call Interface to Reservations

System Call Description

Create Create a reservation port

Request Request resource on reservation port

Modify Modify current reservation parameters

Notify Set up notification ports for resource
expiry messages.

Set
Attribute

Set attributes of reservation (hard, firm
or soft reservation)

Bind Bind a thread to a reservation.

GetUsage Get the usage on a reservation (accu-
mulated or current) .

Table 2-1: A subset of the reservation system call interface
for each resource type.

Our resource reservations arefirst-class entities in the
resource kernel. Hence, operations on the reservations must
be invoked using system calls. A select subset of the system
call interface for the resource reservation model is given in
Table 2-1. A reservation modification call allows an exist-
ing reservation to be upgraded or downgraded. If the
modification fails, the previous reservation parameters will
be restored. In other words, if an application cannot obtain
higher resources because of system load, it will at least
retain its previous allocation. A notification registration in-
terface allows the application to register a port to which a
message will be sent by the resource kernel each time the
reservation is depleted. A binding interface allows a thread
to be bound to a reservation. More than one thread can be
bound to a reservation. Query interfaces allow an applica-
tion to obtain the current list of reservations in the system,
the recent usage history of those reservations (updated at
their respectiveT boundaries), and the usage of a reservation
so far in its currentT interval.

3. Processor Resource Management
In this section, we shall discuss and evaluate our implemen-
tation of the resource reservation model for the processor
resource.

3.1. Admission Control

Description
Overhead

(µs)

Processor admission control with 1 reservation 25

Processor admission control with 10 reservations 120

Processor admission control with 20 reservations 195

Processor reservation creation
(excluding admission control)

150

Figure 3-1: Processor Admission Control Policy
Overhead w/ Exact Schedulability Conditions

Our processor reservation scheme employs a fixed priority
scheme due to its widespread popularity (as mentioned in
the description of goal G6 in Section 2.1). In other words,
each reservation is assigned a fixed priority, which is equal
to its periodT or deadlineD, depending upon whether a

rate-monotonic or a deadline-monotonic scheme is used
respectively. Our admission control policy doesnot employ
(oft-used) static utilization bounds (e.g as given in [18])
since they can be very pessimistic in nature [14]. Instead,
we use an exact schedulability condition which provides the
best admission control for a given set of real-time threads.
This algorithm is described in detail in the Appendix (Sec-
tion 2). The algorithm, being a complex non-linear function
of the thread periods, their relationships and their computa-
tion times, does not have a standard degree of complexity.
However, it is easily coded and can be computed efficiently.
The computational cost of the scheme for a wide range of
thread counts is shown in Figure 3-1. As can be seen, the
overhead is acceptable. It is also incurred only when a
thread requests a new reservation (or upgrades an existing
reservation).

3.2. Tracking Implicit Parameter B
When a lower priority reservation blocks a higher priority
reservation4, the former inherits the reservation (and there-
fore its priority). When the higher priority reservation
finally unblocks, the inheritance is revoked. However, the
duration for which the inheritance was in place is priority
inversion. The resource kernel tracks and accumulates the
duration of priority inversion during a reservation’sT. If it
exceeds the maximumB that can be tolerated by that reser-
vation, a message is sent to the reservation’s notification
port.

3.3. Performance Evaluation

Reservation
 Type

Initial Reservation Upgraded to Doungraded to

Ci
(ms)

Ti
(ms)

Di
(ms)

Ci/
Ti

Ci
(ms)

Ti
(ms)

Di
ms)

Ci/Ti
Ci

(ms)
Ti

(ms)
Di
ms)

Ci/Ti

Hard 8 80 60 0.1 12 80 60 0.15 4 80 60 0.05

Firm 15 80 70 0.19 19 80 70 0.24 11 80 70 0.14

Soft 20 80 80 0.25 24 80 80 0.3 20 80 80 0.25

Table 3-1: The processor reservation parameters used
for Figures 3-2, 3-3 and 3-4

We now evaluate the processor reservation scheme by run-
ning different workloads with and without the use of reser-
vations. All our experiments use a PC using a 120MHz
Pentium processor with a 256KB cache and 16MB of RAM.
We illustrate two basic points in these experiments:
1. the nature of the three types of reservations, and

2. the flexibility to upgrade and downgrade different
reservations. dynamically.

In the experiments of Figures 3-2 and 3-3, three threads
running simultaneously in infinite loops are bound to the
three reservations listed in Table 3-1. In the experiment of
Figure 3-2, only these three threads are running. In contrast,
in the experiment of Figure 3-3, many other unreserved
threads in infinite loops are also running in the background
and competing for the processor. The behavior of the three
types of reservations is illustrated between these two figures.

4This terminology means that a thread bound to a lower priority reser-
vation is blocking a thread bound to a higher priority reservation.

(a)

CPU Utilization of HARD reserve w/o Competition

Hard

Utilization

Seconds-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00

(b)

CPU Utilization of FIRM reserve w/o Competition

Firm

Utilization

Seconds-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00

(c)

CPU Utilization of SOFT reserve w/o Competition

Soft

Utilization

Seconds-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00

Figure 3-2: Behavior ofreserved infinite loop
threadswithout unreserved competition

(a)

CPU Utilization of HARD reserve w/ Competition

Hard

Utilization

Seconds-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00

(b)

CPU Utilization of FIRM reserve w/ Competition

Firm

Utilization

Seconds-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00

(c)

CPU Utilization of SOFT reserve w/ Competition

Soft

Utilization

Seconds-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00

Figure 3-3: Behavior ofreserved infinite loop
threadswith unreserved competition

CPU Utilization with unreserved threads

Previously Hard

Previously Firm

Previously Soft

Utilization

time (seconds)-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00

Figure 3-4: Behavior ofunreserved infinite loop
threads with unreserved competition

• The first reserved thread is bound to a hard reservation
and should not consume more than its granted utilization
which is initially 10%, explicitly raised to 15% at time
10, and then explicitly dropped to 5% at time 20. As can
be seen in (a), this thread, despite running in an infinite
loop and the presence of many competing threads, ob-
tains exactly this specified usage inboth Figures 3-2 and
3-3.

• The second reserved thread is bound to a firm reser-
vation, and is allocated 19% of the CPU initially,
upgraded to 24% at time 10, and then downgraded to
14% at time 20. In Figure 3-2-(b), when there is no
unreserved competition, this thread obtains a minimum
of its granted utilization. In addition, it obtains "spare"
idle cycles from the processor since there are no un-
reserved competing threads. However, in Figure 3-3-(b),
when there isalways unreserved competition, this thread
obtains only its granted utilization. Thus, as intended, a
firm reservation behaves like a hard reservation when the
processor isnot idle, and like a soft reservation when idle
processor cycles are indeed available.

• The third reserved thread is bound to a soft reservation,
which is allocated 25% initially, upgraded to 30% at time
10, and then downgraded to 25% at time 20. A soft
reservation can compete for cycles left behind by any
threads with currently undepleted reserves. As a result,
this thread obtains more cycles than its granted utiliza-
tion in both Figures 3-2-(c) and 3-3-(c). It must be noted
that the thread obtains a minimum of its granted utiliza-
tion during all its instances. It can also be seen that this
thread obtains more processor cycles in Figure 3-2 since
it competes only with one thread bound to a firm reser-
vation.

It must be recalled that the three threads of Figures 3-2 and

3-3 are running simultaneously. The completion times of
this same set of threads (with the background competition of
Figure 3-3) when run without using any reservations are
plotted in Figure 3-4. The same threads which behave ex-
tremely predictably in Figure 3-3 now exhibit an enormous
amount of seemingly random and practically unacceptable
unpredictability. This demonstrates that our resource
management scheme works as expected; without the
scheme, resource usage is not predictable.

Ci
(ms)

Ti
(ms)

Di
(ms)

Ui=(Ci / Ti)

5 20 10 25%

10 40 30 25%

10 60 45 16.66%

Table 3-2: The processor reservation parameters used
for the experiment of Figures 3-5 and 3-6

Completion Times of reserved threads

Period=20 thread

Period=40 thread

Period=60 thread

completion time (ms)

time (seconds)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

0.00 0.50 1.00 1.50 2.00

Figure 3-5: Completion times of reserved threads
in the presence of competing threads

We now run another experiment where each thread imposes
only finite demands, but the completion times of these
demands can be predictable only with explicit resource
management. The reservation parameters used for this ex-
periment are listed in Figure 3-2. Note that the deadlines are
substantially smaller than the reservation periods giving
finer grained control over timeliness. One thread for each of
the three reservations is created with the same period and
(slightly less) computation time as its corresponding reser-
vation. When using reservations in our resource kernel, the
completion times for each of these threads as they execute
with their different periods was time-stamped. The cor-
responding results are plotted in Figure 3-5. As can be seen,
all the three threads complete their executions well ahead of
their deadlines. Thread 2 also has a constant completion

Completion Times when unreserved

Period=40 thread

Period=20 thread

Period=60 thread

completion time (ms) x 103

time (seconds)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.00 5.00 10.00 15.00

Figure 3-6: Completion times of unreserved threads
with competing threads

time despite its lower priority because of its harmonicity
with thread 1. The behavior of the completion times when
no reservations are used is depicted in Figure 3-6. As can be
seen, the same threads have widely varying completion
times and also miss their deadlines rather frequently.

To summarize, the resource kernel provides a guaranteed
slice of processor resources to applications independent of
the behavior of other applications (including execution in
infinite loops). Processor cycles that are idle can also be
selectively allocated to running tasks.

4. Disk Bandwidth Resource Management
Traditional real-time systems have largely avoided the use
of disks. This is in part because they may be relatively slow
for some real-time applications. However, many real-time
applications can benefit from the use of disks to store and
access real-time data (such as real-time database applica-
tions). Unfortunately, the use of a disk can (a) introduce
unpredictable latencies, and even worse (b) the disk access
requests must now be managed in conjunction with the
processor scheduling. On the processor side, fixed priority
algorithms allow a mix of tasks with different periodicity,
and hence the disk subsystem must do too. This problem
has not been studied extensively partly because the multiple
resource problem with deadlines is known to be NP-
complete [5]. Some exceptions can be found in
[1, 20, 21] but their resource specification models and
metrics are very different from the ones we study. The
closest scheduling model to ours is found in [6] but its ap-
proach is one of using fixed priority scheduling, minimizing
blocking through the use of "chunking" and using a static
task set. Also, only simulation studies were carried out. In
contrast, we use dynamic priority scheduling, exploit block-
ing instead of minimizing it and evaluate an implementation
within our resource framework. In addition, we deal with
processor needs that must be dealt with concurrently .

Desktop multimedia systems also need to read from (or
write to) disk storage relatively large volumes of video and
audio data. In addition, these streams represent continuous
media streams, and must therefore be processed by the disk
subsystem in real-time. In other words, it would be prac-
tically very useful in practice if disk bandwidth can also be
guaranteed in addition to managing processor cycles.

In this section, we present a simplistic disk scheduling algo-
rithm based on earliest deadline scheduling. We then im-
prove the algorithm by exploiting "slack" in the reservations
to obtain a hybrid of earliest deadline scheduling and a tradi-
tional scan algorithm. Our evaluations of these schemes that
guaranteed disk bandwidth reservation can be obtained at
only a small loss of system throughput.

4.1. Filesystem Bandwidth Specification
Our resource specification model for disk bandwidth is iden-
tical to that of processor cycles. In other words, a disk
bandwidth reservation must specify a start timeS, a process-
ing timeC to be obtained in every intervalT before a dead-
line of D. The processing timeC can be specified as # of
disk blocks (as a portable specification) or in absolute disk
bandwidth time in native-platform specification.

4.2. Admission Control
Our simplest disk head scheduling scheme employs the ear-
liest deadline scheduling algorithm [18]. The earliest dead-
line scheduling algorithm is an optimal scheduling algorithm
for our scheduling model and can guarantee 100% resource
utilization under ideal conditions. In other words, a higher
priority reservation must be able to preempt a lower priority
preemption preemptively, andDi =Ti. However, instan-
taneous preemptions are not possible in disk scheduling. An
ongoing disk block access must complete before the next
highest priority disk block access request can be issued.
This introduces a blocking (priority inversion) factor of a
single filesystem block access (as per [35]). Also, whenDi
< Ti, the required earlier completion time (of Ti − Di, must
be added to the blocking factor. A detailed discussion of
this admission control policy is beyond the scope of this
paper and can be found in [27].

4.3. Scheduling Policy
Instances of a disk bandwidth reservation become eligible to
executeevery Ti units (at timesSi, Si + Ti, Si + 2Ti, Si + 2Ti,
⋅ ⋅ ⋅). Consider an instance which arrives at timeSi + nTi.
This instance has a deadline ofSi + nTi + Di. Similarly, all
instances of all outstanding disk bandwidth reservations
have corresponding deadlines. After each disk block access
is completed, the disk scheduler makes another scheduling
decision. It picks the next ready reservation instance with
the earliest deadline and issues a disk access command cor-
responding to that instance’s next disk access request. If
there are no pending requests, the disk remains idle.

4.4. The Architecture of the Reserved Filesystem
The architecture of the reserved filesystem follows a tradi-
tional scheme. AReal-Time File Server running on top of
our resource kernel (based on the RT-Mach microkernel)
manages the reserved real-time filesystem. RT-FS has mul-
tiple worker threads which receive and process filesystem

access requests from real-time clients. Each worker thread
stores the incoming request it is processing into a common
io-request queue. The worker thread responsible for issuing
the current disk block access waits for its completion. It
then awakens, and determines the next request based on the
scheduling policy above. If the next request corresponds to
another worker thread, that thread is signaled. Else, the
worker thread continues to service its remaining disk access
requests, if any.

4.5. Exploiting ’B’: Just-In-Time Disk Scheduling
The earliest deadline disk scheduling described above
blindly picks the next block with the earliest deadline ir-
respective of the current position of the disk head. Since the
physical movement of the disk head and the disk’s rotational
latencies constitute significant durations of time, such
dynamic scheduling can result in significant disk subsystem
throughput reductions particularly under heavy disk traffic.
The reductions can be directly attributed to the time wasted
by the disk head moving from one end to another and the
disk’s rotational time. In summary, the deadines are
preferred over a block’s physical location.

Traditional scan algorithms, in contrast, re-order the disk
request queue such that the block closest to the current head
position (in the direction of movement) is accessed next. As
a result, a disk request which just arrived can be serviced
before another disk request which has been waiting for a
long time just because the latter is farther away from the
head position. To summarize, the physical block location is
favored over timeliness.

The earliest deadline scheduling algorithm and the scan al-
gorithm are therefore at odds with one another. Fortunately,
a hybrid scheme which can obtain all the benefits of the
earliest deadline scheduling algorithm and at least part of the
benefits of the scan algorithm is possible. In priority-driven
scheduling, higher priority activities preempt lower priority
activities. Since both lower and higher priority activities
must be schedulable in an admission-controlled system,
higher priority activities typically complete well ahead of
their deadlines. In other words, such higher priority ac-
tivities have a good amount of "slack" in their completion
times. Based on this observation, we present a new algo-
rithm we call "Just-in-time" disk scheduling. This algorithm
exploits the slack available to higher priority tasks to
schedule accesses of other disk blocks which are closer to
the current head position.5

A brief description of the just-in-time disk scheduling algo-
rithm is as follows. The maximum "slack" available to each
disk reservation is computed whenever a new request is ad-
mitted (or an existing reservation is deleted). At run-time, if
the current slack of higher priority reservations is non-zero,
another unreserved (or lower priority reserved) request can
be scheduled if closer to the disk head. If slack is stolen, the
slack of higher priority reservations is reduced by one. This

5Such "slack-stealing" has been done in the context of processor schedul-
ing theory in order to provide better response to aperiodic activities [15].
The optimization, cost functions and implementation tradeoffs seem to be
different for the processor and the disk, however.

process is then repeated. If the slack of a high priority
reservation goes to zero, it will be serviced independent of
its location. The detailed description of the just-in-time al-
gorithm can be found in [27].

4.6. Performance Evaluation
The capability of the disk bandwidth reservation scheme in
our resource kernel to satisfy demands on disk bandwidth is
illustrated in Figure 4-1. One disk bandwidth reservation of
12 disk blocks every 250ms was requested in the presence
of other unreserved accesses to the disk. As can be seen
from the plot, this demand is satisfied by both the earliest
deadline scheme and the just-in-time scheme; in fact, both
lines are flat and coincide almost completely in the plot.
However, the scan algorithm attempts to optimize disk
throughput and pays for it bynot delivering the needed
throughput of 12 blocks every 250ms. As a matter of fact,
the bandwidth consumption varies widely.6

Disk Bandwidth Consumption

Earliest Deadline

Just-In-Time

Scan

of disk blocks accessed each period

time (* 250 ms)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

16.00

17.00

18.00

0.00 10.00 20.00 30.00 40.00 50.00

Figure 4-1: Disk Bandwidth consumed (# of disk blocks
read) by reserved thread. Earliest deadline and
Just-In-Time reservation schemes are flat and

coincide almost completely.

We also imposed heavy disk traffic conditions and measured
the throughput obtained under the scan and earliest deadline
algorithms. This is shown in Table 4-1. As can be seen, the
earliest deadline algorithm obtains only about 10% less
throughput than the scan algorithm. This is the price to be
paid for the predictable and guaranteed disk bandwidth ob-
tained by the earliest deadline algorithm (as shown in Figure
4-1).

6The pattern is more dramatic in a zoomed out view with the x-axis
ranging upto 400 periods, but the lines/points are not clearly legible in a
relatively small black-and-white graph.

Requested
throughput

(KB/s)

Throughput
 with Scan

(KB/s)

Throughput
for Earliest

Deadline
Scheduling

(KB/s)

Throughput
Degradation

 (%)

1158.6 856.36 764.88 10.68%

Table 4-1: Scan and EDF real-time filesystem
throughput comparison

4.6.1. Synthetic Workload Behavior with both CPU and
Disk Requirements

We next imposed a synthetic workload to determine the
completion times of disk access requests, and to study the
drop in disk throughput when the Scan policy is replaced
with a policy which attempts to satisfy timing constraints in
preference to enhancing disk throughput.

As illustrated in Figure 4-2, the real-time workload tested
consists of two threads,Thread 1 andThread 1b. Thread 1
reads periodically from disk and copies all the data into
buffer A, while Thread 1b processes data previously stored
in buffer B. At the end of the period, there is a buffer switch
and the role of both buffers is interchanged. Buffers A and
B have the same size. We bound disk bandwidth and CPU
reserves toThread 1, and a CPU reserve toThread 1b, and
traced the execution in terms of completion times, deadline
misses and disk utilization.Thread 1 makes use of rela-
tively little cpu time and it sleeps till the beginning of the
next period to invoke a new read operation. Thread 1b
processes the data previously stored in the buffer. Both
Thread 1 and Thread 1b have a period of 250 ms. Also,
Thread 1 reads 44 KBytes during each of its instances, and
has a deadline of 162ms for completing its reads. Note that
this deadline is shorter than its period of 250ms, forcing a
stringent test for the filesystem.Thread 1b is offset from
Thread 1 by 162 ms and has a deadline of 88ms.

T1 T1

...

Cdisk Ccpu1

...

T1 T1

...

Ccpu2

...

Ccpu2

thread_1

thread_1b

Figure 4-2: Execution patterns of
Thread 1 andThread1b

Six periodic threads each with a different period (varying
from 300ms to 640ms) and a different read-access load on
the disk (varying from 8 KBytes to 200 KBytes per periodic
instance of the thread) were introduced as competing threads
without any reserved capacity on either the CPU or the disk
bandwidth. We ran this workload for a duration of 100
seconds and measured the completion times of each periodic
instance, and the total disk bandwidth consumed. The
completion times are illustrated in Figure 4-3.

If we use EDF/EDF+JIT without reserving the CPU there

(a)

EDF with CPU Reserves
ms x 103

x T (250 ms)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.00 100.00 200.00 300.00 400.00

(b)

SCAN with CPU Reserves
ms x 103

x T (250 ms)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.00 50.00 100.00 150.00 200.00 250.00

Figure 4-3: Thread 1 Completion Times

are some deadlines misses (2 out of 400: periods 88 and
258). In these cases the task finished after 162ms (but
never after the period of 250ms). These two deadline mis-
ses are due to the fact that our filesystem (extension of the
Berkeley Fast FileSystem) does not allocate blocks con-
tiguously on disk. So relatively high interblock seek times
out of the cylinder group may happen from time to time
even with requests for successive blocks within a file from
the same thread. This can happen for each 1 MB of filesys-
tem data according to the Berkeley FFS allocation algorithm
and can lead to potential deadline misses. Accounting for
the worst-case interblock seek times in the admission con-
trol test would avoid this problem, but can lead to extremely
low guaranteed disk throughput. Thus, not withstanding our
admission control test, some deadlines can be missed.
However, as can be seen from our experiments, the deadline
misses are rather infrequent. Conversely, in the Scan case

there is no time to run the needed 400 disk accesses and
only 248 accesses are completed within the experiment
duration. The completion times are nearly always greater
than the period itself (> 250ms) and sometimes much
greater. This shows that EDF w/ CPU reserves consistently
meets the timeliness constraints of the real-time application
accessing the disk.

Disk Throughput: The total disk bandwidth consumed in
the above experiment was 16,464 KBytes with the EDF and
CPU reserve policy, and 17,750 KBytes with the Scan
policy. This represents only a performance throughput loss
of 7.25%. In return, however, the timing constraints and
periodic bandwidth requirements are satisfied with the
EDF/CPU reserves policy, while they are dramatically un-
satisfied with the Scan policy.

5. Practical Issues

5.1. Using Different Reservations Together
Consider a video display application which reads a video
movie from the local disk and displays it on the screen. The
movie is long enough that it does not fit into memory. As a
result, subsequent video frames must be read from the disk
while frames already read into a double buffer are being
played on the screen. In this case, the video display algo-
rithm must not only be scheduled on the CPU (where it can
also do decompression or special signal processing) but also
obtain guaranteed disk bandwidth to display the movie and
its audio track without user-perceptible jitter.

The most straightforward way of approaching this problem
is as follows: the application consists of a single thread
which binds itself to a processor reservation and a disk
bandwidth reservation with the same period, start time and
appropriate computation times to satisfy the application’s
needs. There can be other threads in the system which use
other combinations of resources (such as the processor and
network bandwidth). Each of these reservations need to
satisfy their associated deadlines given by the parameterD.
However, it is known that the problem of scheduling con-
current tasks on multiple resources with timeliness con-
straints is NP-complete [5]. As a result, one faces the
dilemma of finding a practical acceptable solution, since
finding an optimal solution to the problem is very imprac-
tical. We address this problem next.

5.2. Resource Decoupling
Since simultaneous access to multiple resources is the
problem we face, a natural solution to the practical dilemma
one faces is to try to decouple the use of different resources,
which can be used independent of one another. An end-to-
end timing constraint problem is normally intractable as a
single big problem, and is hence solved as a series of small
problems where each problem only spans a single resource.
For example, in an audio-conferencing application [23], the
first pipeline stage occurs in the sound card which transfers
data to the processor usingperiodically self-initiated DMA
or multi-master bus transactions. A 2nd pipeline stage oc-
curs on the processor to transmit the data and the next stage
occurs in the network. The end-to-end delay for audio is the
sum of the delays encountered in each of the audio pipeline
stages. We refer to this strategy where each of the resources

involved are scheduled independent of one another as
resource decoupling. When resources are decoupled, for ex-
ample, the completion time test of Section 2 can be applied
to each resource independently.

In the audio-conferencing application, the only coupling be-
tween the pipeline stages lies actually at the interface be-
tween stage 2 and the network (or the network and stage 4).7

When the processor is ready to send out packets, the net-
work must be able to transmit them. Memory buffers on the
network interface card provide some decoupling by storing
packets that the processor is ready to transmit, but the net-
work is not ready to accept yet. We address this problem
next.

5.3. Processor Co-Dependency
A phenomenon that we name processor co-dependency
provides a hint to the solution. Complete resource decou-
pling seems possible between any two resources if neither of
them is the processor. Since the processor is the brain of the
system, communications between the network and the disk,
for example, must go through the processor. The processor
must obtain the network packets and then send them to the
disk. In other words, a coupling problem which at first sight
is between the disk and the network gets translated into two
independent couplings between the disk and the processor,
and between the processor and the network. The net result
is that as soon as the disk (or the network) demand attention
from the processor, the processor must be able to provide it.

5.4. "Immediate" or "System" Reservations
In our resource reservation model, we define the concept of
a "system reservation" which is a highest priority reservation
which does not get depleted. As a result, any thread or
threads bound to a system reservation will be able to execute
at the highest priority as soon as possible (subject only to
other threads using a system reservation). We also some-
times refer to the system reservation as an "immediate reser-
vation" because of the immediacy of its service. Clearly, the
use of "system reserves" must be confined to trusted ser-
vices only (to satisfy goal G3 of resource kernels), which
must be trusted to use them only sparingly for relatively
quick transfers of data. The worker threads in the reserved
filesystem of Section 4.4 also fall into the category of sys-
tem reservation users. It must be remembered that the usage
of the system reservation will adversely affect new resource
requests and must be accounted for in admission tests.

We measured the time consumed by components of a disk
I/O to complete a filesystem block fetch of 4KB: time spent
in core filesystem code = 532µs, time spent in filesystem
overhead (block map queries, etc.) = 171µs, time spent in
data copies = 131µs, time spent in disk reserve overheads
(scheduling, updating slack, etc.) = 230υs, time spent in I/O
= 2550υs leading to a total elapsed time of 3082υs. The
CPU usage for the worker thread in the filesystem is there-

7If the network interface card hardware can be configured to be in
auto-initiation mode as on the sound card, this coupling problem would
disappear as well. This argues for better and more sophisticated support in
interface cards and controllers. The trend towards MMX support and
"software modems" is unfortunately in the opposite direction!

fore 532υs out of 3082 µs = 17.26%. Since one worker
thread can access the disk at any given time, this represents
the worst-case processor requirement imposed by the real-
time filesystem. However, due to the fact that disk seeks
will not be issued continuously in a general system, this
number will be lower in practice. Otherwise, for a disk-
intensive context, this overhead is likely acceptable.

5.5. Calibrating an Application’s Requirements
The computation timeC needed for a reservation must be
known in order to reserve processor time before it can be
requested. It is, however, unknown practically before its
actual execution since it heavily depends on a machine plat-
form on which an application program runs. Even on
machines with the same CPU and the same clock rate, the
execution time may be affected by the presence of cache, the
amount of memory, memory and system bus interface chip
sets, and other I/O interface cards. Thus, we need to obtain
C for the current platform by actually running an application
on it. ObtainingC requires the kernel to support precise
measurement of the processor time consumed by a certain
thread. We now discuss how this can be obtained using
only our resource kernel capabilities.

Our resource kernel supports hard reservations and also
provides current and accumulated usage on a reservation by
a program. The hard reservation ensures that any threads
bound to it can only run upto its specifiedC. The execution
time of the application program to be calibrated is then
measured as follows. A new hard reservation, named (say)
"calibration", is created, and the given application program
is bound to it just for the purpose of measuring its execution
time. The reservation will get depleted by the running of the
application program, get replenished by the resource kernel,
and the process will repeat until the application program
completes execution. The accumulated usage on the hard
reservation "calibration" now yields the execution time of
the application program. An advantage of this method is
that it is certain that a program can obtain its C even when
the system is busy since it is guaranteed to receive a certain
amount of processor time for its execution.

5.6. Portability Of Resource Specifications
As mentioned above, the absolute execution time of a
program changes from platform to platform depending upon
processor speed, etc. As a result, the specification ofC in
absolute time-units can become inherently not portable.
Fortunately, portable time-units are available in the form of
the number of clock ticks and the number of instructions
executed for a given program segment on the processor. Of
these two, the number of clock ticks is perhaps more port-
able since today’s microprocessors contain on-chip clock
counters which can not only provide high-accuracy resolu-
tion as well be inherently scalable across chips with lower or
higher clock speeds. Similarly,Ci for disk bandwidth reser-
vation can specify the number of disk blocks to be read, or
better, the number of bytes to be read. The latter units will
also be portable across platforms using different disk block
sizes. Implementations of resource kernels must therefore
provide convenience functions to translate "portable time-
units" on a resource to native absolute time-units.

5.7. Adaptive QoS Management
User-level resource managers can be built on top of a
resource kernel to react (or adapt to) to changes in applica-
tion, system resources and the environment. In distributed
real-time applications, such as video conferencing, the
change in quality at one end-point typically implies that the
other end-point must also adapt its quality correspondingly.
Such distributed adaptations must clearly happen at a larger
time-scale than single-node resource allocation changes.
Similarly, we take the position that user-level application
changes happen at a larger time-scale than the decisions
made in the resource kernel to dynamically schedule ac-
tivities on system resources. Such user-level resource
managers can also potentially implement more complex
resource management policies than the ones used by our
resource model.

6. Concluding Remarks
We have presented a resource-centric approach to building
real-time kernels, and we call the resulting kernel a resource
kernel. The resource kernel provides timely, guaranteed and
protected access to resources. We now compare our ap-
proach with two related approaches, and summarize our
research contributions.

6.1. Resource Kernels and Related Approaches
We now compare the resource kernel notions with the ap-
proaches used by operating systems such as Nemesis
[29] and Exokernel [7]. Nemesis and our resource kernel
approach adopt a similar model of resource specification
and allocation, based on the so-called {C,T} model
originally proposed by Liu and Layland [18]. Nemesis im-
plicitly assumes a deadline of T before which theC units of
time must be available. Our resource kernel also supports a
deadline shorter thanT8. The Nemesis approach to dealing
with the problem of priority inversion, a potentially sig-
nificant stumbling block of multi-tasking real-time systems,
is rather unclear. In our resource kernel approach, bounding
priority inversion is a key principle of managing interactions
between concurent real-time activities. Priority inversion,
where a higher priority request is blocked by a lower
priority activity, is unavoidable in the general case (such as
critical sections, non-preemptible bus transactions and finite
size ATM cells). However, it is imperative that unbounded
priority inversion be eliminated, as in the use of semaphores
in a priority-driven system [31, 35]. Such durations of
priority inversion must be bounded and if possible min-
imized. Priority inheritance protocols have also been ex-
tended to dynamic priority algorithms [3, 9]. In resource
kernels, we use priority inheritance in the form of reserve
propagation [26] where a blocking thread inherits the
scheduling priority of a higher priority reserved thread for
the duration of the blocking.

Nemesis advocates the minimization of servers to enable
correct "charging" of resource usage to applications. The
Nemesis approch is to put ’server code’ into client libraries,
which would then use critical sections to enforce consis-
tency requirements across multiple clients as necessary. Our

8A deadline longer thanT is also possible.

resource kernel notions take a neutral stance on the topic of
servers in that we (must) support configurations with and
without servers. We do so for two fundamental reasons:
1. Time and space are distinct: Servers and critical sec-

tions executing in client space providing the given ser-
vice are strictly analogous in a timing predictability
sense, and differ only in a spatial organization sense.
More precisely, the blocking (or priority version) factor
is (almost) the same whether a service is implemented
as a client library or within a server thread. Any dif-
ference arises only due to spatial overhead factors
(primarily due to less context-switching in the case of
client library implementations, for example see
[24, 23]). This is hardly a fundamental question of
functionality or capability. Consider a service S (such
as a draw-in-window operation) executing in a real-
time server like X. The server obtains requests from
multiple clients. In a real-time system, the requests
will be queued up in priority orderand with support for
priority inheritance to avoid unbounded priority inver-
sion problems. If implemented as a client library, the
critical section used within the library will use a mutex,
which in turn will use a priority queue for waiting
threads and support priority inheritance.9

2. Sharing and interactions are in general unavoidable:
Concurrently running applications interact not only be-
cause they eventually share the same underlying physi-
cal resources, but also because of logical requirements
above the physical layer. Shared display, shared files,
concurrent access to bank accounts, shared data such as
movies and databases are only some examples of these
shared logical resources. As a result, critical sections
which manage these sharedlogical resources are un-
avoidable in the context of multi-tasking and multi-
threaded systems. Whether these critical sections are
organized in client space or in a dedicated server is
only a question of convenience and flexibility with the
time/space distintions coming into play. Anyhow, criti-
cal sections can be shortened or optimized but in
general cannot be eliminated.10

Memory implications of using a client library (with a critical
section) and a server also need to be considered. When a
service is implemented as a server, it is relatively easy (for
example) to wire down that server memory for predictable
real-time performance. However, if clients used their own
libraries (with critical sections), other relatively more com-
plex issues must be addressed. In one case, each client can
have its own copy of the library leading to higher memory
usage. In contrast, if shared (dynamically linked) libraries
are used, memory usage is the same as a server, but one
must now be able to ensure that a shared library is wireable.

9In the general case of this discussion, one should replace the notion of
priority with the notion of ’scheduling attribute’ which may be priorities or
reserves with the basic concept remaining the same.

10Lock-free protocols exist but seem to be useful only under limited
conditions.

In other words, a finer granularity of memory control be-
comes necessary.

The Exo-kernel approach advocates that all policy decisions
except for access protection reside in user-level programs.
However, for real-time systems, the CPU scheduling policy
must be centrally managed (at the "root") to ensure that an
application group can satisfy its own timing constraints.
This global scheduling policycannot be delegated to in-
dividual applications. On the other hand, if the CPU
resource management policy is deemed to be a temporal
protection mechanism that resides in the exo-kernel, the
resource kernel notion is actually compatible with the exo-
kernel approach as well. Each application can then build its
own local scheduler to use its allocated time in a way that it
sees fit. However, in practice, we do not expect local
schedulers in user space to provide significant added value.
Instead, we propose a Quality of Service (QoS) manager
running in user space (as a server) on top of the resource
kernel [22, 32]. This QoS manager can arbitrate among
competing requests when the maximal requests of all ap-
plications cannot be satisfied with the available resources.

6.2. Contributions
We have presented the notion of a resource kernel, which
provides timely and protected access to machine resources.
In this approach geared towards real-time and multimedia
operating systems, guaranteed and protected access

• Uniformity: a single resource specification scheme can
be applied to different time-shared resource types with
timeliness control. The scheme can be locally optimized
and applied for each resource type.

• Resource management transparency: the use of the ex-
act resource management scheme is hidden from the ap-
plication programs and changed transparently across dif-
ferent implementations. The implementation of the
resource management scheme can use, among other
things, fixed priority schemes such as rate-monotonic
scheduling [18] and deadline-monotonic scheduling [17],
dynamic priority schemes such as earliest-deadline-first
[18], or processor sharing schemes such as PGPS, vir-
tual clocks or WF2Q [4]. We demonstrate two very dif-
ferent schemes for CPU and disk bandwidth management
even though each uses the same resource specification
model.

• Resource composability: We show that multiple
resource types can be guaranteed at the same time with
acceptable performance levels. In specific, reservations
of different resource types can be independently created
and then composed. We use the technique ofresource
decoupling [36] and management ofprocessor co-
dependency using higher prioritysystem reserves to
provide simultaneous access to CPU resource and
another resource type simultaneously. We are unaware
of other OS work where simultaneous access to two or
more resources is addressed.

• Hard resource reservation: In this resource allocation
scheme, the usage of a resource cannot exceed the al-
located amount of the resource even if the resource is

idle. While this may sound draconian and wasteful, we
expect that this will be a powerful building block for
constructing virtual resources, which allow untrusted ap-
plications to be built and run in their own resource space
with a pre-determined finite effect on other applications
at all times.

• Interactions and Disk bandwidth management: The
resource kernel is able to monitor and control priority
inversion arising from the interactions between real-time
tasks due to the use of common shared services. By
deliberately introducing priority inversion in a controlled
fashion, we demonstrate that there is no significant loss
of disk subsystem throughput for acceptably substantial
ranges of disk traffic while guaranteeing timely access to
disk bandwidth for real-time and multimedia applica-
tions. This is achieved using a noveljust-in-time disk
scheduling scheme. Guaranteed access to disk
bandwidth is obtained at the expense of a relatively small
loss in throughput.

• Flexibility of resource kernels: Our resource kernel
abstractions allow resource usage to be automatically
calibrated, and to be portable across different hardware
platforms.

6.3. Future Work
Our future work will include exploring network bandwidth
reservation in conjunction with processor and disk reser-
vation. Network bandwidth management has many implica-
tions in the context of a resource kernel: protocol stack
overhead dominates on the CPU. As a result, network
bandwidth management translates to both network reser-
vation and CPU management. The times during which both
network bandwidth and CPU cycles need to be available
seem to be fairly limited, but remain to be verified.

The issue of CPU co-dependency needs to be addressed at
greater length. Additional buffer space between different
resource types with hardware buffers can also alleviate the
problem; this is typical of today’s hardware systems with
self-triggered DMA on sound cards (such as the
SoundBlaster 16), and bus-mastering on multi-master back-
planes such as the PCI bus. Finally, distributed resource
reservation in networked systems will open up another fron-
tier of work.

Appendix: Admission Control Schemes

1. Resource Specification Notation
Let the set ofn reservations requiring processor reservation
be denoted asτ1, τ2, ⋅ ⋅ ⋅ , τn. Each reservationτi needs to
obtainCi units of time everyTi units of time. In addition, the
Ci units of resource time must be available at or beforeDi in
each periodic interval separated byTi.

2. Admission Control Using Fixed Priority Policies
The reservations are ordered in descending order of their
fixed priorities such that fori = 1 ton−1, priority(τi) < τi+1.

In mathematical form, a necessary and sufficient condition
for the schedulability of a set of periodic tasks using fixed
priority scheduling is as follows [14]:

∀ i, 1 ≤ i ≤ n, (
|


|) ≤ 1

min
0 < t ≤ Di

i

∑
j=1

Cj

t
t
Tj

In algorithmic form, the completion timeCTi of a reser-
vation τi with a resource allocation can be computed as fol-
lows using a recurrence relation [10, 39].

1. Let w0
i := Ci.

2. Computewi
k+1 := ∑ Cj( ).

i−1
j=1

wk
i

Tj

3. If wi
k+1 > Di, CTi := ∞. Skip to Step 6.

4. If wi
k+1 = wk

i, CTi := wk
i. Skip to Step 6.

5. k := k + 1. Go to Step 2.

6. If CTi ≤ Di, τi meets its deadline.

The completion time test is repeated for all reservations
which need to be guaranteed. Even if one reservation will
miss its deadline, the admission test will deny the newest
incoming request.

3. Admission Control Based on Rate-Monotonic
Priority Assignment

The rate-monotonic priority assignment algorithm is an op-
timal fixed priority algorithm whenDi = Ti [18]. The reser-
vations are ordered in descending order based on their rate-
monotonic priorities (i.e.,Ti < Ti+1). The admission control
test use the scheme described in Section 2.

4. Admission Control Based on
Deadline-Monotonic Priority Assignment

The deadline-monotonic priority assignment algorithm is an
optimal fixed priority algorithm whenDi ≤ Ti [17]. The
reservations are ordered in descending order based on their
deadline-monotonic priorities (i.e.Di < Di+1). The admis-
sion control test uses the same scheme described in Section
2.

References
[1] R. Abbott and H. Garcia-Molina.Scheduling Real-Time Trans-
actions with Disk Resident Data X Server. Technical Report CS-
TR-207-89, Department of Computer Science, Princeton University,
February, 1989.

[2] Baker, T. P. A Stack-Based Resource Allocation Policy for Real-
Time Processes.IEEE Real-Time Systems Symposium , Dec., 1990.

[3] Baker, T. Stack-Based Scheduling of Realtime Processes.Journal
of Real-Time Systems 3(1):67--100, March 1991.

[4] J. C. R. Bennett and H. Zhang. WF2Q: Worst-case Fair-Weighted
Fair-Queueing. InProceedings of INFOCOM 96. March, 1996.

[5] J. Blazewicz, W. Cellary, R. Slowinski and J. Weglarz. Scheduling
under Resource Constraints -- Deterministic Models. InAnnals of Opera-
tions Research, Volume 7. Baltzer Science Publishers, 1986.

[6] S. J. Daigle and J. K. Strosnider. Disk Scheduling for Multimedia
Data Streams.Proceedings of the SPIE Conference on High-Speed Net-
working and Multimedia Networking , 1994.

[7] D. R. Engler, M. F. Kaashoek and J. O. Toole, Jr. Exokernel: An
Operating System Architecture for Application-Level Resource Manage-
ment. ACM Symposium on Operating System Principles , December, 1995.

[8] K. Jeffay, D. L. Stone and F. D. Smith. Kernel Support for Live
Digital Audio and Video. InProceedings of the Second International
Workshop on Network and Ope rating System Support for Digital Audio
and Video, pages 10-21. November, 1991.

[9] K. Jeffay. Scheduling Sporadic Tasks with Shared Resources in
Hard-Real-Time Systems. InProceedings of the 13th IEEE Real-Time
Systems Symposium, pages 89-99. IEEE, December, 1992.

[10] Joseph, M. and Pandya. Finding Response Times in a Real-Time
System.The Computer Journal (British Computing Society)
29(5):390-395, October, 1986.

[11] Khanna, S., Sebree, M., and Zolnowsky, J. Real-Time Scheduling
in SunOS 5.0.The Proceedings of USENIX 92 Winter :375-390, 1992.

[12] Klein, M. H., Ralya, T., Pollak, B., Obenza, R. and Harbour, M. G.
A Practitioner’s Handbook for Real-Time Analysis: Guide to Rate-
Monotonic Analysis for Real-Time Systems. Kluwer Academic Publishers,
1993. ISBN 0-7923-9361-9.

[13] Lehoczky, J. P. and Sha, L. Performance of Real-Time Bus
Scheduling Algorithms.ACM Performance Evaluation Review, Special
Issue Vol. 14, No. 1 , May, 1986.

[14] Lehoczky, J. P., Sha, L. and Ding, Y. The Rate Monotonic
Scheduling Algorithm --- Exact Characterization and Average-Case Be-
havior. IEEE Real-Time Systems Symposium , Dec, 1989.

[15] Lehoczky, J. P., Sha, L., Strosnider, J. K. and Tokuda, H. Fixed
Priority Scheduling Theory for Hard Real-Time Systems.Technical
Report, Department of Statistics, Carnegie Mellon University , 1991.

[16] Lehoczky, J. P. Fixed Priority Scheduling of Periodic Task Sets
with Arbitrary Deadlines.Proceedings of the IEEE Real-Time Systems
Symposium , Dec., 1990.

[17] Leung, J. Y., and Whitehead, J. On the Complexity of Fixed-
Priority Scheduling of Periodic, Real-Time Tasks.Performance Evaluation
2(4):237-250, Dec., 1982.

[18] Liu, C. L. and Layland J. W. Scheduling Algorithms for Mul-
tiprogramming in a Hard Real Time Environment.JACM 20 (1):46 - 61,
1973.

[19] Locke, C. D., Vogel, D. R., Lucas, L. Generic Avionics Software
Specification.Technical Report, Software Engineering Institute, Carnegie
Mellon University , 1990.

[20] S. Chen, J. A. Stankovic, J. F. Kurose, D. Towsley. Performance
Evaluation of Two New Disk Scheduling Algorithms for Real-Time Sys-
tems. The Real-Time Systems Journal 3:307-336, 1991.

[21] P. Lougher and D. Shepherd. The Design and Implementation of a
Continuous Media Storage Server .Proceedings of the 3rd International
Workshop on Network and Operating System Support for Audio and Video ,
November, 1992.

[22] C. Lee and R. Rajkumar and C. Mercer. Experiences with Proces-
sor Reservation and Dynamic QOS in Real-Time Mach.In the proceedings
of Multimedia Japan 96 , April, 1996.

[23] C. Lee and K. Yoshida and C. Mercer and R. Rajkumar. Predictable
Communication Protocol Processing in Real-Time Mach.In the proceed-
ings of IEEE Real-time Technology and Applications Symposium , June,
1996.

[24] C. Maeda and B. N. Bershad. Protocol Service Decomposition for
High-Performance Networking. InProceedings of the Fourteenth ACM
Symposium on Operating Systems Principles, pages 244-255. December,
1993.

[25] C. W. Mercer and S. Savage and H. Tokuda. Processor Capacity
Reserves for Multimedia Operating Systems. InProceedings of the IEEE
International Conference on Multimedia Computing and Systems. May,
1994.

[26] C. W. Mercer and R. Rajkumar. An Interactive Interface and
RT-Mach Support for Monitoring and Controlling Resource Management.
In Proceedings of the IEEE Real-Time Technology and Applications
Symposium. May, 1995.

[27] A. Molano, K. Juvva and R. Rajkumar. Real-Time Filesystems:
Guaranteeing Timing Constraints for Disk Accesses in RT-Mach. InIEEE
Real-Time Systems Symposium. December, 1997.

[28] Needham, R. and Nakamura, A. An Approach to Real-Time
Scheduling: Is it really a problem for multimedia?The Third International
Workshop on Network and Operating System Support for Multimedia ,
1992.

[29] Nemesis, the kernel: Overview Dickson Reed and Robin Fairbairns,
Editors, May 20, 1997.

[30] IEEE Standard P1003.4 (Real-time extensions to POSIX) IEEE, 345
East 47th St., New York, NY 10017, 1991.

[31] Rajkumar, R.Synchronization in Real-Time Systems: A Priority
Inheritance Approach. Kluwer Academic Publishers, 1991. ISBN
0-7923-9211-6.

[32] R. Rajkumar, C. Lee, J. P. Lehoczky and D. P. Siewiorek. A
QoS-based Resource Allocation Model.IEEE Real-Time Systems Sym-
posium , December, 1997.

[33] Sha, L., Rajkumar, R. and Lehoczky, J. P. Task Scheduling in
Distributed Real-Time Systems.Proceedings of IEEE Industrial
Electronics Conference , 1987.

[34] Sha, L., Rajkumar, R. and Lehoczky, J. P. Priority Inheritance
Protocols: An Approach to Real-Time Synchronization.Technical Report
(CMU-CS-87-181), Department of Computer Science, CMU , 1987.

[35] Sha, L., Rajkumar, R. and Lehoczky, J. P. Priority Inheritance
Protocols: An Approach to Real-Time Synchronization.IEEE Transactions
on Computers :1175-1185, September, 1990.

[36] Sha, L., Rajkumar, R. and Sathaye, S. Generalized Rate-Monotonic
Scheduling Theory: A Framework for Developing Real-Time Systems.
Proceedings of the IEEE (journal) , January, 1994.

[37] Sprunt, H.M.B., Sha, L., and Lehoczky, J.P. Aperiodic Task
Scheduling on Hard Real-Time Systems.The Real-Time Systems Journal ,
June, 1989.

[38] John A. Stankovic. Misconceptions about Real-Time Computing.
Computer 21(10):10-19, Oct., 1988.

[39] Tindell, K. An Extendible Approach for Analysing Fixed Priority
Hard Real-Time Tasks. Technical Report YCS189, Department of Com-
puter Science, University of York, December, 1992.

[40] C. A. Waldspurger and W. E. Weihl. Lottery Scheduling: Flexible
Proportional-Share Resource Management. InProceedings of the First
Operating Systems Design and Implementation, pages 1-11. November,
1994.

Table of Contents
1. Motivation for Resource Kernels 1

1.1. Comparison with Related Work 2
1.2. Organization of the Paper 2

2. Designing a Resource Kernel 3
2.1. Design Goals of a Resource Kernel 3
2.2. An Historical Perspective of our Real-Time Resource Management Model 4
2.3. The Resource Reservation Model 4
2.4. Explicit Resource Parameters 4
2.5. Implicit Resource Parameter 4
2.6. Reservation Type 4
2.7. System Call Interface to Reservations 5

3. Processor Resource Management 5
3.1. Admission Control 5
3.2. Tracking Implicit Parameter B 5
3.3. Performance Evaluation 5

4. Disk Bandwidth Resource Management 8
4.1. Filesystem Bandwidth Specification 8
4.2. Admission Control 8
4.3. Scheduling Policy 8
4.4. The Architecture of the Reserved Filesystem 8
4.5. Exploiting ’B’: Just-In-Time Disk Scheduling 9
4.6. Performance Evaluation 9

4.6.1. Synthetic Workload Behavior with both CPU and Disk Requirements 10
5. Practical Issues 11

5.1. Using Different Reservations Together 11
5.2. Resource Decoupling 11
5.3. Processor Co-Dependency 11
5.4. "Immediate" or "System" Reservations 11
5.5. Calibrating an Application’s Requirements 12
5.6. Portability Of Resource Specifications 12
5.7. Adaptive QoS Management 12

6. Concluding Remarks 12
6.1. Resource Kernels and Related Approaches 12
6.2. Contributions 13
6.3. Future Work 14

Appendix: Admission Control Schemes 14
1. Resource Specification Notation 14
2. Admission Control Using Fixed Priority Policies 14
3. Admission Control Based on Rate-Monotonic Priority Assignment 14
4. Admission Control Based on Deadline-Monotonic Priority Assignment 14

References 14

List of Figures
Figure 3-1: Processor Admission Control Policy Overhead w/ Exact Schedulability Conditions 5
Figure 3-2: Behavior of reserved infinite loop threads without unreserved competition 6
Figure 3-3: Behavior of reserved infinite loop threads with unreserved competition 6
Figure 3-4: Behavior of unreserved infinite loop threads with unreserved competition 7
Figure 3-5: Completion times of reserved threads in the presence of competing threads 7
Figure 3-6: Completion times of unreserved threads with competing threads 8
Figure 4-1: Disk Bandwidth consumed (# of disk blocks read) by reserved thread. Earliest 9

deadline and Just-In-Time reservation schemes are flat and coincide almost com-
pletely.

Figure 4-2: Execution patterns of Thread 1 and Thread1b 10
Figure 4-3: Thread 1 Completion Times 10

List of Tables
Table 2-1: A subset of the reservation system call interface for each resource type. 5
Table 3-1: The processor reservation parameters used for Figures 3-2, 3-3 and 3-4 5
Table 3-2: The processor reservation parameters used for the experiment of Figures 3-5 and 3-6 7
Table 4-1: Scan and EDF real-time filesystem throughput comparison 10

