
To appear in the Proceedings of the Third International Conference on Information Technology: New Generations 1

Efficient Authenticated Key-Exchange for Devices with a Trusted Manager∗

He Ge Stephen R. Tate
Department of Computer Science and Engineering

University of North Texas
Denton, TX 76203

Abstract

We propose an efficient authentication method for secure
communication among a set of devices that have a single
trusted manager or administrator, with protocols presented
for authentication and authenticated key exchange. An ex-
ample of such a setting would be a set of devices or sensors
owned by a single person, including applications such as
a smart house or coordinated control systems, with empha-
sis on the simplicity and efficiency of the protocol. While
known techniques can solve this problem, we show how spe-
cific properties of our setting can allow our more efficient
solution, which is more appropriate for embedded proces-
sors with limited computational capabilities. Specifically, a
device using our protocol can authenticate itself using only
about 15% of the computation required by a standard RSA
signature-based authentication. We prove that our scheme
is secure under the strong RSA assumption and the compu-
tational Diffie-Hellman assumption.

Keywords: Authentication, Key Exchange, Strong RSA
Assumption, Embedded Systems

1. Introduction

Consider the following scenario: A person owns sev-
eral devices which are capable of communication and inter-
action, but these devices use embedded processors whose
computational capabilities are limited as compared to desk-
top computers. Examples of this scenario include entertain-
ment devices or appliances owned by a consumer, multiple
control and sensor systems in an automobile or airplane,
and environmental controls in a building. We would like
these devices to use encrypted communication for confi-
dentiality and integrity, and to be able to securely recog-
nize other devices with the same owner. A pair of devices
should be able to establish authenticated secure channels
on their own, without needing to interact with the owner or
any other party at the time, and we want the system to be

∗This research is supported in part by NSF award 0208640.

dynamic, meaning that new devices can enter the system at
any time. Therefore, solutions based on symmetric cryp-
tography, whether requiring preloaded keys for all pairs of
devices or using an always-available authority (like in Ker-
beros), do not satisfy our requirements.

There are many known cryptographic solutions which
can solve this problem, including using X.509 certificates
issued by the owner, using a group signature or creden-
tial system with the owner as the group manager, or using
identity-based encryption. However, our scenario has some
unique properties which allow for a more efficient solution,
and the importance of highly optimized protocols in embed-
ded systems has led us to develop such an efficient solution,
which we present in this paper. After defining a model cap-
turing the specific characteristics of our setting in the next
section, we will discuss how various aspects of our model
allow us to improve upon these existing techniques.

2. Model and Relation to Previous Work

In this section, we define a model which captures se-
curity requirements in a system with three key properties:
a small set of devices (typically a few devices up through
a few thousand sensors), a single completely trusted ad-
ministrator (the owner of the devices), and no externally-
meaningful names that need to be linked to keys. To protect
communication between members of this set of devices, it
is necessary to provide a security protocol to implement au-
thentication and key establishment. In the following defini-
tion we precisely specify the security requirements of our
system. We use terminology from the related area of group
signatures, but we caution the reader to keep in mind an im-
portant difference in our setting: the group members are not
independent people, but rather the devices ultimately con-
trolled by the single owner. We also clarify here that any
attacker is assumed to be a probabilistic polynomial time
algorithm, so references to things being impossible (such as
forging a key) should be understood to mean impossible for
a probabilistic polynomial time algorithm.

To appear in the Proceedings of the Third International Conference on Information Technology: New Generations 2

Definition 2.1 (The Model) A group consists a single ad-
ministrator, and at most several thousand group members.
The administrator holds a group master key while each
group member holds its group member key. A system sup-
porting authenticated key exchange should satisfy following
properties:

1. (Forgery-resistance) A valid group member key can
only be produced with knowledge of the group mas-
ter key, so if only the administrator has access to this
key then only the administrator can create valid group
member keys.

2. (Authentication) A party can prove membership in the
group if and only if it knows a valid group member key.

3. (Key Exchange) Any two members in the group can
compute a shared secret that cannot be deduced by
outsiders. This shared secret can be used with sym-
metric cryptography to support confidentiality and in-
tegrity of subsequent communication.

4. (Robustness) The compromise of a group member will
not affect the security of interactions between un-
compromised group members.1

In addition to the above required properties, systems may
also support the following two optional properties.

5. (Forward secrecy) If the administrator’s group master
key is obtained, an attacker still can not compromise
operations between group members whose keys were
established prior to the administrator compromise.2

6. (Member Revocation) The administrator can revoke a
group member in case it does not belong to the group
anymore, or it is broken by an attacker.

The importance of the last two properties depends on the
likelihood of compromise of the administrator or the group
members, respectively. If the group master key is kept on
a general-purpose computer connected to the Internet, it is
more important to consider forward secrecy than in an en-
vironment in which the group master key is kept on a dedi-
cated device with highly controlled access. Similarly, in set-
tings such as an unattended sensor network in a hostile envi-
ronment, it is almost inevitable that group members will be
compromised, so revocation is vital. In other settings, such
as fixed devices in a physically controlled environment (like
appliances in a home) the chances of member compromise
is low, so revocation is less important.

1This is in contrast to the shared-key scheme in which the compromise
of one group member would reveal all the communication in the system.

2Note that our forward secrecy property is a property of authenticated
keys, not messages. The more basic property of forward secrecy of mes-
sages applies to encryption systems, not key exchange, but we point out
that since our key exchange establishes random session keys any larger
system using our key exchange protocol will also exhibit forward secrecy
of messages.

2.1. Our Result and Related Work

In this paper we propose a simple and efficient authenti-
cation scheme which can be deployed in applications which
satisfy the above model. Its security is based on the strong
RSA assumption and the computational Diffie-Hellman as-
sumption. In this section we show how our scheme is re-
lated to other solutions for this problem, and describe which
properties of our system enable us to improve upon these
other solutions.

X.509 certificates [12] provide an obvious solution for
authentication, which is what SSL does for connections
over the Internet. While this does provide the group mem-
ber authentication that we need, the primary purpose of
X.509 certificates is to bind a meaningful identity and other
properties to a cryptographic key, which is unnecessary in
our setting. To support the flexible requirements of X.509
certificates, a typical certificate would be a separate object
that is several times as large as the key that it is authenticat-
ing. For example, the current X.509 certificate authenticat-
ing the 128 byte (i.e., 1024 bit) key for www.amazon.com
is 945 bytes long, so requires 738% space overhead. By
contrast, our authentication is implicit in the key itself, so
requires no overhead at all (although if forward secrecy is
needed we must double the size of the key). Furthermore,
a device which wants to authenticate itself using an X.509
certificate must perform an RSA signature, using a private
exponent that is as long as the modulus, so an RSA signa-
ture with a 1024 bit key would require an average of 1536
modular multiplications. By contrast, our scheme uses a
short (160-bit) private exponent, allowing a device with a
1024 bit key to authenticate itself with an average of 240
modular multiplications — roughly 15% of the number re-
quired by the RSA signature. Note that this improvement
assumes that the group manager is not compromised. If
group manager compromise is a possibility, then to attain
the forward-secrecy property we need double the size of the
public modulus n, which would add more computing cost
to the system.

Identity-based encryption (IBE) [14, 6] can also be used
to solve our basic problem, but these schemes are somewhat
less efficient than our system. More important than effi-
ciency in this case is the inability of IBE schemes to support
forward secrecy of keys. Since the basis of these schemes
is the ability for the key manager to compute a private key
from the corresponding public key, if the group manager is
compromised then all group member keys are immediately
compromised.

Self-certified public keys [11, 13], certificate-less pub-
lic keys [1], and group signature schemes [2] also provide
the capabilities that we need. However, the basic model for
these systems includes independent parties as the authenti-
cated entities, and they do not trust the group manager. In
our case, the group members are passive devices that are

To appear in the Proceedings of the Third International Conference on Information Technology: New Generations 3

owned by, and hence completely trust, the group manager.
The effort that these techniques use to protect against a ma-
licious group manager is unnecessary in our case, since ev-
eryone is “on the same team.” In addition, properties such
as anonymity and unlinkability, as supported by group sig-
natures, have no meaning in our system, so are unnecessary
complications.

Our system has a few additional properties which make
it especially appropriate for computation and memory con-
strained devices. First, as mentioned above, we use short
private exponents, greatly improving the complexity of au-
thentication. While many parts of our system map to stan-
dard RSA, what would be the public key in RSA is hidden
in our system (our public key is ge rather than e, so ex-
tracting e would be solving the discrete log problem), so
attacks on RSA with a small decryption exponent [5] do not
work against our system. Second, keys are bound to short,
unique tags, that are typically 16 or 24 bits. Hence, if re-
vocation needs to be supported, it can be done through a
very compact revocation list. In addition, we provide an ef-
ficient secure re-keying scheme for use in highly dynamic
environments.

3. Preliminaries
In this section, we review some definitions and widely

accepted complexity assumptions that we will use in this
paper [2, 8, 7].

Definition 3.1 (Special RSA Modulus) An RSA modulus
n = pq is called special if p = 2p′ + 1 and q = 2q′ + 1
where p, q, p′ and q′ are all prime numbers.

Definition 3.2 (Quadratic Residue Group QRn) Let Z∗

n be
the multiplicative group modulo n, which contains all pos-
itive integers less than n and relatively prime to n. An ele-
ment x ∈ Z∗

n is called a quadratic residue if there exists an
a ∈ Z∗

n such that a2 ≡ x (mod n). The set of all quadratic
residues of Z∗

n forms a cyclic subgroup of Z∗

n, which we de-
note by QRn. If n is the product of two distinct primes, then
|QRn| = 1

4
|Z∗

n|.

The following two properties are useful for our proofs,
and have straightforward proofs based on standard number
theoretic properties and properties of cyclic groups.

Property 1 If n is a special RSA modulus, with p, q, p′,
and q′ as in Definition 3.1 above, then |QRn| = p′q′ and
(p′ − 1)(q′ − 1) elements of QRn are generators of QRn.

Property 2 If g is a generator of QRn, then ga (modn) is
a generator of QRn if and only if GCD(a, |QRn|) = 1.

The security of our techniques relies on the following
two assumptions, which are widely accepted in the cryp-
tography literature (see, for example, [3, 4]).

Assumption 1 (Strong RSA Assumption) Let n be a spe-
cial RSA modulus. The Flexible RSA Problem is the prob-
lem of taking a random element u ∈ Z∗

n and finding a
pair (v, e) such that e > 1 and ve ≡ u (modn). The
Strong RSA Assumption says that no probabilistic polyno-
mial time algorithm can solve the flexible RSA problem with
non-negligible probability.

Assumption 2 (Computational Diffie-Hellman Assump-
tion for QRn) Let n be a special RSA modulus, and let g

be a generator of QRn. Then given random gx and gy, it is
hard to compute gxy (mod n).

We also introduce a slight variant of the Strong RSA As-
sumption, in which we don’t need to find the exponent e

itself, but rather find a hidden version of it, ge. Note that
extracting the actual exponent from ge would require solv-
ing the discrete logarithm problem over QRn.

Assumption 3 (Hidden Exponent Strong RSA Assump-
tion) Let n be a special RSA modulus, and g be a gener-
ator of QRn. Let logg x denote the base g discrete log of x

over QRn, so glogg x ≡ x (mod n) for all x ∈ QRn. The
Hidden Exponent Flexible RSA Problem is the problem of
taking a random element u ∈ Z∗

n and finding a pair (v, w)
such that w 6= g and vlogg w ≡ u (modn). The Hidden
Exponent Strong RSA Assumption says that no probabilis-
tic polynomial time algorithm can solve the hidden expo-
nent flexible RSA problem with non-negligible probability.

We note that there is a one-to-one mapping between so-
lutions to the flexible RSA problem and the hidden ex-
ponent flexible RSA problem. Among other things, this
means that if our variant with a particular fixed hidden expo-
nent can be solved efficiently, then the corresponding “non-
hidden” exponent is a weak encryption exponent for RSA.
While such exponents do exist (for example, corresponding
to small decryption exponents), there is no algorithm that
we’re aware of that can produce a weak encryption expo-
nent without knowledge of the factorization of n (or, equiv-
alently, the decryption exponent). Note that if we could find
such weak encryption exponents efficiently, then we could
solve the standard flexible RSA problem, so it is unlikely
that an attacker could find such a weak exponent to solve
the hidden exponent flexible RSA problem.

4. The Proposed Scheme

The group administrator sets various parameters, the
lengths of which depend on a security parameter, which we
denote by σ, which is the length in bits of the prime factors
of our public modulus n. Additional length parameters are
constrained by σ, and are defined as follows:

To appear in the Proceedings of the Third International Conference on Information Technology: New Generations 4

• ls: ls is the bit-length of a group member private key,
with the restriction that ls < σ − 1 so that all member
private keys are guaranteed to be less than min(p′, q′).
ls also needs to be large enough where a brute force
search is not feasible.

• lt: lt is the bit-length of the group member public key
identifiers/tags, with the restriction that lt < ls. The
only lower bound on this parameter is that it must be
large enough so that every group member can be as-
signed a distinct prime number of length lt. Some typ-
ical examples for this length might be 8 (for groups of
up to 23 members), 16 (for groups of up to 3030 mem-
bers), 24 (for groups of up to 513,708 members), or 32
(for groups of up to 98,182,656 members).

Based on the speed of current number theoretic algorithms
and cryptanalytic attacks on current hardware, we suggest
that if forward secrecy is not needed then for moderate sized
groups of up to a few thousand members, settings of σ =
512 (so n is 1024 bits), ls = 160, and lt = 24 offer strong
security. If forward secrecy is required, then it’s necessary
to double σ to 1024, but the other parameters remain the
same.

4.1. Key Generation

The group master key generated by the administrator is
simply a special RSA modulus n as defined in Definition 3.1
where p and q are each at least σ bits long (so p, q > 2σ),
along with a generator g of the cyclic group QRn. n and
g are public values while p and q are kept secret by the ad-
ministrator.

The method for the creation of a group member key is
straightforward. The administrator picks two random prime
numbers s and t with lengths ls and lt, respectively, where t

has not been previously used for a different group member.
The administrator computes

E = gs−1t−1

(mod n),

where s−1, t−1 are the inverses of s, t modulo |QRn| =
p′q′, respectively. s is the private part of a group member
key, while (E, t) is the public part. t is the unique identifier,
or tag, to represent a group member key.

After the administrator securely delivers the group key to
a group member, it stores (E, t) in its database and destroys
its copy of the private key s. Therefore, even if the ad-
ministrator is compromised, the private key for each group
member remains secure to certain degree. We will explain
this further in Section 5.

4.2. Authentication Protocol

Suppose a group member Alice needs to authenticate
herself to another party Bob, who does not need to be a

member of the group. The authentication protocol works as
follows.

• Alice sends (E, t) to Bob.

• If the bit length of t is correct, Bob picks a random
integer r ∈ {2, . . . , n − 1}, computes

E′ = Etr (mod n) and W = h(gr),

where h(x) is a one-way hash function, and sends
E′, W to Alice. Otherwise, Bob aborts the authenti-
cation.

• Alice computes E ′′ = E′s (mod n). If h(E′′) = W ,
then Alice sends E ′′ to Bob; otherwise, she finds that
Bob was cheating, and aborts the protocol.

• Bob checks if E ′′ ≡ gr (modn), and accepts Alice
as a valid group member if and only if this test suc-
ceeds.

The purpose of W is for Bob to prove that he knows the
expected answer gr, without giving away the answer. Since
Bob knows gr already, when Alice responds with gr Bob
learns no new information. If h(x) is a true one-way hash
function, then this prevents chosen message attacks.

4.3. Authenticated Key Exchange

The following procedure implements an authenticated
version of Diffie-Hellman key exchange [9] based on our
public key scheme, in which both Alice and Bob are group
members.

• Alice and Bob exchange their public keys: (Ea, ta),
and (Eb, tb), respectively.

• Alice and Bob pick random numbers ra, rb, calculate
challenges Ca = E

tbra

b , Cb = Etarb
a and exchange

challenges.

• Alice calculates Csa

b which is grb if all parties follow
the protocols. Then Alice can get grarb which Bob can
similarly obtain. Alice and Bob use this common value
to derive a session key. Note that grarb is distributed
over QRn, which is only a subset of Zn, so should be
hashed to create a fixed-length symmetric key.

• Key confirmation step: Alice uses the session key to
encrypt grb using a symmetric encryption algorithm.
Bob uses the session key to encrypt gra using the same
method. Alice and Bob exchange confirmation mes-
sages. If Alice/Bob find the decrypted value is equal
to their own result, this finishes the key exchange pro-
tocol. Otherwise, the protocol is aborted.

In a real application, the key confirmation step can be in-
tegrated into the subsequent data transmission. Therefore,
only two rounds of message exchange is needed for the au-
thenticated key exchange protocol.

To appear in the Proceedings of the Third International Conference on Information Technology: New Generations 5

5. Security Properties of Proposed Scheme
We consider attacks when some group member keypairs

may possibly be known, which supports the robustness con-
dition of Definition 2.1. We abstract this as an attack model
in which an attacker can collude with a set of legitimate par-
ties, each with a legitimate keypair. A successful attack is
one in which a new keypair is generated, with an identifier
t that is valid and different from those of the colluding par-
ties. The following theorem shows that, under the Strong
RSA Assumption, it is intractable for an attacker to forge
such a keypair.

Theorem 5.1 (Forgery-resistance) If there exists a prob-
abilistic polynomial time algorithm which takes a list of
valid keypairs, (s1, E1, t1), (s2, E2, t2), . . . , (sk, Ek, tk)
and with non-negligible probability produces a new key-
pair (s, E, t) such that Est ≡ g (modn) and t 6= ti for
1 ≤ i ≤ k, then we can solve the flexible RSA problem with
non-negligible probability.

Proof : See the full paper [10].

Remarks. It is in fact possible to forge a group key with a
duplicate t as long as the legitimate owner of the key with
identifier t cooperates in the attack. However, such an attack
is equivalent to key sharing, and if a group member is happy
to let someone use its group member key, there is no way
to prevent it. In real applications, if a group member key is
found to be used by more than one party, we should assume
it has been compromised, and revoke the identifier t, which
would also revoke any forged keys with the same tag.

We next address the question of soundness of the authen-
tication protocol. Loosely speaking, we show that, under
the hidden exponent strong RSA assumption, only parties
with a legitimate keypair (provided by the administrator)
can succeed in the authentication protocol.

We first abstract an attacker of the authentication proto-
col as a pair of functions, which provide the two protocol
messages the prover needs to provide. Given the public pa-
rameters g and n, function PublicKey(g, n) produces a pur-
ported public key (E, t) and (optionally) some private infor-
mation p that it can use later (PublicKey can also use other
publicly available information, such as the public keys of le-
gitimate parties). Function Respond(g, n, E, t, p, c) takes
the global public parameters g, n, the information E, t, p

produced by the PublicKey function, and a challenge c, and
produces an answer a to the challenge. Note that an honest
verifier creates a challenge as c = Etr for a random r, and
accepts the prover’s answer if and only if a = gr which is
true if and only if (raising both sides to the logg Et power)

alogg Et

= (gr)logg Et

= Etr = c.

Theorem 5.2 (Authentication Soundness) If there exist
probabilistic polynomial time algorithms PublicKey and

Respond that succeed with non-negligible probability in
fooling the verifier, then there exists a probabilistic polyno-
mial time algorithm that solves the hidden exponent flexible
RSA problem with non-negligible probability.

Proof : Given an input (g, n, u) to the hidden exponent flex-
ible RSA problem, we use the attacker’s algorithms to cre-
ate a solution as follows:

• Call PublicKey(g, n) and get (E, t, p).

• Call Respond(g, n, E, t, p, u) to get answer a.

• Set v = a and w = Et and return (v, w) as an answer
to the hidden exponent flexible RSA problem.

Note that if the attacker succeeds in providing a valid (E, t)

and a, then as noted before the theorem we have alogg Et

=
c, or using the v and w notation we have vlogg w = u.
Therefore, (v, w) is a valid solution to the hidden exponent
flexible RSA problem if and only if the attacker succeeded
in the authentication protocol. Since the latter occurs with
non-negligible probability, by the condition of our theorem,
the hidden exponent flexible RSA problem is solved with
non-negligible probability.

Note that while Theorem 5.2 guarantees that Alice can’t
cheat in the authentication, as explained in the previous sec-
tion the use of the hash function guarantees that Bob can’t
cheat and extract additional information from Alice.

Finally, we note that our protocol exhibits a nice for-
ward secrecy property. Specifically, if the administrator key
is compromised, an attacker cannot use this knowledge to
compute the private keys of the parties who have previously
had keys created by the administrator. This is in contrast to
recent work in Identity Based Encryption [6] where com-
promise of the administrator secrets results in compromise
of all party’s secret keys.

Theorem 5.3 (Forward Secrecy) If the administrator se-
cret (the factorization of n) is discovered at some point, and
σ is large enough so that discrete logs are difficult to com-
pute modulo a prime of σ bits, then all past and future key
exchanges and authentications by previously authenticated
parties are still secure.

Proof : (Sketch) Recall that during uncompromised behav-
ior, the administrator deletes any private keys that it had
access to. Once the factorization of n is known, comput-
ing a secret key s from the public key (E, t) is basically a
discrete logarithm problem (computing the logEt g) in Z∗

p

and Z∗

q . Since p and q are each at least σ bits long, and the
condition in theorem requires that computing discrete logs
modulo a prime of σ bits is intractable, then operations with
previously authenticated keys remain secure even if the fac-
torization of n is known.

To appear in the Proceedings of the Third International Conference on Information Technology: New Generations 6

Note that since each of p and q need to be long enough
to support a group with hard discrete log problems, if we
want forward secrecy with a security level comparable to
factoring a 1024-bit RSA value, then we need p and q to be
1024 bits, which makes the modulus 2048 bits.

6. Group Member Key Revocation

In case a group member leaves the group or is compro-
mised by an attacker, the administrator should notify all the
group members that a party holding a certain member key
can not be regarded as a legitimate group member. In X.509
certificate based public key cryptosystems, the revocation
is implemented by a “revocation list” which contains iden-
tifiers for all the revoked certificates. In our scheme, we
revoke members by their tag, which is typically only 2 or
3 bytes, so revocation lists are quite compact. Therefore,
the operations related to revocation list will use less system
resources.

In dynamic settings, with many membership changes, re-
vocation lists become large and cumbersome. To solve this
problem, we propose an efficient method for re-keying all
group members. In our re-keying technique, only group
member public keys change, while the members retain their
existing private keys without having to communicate them
in any form whatsoever to the administrator. Thus, this op-
erations is significantly less sensitive than the original key
establishment step.

Our re-keying techniques works as follows: first, the ad-
ministrator picks a random value r ∈ {2, . . . , |QRn|} with
GCD(r, |QRn|) = 1, and then computes a new generator
h = gr (mod n). Next, for each member that the admin-
istrator wants to keep in the group, the administrator com-
putes a new public key E ′ from the existing public key E

as

E′ = Er = (gs−1t−1

)r = (gr)s−1t−1

= hs−1t−1

(mod n).

These new public keys are either distributed to the group
members or they can be published in a publicly accessible
area.

This mechanism does not require any computation by
the group member, and for a small group with at most a
few thousand group members, it is a very simple task. Fur-
thermore, since the key identifiers (the t values) remain un-
changed, this technique can be combined with a revoca-
tion list for an efficient combined black-list/white-list group
management system. The following theorem summarizes
the security of our re-keying technique, and the proof is in
the full version of this paper [10].

Theorem 6.1 Under the Computational Diffie-Hellman
Assumption over QRn, no polynomial time probabilistic al-
gorithm can compute an updated group member public key

without knowledge of the administrator’s private informa-
tion (either the factorization of n or the secret value r).

7. Conclusion
In this paper, we have presented an efficient public key

scheme for authentication and authenticated key exchange
for applications of embedded systems with a single trusted
manager. We proved the security of the construction based
on the Strong RSA and Computational Diffie-Hellman As-
sumptions. Finally, we introduced methods for key revoca-
tion and re-keying.

References

[1] S. Al-Riyami and K. Paterson. Certficateless public key
cryptography. In Advances in Cryptology — Asiacrypt,
pages 452–473, 2003.

[2] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A prac-
tical and provably secure coalition-resistant group signature
scheme. In Advances in Cryptology, pages 255–270, 2000.

[3] N. Baric and B. Pfitzmann. Collision-free accumulators and
fail-stop signature schemes without trees. In Advances in
Cryptology — Eurocrypt, pages 480–494, 1997.

[4] D. Boneh. The decision Diffie-Hellman problem. In Pro-
ceedings of the Third Algorithmic Number Theory Sympo-
sium, pages 48–63, 1998.

[5] D. Boneh and G. Durfee. Cryptanalysis of RSA with private
key d less than n

0.292 . IEEE Transactions on Information
Theory, 46(4):1339–1349, 2000.

[6] D. Boneh and M. Franklin. Identity-based encryption from
the Weil pairing. In Advances in Cryptology — Crypto,
pages 213–229, 2001.

[7] J. Camenisch and A. Lysyanskaya. A signature scheme with
efficient protocols. In Third Conference on Security in Com-
munication Networks (SCN), pages 268–289, 2002.

[8] J. Camenisch and M. Michels. A group signature scheme
based on an RSA-variants. Technical Report RS-98-27,
BRICS, University of Aarhus, Nov. 1998.

[9] W. Diffie and M. Hellman. New direction in cryptogra-
phy. IEEE Transactions on Information Theory, 11:644–
654, Nov. 1976.

[10] H. Ge and S. R. Tate. Efficient authenticated key-exchange
for devices with a trusted manager. Technical Report 2005-
02, University of North Texas, Computer Privacy and Secu-
rity (CoPS) Lab, 2005.

[11] M. Girault. Self-certified public keys. In Advances in Cryp-
tology — Eurocrypt, pages 490–497, 1991.

[12] ITU-T. ITU-T recommendation X.509 – ISO/IEC 9594-8:
Information technology – Open systems interconnection –
The directory: Public-key and attribute certificate frame-
works, 2001.

[13] H. Petersen and P. Horster. Self-certified keys — concepts
and applications. In Proc. Conf. on Communications and
Multimedia Security, pages 102–116, 1997.

[14] A. Shamir. Identity-based cryptosystems and signature
schemes. In Advances in Cryptology — Crypto, pages 47–
53, 1984.

