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Abstract

We present a systematic construction of FEM-based dimension-independent
(discretization-invariant) Markov chain Monte Carlo (MCMC) approaches to
explore PDE-constrained Bayesian inverse problems in infinite dimensional
parameter spaces. In particular, we consider two frameworks to achieve this
goal: Metropolize-then-discretize and discretize-then-Metropolize. The for-
mer refers to the method of discretizing function-space MCMC methods.
The latter, on the other hand, first discretizes the Bayesian inverse prob-
lem and then proposes MCMC methods for the resulting discretized pos-
terior probability density. In general, these two frameworks do not com-
mute, that is, the resulting finite dimensional MCMC algorithms are not
identical. The discretization step of the former may not be trivial since
it involves both numerical analysis and probability theory, while the lat-
ter, perhaps “easier”, may not be discretization-invariant using traditional
approaches. This paper constructively develops finite element (FEM) dis-
cretization schemes for both frameworks and shows that both commutativity
and discretization-invariant are attained. In particular, it shows how to con-
struct discretize-then-Metropolize approaches for both Metropolis-adjusted
Langevin algorithm and hybrid Monte Carlo method that commute with
their Metropolize-then-discretize counterparts. The key that enables this
achievement is a proper FEM discretization of the prior, the likelihood, and
the Bayes’ formula, together with a correct definition of quantities such as
gradient and covariance matrix in discretized finite dimensional parameter
spaces. The implication is that practitioners can take advantage of the devel-
opments in this paper to straightforwardly construct discretization-invariant
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discretize-then-Metropolize MCMC for large-scale inverse problems. Numer-
ical results for one- and two-dimensional elliptic inverse problems with up to
17899 parameters are presented to support the proposed developments.

Keywords: Bayesian inference, infinite-dimensional inverse problems,
Galerkin finite element method, matrix transfer technique, Markov chain
Monte Carlo
2000 MSC: 35Q62, 62F15, 35R30

1. Introduction

Solving large-scale ill-posed inverse problems that are governed by par-
tial differential equations (PDEs) is, though tremendously challenging, of
great practical importance in science and industry. Classical deterministic
inverse methodologies, which provide point estimates of the solution, are
not capable of rigorously accounting for the uncertainty in the inverse so-
lution. The Bayesian formulation provides a systematic quantification of
uncertainty by posing inverse problem as one of statistical inference. The
Bayesian framework for inverse problems proceeds as follows: given obser-
vational data d ∈ RK and their uncertainty, the governing forward problem
and its uncertainty, and a prior probability density function describing un-
certainty in the parameters u ∈ RN , the solution of the inverse problems
is the posterior probability distribution π (u|d) over the parameters. Bayes’
Theorem explicitly gives the posterior density as

π (u|d) ∝ πlike (d|u)× πprior (u)

which updates the prior knowledge πprior (u) using the likelihood πlike (d|u).
The prior encodes any knowledge or assumptions about the parameter space
that we may wish to impose before any data are observed, while the likelihood
explicitly represents the probability that a given set of parameters u might
give rise to the observed data d.

Even when the prior and noise probability distributions are Gaussian,
the posterior need not be Gaussian, due to the nonlinearity embedded in the
likelihood. For large-scale inverse problems, exploring non-Gaussian poste-
rior in high dimensions to compute statistics is a grand challenging problem
since evaluating the posterior at each point in the parameter space requires
a solution of the forward PDEs. Numerical quadrature to compute the mean
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and covariance matrix, for example, is generally infeasible in high dimen-
sions. Usually, the method of choice for computing statistics is Markov chain
Monte Carlo (MCMC), which judiciously samples the posterior distribution,
so that sample statistics can be used to approximate the exact ones.

Perhaps the Metropolis-Hastings (MH) algorithm, first developed by Metropo-
lis et al. [1] and then generalized by Hastings [2], is the most popular MCMC
method. Its popularity and attractiveness come from the easiness in imple-
mentation and minimal requirements on the target density and the proposal
density [3, 4]. One of the simplest instances of the MH algorithm is the
random walk Metropolis-Hastings (RWMH) which can be considered as the
Euler-Maruyama discretization of a stochastic ordinary differential equation
with step size ∆t = σ2. The RWMH method is simple except for a small
detail: how to choose the optimal step size σ2?

Choosing the time step, also known as the proposal variance, σ2 opti-
mally is vital since it determines the mixing time which is approximately the
number of steps to explore the stationary distribution. If σ2 is too small, it is
most likely that all the proposed moves are accepted, but the chain explores
π (u|d) very slowly since the proposed jump is small. On the other hand,
if the proposal variance is large, it is most likely that the proposed move is
in low probability regions, and hence rejected. This case also leads to slow
mixing since the chain virtually does not move at all. As a result, the pro-
posal variance should be in between these extremes, and this is known as the
Goldilocks principle [5].

It turns out that the proposal variance for RWMH must scale like σ2 =
`2N−1, with some constant `, for the average acceptance rate to be bounded
away from zero as the dimension N approaches infinity [6, 7]. Similarly, one
can show that the optimal scaling for the Metropolis-adjusted Langevin al-
gorithms (MALA) [8] is σ2 = `2N−1/3, and σ2 = `2N−1/4 for hybrid Monte
Carlo (HMC) methods [9]. Clearly, all these methods suffer from vanish-
ingly small proposal variance as the parameter dimension increases. As such
they are unlikely to be useful for Bayesian posteriors governed by PDEs in
which mesh refinement, and hence increasingly higher parameter dimension,
is often needed to resolve important physical features of the problem under
consideration.

Meanwhile, efforts in designing MCMC methods to explore probability
measures in infinite dimensional spaces have been greatly successful, in-
cluding the creation of random walk Metropolis-Hasting methods [10, 11],
Metropolis-adjusted Langevin algorithms [10, 11], and hybrid Monte Carlo
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methods [12, 13] in function spaces. We refer to these as function-space
MCMC methods. The appealing feature of these methods is that, if dis-
cretized properly, their performance, particularly the acceptance rate, is in-
dependent of the parameter dimension, and hence the mesh size. Thus, they
are perhaps one of the viable MCMC options for large-scale PDE-constrained
Bayesian inverse problems in infinite dimensional parameter spaces.

To be amenable for computer implementations, function-space MCMC
methods on infinite dimensional spaces need to be discretized. Finite differ-
ence method together with Karhunen-Loève truncation [10, 11, 12, 13] has
been proposed to discretize function-space MCMC methods. Care must be
taken in designing discretization schemes so that they preserve/inherit the
dimension-independent, also called discretization-invariant, property. While
discretization of forward PDE using FEM is widespread, a systematic FEM
discretization of function-space MCMCs is not popular, and this limits the
potential impact of these scalable MCMC approaches on PDE-constrained in-
verse problems. On the other hand, a more straightforward approach is to first
discretize the PDE and the parameter space, form a Bayesian posterior for
discretized inverse problems and then propose a finite dimensional MCMC
method. Naive discretization schemes may lead to MCMC methods whose
performance deteriorates as the parameter dimension increases, e.g. when
the mesh is refined, [10, 11, 12, 13]. How to constructively develop scalable
MCMC methods for this “easier” route in the context of FEM methods has
attracted little attention and this may prevent practitioners from constructing
dimension-independent MCMC approaches for large-scale problems.

The main objective of this paper is to address the aforementioned issues.
In particular, the goal is to construct FEM-based discretization-invariant
MCMC methods for PDE-constrained Bayesian inverse problems in infinite
dimensional parameter spaces. To that end, we first present an inverse prob-
lem governed by elliptic PDEs in Section 2 together with a well-defined in-
finite dimensional Bayesian setting with prior Gaussian measure. The task
at hand is to explore the Bayesian inverse problem using MCMC techniques.
To accomplish this, we consider two frameworks: Metropolize-then-discretize
and discretize-then-Metropolize. The former refers to the approach of first
proposing a function-space MCMC method for the Bayes’ posterior measure
in infinite dimensional spaces and then discretizing both of them. The latter,
on the other hand, first discretizes the Bayesian inverse problem and then
proposes MCMC methods for the resulting discretized posterior probability
density in finite dimensional spaces.
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In general, Metropolize-then-discretize and discretize-then-Metropolize
do not commute, that is, the resulting finite dimensional algorithms are not
identical. As shall be shown, the discretization step of the former may not be
trivial since it involves both numerical analysis and probability theory, while
the latter may not be dimension-independent using standard approaches. In
this paper, we develop dimension-independent finite element discretizations
for both frameworks. In particular, we show how to construct discretize-
then-Metropolize approaches for both Metropolis-adjusted Langevin algo-
rithm and hybrid Monte Carlo method that commute with their Metropolize-
then-discretize counterparts, and hence are discretization-invariant. The key
that facilitates our developments is a proper FEM discretization of the prior,
the likelihood, and the Bayes’ formula, together with a correct definition of
quantities such as gradient and covariance matrix in discretized finite dimen-
sional parameter spaces. We next summarize some important details of each
section of the paper.

Section 3 presents a Metropolize-then-discretize (MTD) framework for
both function-space Metropolis-adjusted Langevin algorithm (denoted as FMALA)
and function-space hybrid Monte Carlo (denoted as FHMC) method. In par-
ticular, we first summarize FMALA in Section 3.1 and FHMC in Section 3.2.
Since either of the methods requires the gradient of the negative logarithm of
the likelihood, we present an adjoint approach to compute the gradient effi-
ciently in Section 3.3. We next present in detail the discretization of the prior,
the likelihood, the posterior, the FMALA, and the FHMC in Section 3.4. At
the heart of our discretization scheme is the combination of the Galerkin
finite element method, the matrix transfer technique, the Karhunen-Loève
expansion, and some functional analysis. We then discuss at length the
“easier” route, namely, the discretize-then-Metropolize approach in Section
4. Specifically, we present an RN -view discretization of the posterior mea-
sure in Section 4.1, finite element gradient in Section 4.2, finite dimensional
MALA algorithms in Section 4.3, and finite dimensional HMC algorithms
in Section 4.4. The key finding in Section 4 is that a proper construction
of finite dimensional MCMC methods taking into account the mathemati-
cal structure of the problem under consideration are discretization-invariant
while standard approaches may not. Various numerical results to validate our
developments are presented in Section 5 and conclusions together with future
work are discussed in Section 6. Finally, we close the paper with an appendix
on the Hessian, its various definitions, and its computation for future work
on Hessian-based discretization-invariant MCMC methods.
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2. Problem Statement

In this paper, though our proposed framework is valid for Bayesian inverse
problems governed by any partial differential equations (PDEs), we restrict
ourselves to those with elliptic PDEs for simplicity. For concreteness, we
consider heat conduction problem governed by the following elliptic PDE in
an open and bounded domain Ω ⊂ Rn, n = {1, 2}:

−∇ · (eu∇w) = 0 in Ω

−eu∇w · n = Biw on ∂Ω \ ΓR,

−eu∇w · n = −1 on ΓR,

where w is the forward state, u the logarithm of distributed thermal con-
ductivity on Ω, n the unit outward normal on ∂Ω, and Bi the Biot number.
Here, ΓR is a portion of the boundary ∂Ω on which the inflow heat flux is 1.
The rest of the boundary is assumed to have Robin boundary condition.

In the forward problem, the task is to solve for the temperature distribu-
tion w given a description of distributed parameter u. In the inverse problem,
the task is to reconstruct u given some available observations, e.g, tempera-
ture observed at some parts/locations of the domain Ω. We choose to cast
the inverse problem into the framework of PDE-constrained optimization.
To begin, let us consider the following additive noise-corrupted pointwise
observation model

dj := w (xj) + ηj, j = 1, . . . , K, (1)

where K is the total number of observation locations, {xj}Kj=1 the set of
points at which w is observed, ηj the additive noise, and dj the actual noise-
corrupted observations. In this paper we work with synthetic observations
and hence there is no model inadequacy in (1). Concatenating all the obser-
vations, one can rewrite (1) as

d := F (u) + η, (2)

with F := [w (x1) , . . . , w (xK)]T denoting the map (known as the forward or
parameter-to-observable map) from the distributed parameter u to the noise-
free observations, η being random numbers normally distributed by N (0,L)
with bounded covariance matrix L, and d = [d1, . . . , dK ]T . For simplicity, we
take L = σ2I, where I is the identity matrix. For notational convenience, we
use boldface letters for vectors and matrices.
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Our inverse problem can be now formulated as

min
u
J (u,d) :=

1

2
‖d− F (u)‖2

RK
L

=
1

2σ2

K∑
j=1

[w (xj)− dj]2 (3)

subject to the forward problem

−∇ · (eu∇w) = 0 in Ω, (4a)

−eu∇w · n = Bi u on ∂Ω \ ΓR, (4b)

−eu∇w · n = −1 on ΓR, . (4c)

where ‖·‖RK
L

:=
∥∥∥L− 1

2 ·
∥∥∥
RK

denotes the weighted Euclidean norm induced by

the canonical inner product 〈·, ·〉RK in RK . This optimization problem is
however ill-posed. An intuitive reason is that the dimension of observations
d is much smaller than that of the parameter u (typically infinite before
discretization), and hence they provide limited information about the dis-
tributed parameter u. As a result, the null space of the Jacobian of the
parameter-to-observable map F is non-empty. In particular, for a class of
inverse problems, we have shown that the Gauss-Newton approximation of
the Hessian (which is the square of the Jacobian, and is also equal to the
full Hessian of the misfit J with noise-free data evaluated at the optimal
parameter) is a compact operator [14, 15, 16], and hence its range space is
effectively finite-dimensional.

One way to overcome the ill-posedness is to use Tikhonov regularization
(see, e.g., [17]), which proposes to augment the cost functional (3) with a
quadratic term, i.e.,

J̃ :=
1

2
‖d− F (u)‖2

RK
L

+
α

2

∥∥R1/2u
∥∥2
, (5)

where α is a regularization parameter, R some regularization operator, and
‖·‖ some appropriate norm. This method is a representative of deterministic
inverse solution techniques that typically do not take into account the ran-
domness due to measurements and other sources, though one can equip the
deterministic solution with a confidence region by post-processing (see, e.g.,
[18] and references therein). It should be pointed out that if the regulariza-
tion term is replaced by the Cameron-Martin norm of u (the second term
in (10) below), the Tikhonov solution is in fact identical to the maximum a
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posteriori point in (10). However, such a point estimate is insufficient for the
purpose of fully taking the randomness into account.

In this paper, we choose to tackle the ill-posedness using a Bayesian
framework [19, 20, 21, 22, 23]. We seek a statistical description of all possible
u that conforms to some prior knowledge and at the same time is consistent
with the observations. The Bayesian approach does this by reformulating
the inverse problem as a problem in statistical inference, incorporating un-
certainties in the observations, the forward map F, and prior information.
This approach is appealing since it can incorporate most, if not all, kinds
of randomness in a systematic manner. To begin, we postulate a Gaussian
measure µ := N (u0, C) with mean function u0 and covariance operator C on
u in L2 (Ω) where

C := α−1 (I −∆)−s =: α−1A−s (6)

with the domain of definition of A defined as

D (A) :=

{
u ∈ H2 (Ω) :

∂u

∂n
= 0 on ∂Ω

}
. (7)

Here, H2 (Ω) is the usual Sobolev space. Assume that the mean function
u0 lives in the Cameron-Martin space of C, then one can show (see, e.g.,
[22]) that the prior measure µ is well-defined when s > d/2 (d is the spatial
dimension), and in that case, any realization from the prior distribution µ
almost surely resides in the Hölder space X := C0,β (Ω) with 0 < β < s/2.
That is, µ (X) = 1, and the Bayesian posterior measure ν satisfies the Radon-
Nikodym derivative

∂ν

∂µ
(u|d) ∝ exp (−J (u,d)) = exp

(
−1

2
‖d− F (u)‖2

RK
L

)
, (8)

if F is a continuous map from X to RK . Note that the Radon-Nikodym
derivative is proportional to the the likelihood defined by

πlike (d|u) ∝ exp (−J (u,d)) . (9)

The maximum a posteriori (MAP) point (see, e.g., [22, 24] for the defini-
tion of the MAP point in infinite dimensional settings) is defined as

uMAP := arg min
u
J̃ (u,d) :=

1

2
‖d− F (u)‖2

RK
L

+
1

2
‖u− u0‖2

C , (10)
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where ‖·‖C :=
∥∥∥C− 1

2 ·
∥∥∥
L2(Ω)

denotes the weighted L2 (Ω) norm induced by the

L2 (Ω) inner product 〈·, ·〉L2(Ω). We shall also use 〈·, ·〉L2(Ω) to denote the

duality pairing on L2 (Ω). Note that, by definition, the MAP point uMAP is
a function in the Cameron-Martin space.

It should be pointed out that the last term in (10) can be considered as
a regularization. Indeed, the MAP point can be considered as a solution to
a deterministic inverse problem. However, the Bayesian approach provides a
more complete picture of the solution. In particular, the posterior, i.e. the
Bayesian solution, encodes all possible solutions with associated confidence
(probability). The task at hand is to provide not only a solution but also
its associated uncertainty. Perhaps the most general tool to accomplish this
task is the Markov chain Monte Carlo (MCMC) framework [4] that we now
discuss.

3. Metropolize-then-discretize framework

In this section we present a Metropolize-then-discretize framework in
which Markov chain Monte Carlo (MCMC) methods are first introduced
on function spaces for the Bayesian posterior (8) and then discretized us-
ing finite element method. We restrict ourselves to two classes of MCMC
methods: the preconditioned Metropolis-adjusted Langevin algorithm, and
the hybrid Monte Carlo (also known as Hamiltonian Monte Carlo) method.

3.1. Function-space Metropolis-adjusted Langevin algorithm (FMALA)

To explore the posterior given by the Radon-Nikodym derivative (8)
with nonlinear misfit functional J (u) we can use the preconditioned Crank-
Nicholson Langevin MCMC algorithm developed in [10, 11]. The key feature
of function-space MCMC methods is that, if properly discretized, the accep-
tance rate of resulting discretized methods is dimension-independent [10],
and hence practical for large-scale inverse problems in which the mesh needs
to be refined or adapted. Finite dimensional MCMC methods such as those
in [7, 8] whose proposal variances (and hence acceptance rate) depend on
dimension of a discretization under consideration is unlikely to be useful for
our target large-scale applications. Indeed, existing works [7, 8] show that
the proposal variance must vanish as the parameter dimension approaches
infinity for the acceptance rate to be bounded away from zero. The detailed
derivation and analysis of the function-space Langevin MCMC method can
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be consulted in [10]. Let us summarize some important points that are needed
in this paper.

To define a Metropolis-Hastings MCMC algorithm for the posterior mea-
sure ν on L2 (Ω), following [25], let us start by denoting q (u, dv) as the
transition measure on L2 (Ω) given u. Furthermore, let

η (du, dv) := ν (du) q (u, dv) (11)

be a joint measure on the product space L2 (Ω)×L2 (Ω). The transpose mea-
sure is then defined as ηT (du, dv) := η (dv, du). The standard Metropolis-
Hastings MCMC [4] can be extended to function space [25] with the following
acceptance probability

a (u, v) := min

{
1,
dηT

dη
(u, v)

}
, (12)

where dηT

dη
(u, v) is the Radon-Nikodym derivative of ηT with respect to η.

What remains to be defined is the transition measure q (u, dv) and the ex-
plicit form of the acceptance probability (12). Care must be taken in de-
signing q (u, dv) so that η is not singular with respect to ηT since on infinite
dimensional spaces even Gaussian probability measures are prone to be mu-
tually singular due to the Feldman-Hajek theorem [26]. Following [27] we
consider the following stochastic PDE

du

dt
= −u+ C∇J (u) +

√
2
db

dt
, (13)

with ∇J (u) being the Fréchet derivative of J (u), and b being the nuclear
C−Wiener process [26] on L2 (Ω). Note that the “product” C∇J (u) makes
sense since C is an operator from the dual space [L2 (Ω)]

′
(the space of lin-

ear continuous functionals on L2 (Ω)) to L2 (Ω), and ∇J (u) is a member of
[L2 (Ω)]

′
. We conventionally write ∇J (u; z) to denote the action of ∇J (u)

on any z ∈ L2 (Ω). One can show (see, e.g., [27, 26]) that ν is the invari-
ant measure of (13). Now discretizing (13) with a preconditioned simplified
Crank-Nicholson method [10] with time step ∆t we obtain the proposal v
given u as

v =
2−∆t

2 + ∆t
u− 2∆t

2 + ∆t
C∇J (u) +

√
8∆t

2 + ∆t
ξ, (14)
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where ξ is distributed by the prior Gaussian measure µ. We define the
proposal measure q (u, dv) by (14). Then the work in [11] shows that

dηT

dη
(u, v) = exp [ρ (u, v)− ρ (v, u)] , (15)

where ρ (u, v) is defined as

ρ (u, v) = J (u) +
1

2
∇J (u; v − u) +

∆t

4
∇J (u; v + u)

+
∆t

4

〈
C

1
2∇J (u) , C

1
2∇J (u)

〉
L2(Ω)

. (16)

The expressions (14), (15), and (16) constitute the preconditioned function-
space Metropolis-adjusted Langevin algorithm (FMALA) that was proposed
in [11]. Clearly, if we ignore terms involving ∇J , the preconditioned Crank-
Nicholson random walk [11] is recovered.

3.2. Function-space hybrid Monte Carlo method (FHMC)

In this section, we recall the hybrid Monte Carlo, also known as Hamilto-
nian Monte Carlo, method. In particular, we follow the Hilbert space setting
presented in [12]. To begin, let us denote by ∆t the time step, L the number
of time steps, t the artificial time, and ϑ the artificial velocity. Consider the
following Hamiltonian

H (u, ϑ) :=
1

2

〈
ϑ, C−1ϑ

〉
L2(Ω)

+ J (u) +
1

2

〈
u, C−1u

〉
L2(Ω)

, (17)
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and the following discrete dynamic

u

(
t+

∆t

2

)
= u (t)

ϑ

(
t+

∆t

2

)
= ϑ (t)− ∆t

2
C∇J (u (t)) ,

u

(
t+

3∆t

2

)
= u

(
t+

∆t

2

)
cos (∆t) + ϑ

(
t+

∆t

2

)
sin (∆t)

ϑ

(
t+

3∆t

2

)
= −u

(
t+

∆t

2

)
sin (∆t) + ϑ

(
t+

∆t

2

)
cos (∆t)

u (t+ 2∆t) = u

(
t+

3∆t

2

)
ϑ (t+ 2∆t) = ϑ

(
t+

3∆t

2

)
− ∆t

2
C∇J

(
u

(
t+

3∆t

2

))
(18)

which corresponds to integrating the splitting Hamiltonian dynamics [12]

du
dt

= 0,
dϑ
dt

= −C∇J (u) ,
and

du
dt

= ϑ,
dϑ
dt

= −u. (19)

Since the discrete dynamics (18) only approximates the continuous coun-
terpart (19), the Hamiltonian (17) is not preserved, though volume-preserving
and reversibility are guaranteed. Thus, one needs to equip the HMC approach
with an acceptance/rejection rule to ensure the convergence of the Markov
chain. Following [12], we define the acceptance probability as

a
((
u1, ϑ1

)
,
(
uL, ϑL

))
:= min

{
1, exp

(
−∆H

((
u1, ϑ1

)
,
(
uL, ϑL

)))}
, (20)

where

∆H
((
u1, ϑ1

)
,
(
uL, ϑL

))
= J

(
uL
)
− J

(
u1
)
−∆t

L−1∑
i=2

〈
∇J

(
ui
)
, ϑi
〉
L2(Ω)

− ∆t

2

(〈
∇J

(
u1
)
, ϑ1
〉
L2(Ω)

+
〈
∇J

(
uL
)
, ϑL
〉
L2(Ω)

)
(21)

+
∆t2

8

(〈
C

1
2∇J

(
u1
)
, C

1
2∇J

(
u1
)〉

L2(Ω)
−
〈
C

1
2∇J

(
uL
)
, C

1
2∇J

(
uL
)〉

L2(Ω)

)
,

with ui, ϑi as the intermediate steps of the integration scheme (18) defined in
Algorithm 1. Note that this algorithm is used to generate one state/sample
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of the HMC chain, that is, it needs to be executed Ns times if Ns samples
are required. Here, u (0) is chosen as the last sample or as the MAP point
for the first sample computation.

Algorithm 1 FHMC Algorithm
Set t = 0
initialize u (0)
Draw ϑ (0) ∼ µ
for i = 1, . . . , L− 1 do

1. Set ui := u (2(i− 1)∆t)
2. Set ϑi := ϑ (2(i− 1)∆t)
3. Simulate (18)

end for
Set uL := u (2L∆t)
Set ϑL := ϑ (2L∆t)
Compute the acceptance probability (20)
Accept uL with probability a

(
(u1, ϑ1) ,

(
uL, ϑL

))
Note that the Hamiltonian difference in (21) is not in the standard form.

The reason is that the term 〈u, C−1u〉L2(Ω) (and 〈ϑ, C−1ϑ〉L2(Ω)) in the formal
definition of the Hamiltoninan (17) is almost surely infinite. It is only finite
for u in the Cameron-Martin space of C, whose measure is zero under the
prior Gaussian measure. Expression (21) takes into account the cancellation
of almost surely infinite terms on the continuous level before discretization.
As shall be demonstrated by numerical results in Section 5, this is critical to
the success of HMC methods in high dimensional parameter spaces.

3.3. Adjoint computation of the derivative

As can be seen in the previous sections, both FMALA and FHMC meth-
ods require the derivative ∇J (u) of the cost functional (3). In this section,
we present an adjoint technique to compute derivative efficiently. We start
by considering the weak form of the forward equation (4):∫

Ω

eu∇w · ∇λ̂ dΩ +

∫
∂Ω\ΓR

Biwλ̂ ds =

∫
ΓR

λ̂ ds, (22)

with λ̂ as the test function. Using the standard reduced space approach (see,
e.g., a general discussion in [28] and a detailed derivation in [29]) one can
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show that the Fréchet derivative (assumed to exist) ∇J (u; ·) of the cost
functional J (u) acting in any direction ũ is given by

∇J (u; ũ) =

∫
Ω

ũeu∇w · ∇λ dΩ, (23)

where the adjoint state λ satisfies the adjoint equation∫
Ω

eu∇λ · ∇ŵ dΩ +

∫
∂Ω\ΓR

Bi λŵ ds = − 1

σ2

K∑
j=1

(w (xj)− dj) ŵ (xj) , (24)

with ŵ as the test function. The procedure for computing the gradient acting
on an arbitrary direction ũ is now clear. One first solves the forward equation
(22) for w, then the adjoint (24) for λ, and finally evaluating (23).

3.4. Discretization using finite element method

Clearly, for computer implementation, we need to discretize the prior, the
likelihood, and hence the posterior. This section presents our contribution to
the Metropolize-then-discretize approach, namely the discretization using the
finite element method. In particular, we employ the standard H1 (Ω) finite
element method (FEM) to discretize the forward and adjoint (the likelihood),
and the operator A (the prior)1. For convenience, we further assume that
the discretized state and parameter reside on the same finite element mesh.
Since FEM approximation of elliptic operators is standard (see, e.g., [30]),
we will not discuss it here.

3.4.1. Finite element approximation of the prior

In this section, we describe a combination of FEM and the matrix transfer
technique (see, e.g. [31] and the references therein, for the detail) to discretize
truncated Karhunen-Loève (KL) expansions. Note that this is neither the
unique nor the best way to discretize a Gaussian measure. In fact, it is
chosen simply for convenience and the readers are referred to, for example,
[32, 33] for a different approach. Let us start by defining Q := A−s/2, then

1It should be pointed out that the Cameron-Martin space can be shown (see, e.g., [22])
to be a subspace of the usual fractional Sobolev space Hs (Ω), which is in turn a subspace
of H1 (Ω) for spatial dimension greater than one. Thus, we are using a non-conforming
FEM approach.
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the eigenpairs (λi, v
i) of Q define the KL expansion of the prior distribution

as

u = u0 +
1√
α

∞∑
i=1

aiλiv
i, (25)

where ai ∼ N (0, 1). The truncated KL expansion for u with N modes, again
denoted by u for convenience, reads

u = u0 +
1√
α

N∑
i=1

aiλiv
i. (26)

Clearly, we need to solve the following eigenvalue problem to determine
(λi, v

i):
Qvi = λiv

i,

or equivalently

As/2vi =
1

λi
vi. (27)

We choose to solve (27) using the matrix transfer technique (MTT). To
that end, let us denote by M the mass matrix, and K the stiffness matrix
resulting from the discretization of the Laplacian ∆ using the FEM method.
The representation of A (see, e.g., [34]) in the finite element space is given
by

A := M−1K + I.

If we define (σi,v
i) as eigenpairs for A, i.e,

Avi = σiv
i, or AV = ΣV

where Σ is the diagonal matrix with entries σi, then it is easy to see that(
vi
)T

Mvj = δij, or V−1 = VTM, (28)

with δij as the Kronecker delta function. Note that vi is in fact the FEM

nodal vector of vi. Since A is similar to M− 1
2 (K + M) M− 1

2 , a symmetric
positive definite matrix, A has positive eigenvalues. Using MTT method,
the matrix representation of (27) reads

As/2vi =
1

λi
vi,
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where
As/2 := VΣs/2V−1. (29)

It follows that
λi = σ

−s/2
i . (30)

We use the Lagrangian FEM to discretize the prior so that the FEM
approximation of the parameter is given by the FEM ansatz

u =
N∑
i=1

uiϕi, (31)

where ui are the nodal values, ϕi the nodal Lagrange basis functions, and
N the total number of FEM basis functions. Note that the number of FEM
basis functions does not need to be the same as the number of truncated
modes in (26), but they are chosen to be the same for sake of convenience.
This particular choice implies that more modes (higher parameter dimension)
implies finer mesh and vice versa. From now on to the end of the paper, let
boldface symbol denote the corresponding vector of FEM nodal values, e.g.,
u is the vector containing all FEM nodal values, ui, of u. Again, for ease
in writing, we have used the same notation u for both infinite dimensional
quantity and its FEM approximation. the FEM approximation of each

Substituting the FEM ansatz for both u and vj into the truncated KL
expansion (26), and using the Galerkin projection we obtain

u = u0 +
1√
α

N∑
i=1

aiλivi = u0 +
1√
α

VΛa, (32)

after eliminating the mass matrix M. Here, Λ is an N ×N diagonal matrix
with entries λi and a ∼ N (0, I) is a random vector whose components are
ai.

Since u ∈ L2 (Ω), u belongs to RN
M, i.e. the Euclidean space with weighted

inner product
〈·, ·〉RN

M
:= 〈·, ·〉M := 〈·,M·〉RN ,

so that the induced norm ‖u‖RN
M

approaches ‖u‖L2(Ω) as N → ∞. Let us

emphasize that the mass matrix M, i.e. the discretized Riesz matrix in
L2 (Ω), is the natural weight coming from the L2 (Ω)-setting of the prior.

A question arises: what is the distribution of the FEM nodal vector u?
One can see from (32) that u is a Gaussian since ai are. What remains to be
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done is to determine the mean and covariance matrix of u. It is easy to see
that the mean is u0 by taking expectation of both sides of (32) with respect
to a and using the fact that Ea [ai] = 0. We find the covariance matrix c
using definition of random vectors in RN

M, i.e.,

〈z, cy〉M : = Eu [〈u− u0, z〉M 〈u− u0,y〉M] =
1

α
Ea

[
zTMVΛaaTΛVTMg

]
=

1

α
zTMVΛ2VTMy =

〈
z,

1

α
VΛ2VTMy

〉
M

, (33)

where the expectation Eu and Ea are taken with respect to u and a, respec-
tively. Note that we have used (32) to obtain the second equality and the
fact that Ea

[
aaT

]
= I to reach the third equality. It follows that

c =
1

α
VΛ2VTM =

1

α
VΛ2V−1, (34)

where we have used (28) to obtain the second equality. A simple algebra
manipulation shows that c is a self-adjoint operator from RN

M to RN
M. The

square root of the covariance matrix is thus given by

c
1
2 :=

1√
α

VΛV−1, (35)

which is also a self-adjoint operator from RN
M to RN

M. Again, using the

identity (28) one can see that c
1
2 c

1
2 = c. Now, the inverse of c reads

c−1 = αVΛ−2V−1 = αVΛ−2VTM,

whence the distribution of u, i.e. the FEM discretization of the prior, is given
by

u ∼ N (u0, c) ∝ exp

[
−1

2

〈
u− u0, c

−1 (u− u0)
〉
M

]
= exp

[
−α

2
(u− u0)T MVΛ−2VTM (u− u0)

]
, (36)

that is, the discretized prior is a Gaussian distribution in RN
M with mean u0

and covariance matrix c.
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3.4.2. Finite element approximation of the likelihood

The forward and adjoint equations (22) and (24) are second order elliptic
PDEs. As such, they are (perhaps) best approximated with the standard
FEM method, so that the forward solution, for example, can be approximated
as

w =
N∑
i=1

wiϕi. (37)

The FEM approximation for each equation results in a system of algebraic
equations whose unknowns are the nodal values, e.g. w for the forward
equation. This standard process can be found in [30]. Once w is solved
for, the misfit 1

2σ2

∑K
j=1 [w (xj)− dj]2, and hence the likelihood (9), is readily

available.
We next focus on the discretization of the gradient. We begin with some

conventions and definitions. Since u ∈ L2 (Ω), we follow [35] to define the
gradient G (u) ∈ L2 (Ω) of the cost functional (3) as the Riesz representation
of the gradient (23) with respect to the L2 (Ω) inner product, i.e.,

〈G (u) , ũ〉L2(Ω) := ∇J (u; ũ) . (38)

We can use FEM to approximate the gradient as

G =
N∑
i=1

giϕi, (39)

with gi as the nodal values of G. Note that g = g (u) = g (u) but for sim-
plicity we will ignore this dependency except where this could be ambiguous.
Similar to u, g belongs to RN

M. It follows that when u and ũ are restricted
to the finite element space we have

〈G (u) , ũ〉L2(Ω)

FEM
= gTMũ = 〈g, ũ〉M . (40)

We have defined the gradient G in L2 (Ω) (on which the Gaussian prior
is postulated). We have also defined its counterpart, i.e. g, in RN

M, and their
mutual relationships are dictated by the FEM ansatz (39). We shall derive
the relationships between the gradient in RN

M and the FEM gradient defined
in Section 4.2.
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3.4.3. Finite element approximation of the posterior

Since the infinite dimensional Bayes formula (8) becomes the standard
one [22] when restricted to finite dimensional space, the FEM approximation
of the posterior, particularly the posterior density, is therefore given by

π (u|d) ∝ exp

(
−1

2
‖d− F (u)‖2

RK
L

)
× exp

(
−1

2

〈
u− u0, c

−1 (u− u0)
〉
M

)
.

(41)
Since the posterior density is defined on finite dimensional space RN

M, it is
amenable to computer implementation of MCMC methods. However, care
must be taken in designing MCMC methods so that their performance does
not deteriorate as the dimension of the discretization increases (e.g. when
the mesh is refined). This is desirable, especially for Bayesian inverse prob-
lems governed by PDE in which mesh refinement is often needed to resolve
important physical features of the problem under consideration. One of the
main objectives of this paper is to constructively derive such FEM-based
discretization-invariant MCMC methods.

Though the convergence analysis of our finite element approximation
scheme is important, it is a subject of future work. On the other hand,
it should be mentioned that a convergence analysis for finite dimensional
posterior can be found in [22] using spectral method and in [36] using a com-
bination of spectral method and boundary element approach. A different
FEM approximation of both prior and likelihood, and hence posterior, can
be found in [32] for a particular case of s = 2 in a three dimensional spatial
seismic inverse problem.

3.4.4. Construction of a discretization-invariant MALA method in RN
M

The goal of this section is to derive a FEM-based discretization-invariant
MALA algorithm. We shall achieve this objective by using the FEM dis-
cretization proposed in Sections 3.4.1, 3.4.2, and 3.4.3 to discretize the FMALA
discussed in Section 3.1. The task at hand is to carry out a finite element
approximation for (14), (15), and (16). The question that needs to be ad-
dressed is how to cast (14), (15), and (16) in terms of quantities in RN

M. The
non-trivial term is C∇J (u), namely, the action of the prior covariance oper-
ator on the gradient. We begin with the definition of the covariance operator
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acting on z,∇J (u) ∈ L2 (Ω):

〈z, C∇J (u)〉L2(Ω) : = Er
[
〈z, r − u0〉L2(Ω)∇J (u; r − u0)

]
= Er

[
〈z, r − u0〉L2(Ω) 〈G (u) , r − u0〉L2(Ω)

]
where we have used (38), and the expectation is taken with respect to the
random function r distributed by the prior measure µ. Now, using the FEM
method to discretize z as in (31), G (u) as in (40), and r as in (32) we obtain

〈z, C∇J (u)〉L2(Ω)

FEM
= Er

[
zTM (r− u0) (r− u0)T Mg

]
(42)

=
1

α
Ea

[
zTMVΛaaTΛVTMg

]
=

1

α
zTMVΛ2VTMg =

〈
z,

1

α
VΛ2VTMg

〉
M

,

where we have used Ea

[
aaT

]
= I. Clearly, if z = ϕi, i.e. the ith FEM nodal

basis function, then z is the vector with zi = 1 and zj = 0,∀j 6= i. The result

in (42) implies the discretization of the square root C 1
2 , that is,〈

z, C1/2∇J (u∗)
〉
L2(Ω)

FEM
=

1√
α

zTMVΛVTMg =

〈
z,

1√
α

VΛVTMg

〉
M

.

(43)

On the other hand, since v ∈ L2 (Ω) the proposal equation (14) is equiv-
alent to

〈φ, v〉L2(Ω) =
2−∆t

2 + ∆t
〈φ, u〉L2(Ω)−

2∆t

2 + ∆t
〈φ, C∇J (u)〉L2(Ω)+

√
8∆t

2 + ∆t
〈φ, ξ〉L2(Ω) ,

for all φ ∈ L2 (Ω). Now, discretizing the random function ξ as in (32),
restricting v and u in the FEM space as in (31), representing ∇J (u) as in
(38) and (40), taking φ as FEM nodal basis functions, and using (42) we
arrive at a FEM discretization of (14):

v =
2−∆t

2 + ∆t
u− 2∆t

2 + ∆t

1

α
VΛ2VTMg +

√
8∆t

2 + ∆t
ξ, (44)

after eliminating the Riesz matrix M. Here, ξ is a random vector given by
(32), and hence distributed by the discretized prior (36). Next, using (34)
we conclude

v =
2−∆t

2 + ∆t
u− 2∆t

2 + ∆t
cg +

√
8∆t

2 + ∆t
ξ. (45)
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In order to compute the acceptance probability (12), we need to discretize
(16). This can be done by first substituting the FEM ansatz (31) for v, u,
second using definition (38) and FEM approximation (40) for ∇J (u; v ± u),

and third employing (43) for C 1
2 . Doing so yields

ρ (u,v) = J (u) +
1

2
〈g,v − u〉M +

∆t

4
〈g,v + u〉M

+
∆t

4α

〈
VΛVTMg,VΛVTMg

〉
M
.

Here, by ρ (u,v) and J (u), we mean the substitutions of FEM ansatz (37)
for u and v into ρ (u, v) and J (u). Using (28) and (35) yield

ρ (u,v) = J (u)+
1

2
〈g,v − u〉M+

∆t

4
〈g,v + u〉M+

∆t

4

〈
c

1
2 g, c

1
2 g
〉
M
. (46)

The acceptance rate (15) can be therefore approximated as

dηT

dη
(u,v)

FEM
= exp [ρ (u,v)− ρ (v,u)] . (47)

Similar to the function space setting in Section 3.1, if we ignore terms
involving g in (45) and (46), we obtain a FEM approximation of the precon-
ditioned Crank-Nicholson random walk.

We have shown how to constructively discretize the FMALA method us-
ing a Galerkin FEM method. In particular, formulas (14)–(16) for FMALA
on L2 (Ω) have been cast into (45)–(47) for discretized FMALA on RN

M. Re-
call that FMALA is a MALA method defined on the Hilbert space L2 (Ω).
A closer comparison between (45)–(47) and (14)–(16) reveals an important
result, namely, the discretized MALA is nothing more than an application of
the FMALA algorithm to the Hilbert space RN

M. To see this, we note that the
results (14)–(16) are valid for any Hilbert space. Thus, they are certainly
applicable for RN

M once all the corresponding quantities such as gradient g,
covariance matrix c (and its square root), etc, in RN

M are identified, and this
has been one of the main focuses done in Sections 3.4.1 and 3.4.2. In partic-
ular, replacing v, u, C,∇J (u) and ξ with v,u, c,g and ξ in (14) immediately

gives (45). Similarly, using u,v,g and c
1
2 in the place of u, v,∇J (u) and C 1

2

in (16) and replacing the L2 (Ω)−inner product with the M−inner product
we obtain exactly (46). Finally, replacing u, v with u,v we recover (47).

We have constructed a FEM-based MALA method on RN
M. As can be

seen, it is derived by either discretizing the FMALA on L2 (Ω) or applying
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the FMALA to RN
M. We refer to this method as RN

M-MALA, for which the
proposal v given the current state u of the Markov chain is computed using
(45) and the acceptance rate is computed via (47). Let us now provide a
brief discussion on the discretization-invariant property of RN

M-FMALA, and
a detailed rigorous analysis is left for future work. The convergence of the
distribution of the sequence of random functions with FEM nodal vector ξ
to the prior distribution µ is clear by the convergence of FEM [30], of the
matrix transfer technique [34], and of the Karhunen-Loève expansion. The
convergence of c as a representation of C in RN

M is due to the same reasons.
The convergence of the function sequences with FEM nodal vectors g to
the gradient G is due to the interpolation theory on finite element spaces
[30]. The convergence of the function sequences with FEM nodal vectors
u to u is due to the same reason. Consequently, the function sequences
with FEM nodal vectors v in (45) converges to the proposal function v in
(14). The convergence of ρ (u,v) to ρ (u, v), and hence the convergence of
dηT

dη
(u,v) to dηT

dη
(u, v), is due to similar reasons. As shall be shown in the

numerical results in Section 5, this is the key ensuring the inheritance of
dimension-independent, and thus mesh-independent, property of the RN

M-
MALA method.

3.4.5. Construction of a discretization-invariant HMC method in RN
M

In this section, we construct a FEM-based discretization-invariant HMC
method in RN

M. Similar to Section 3.4.4, we accomplish this goal using a
FEM approximation of the FHMC defined on L2 (Ω) that is described in
Section 3.2. The presentation is necessary brief since we use similar Galerkin
projection and MTT technique as discussed at length in Section 3.4.4. In
particular, the Galerkin FEM discretization of the dynamics (18) can be
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shown to be

u

(
t+

∆t

2

)
= u (t)

ϑ

(
t+

∆t

2

)
= ϑ (t)− ∆t

2
cg (u (t)) ,

u

(
t+

3∆t

2

)
= u

(
t+

∆t

2

)
cos (∆t) + ϑ

(
t+

∆t

2

)
sin (∆t)

ϑ

(
t+

3∆t

2

)
= −u

(
t+

∆t

2

)
sin (∆t) + ϑ

(
t+

∆t

2

)
cos (∆t)

u (t+ 2∆t) = u

(
t+

3∆t

2

)
ϑ (t+ 2∆t) = ϑ

(
t+

3∆t

2

)
− ∆t

2
cg

(
u

(
t+

3∆t

2

))
, (48)

where, let us recall, except for c, bold symbols denote vectors of FEM nodal
values.

Similarly, a FEM approximation of the acceptance probability (20) can
be written as

a
((

u1,ϑ1
)
,
(
uL,ϑL

))
:= min

{
1, exp

(
−∆H

((
u1,ϑ1

)
,
(
uL,ϑL

)))}
, (49)

where

∆H
((

u1,ϑ1
)
,
(
uL,ϑL

))
= J

(
uL
)
− J

(
u1
)
−∆t

L−1∑
i=2

〈
gi,ϑi

〉
M

(50)

− ∆t

2

(〈
g1,ϑ1

〉
M

+
〈
gL,ϑL

〉
M

)
+

∆t2

8

(〈
c

1
2 g1, c

1
2 g1
〉
M
−
〈
c

1
2 gL, c

1
2 gL
〉
M

)
.

Here, we have defined gi := g (ui) , i = 1, . . . , L, and ui is the FEM nodal
vector of ui defined in Algorithm 1.

Similar to Section 3.4.4 we refer to the HMC method defined by (48)–
(50) and Algorithm 1 with u, ϑ replaced by u,ϑ as RN

M-HMC. Note that,
due to the Galerkin FEM approximation, we draw ϑ (0) using the trun-
cated KL expansion in (32). As a result, there are two equivalent view
points on RN

M-HMC: it can be considered as an algorithm resulting from a
systematic discretization of the FHMC method on L2 (Ω) using the FEM
method, or it is an algorithm obtained by applying the FHMC method to
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the weighted Euclidean space RN
M. Either of the views requires proper defi-

nitions/constructions of the prior, the gradient g, and the covariance matrix
c (and its square root) on RN

M to which Sections 3.4.1 and 3.4.2 are devoted.
Numerical results in Section 5 show that RN

M-HMC is discretization-invariant
and the reasons are similar to those discussed at the end of Section 3.4.4.

4. Discretize-then-Metropolize approach

We have presented FEM approximations of the prior, the likelihood, and
the posterior in Section 3.4. As pointed out, the nodal vector of the parame-
ter, i.e. u, should be considered as a vector in the weighted Euclidean space
RN

M. This is inherited from the L2 (Ω)-setting of the prior. In practice, the
RN -view of the nodal vector seems to be more natural and “easier” for prac-
titioners. The challenge here is how to construct a discretization-invariant
approximation procedure in RN and whether it is equivalent to the RN

M-view.
The goal of this section is to give detailed answers for these questions.

4.1. RN -discretization of the infinite dimensional Bayes’ formula

We begin with the formal density of the posterior with respect to the
Lebesgue measure as

π (u|d) ∝ πlike (d|u)× πprior (u) ∝ πlike (d|u)× exp

(
−1

2
‖u− u0‖2

C

)
, (51)

and we wish to discretize the formal density π (u|d). To that end, we need
to discretize the likelihood πlike (d|u) using the FEM method, and this was
already done in Section 3.4.2, since FEM approximation of the likelihood is
independent of either of the view points. What remains to be done is to
discretize the formal density of the prior, and it is sufficient to consider

1

2
‖u− u0‖2

C :=
α

2

∥∥As/2 (u− u0)
∥∥2

L2(Ω)
=:

α

2
‖z‖2

L2(Ω) ,

where we have defined a function z ∈ L2 (Ω) as

As/2 (u− u0) = z. (52)

Note that (52) is similar to (27) and for that reason we also use the MTT
approach as in Section 3.4.1 to discretize (52). Doing so casts (52) into

As/2 (u− u0) = z,
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where u,u0 and z are the FEM nodal vectors of u, u0 and z, respectively.
Consequently, we have

1

2
‖u− u0‖2

C =
α

2
‖z‖2

L2(Ω)

FEM
=

α

2

∥∥As/2 (u− u0)
∥∥2

RN
M

=
α

2
(u− u0)T

(
As/2

)T
MAs/2 (u− u0)

=
α

2
(u− u0)T V−TΣs/2VTMVΣs/2V−1 (u− u0)

=
α

2
(u− u0)T MVΣsVTM (u− u0)

=
α

2
(u− u0)T MVΛ−2VTM (u− u0) (53)

where we have used the FEM approximation (29) for As/2 and (28) for simpli-
fying the results2. As can be seen, (53) coincides with the negative logarithm
of the discrete prior probability density of u in (36) using the RN

M-view. Re-
call that we derived (36) using statistics/probability theory while we have
used the MTT technique, a deterministic approach, to arrive at (53), and
yet they are identical.

We conclude that the FEM approximation of the formal posterior density
(51) is exactly the same as (41), i.e.,

π (u|d) ∝ exp

(
−1

2
‖d− F (u)‖2

RK
L

)
×exp

(
−α

2
(u− u0)T MVΛ−2VTM (u− u0)

)
.

(54)
In other words, we obtain identical FEM discretization of the infinite dimen-
sional Bayes’ formula using either of the RN

M - or the RN -view.
It is clear from (54) that the prior distribution in RN is a Gaussian

N (u0,C) and our next task is to determine C. From (54), we infer

C−1 := αMVΛ−2VTM,

from which we can deduce its inverse as

C :=
(
C−1

)−1
=

1

α
VΛ2VT , (55)

2Note that the term 1
2 ‖u− u0‖

2
C is almost surely infinite for u ∼ µ since it is only

finite if u is in the Cameron-Martin space, namely the range of operator Q, which has zero
measure under µ [26].
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where we have used (28) to obtain the last equality. Comparing (34) and
(55) we obtain

cM−1 = C, (56)

that is, the covariances in RN and RN
M are related but different. It follows

that u ∼ N (u0,C) in RN .
The next question that we like to address is how to generate random

vectors from the prior N (u0,C). By inspection we see that, if a ∼ N (0, I)
then a random vector v ∈ RN defined by

v = u0 +
1√
α

VΛa (57)

is distributed by the prior N (u0,C). As can be seen, (57) is exactly the same
as (32). The difference here is the interpretation, namely, random vectors
generated by (57) belong to RN while those from (32) are understood as
vectors in RN

M.

4.2. Gradient in RN

In the following, we will present discretization-invariant MCMC methods
in RN to explore the posterior (54). To that end, we need to define the
gradient in RN . We begin with the definition of the FEM gradient vector
G ∈ RN :

Gi := ∇J (u) := ∇J (u;ϕi) , (58)

i.e. the derivative of the cost functional along direction spanned by the FEM
basis ϕi, which is precisely the gradient of the cost functional J (u) with
respect to ui, namely,

Gi =
∂J
∂ui

.

Again, J and G are a function of u, and we omit their argument for sim-
plicity, but we recover the dependency occasionally if there is a chance of
misunderstanding. We will use this convention throughout the paper for
other quantities as well.

We have the following simple result relating the gradients in RN and RN
M:

Mg = G, (59)

which can be proved by taking ũ in (38) as ϕi, for i = 1, . . . , N , and using
(39) and (58).
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Remark 1. Note that the FEM gradient G is typically the output of a FEM
computer code. It can be considered as the gradient of the cost functional
with respect to u if we view u as a vector in the standard Euclidean space
RN . Identity (59) allows us to express the gradient in RN

M as a function of
its counterpart in RN .

4.3. Construction of a discretization-invariant MALA method in RN

At this point, we have defined the posterior (54), the prior covariance
C, and the gradient G in RN . These provide sufficient ingredients to define
MALA methods on RN . In particular, we are going to present two RN -MALA
approaches to explore the posterior. Clearly, one can employ the original
MALA algorithm developed in [8], but for the sake of fairness compared to
the RN

M-MALA let us use the same Crank-Nicholson discretization strategy
proposed in [10, 11] for the posterior (54). Doing so yields

v =
2−∆t

2 + ∆t
u− 2∆t

2 + ∆t
CG +

√
8∆t

2 + ∆t
ζ, (60)

where ζ is distributed by N (u0,C). In other words, ζ is distributed exactly
by (32), but now understood as a random vector in RN . Thus, the proposal
density of v given u reads

q (u,v) = N
(

2−∆t

2 + ∆t
u− 2∆t

2 + ∆t
CG,

8∆t

(2 + ∆t)2 C

)
. (61)

Alternatively, these results can be considered as an application of the function
space MALA approach, i.e. FMALA, to the posterior (54) on the Hilbert
space RN .

What remains to be defined is the acceptance rate. At this point, there
are two obvious approaches. In the first approach, we continue applying the
FMALA approach presented in Section 3.1 to RN . In particular, the accep-
tance rate is computed using expressions (12), (15), and (16). Nevertheless,
similar to Section 3.4.4, ρ (u,v) needs to be computed using appropriate
quantities in RN , i.e. using the FEM gradient G and the covariance matrix
C. Doing so gives

ρ (u,v) = J (u)+
1

2
〈G,v − u〉RN +

∆t

4
〈G,v + u〉RN +

∆t

4
〈G,CG〉RN . (62)
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We next show that the RN -MALA method consisting of (60), (62), and
(15) is identical to the RN

M-MALA approach in Section 3.4.4. Indeed, using
identities (59) and (56) we can rewrite (45) as

v =
2−∆t

2 + ∆t
u− 2∆t

2 + ∆t
CG +

√
8∆t

2 + ∆t
ξ,

which is equivalent to (60) since both ξ and ζ are random vectors distributed
by (32). On the other hand, if we use identities (59) and (56), it is easy to see
that (46) is identical to (62). Again, the difference here is the interpretation,
namely, nodal vectors in the RN

M-MALA method belong to RN
M, but those

from the RN -MALA counterpart reside in RN .
In the second RN -MALA approach, instead of using (62) and (15) to

compute the acceptance probability we use the standard Metropolization:

a (u,v) := min

{
1,
π (v|d)× q (v,u)

π (u|d)× q (u,v)

}
. (63)

As can be observed, compared to the first RN -MALA approach (or equiv-
alently the RN

M-MALA approach in Section 3.4.4), the second RN -MALA
approach is the same up to the proposal (60). However, unlike the former,
the acceptance rate of the latter in (63) is purely from the RN -view and does
not take into account the fact that the finite dimensional posterior (54) is a
discretization of an infinite dimensional problem. In particular, while almost
surely infinite terms are eliminated in the former approach, they still present
in the latter one. Indeed, without loss of generality let us assume u0 = 0,
one can show that

log

[
π (v|d)× q (v,u)

π (u|d)× q (u,v)

]
= ρ (u,v)− ρ (v,u)

+
1

2
vTC−1v +

(2−∆t)2

16∆t
vTC−1v − (2 + ∆t)2

16∆t
vTC−1v

− 1

2
uTC−1u− (2−∆t)2

16∆t
uTC−1u +

(2 + ∆t)2

16∆t
uTC−1u. (64)

Note that terms involving vTC−1v and uTC−1u are very large, in fact ap-
proach infinity as the parameter dimension increases, (due to the presence of
ζ in (60)) if the finite element space does not conform in the Cameron-Martin
space. Nevertheless, the last two lines in (64) vanish in exact arithmetic.
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While the first RN -MALA approach takes this into account, the second does
not. Consequently, the last two lines are not zero (due to round-off errors)
and may dominate ρ (u,v)− ρ (v,u). As will be shown in the numerical re-
sults, it is these terms that make the acceptance rate of the second approach
deteriorate as the dimension of u increases (e.g. when the mesh is refined).

4.4. Construction of a discretization-invariant HMC method in RN

In Section 3.4.5 we have presented a FEM discretization of the FHMC
method on L2 (Ω). In this section, we will first discretize the Hamiltonian,
and then present two RN -HMC algorithms parallel to the RN -MALA meth-
ods in Section 4.3. To begin, using the MTT technique as in (53) and the
prior covariance (55) we can discretize the Hamiltonian (17) to obtain

H (u,ϑ) :=
1

2

〈
ϑ,C−1ϑ

〉
RN + J (u) +

1

2

〈
u,C−1u

〉
RN . (65)

In the first RN -HMC algorithm, we apply the FHMC discrete dynamic
(18) to the Hamiltonian (65) in the Hilbert space RN . Substituting appro-
priate quantities, e.g. G and C, of RN in (18) gives

u

(
t+

∆t

2

)
= u (t)

ϑ

(
t+

∆t

2

)
= ϑ (t)− ∆t

2
CG (u (t)) ,

u

(
t+

3∆t

2

)
= u

(
t+

∆t

2

)
cos (∆t) + ϑ

(
t+

∆t

2

)
sin (∆t)

ϑ

(
t+

3∆t

2

)
= −u

(
t+

∆t

2

)
sin (∆t) + ϑ

(
t+

∆t

2

)
cos (∆t)

u (t+ 2∆t) = u

(
t+

3∆t

2

)
ϑ (t+ 2∆t) = ϑ

(
t+

3∆t

2

)
− ∆t

2
CG

(
u

(
t+

3∆t

2

))
. (66)

The acceptance rate (20), together with (21), when applied to the discrete
Hamiltonian (65) in RN becomes

a
((

u1,ϑ1
)
,
(
uL,ϑL

))
:= min

{
1, exp

(
−∆H

((
u1,ϑ1

)
,
(
uL,ϑL

)))}
, (67)
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where

∆H
((

u1,ϑ1
)
,
(
uL,ϑL

))
= J

(
uL
)
− J

(
u1
)
−∆t

L−1∑
i=2

〈
Gi,ϑi

〉
RN (68)

− ∆t

2

(〈
G1,ϑ1

〉
RN +

〈
GL,ϑL

〉
RN

)
+

∆t2

8

(〈
G1,CG1

〉
RN −

〈
GL,CGL

〉
RN

)
.

Here, we have defined Gi := G (ui) , i = 1, . . . , L, and ui is the FEM nodal
vector of ui defined in Algorithm 1. Now using identities (59) and (56) it
is easy to see that (67)–(68) are identical to (49)–(50). That is, the first
RN -HMC algorithm is equivalent to the RN

M-HMC method.
Let us now construct the second RN -HMC approach by using the standard

finite dimensional HMC approach for the Hamiltonian (65). For the sake
of comparison, instead of considering the standard momentum-based HMC
approach [37, 38], we use the same velocity-based HMC framework proposed
in [12]. That is, the same numerical integrator (66) is employed, but the
acceptance rate is based on the usual formula

aS
((

u1,ϑ1
)
,
(
uL,ϑL

))
:= min

{
1, exp

(
H
((

u1,ϑ1
))
−H

(
uL,ϑL

))}
.

(69)
As can be observed, the second RN -HMC approach is almost identical

to the first one. Indeed the difference is only at the acceptance rate com-
putation. The former suffers from large errors due to approximating terms
with large value (in fact infinite as the number of mesh points, and hence
parameter dimension, increases), while this does not happen for the latter
because large-value terms are already eliminated on the continuous level. As
shall be shown in the numerical results, the approximation errors turn out to
be detrimental. In particular, they lead to vanishing small acceptance rates
for the second RN -HMC approach.

Let us summarize one of the most important results in this paper about
the commutativity of the Metropolize-then-discretize and the discretize-then-
Metropolize approaches. Here, by commutativity we mean that both ap-
proaches yield the same discretization-invariant finite dimensional MCMC
methods.

Theorem 1. Suppose proper definitions of the gradients g,G and covariance
matrices c,C are provided on RN

M and RN , respectively. If function-space
MCMC methods are applied to the Hilbert space RN , the discretize-then-
Metropolize approaches commute with the Metropolize-then-discretize coun-
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terparts. In particular, RN -MALA and RN -HMC algorithms are identical to
RN

M-MALA and RN
M-HMC counterparts.

Clearly the result also holds true for other function-space MCMC tech-
niques [10, 11] though we limit ourselves to the MALA and HMC approaches.
The key to the commutativity is to use the correct and well-defined quantities,
e.g. gradient, covariance, and inner product, in the setting under considera-
tion. Defining these properly and systematically in the finite element context
is one of the main contributions of this paper. More importantly, the com-
mutativity allows one to constructively develop discretization-invariant finite
dimensional MCMC methods, such as those in this paper, whose performance
is independent of the parameter dimension, and hence the mesh refinement.

Remark 2. It should be pointed out that the commutativity discussed in this
paper is not the same as that of discretize-then-optimize and optimize-then-
discretize approaches in the PDE-constrained optimization literature (see,
e.g., [39]). The FEM method typically yields the latter for elliptic forward
PDEs. The former is completely different, namely, it is solely based first on
proper definitions of g,G, c and C, and then on the application of function-
space MCMC methods on the Hilbert spaces RN

M and RN . The former is thus
guaranteed, irrespective of the discretization methods and PDE types (though
we use the FEM method and the forward PDE happens to be elliptic). In-
deed, the discretization of the forward PDE has no role in our commutativity
results. On the other hand, even when the FEM method is used, our no-
tion of commutativity may not hold and this is what happens for the second
RN -MALA and the second RN -HMC approaches.

5. Numerical Results

In this section we present numerical results to justify our developments
in this paper. Recall that we have presented one Metropolize-then-discretize
(MTD) method for MALA and one for HMC in Sections 3.4.4 and 3.4.5,
respectively, but two discretize-then-Metropolize (DTM) ones for either of
the approaches in Sections 4.3 and 4.4. Since the first DTM method is the
same as the MTD RN

M-one, we call either of them as MTD method, and we
refer to the second RN -approach as the DTM method.

We will present examples in one and two dimensional spatial spaces. In
the first example, we consider the case with Ω = [0, 1] and ΓR = {1}. We
take K = 65 synthetic observations at xj = (j−1)/26, j = 1, . . . , K, and the
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noise is assumed to be i.i.d. with variance taken as σ = 0.01 maxj {w (xj)}.
Here, w (xj) are synthetic observations with the ground truth parameter field
u (x) = 0.1 cos (2πx). The inversion task is to recover this ground truth given
the noisy data d modeled as in (1)–(2). For the numerical results, we take
Bi = 0.1 in (4), α = 8, and s = 0.9 in (6). For all MCMC runs, we take the
MAP point as the initial state. For all results, we by no means attempt to
run MCMC chains until convergence. Instead, we simply take, say 5000, as
a representative sample size for numerical illustrations.

We first compare the MTD MALA, the DTM MALA, and the standard
MALA [8]. For this comparison, we consider three different mesh sizes h =
{2−9, 2−8, 2−7}, or equivalently N = {129, 257, 513}. For time step ∆t, we
choose the following values {0.1, 0.05, 0.02, 0.01, 0.005, 0.002} for both MTD
MALA and DTM MALA approaches, while it is {0.128, 0.064, 0.032, 0.016, 0.08}×
10−3 for the standard MALA method. For all MCMC runs, after discarding
the first 100 samples as burn-ins we take the chain with 5000 samples from
which the average acceptance rate is computed.
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Figure 1: Average acceptance rate for Metropolize-then-Discretize MALA, Discretize-then-
Metropolize MALA, and standard MA LA as the mesh is refined.

The results for MTD MALA, DTM MALA, and standard MALA are
shown in Figures 1(a), 1(b), and 1(c) respectively. As expected, the accep-
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tance rate of the MTD MALA is independent of the mesh size, and hence the
parameter dimension. However, the DTM MALA approach is better than
expected. Indeed, it is identical to the MTD MALA counterpart. The reason
is that the Cameron-Martin space is Hs = H0.9 which is a superset of the
H1 finite element space. In other words, the finite element space conforms
in the Cameron-Martin one, and hence all the terms involving C−1 in (64)
are well-defined and their sum is negligible compared to ρ (u,v) − ρ (v,u).
This implies that the first two methods are identical. In contrast, the stan-
dard MALA approach suffers from mesh refinement, i.e., the acceptance rate
decreases. This is consistent with existing results in [10, 11, 7, 8] (in which
different discretizations are used). This highlights the need for discretization-
invariant MCMC methods for PDE-constrained Bayesian inverse problems
in infinite dimensional parameter spaces. Clearly, for all methods, the ac-
ceptance rate, as expected, decreases as the time step ∆t, i.e. the proposal
variance, increases.

We now consider HMC methods for the same inverse problem but present
the result differently. In particular, we choose a single time step of ∆t = 0.05
with L = 50 time steps, and a wide range of mesh size h = {2−13, 2−12, 2−11, 2−10, 2−9, 2−8, 2−7}.
That is, the smallest parameter dimension is 129 and the largest is 8193. For
all MCMC runs, after discarding the first 100 samples as burn-ins we take
the chain with 5000 samples from which the average acceptance rate is com-
puted. In Figure 2 are the average acceptance rates for the MTD HMC,
DTM HMC, standard HMC [37, 38], and a prior-conditioned standard HMC
methods. Note that the last method uses the inverse of the prior covariance
matrix as the mass matrix in the kinetic energy term (see, e.g., [38] for the
definition of the mass matrix). As can be seen, the acceptance rates for the
first two and the last HMC methods are mesh-independent, while it is not
for the standard HMC method. This is expected since standard HMC is
purely based on the RN -view, and hence its performance deteriorate as the
parameter dimension increases.

Note that the cost of the four methods are comparable since the action of
the prior is negligible in this example. The results therefore seem to suggest
that the first two and the last methods are the method of choice. Among
these three methods, the dimension-independent behavior of the MTD HMC
is expected and is consistent with [12]. However, the DTM HMC approach
is better than expected. Indeed, it is identical to the MTD HMC one. The
reason is that the Cameron-Martin space is Hs = H0.9 which is a superset
of the H1 finite element space. In other words, the finite element space
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conforms in the Cameron-Martin one, and hence all the terms in the formal
Hamiltonian (17) are well-defined and finite. This implies that the standard
Hamiltonian difference used in (69) is (numerically) the same as the improved
one in (21). Thus, the first (MTD HMC) and second (DTM HMC) RN -HMC
methods behave the same in this case. The prior-conditioned standard HMC
is surprisingly good.
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Metropolize−then−Discretize HMC
Discretize−then−Metropolize HMC
Prior−preconditioned standard HMC
 Standard HMC

Figure 2: Average acceptance rate for various HMC approaches as a function of the mesh
size (parameter dimension): Metropolize-then-discretize HMC (Hilbertian HMC with dis-
cretized infinite dimensional acceptance rate), discretize-then-Metropolize HMC (Hilber-
tian HMC with the standard finite dimensional acceptance rate), prior-preconditioned
standard HMC, and the standard HMC with identity mass matrix.

To see whether the above results for MTD and DTM approaches are
carried over to higher dimensional spatial space, we consider an example in
two dimensions. In this case, the forward equation (4) is still the same, but
the domain Ω together with its dimensions is given in Figure 3(a). Red
circles are the measurement/observation points. We will consider three mesh
sizes {h, h/2, h/4} and the coarsest mesh with size h is shown in Figure 3(a).

34



−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

(a) Mesh and observations (b) Synthetic exact parameter field

Figure 3: Left: finite element coarsest mesh of the thermal fin and its dimensions. Red
circles are the measurement/observation points. Right: the exact synthetic parameter
field u

The coarsest mesh has 1333 parameters, medium 4760, and fine 17899. Here,
ΓR = [−0.5, 0.5]×{0}, s = 1.4, Bi = 0.1, α = 5, and σ = 0.01 maxj {w (xj)}.
The exact synthetic parameter field is a Gaussian blob given by

u =
1

0.3
√

2π
exp

[
− 1

0.18

(
x2 + (y − 2)2

)]
.

Let us first compare MTD MALA and DTM MALA. The time step is
chosen to be ∆t = 0.00015 for both approaches. In Table 1 are the average
acceptance rates over 5000 samples for different mesh sizes. As can be seen,
the acceptance rate of the former is mesh-independent while that of the latter
is not. The reason is the following. For the Gaussian measure to be well-
defined we have chosen s = 1.4 > d/2 = 1. Thus, the H1 finite element space
does not conform in the Cameron-Martin space Hs = H1.4, and terms such as
uTC−1u, vTC−1v in (64) are very large. Round-off errors from these terms
dominate ρ (u,v)− ρ (v,u), and this destroys the Metropolization step. To
demonstrate this problem let us define

κ = ρ (u,v)− ρ (v,u)

for the MTD MALA approach and

κ = log

[
π (v|d)× q (v,u)

π (u|d)× q (u,v)

]
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for the DTM MALA counterpart. The difference between these two are
terms involving C−1 in (64). Again, the difference is zero in exact arithmetic.
Figure 4 shows the plot of κ for the coarsest mesh case in Figure 3(a). As
can be seen, κ of the DTM MALA method is more than three orders of
magnitude larger than that of the MTD MALA approach. In other words, the
round-off errors from large terms involving C−1 entirely overwhelm ρ (u,v)−
ρ (v,u). Consequently, the acceptance rate in the third column of Table 1 is
completely erratic. This is the reason why the DTM MALA method fails.

Table 1: Average acceptance rate of the Metropolize-then-discretize MALA and the
discretize-then-Metropolize MALA as the mesh is refined.

MTD MALA DTM MALA

h 0.63098 0.01000
h/2 0.63137 0.00235
h/4 0.63627 0.00549

We next compare the average acceptance rate of MTD HMC, DTM HMC,
and the prior-conditioned standard HMC approaches as the mesh is refined.
To that end, we take ∆t = 0.015, L = 100, and generate 1000 samples for
each method and each mesh after discarding the first 100 samples as burn-
ins. The results for three methods are shown in Table 2. As can be seen,
the acceptance rate of the prior-preconditioned standard HMC is better than
that of the DTM HMC, though it degrades as the mesh is refined. The DTM
HMC seems to be mesh-dependent, but the acceptance rate is vanishingly
small. The MTD HMC is the best in the sense that it not only is independent
of the mesh, but also has very high acceptance rate.

To gain further insights into each method, let us present the sample mean
with 5000 samples. The result is shown in Figure 5 on the same color scale
for all three methods on the coarsest mesh. As can be observed, the sample
means of MTD HMC and prior-preconditioned standard HMC approaches
in Figures 5(a) and 5(c), respectively, are similar, and they both reveal the
position of the Gaussian blob at (0, 2) (compared to the synthetic ground
truth parameter field in Figure 3(b)). The DTM HMC method, however,
does not seem to succeed in exploring the posterior, and its sample mean in
Figure 5(b) is completely random.

Let us now explain why the DTM HMC approach fails in this case. For
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Figure 4: A plot of κ for both MTD MALA and DTM MALA approaches on the coarsest
mesh.

Table 2: Average acceptance rate of the Metropolize-then-discretize (MTD) HMC, the
discretize-then-Metropolize (DTM) HMC, and the prior-conditioned standard HMC as
the mesh is refined.

MTD HMC DTM HMC prior-preconditioned standard HMC

h 0.82 0.017 0.511
h/2 0.76 0.014 0.288
h/4 0.79 0.018 0.279

the Gaussian measure to be well-defined we have chosen s = 1.4 > d/2 =
1. Thus, the H1 finite element space does not conform in the Cameron-
Martin space Hs = H1.4, and term such as 〈u, C−1u〉L2(Ω) in the formal
Hamiltonian (17) is almost surely infinite. Finite element approximation of
these terms incurs large errors (which are supposed to be zero) that dominate
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the actual Hamiltonian difference, and this ruins the Metropolization step.
To demonstrate this problem, let us plot, for the coarsest mesh case in Figure
5, the Hamiltonian difference using the standard and improved approaches
in Figure 6. As can be seen, the standard Hamiltonian difference is more
than three orders of magnitude larger than the improved one (the actual
difference), and the decision on whether to accept a proposal is completely
wrong.

We conclude that standard MCMC methods are not discretization-invariant.
On the other hand, straightforward approaches such as the DTM methods
considered in this section are corrupted by round-off/approximation errors
due to theoretically infinite terms. The MTD approaches take this into ac-
count and provide methods that are independent of parameter dimensions.

6. Conclusions and future work

We have present two FEM-based discretization-invariant MCMC meth-
ods for PDE-constrained Bayesian inverse problems in infinite dimensional
parameter spaces. These result from a systematic FEM discretization of the
prior, the likelihood, the posterior, and function-space MALA and HMC al-
gorithms. We have shown that they can be also considered as the result of
applying the function-space MALA and HMC methods to the Hilbert spaces
RN

M and RN . The key that enables our achievements is the proper definition of
quantities such as gradient and covariance matrix in these finite dimensional
spaces, and we have provided step-by-step derivations using the standard
finite element method. Here, by discretization-invariant MCMC methods we
mean those whose behavior such as acceptance rate does not deteriorate as
the parameter dimension increases. This is of paramount important since
mesh refinement, and hence increasingly higher parameter dimension, is of-
ten needed to resolve important features of physical phenomena modeled by
partial differential equations.

We have considered two frameworks: Metropolize-then-discretize and discretize-
then-Metropolize. The former refers to the method of first proposing a
function-space MCMC method for PDE-constrained Bayesian inverse prob-
lem in infinite dimensional parameter space and then discretizing both of
them. The latter, on the other hand, first discretizes the Bayesian inverse
problem and then proposes MCMC methods for the resulting finite dimen-
sional discretized Bayesian posterior. In general, these two frameworks do
not commute, that is, the resulting finite dimensional algorithms are not
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identical. The discretization step of the former may not be trivial, while
the latter, as has been shown, may not be dimension-independent using
traditional or straightforward approaches. In this paper, we develop finite
element discretization schemes for both frameworks so that both commu-
tativity and discretization-invariant are attained. In particular, we show
how to construct discretize-then-Metropolize approaches for both Metropolis-
adjusted Langevin algorithm and hybrid Monte Carlo method that com-
mute with their Metropolize-then-discretize counterparts. The implication
is that practitioners can take advantage of the developments in this pa-
per to straightforwardly construct discretization-invariant discretize-then-
Metropolize MCMC for large-scale inverse problems. Numerical results for
one- and two-dimensional elliptic inverse problems with up to 17899 param-
eters have been presented to support our developments.

Ongoing research is to develop mesh-independent Riemann manifold Hamil-
tonian MCMC methods. This class of methods has been shown to be every
effective [40, 41] with very high acceptance rate and with almost uncorrelated
samples. The work on Hessian in the Appendix will be useful for these type
of methods in which the Hessian is the key player. We are also investigat-
ing rigorous convergence analysis for the proposed discretization-invariant
MCMC methods using ideas from [22, 36].
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Appendix

Though the second order information, namely the Hessian, is not required
for MCMC methods considered in this paper, it is necessary for higher order
methods such as Newton-type MCMC methods [42, 43, 44, 45, 46, 47, 48, 49]
and preconditioned HMC algorithms [41, 37, 38]. Thus, for completeness, let
us also derive the Hessian. In particular, the Hessian acting along directions
ũ and ǔ reads

∇2J (u; ũ, ǔ) =

∫
Ω

ũeu∇w ·∇λ̌ dΩ+

∫
Ω

ũeu∇w̌ ·∇λ dΩ+

∫
Ω

ũǔeu∇w ·∇λ dΩ,

(70)
where the second order forward state w̌, i.e. the variation of w with respect
to u in the direction ǔ, obeys the second order forward equation∫

Ω

eu∇w̌ · ∇λ̂ dΩ +

∫
∂Ω\ΓR

Bi w̌λ̂ ds = −
∫

Ω

ǔeu∇w · ∇λ̂ dΩ, (71)

and the second order adjoint state λ̌, i.e. the variation of λ with respect to
u in the direction ǔ, is governed by the second order adjoint equation∫

Ω

eu∇λ̌·∇ŵ dΩ+

∫
∂Ω\ΓR

Bi λ̌ŵ ds = − 1

σ2

K∑
j=1

w̌ (xj) ŵ (xj)−
∫

Ω

ǔeu∇λ·∇ŵ dΩ.

(72)
Similar to the gradient computation, one can compute the Hessian acting on
two arbitrary directions by first solving the second order forward equation
(71) for w̌, then computing λ̌ from the second order adjoint equation (72),
and finally evaluating (70).

Following Section 3.4.2, let us present a FEM discretization of the Hes-
sian. We define the Hessian H (u) as the Fréchet derivative of G (u), partic-
ularly, the Hessian acting on ǔ and ũ reads

〈H (u) ǔ, ũ〉L2(Ω) := 〈∇G (u; ǔ) , ũ〉L2(Ω) = ∇2J (u; ũ, ǔ) . (73)

It follows that H (u) : L2 (Ω)→ L2 (Ω) is a linear and self-adjoint mapping.
Recall that g = g (u) is a function of u, and thus we can define its

derivative, denoted by h, as a linear map from RN
M to RN

M as

hij :=
∂gi
∂uj

.
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From (73) and (39), we deduce the following relationship between H and h
when restricted to finite element space:

H (u) ǔ
FEM
=

N∑
i=1

N∑
j=1

hijǔjϕi. (74)

Similarly, we define the FEM Hessian H as

Hij := ∇2J (u;ϕi, ϕj) ,

that is, the second derivative of the cost functional along directions spanned
by the FEM basis functions ϕi and ϕj, and we deduce

Hij =
∂Gi

∂uj
=

∂2J
∂ui∂uj

.

It follows that
Mh = H. (75)

Remark 3. Note that the FEM gradient G and Hessian H are typically the
outputs of a FEM computer code. They can be considered as the gradient
and Hessian of the cost functional with respect to u if u is viewed as a vector
in the standard Euclidean space RN . Expressions (59) and (75) allow us to
express the gradient and Hessian in RN

M as a function of their counterparts
in RN .
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Figure 5: The sample mean of HMC methods with 5000 samples. Top: sample mean
from the Metropolize-then-discretize (MTD) HMC method; Middle: sample mean from
the discretize-then-Metropolize (DTM) HMC method; Bottom: sample mean from the
prior-preconditioned standard HMC method.
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Figure 6: Standard versus improved Hamiltonian difference for two dimensional spatial
problem.
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