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Abstract

In Caenepeel and Oystaeyen's [3] discussion of Bauer groups and the
cohomology of graded rings, the topic of commutative rings arises. Specifically,
certain results arise regarding graded principal ideal domains and graded
Dedekind domains. Fossum and Foxby in [3] classify the graded fields.
Motivated by this and Caenepeel and Oystaeyen's discussion, this paper will
delve into the structure of graded principal ideal domains and specifically analyze
the structure of the ring Ao within the graded ring A= @ A, .
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1. Preliminaries

Definition. A ring R issaidtobea graded ringoftype Z (integers)
if there is a family of additive subgroups {R,|ne Z} suchthat R = @Z R, and
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RR,cR,; for i,jeZ.

Note. Although for any abelian group G, it is very well possible to
study gradations of type G, we will only consider gradations of type Z in this
paper. Also, all rings (graded and otherwise) in this paper are assumed to be
commutative with a multiplicative identity.

Definition. If R is a graded ring, an R-module M is said to be a
graded R -module if there exists a family {M_|ne Z} of additive subgroups of

M with M =@M, and RM, cM,,

neZ

; for i, jez.

Definition. The elements of R, and WM, are called

nez neZ

homogeneous elements of R and M, respectively.
Notation. If m=0, meM,, then m is called a homogeneous

element of degree i, we write degm=i.
Definition. An ideal of the graded ring R= @ZRn is a graded

(homogeneous) ideal of R if and only if it is generated by homogeneous
elements.
Definition. Let R=@ R be a graded ring and M a graded

neZ

R -module. A submodule N of M is a graded submodule if
N=@® NnNM, or -equivalently, for any xeN the homogeneous

nez
components of x areagainin N.
Definition. Let R= @ R, beagradedring. If R, =0 for i<O0, then

neZ

R is said to be positively graded, and if R, =0 for i>0, then R is said to

be negatively graded.
Definition. R = @Z R, issaid to be a graded principal ideal domain

if and only if every graded ideal of R is generated by a single homogeneous
element.

Definition. Let D be an integral domain with quotient field K. A
fractional ideal of D is a nonzero D-submodule |1 of K suchthat al c D
for some nonzero aeD.

Note. An asterisk (*) preceding a term or property denotes its graded
analog. For example, *ideal = graded ideal, *module = graded module, *PID =
graded principal ideal domain, etc.

Definition. An integral domain D isa Dedekind domain if and only if
every ideal of D is projective.
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Note. An equivalent definition of a Dedekind domain is as follows: An
integral domain D is a Dedekind domain if and only if the set fractional ideals
of D form a group under multiplication.

Definition. Let D be an integral domain with quotient field K. A
fractional ideal of D is a nonzero D-submodule | of K suchthat al =D

for some nonzero aeD.

2. On the Structure of Ayin Graded Principal Ideal Domains

We shall assume in the following that A is a graded ring with
A=® A,

nez

From Fossum and Foxby [2, Theorem 2.2] we have that if A has only
the trivial graded ideals, then A, is a field and either A=A, or A= A[x,x']

(where x isan indeterminant of degree d).
Lemma 1. Suppose M,N are R -modules with S any

multiplicative subset of R, and suppose the sequence
"1 V2

M, —>M,—>M,
is exact. Then the sequence

1 " 1 V2 1
SM;-»>S"M,—>S"M,

[%(ﬂj - i (m,) ’ 172(&) - Wz(mz)j
S S S S

Proof. It suffices to show Ker (,)=Im(y,). First we will show
Ker (i7,) cIm (7).

is exact.

S 1
=Sy,(m,)=0,Ses

%eKer @) 372(%j _yo(M;) _ 0

= y,(Sm,) =0
= sm, eKer (y,) =Im (y,)
=y (m)=sm,, m e M,
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=M cim 7).
S
Now we will show Im () cKer (v,) .

M cim @) 317{&}:@:&, LIPSy
S S 3 S 3
= t(sy,(m)-5m,)=0, tes

=tsy,(m) =tSm,

=y, (tsm,) =tSm,

=tSm, elm (y,) =Ker (v,)
= ,(tsm,) =0
=1t5y,(m,)=0

Lemma?2. Let M,N be R-modules. Then

M 5N -0
Is an exact sequence if and only if

-1 v -1
S™™ ->S7N >0

(V(mj = l//(m)j is an exact sequence for every multiplicative set S=R-P,
S S

where P isaprimeideal of R.
Proof. (=) See Lemma 1.
Conversely, suppose the sequence

.
S'™M >SN -0

is exact forevery S=R—P,where P isaprimeideal of R.Now consider the

exact sequence

M —> N —> N/Im () = 0,
where 7 is the canonical epimorphism. So the sequence
S™ - SN - S (N/Im () -0
is exact for every S=R—-P, where P is a prime ideal of R. Since iy is
surjective, we have
* S (N/Im(y))=0
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forevery S=R—-P,where P isaprimeideal of R.
Suppose N/Im () is  nontrivial. Hence  there  exists

n-+Im () e N/Im () such that
n+1Im () #0+Im (w).
Consider the ideal Ann (n+Im(y)) < R defined by
Ann (n+Im (w)) ={reR |r(n+Im(yv))=0+Im (v))}.
Since n+Im () #0+Im (v) : 1¢Ann (n+Im (v)) : Hence
Ann(n+Im(w))=R . So Ann(n+Im(y)) is contained in some maximal
(prime) ideal M of R.Nowlet S=R-M . From* we have
SH(N/Im (w)) = 0.
Thus

n+im(y) _ 0+Im (v)
T 1
But this implies there exists some r es such that
r(n+Im(y)) = 0+Im (w).
This contradicts the fact S~Ann (n+Im(y)) =< . Therefore, N/Im(y)=0.m=
Now let ScR where R is a commutative ring and S a
multiplicative subset of R,andlet M, N be R-modules. Consider the map

Homg (M, N) —>Hom (S™M,S'N)

thatmaps f to S7'f.
This induces a map
z//:S‘l(HomR(M,N))—)Homs_lR (S™M,S'N).

Lemma 3. If M s a finitely generated R -module with R
Noetherian, then the map  (above) is an isomorphism.

Proof. Suppose M is a finitely generated R -module with R
Noetherian.

If M =R, then Homg(R,N)=N and Hom __ (S'R,S'N)=S"'N.
Now  with the above observation and noting that
SN =S*Hom, (R,N) we have
S‘lHomR(R,N);HomS_1R (S'R,S'N).
Similarly, if M =R" (n>1), then
Hom, (R",N)=N"
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and
S’lHomR(R”,N);HomsflR (S'R",S'N). (1)
Since M s finitely generated R -module and R is Noetherian, we can (with
the obvious maps) create the exact sequence

R" >R"—>M —0.
This yields the exact sequence

0 —>Hom, (M,N) »>Hom_ (R",N) >Hom, (R™,N).
Thus
0— S™Hom, (M,N) - S™Hom, (R",N) — S™*Hom, (R",N) (2)
is an exact sequence.
But R™ - R" — M — 0 being exact also yields the exact sequence
S'R™ >S'R"—>S'M —0.
Therefore,
0 —>Hom__,_ (S*M,S'N) —Hom _,_ (S'R",S'N) —Hom _,_ (S'R™,SN)
(3) is an exact sequence.
Consider the commutative diagram
0— S Hom,(M,N) —S*Hom. (R",N) - S*Hom, (R",N)
Ly \! \!
0— Hom_, (S™M,S'N) —Hom _,_ (S*R",N) > Hom (S™R™,N)

with the rows being the exact sequences (2) and (3), respectively. Since the last
two vertical maps are the isomorphisms from (1), w must be an isomorphism. m

Theorem 1. If A is a Noetherian integral domain, then S™A;

is a PID for all S=A,—P (P a prime ideal of A)) if and only if A, is a
Dedekind domain.

Proof. Suppose A, is a Dedekind domain. Thus S'A,; is a local

Dedekind domain. Let M be the unique maximal ideal of S7*A,. If M =0,
then S™'A, isa field and is therefore a PID.

If M =0 then M is inveritible. So 3 an ideal M~ of S™A, such
that MM ™ =S"A,. So we can find

o
o
O

-1
S,

a a _
H 8 Aomoand 22 Phomo
s,’s, s 5, 'S,

n

such that
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ﬂ.’.....‘ran_bn:}

S,S, s.S, 1
Since S™'A, is a local ring, one of ai—%% is a unit. WLOG suppose
S'lsl Sns'n

-1 -1
ai—?l is a unit. So H(al—tjlj e SA, such that (ai—t_)lj[ai—t_)lj :1.
S, S S 1

CLAIM: M :(ﬁj.
Sl
Clearly (ﬁ)g M.
Sl

Now let EeM . So
S

3R 2l

Thus the unique maximal ideal M of S™A, is generated by % (i.e.
1

CLAIM: () _M"=0.

1

First we note Eeﬂ°°_lM” if and only if (ﬁ] 12 in SA, for
s | = s s

n=12,...
Now let %eﬂLM”. So by the above note, % | %. Hence
1
2. i(g} , Where b S*A,. Thus
s s \s S

[i] |E for n=1.2,...
S, n

b © n
SO gEﬂnle .

This implies
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>
1
=N
>
1
uN

o |
—
DL
<
I
DL
<

Thus

n=1 n=1

M (ﬂ M" [=(M".
But S~'A, isa Dedekind domain and is therefore Noetherian. So () _M" isa
n=1

finitely generated SA, module.

So by Nakayama's Theorem (1955) [which states that if J is an ideal
in the Jacobson radical of a ring R and B is a submodule of a finitely
generated R-module A with A=JA+B then A=B]we have

NM" =0,
n=1

This implies if EeS‘lAO and E;&%, then 3 n, >0 such that qeM™ and
S S S

Ny +1

(where M° =S7A)). Therefore,

n0 n0+1
(EJ dvides 2 but (i] does not divide 2.
s, s s, S

E¢|\/|
S

for some _BES‘lA) . Then 2 does not divide

So St

. Thus

wn

o
)
1]
TN
o |
~
>

o

v | T
m||c

Eé(ﬁ] =M. Since M is the unique maximal ideal of S™'A,, must be a
S

(&)

Hence the only principal ideals of S™A, are

e T HE M)

Now let | be any ideal of S™A,.If 1 =0,then | isprincipal. If 10, then

v | T

unit. Hence

(EJ el forsome n>0.Choose n, tobe thesmallestsuch n.If n,=0,
Sl



Structure of Ag in graded principal ideal domains 955

then 1 =S7"A -1
1
a)°
Now suppose n, >0. Clearly, (s_j cl.
1

Choose 2c , Where %7& % Then by the above,

| 2]

forsome m=>0. Thus (ﬁj el.

m nO
By our choice of n,, m>n,. So (Ej=[(3J }C{(ij ] Thus
S S, S,

o o
Ee[[ﬁJ J So | = [(ﬁJ J Hence all ideals of S™A, are principal.
S S, S,

Conversely, suppose S'A, is a PID. Hence S™'A, is a Dedekind
domain. Let | be any ideal of A, and let M and N be A, modules with
g:M — N an A -module epimorphism. Thus S~'I isan ideal of S™A, with

S*™™ and S'N being S'A, modules. Also, the S™A, -module

homomorphism

g:S'™M —»S'N
defined by g(%j:@ is clearly an epimorphism. Since S™'A, is a
Dedekind domain, S~'I is a projective S™*A,-module. Therefore, the sequence

v
Hom_, (S,5M) > Hom_, (S,5N) >0

is exact (where i (h)=goh). From Lemma 3 we have
S‘lHomAO (1,M) ;Homs_lAO (S7'1,S7'M)

and
S‘lHomAO (1,N) ;Homs_lAO (S71,S7'N).

So the sequence
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S*Hom, (1,M)~>S*Hom, (1,N)—0
IS exact (where s (ij = mJ
S S
Therefore, by Lemma 2, the sequence
174
HomAO (LM)- HomAO (I,N)—>0

is exact (where w(h)=gcoh). Thus | is a projective A -module, and A, is
therefore a Dedekind domain. m

Theorem 2. If A isa*PID,then A, isa Dedekind domain.

Proof. See Propositions 1.2, 1.3 in [3], and Theorem 1. m
Theorem 3. Let D be a Dedekind domain and let | be a nonzero

fractional ideal of D. Then the graded ring _@ZI‘ (1°=D) is a *PID if and

only if for every nonzero ideal J, of D, 1"J, isa principal fractional ideal of
D forsome nezZ Z.
Proof. Let J be any nonzero graded ideal of the graded ring @Z 1"

So
J =SJi
where J. c1' for ieZ.
Thenforany nezZ Z,
17", < J,.
But
1"(17"3,)=J,.

This means J, is generated by elements of J,. Thus
J=@J =@1'],

ieZ ieZ
where J, isanideal of D.
But since 1"J, is a principal fractional ideal of D for some neZ,
1"J,=Dr forsome rel"J,.
So

J=@;=(@Py

ieZ ieZ
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Therefore, J is a principal ideal of _@ZI‘ .

Conversely, suppose @; I' isa*PIDand let J, be any ideal of D. So

_@ZI‘JOisagraded ideal of @ 1' .Since @' isa*PID,

ieZ ieZ
8|‘JO:(8|‘)r
for some rel"J,.
Therefore, 1"J, =Dr.So 1"J, isa principal fractional ideal of D.m

Proposition 1. If A isa*PID, then each A, isisomorphic to some
fractional ideal of the Dedekind domain A, .

Proof. Since A is a *PID, by Theorem 2 we have that A, is a
Dedekind domain. Now choose A, #0 and consider the field of fractions
S*A(S=A,—(0)) . Therefore, by Proposition 1.6 of [3] we have

dims_le(S’lAn) =1. Consequently, S'A =S™*A,.

Now consider the injective map w:A — S'A defined by w(a,)= %.

Thus A, is isomorphic to a nonzero finitely generated A, -submodule of S™A,.
Hence A, isisomorphic to some fractional ideal of A,. m

Proposition 2. If A isa*PID with A, aPID, thenany A #0 is
afree A,-module with the rank of A, over A, being 1.

Proof. Choose A, #0. From Lemma 1 we have that A, is a finitely
generated A, -module. Also, since A is an integral domain, A, is a
torsion-free A,-module with A, aPID. Therefore, A, isafree A,-module.

Now let S = A,—(0). By Proposition 1, S™A is a *PID with S'A, a
field. Consequently, by Proposition 1.6 of [3],
dimsflAO(S‘lAn) =1

Hence the rank of A, over A, isl. m
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