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Abstract 

 
In Caenepeel and Oystaeyen's [3] discussion of Bauer groups and the 

cohomology of graded rings, the topic of commutative rings arises. Specifically, 
certain results arise regarding graded principal ideal domains and graded 
Dedekind domains. Fossum and Foxby in [3] classify the graded fields. 
Motivated by this and Caenepeel and Oystaeyen's discussion, this paper will 
delve into the structure of graded principal ideal domains and specifically analyze 
the structure of the ring A0 within the graded ring nZn

AA
∈
⊕= . 
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1. Preliminaries 
 

Definition. A  ring R  is said to be a  graded ring of type Z  (integers) 
if there is a family of additive subgroups }|{ ZnRn ∈  such that nZn

RR
∈
⊕= and  
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jiji RRR +⊆  for ., Zji ∈  

  Note. Although for any abelian group G , it is very well possible to 
study gradations of type G , we will only consider gradations of type Z  in this 
paper. Also, all rings (graded and otherwise) in this paper are assumed to be 
commutative with a multiplicative identity.  

  Definition. If R  is a graded ring, an R -module M  is said to be a  
graded R -module if there exists a family }|{ ZnM n ∈  of additive subgroups of 

M  with nZn
MM

∈
⊕= and jiji MMR +⊆  for Zji ∈, .  

  Definition. The elements of nZn
R

∈
∪  and nZn

M
∈
∪ are called  

homogeneous elements of R  and M , respectively.  
  Notation. If 0≠m , iMm∈ , then m  is called a homogeneous 

element of degree i , we write imdeg = .  
  Definition. An ideal of the graded ring nZn

RR
∈
⊕=  is a graded 

(homogeneous) ideal of R  if and only if it is generated by homogeneous 
elements.  

  Definition. Let nZn
RR

∈
⊕= be a graded ring and M  a graded 

R -module. A submodule N  of M  is a  graded submodule if 

nZn
MNN ∩⊕

∈
=  or, equivalently, for any Nx∈  the homogeneous 

components of x  are again in N .  
  Definition. Let nZn

RR
∈
⊕=  be a graded ring. If 0=iR  for 0<i , then 

R  is said to be  positively graded, and if 0=iR  for 0>i , then R  is said to 
be  negatively graded.  

  Definition. nZn
RR

∈
⊕=  is said to be a  graded principal ideal domain 

if and only if every graded ideal of R  is generated by a single homogeneous 
element. 

    Definition. Let D  be an integral domain with quotient field K . A  
fractional ideal of D  is a nonzero D -submodule I  of K  such that DaI ⊆  
for some nonzero Da∈ .  

  Note. An asterisk (*) preceding a term or property denotes its graded 
analog. For example, *ideal = graded ideal, *module = graded module, *PID = 
graded principal ideal domain, etc.  

Definition. An integral domain D  is a  Dedekind domain if and only if 
every ideal of D  is projective.  
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  Note. An equivalent definition of a Dedekind domain is as follows: An 

integral domain D  is a Dedekind domain if and only if the set fractional ideals 
of D  form a group under multiplication. 

  Definition. Let D  be an integral domain with quotient field K . A  
fractional ideal of D  is a nonzero D -submodule I  of K  such that DaI ⊆  
for some nonzero Da∈ .  
 
 
2.  On the Structure of A0 in Graded Principal Ideal Domains  
 

We shall assume in the following that A  is a graded ring with 

nZn
AA

∈
⊕=  

From Fossum and Foxby [2, Theorem 2.2] we have that if A  has only 
the trivial graded ideals, then 0A  is a field and either 0= AA  or ],[ 1

0
−≅ xxAA  

(where x  is an indeterminant of degree d ).  
     Lemma 1.  Suppose NM ,  are R -modules with S  any 

multiplicative subset of R , and suppose the sequence  

 3

2

2

1

1 MMM
ψψ

→→  
is exact. Then the sequence  

 3
12

2
11

1
1 MSMSMS −−− →→

ψψ

 
 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

s
m

s
m

s
m

s
m )(=  ,)(= 222

2
111

1
ψψψψ  

is exact.  
  Proof. It suffices to show )(=)( 12 ψψ ImKer . First we will show 

)()( 12 ψψ ImKer ⊆ .  
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22
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s
m

s
mKer

s
m

∈⇒
∈⇒

⇒
∈⇒

⎟
⎠
⎞

⎜
⎝
⎛⇒∈

ψ
ψψ

ψ
ψ

ψψψ
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⎟
⎠
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⎜
⎝
⎛⇒

 

Now we will show )()( 21 ψψ KerIm ⊆ .  

 

0=)(
0=)(
)(=)(

=)(
=)(
  0,=))((

  ,=)(=)(

22

22

212

211

211

211

112111
11

2

mst
mst

KerImmst
msttsm
mstmts

stmsmst

MS
s

m
s

m
s
m

s
mIm

s
m

ψ
ψ

ψψ
ψ
ψ

ψ

ψψψ

⇒
⇒

∈⇒
⇒
⇒

∈−⇒

∈⎟
⎠
⎞

⎜
⎝
⎛⇒∈ −

 

                                   ■ 
                      
Lemma 2.  Let NM ,  be R -modules. Then  

 0→→NM
ψ

 
is an exact sequence if and only if  

 011 →→ −− NSMS
ψ

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

s
m

s
m )(=ψψ  is an exact sequence for every multiplicative set PRS −= , 

where P  is a prime ideal of R .  
  Proof. (⇒ ) See Lemma 1.  
Conversely, suppose the sequence  

 011 →→ −− NSMS
ψ

 
is exact for every PRS −= , where P  is a prime ideal of R . Now consider the 
exact sequence  

 0,)(/ →→→ ψ
πψ

ImNNM  
where π  is the canonical epimorphism. So the sequence  

 0))(/(111 →→→ −−− ψImNSNSMS  
is exact for every PRS −= , where P  is a prime ideal of R . Since ψ  is 
surjective, we have  

 0=))(/(            * 1 ψImNS −  
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for every PRS −= , where P  is a prime ideal of R .  
Suppose )(/ ψImN  is nontrivial. Hence there exists 

)(/)( ψψ ImNImn ∈+  such that  
 ).(0)( ψψ ImImn +≠+  

Consider the ideal Ann RImn ⊆+ ))(( ψ  defined by  
 ))}.(0=))((|{=))(( ψψψ ImImnrRrImnAnn ++∈+  

Since )(0)( ψψ ImImn +≠+ , ))((1 ψImnAnn +∈/ . Hence 
RImnAnn ≠+ ))(( ψ . So ))(( ψImnAnn +  is contained in some maximal 

(prime) ideal M  of R . Now let MRS −= . From * we have  
 0.=))(/(1 ψImNS −  

Thus  

 .
1

)(0=
1

)( ψψ ImImn ++  

But this implies there exists some sr∈  such that  
 ).(0=))(( ψψ ImImnr ++  

This contradicts the fact ∅+∩ =))(( ψImnAnnS . Therefore, 0=)(/ ψImN . ■ 
Now let RS ⊂  where R  is a commutative ring and S  a 

multiplicative subset of R , and let M , N  be R -modules. Consider the map  
 ),(),( 11

1 NSMSHomNMHom
RSR

−−
−→  

that maps f  to fS 1− . 
This induces a map  
 ).,()),(( : 11

1
1 NSMSHomNMHomS

RSR
−−

−
− →ψ  

 
  Lemma 3.  If M  is a finitely generated R -module with R  

Noetherian, then the map ψ  (above) is an isomorphism.  
  Proof. Suppose M  is a finitely generated R -module with R  

Noetherian. 
If RM = , then NNRHom R ≅),(  and NSNSRSHom

RS
111

1 ),( −−−
− ≅ . 

Now with the above observation and noting that 
),(11 NRHomSNS R

−− ≅  we have  

 ).,(),( 11
1

1 NSRSHomNRHomS
RSR

−−
−

− ≅  

Similarly, if 1)( = ≥nRM n , then  

 nn
R NNRHom ≅),(  
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and    

 ).,(),( 11
1

1 NSRSHomNRHomS n

RS

n
R

−−
−

− ≅         (1) 

 Since M  is finitely generated R -module and R  is Noetherian, we can (with 
the obvious maps) create the exact sequence  

 0.→→→ MRR nm  
This yields the exact sequence  

 ).,(),(),(0 NRHomNRHomNMHom m
R

n
RR →→→  

Thus    
),(),(),(0 111 NRHomSNRHomSNMHomS m

R
n

RR
−−− →→→   (2) 

 is an exact sequence. 
But 0→→→ MRR nm  being exact also yields the exact sequence  
 0.111 →→→ −−− MSRSRS nm  

Therefore,   
),(),(),(0 11

1
11

1
11

1 NSRSHomNSRSHomNSMSHom m
RS

n
RSRS

−−
−

−−
−

−−
− →→→  

(3) is an exact sequence. 
Consider the commutative diagram  

),(),(),(0

),(),(),(0

1
1

1
1

11
1

111

NRSHomNRSHomNSMSHom

NRHomSNRHomSNMHomS

m

RS

n

RSRS

m
R

n
RR

−
−

−
−

−−
−

−−−

→→→
↓↓↓

→→→
ψ

 
with the rows being the exact sequences (2) and (3), respectively. Since the last 
two vertical maps are the isomorphisms from (1), ψ  must be an isomorphism. ■ 

    Theorem 1.  If 0A  is a Noetherian integral domain, then 0
1AS −  

is a PID for all PAS −0=  ( P  a prime ideal of 0A ) if and only if 0A  is a 
Dedekind domain.  

  Proof. Suppose 0A  is a Dedekind domain. Thus 0
1AS −  is a local 

Dedekind domain. Let M  be the unique maximal ideal of 0
1AS − . If 0=M , 

then 0
1AS −  is a field and is therefore a PID. 

If 0≠M  then M  is inveritible. So ∃  an ideal 1−M  of 0
1AS −  such 

that 0
11 = ASMM −− . So we can find  

 1

2

2

1

1

2

2

1

1 ,...,,    ,...,, −∈∈ M
s
b

s
b

s
bandM

s
a

s
a

s
a

n

n

n

n  

such that  
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1
1=

11

11

nn

nn

ss
ba

ss
ba

++L  

Since 0
1AS −  is a local ring, one of 

nn

nn

ss
ba

ss
ba ,,

11

11 L  is a unit. WLOG suppose 

11

11

ss
ba  is a unit. So 0

1
1

11

11 AS
ss
ba −

−

∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∃  such that 

1
1=

1

11

11

11

11

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ss
ba

ss
ba .  

  CLAIM: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1

1=
s
aM . 

Clearly M
s
a

⊆⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1

1 . 

Now let M
s
a
∈ . So  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∈
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

−−

1

1

1

11

11

1

1

1

1

1

11

11

11

11 ==
1
1=

s
a

ss
ba

ss
ab

s
a

ss
ba

ss
ba

s
a

s
a

s
a  

Thus the unique maximal ideal M  of 0
1AS −  is generated by 

1

1

s
a  (i.e. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1

1=
s
aM )  

  CLAIM: 0=
1=

n
n

MI
∞ . 

 First we note n
n

M
s
a
I

∞
∈

1=
 if and only if 

s
a

s
a

n

|
1

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 in 0

1AS −  for 

  1,2,...=n  

Now let n
n

M
s
a
I

∞
∈

1=
. So by the above note, 

s
a

s
a |

1

1 . Hence 

⎟
⎠
⎞

⎜
⎝
⎛

s
b

s
a

s
a

1

1= , where 0
1AS

s
b −∈ . Thus  

 1,2,...=    |
1

1 nfor
n
b

s
a

n

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

So n
n

M
s
b
I

∞
∈

1=
.  

This implies  
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 .=
1=1=1

1 n

n

n

n

MM
s
a

II
∞∞

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛  

Thus  

 .=
1=1=

n

n

n

n

MMM II
∞∞

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛  

But 0
1AS −  is a Dedekind domain and is therefore Noetherian. So n

n
MI

∞

1=
 is a 

finitely generated 0
1AS −  module. 

So by Nakayama's Theorem (1955)  [which states that if J  is an ideal 
in the Jacobson radical of a ring R  and B  is a submodule of a finitely 
generated R -module A  with BJAA +=  then BA = ] we have     

 0.=
1=

n

n

MI
∞

 

This implies if 0
1AS

s
a −∈  and 

1
0

≠
s
a , then 0 0 ≥∃ n  such that 0nM

s
a
∈  and 

10+∈/
nM

s
a  (where 0

10 = ASM − ). Therefore,  

 
10 0

1 1

1 1

dvides      does not divide  .
n n

a aa abut
s s s s

+
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

So 
s
b

s
a

s
a

n0

1

1= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 for some 0

1

0

AS
s
b −∈ . Then 1

1

does not divide   a b
s s

. Thus 

M
s
a

s
b =

1

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∈/ . Since M  is the unique maximal ideal of 0

1AS − , 
s
b  must be a 

unit. Hence  

 .=
0

1

1 ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
s
a

s
a

n

 

Hence the only principal ideals of 0
1AS −  are  

 (0).>>>>>=
3

1

1

2

1

1

1

1

1

0

1

1
0

1 L
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−

s
a

s
a

s
a

s
aAS  

Now let I  be any ideal of 0
1AS − . If 0=I , then I  is principal. If 0≠I , then 

I
s
a

n

∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1

1  for some 0≥n . Choose 0n  to be the smallest such n . If 0=0n ,  
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then 
1
1== 0

1ASI − . 

Now suppose 0>0n . Clearly, I
s
a

n

⊆
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ 0

1

1 . 

Choose I
s
a
∈ , where 

1
0

≠
s
a . Then by the above,  

 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

m

s
a

s
a

1

1=  

for some 0≥m . Thus I
s
a

m

∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1

1 . 

By our choice of 00   , nmn ≥ . So 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⊆

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ 0

1

1

1

1=
nm

s
a

s
a

s
a . Thus 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∈

0

1

1

n

s
a

s
a . So 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ 0

1

1=
n

s
aI . Hence all ideals of 0

1AS −  are principal. 

Conversely, suppose 0
1AS −  is a PID. Hence 0

1AS −  is a Dedekind 

domain. Let I  be any ideal of 0A , and let M  and N  be 0A  modules with 

NMg → :  an 0A -module epimorphism. Thus IS 1−  is an ideal of 0
1AS −  with 

MS 1−  and NS 1−  being 0
1AS −  modules. Also, the 0

1AS − -module 
homomorphism  

 NSMSg 11 : −− →  

defined by 
s
mg

s
mg )(=⎟
⎠
⎞

⎜
⎝
⎛  is clearly an epimorphism. Since 0

1AS −  is a 

Dedekind domain, IS 1−  is a projective 0
1AS − -module. Therefore, the sequence  

 0),(),( 11

0
1

11

0
1 →→ −−

−
−−

− NSISHomMSISHom
ASAS

ψ

 

is exact (where )=)( hgh oψ . From Lemma 3 we have  

 ),(),( 11

0
10

1 MSISHomMIHomS
ASA

−−
−

− ≅  

and  
 ).,(),( 11

0
10

1 NSISHomNIHomS
ASA

−−
−

− ≅  

So the sequence  
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 0),(),(
0

1

0

1 →→ −− NIHomSMIHomS AA

ψ

 

is exact ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

s
f

s
fwhere )(= ψψ . 

Therefore, by Lemma 2, the sequence  

 0),(),(
00

→→ NIHomMIHom AA

ψ

 

is exact (where hgh o=)(ψ ). Thus I  is a projective 0A -module, and 0A  is 
therefore a Dedekind domain. ■ 
 

  Theorem 2.  If A  is a *PID, then 0A  is a Dedekind domain.  
  Proof. See Propositions 1.2, 1.3 in [3], and Theorem 1. ■ 
  Theorem 3.  Let D  be a Dedekind domain and let I  be a nonzero 

fractional ideal of D . Then the graded ring )=( 0 DII i

Zi∈
⊕  is a *PID if and 

only if for every nonzero ideal 0J  of D , 0JI n  is a principal fractional ideal of 
D  for some ZZn∈ .  

  Proof. Let J  be any nonzero graded ideal of the graded ring  i

Zi
I

∈
⊕ . 

So  
 ii Z

J J
∈

= ⊕  

where i
i IJ ⊆  for Zi∈ . 

Then for any ZZn∈ ,  

 .0JJI n
n ⊆−  

But  
 .=)( nn

nn JJII −  

This means nJ  is generated by elements of 0J . Thus  

 0
i

ii Z i Z
J J I J

∈ ∈
= ⊕ = ⊕   

where 0J  is an ideal of D . 

But since 0JI n  is a principal fractional ideal of D  for some Zn∈ , 

DrJI n =0  for some 0JIr n∈ . 
So  

 ( )i
ii Z i Z

J J I r
∈ ∈

= ⊕ = ⊕  
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Therefore, J  is a principal ideal of  i

Zi
I

∈
⊕ . 

Conversely, suppose  i

Zi
I

∈
⊕  is a *PID and let 0J  be any ideal of D . So 

0 i

i Z
I J

∈
⊕ is a graded ideal of  i

Zi
I

∈
⊕ . Since   i

Zi
I

∈
⊕ is a *PID,  

 ( )0 i i

i Z i Z
I J I r

∈ ∈
⊕ = ⊕  

for some 0JIr n∈ . 

Therefore, DrJI n =0 . So 0JI n  is a principal fractional ideal of D . ■ 

  Proposition 1.  If A  is a *PID, then each nA  is isomorphic to some 

fractional ideal of the Dedekind domain 0A .  

  Proof. Since A  is a *PID, by Theorem 2 we have that 0A  is a 

Dedekind domain. Now choose 0≠nA  and consider the field of fractions 

(0))=( 00
1 −− ASAS . Therefore, by Proposition 1.6 of [3] we have 

1=)( 1

0
1 nAS

ASdim −
− . Consequently, 0

11 ASAS n
−− ≅ .  

Now consider the injective map nn ASA 1 : −→ψ  defined by 
1

=)( n
n

aaψ . 

Thus nA  is isomorphic to a nonzero finitely generated 0A -submodule of 0
1AS − . 

Hence nA  is isomorphic to some fractional ideal of 0A . ■ 

  Proposition 2.  If A  is a *PID with 0A  a PID, then any 0≠nA  is 

a free 0A -module with the rank of nA  over 0A  being 1.  

  Proof. Choose 0≠nA . From Lemma 1 we have that nA  is a finitely 

generated 0A -module. Also, since A  is an integral domain, nA  is a 

torsion-free 0A -module with 0A  a PID. Therefore, nA  is a free 0A -module. 

Now let (0)= 0 −AS . By Proposition 1, AS 1−  is a *PID with 0
1AS −  a 

field. Consequently, by Proposition 1.6 of [3],  
 1.=)( 1

0
1 nAS

ASdim −
−  

Hence the rank of nA  over 0A  is 1. ■ 
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