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ABSTRACT 
 

In this paper, we present an algorithm to compute all pairs 
optimized shortest paths in an unweighted and undirected 

graph with some additive error of at most 2.This algorithm 
can be extended for weighted graph also but it will not 
work for directed graph due to absence of commutative 

property. The algorithm runs in n5/2) times, where n is 

the number of vertices in the graph. This algorithm is 
much simpler than the existing algorithms. A study of 
upper bounds on the size of a maximal independent set of 
such graphs has been performed. 
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1. INTRODUCTION 
 

Single source shortest paths algorithm gives the shortest 
paths from a source vertex to every other vertex of the 
graphs. One such classical algorithm for unweighted 
graphs is breadth-first search (BFS) algorithm [8]. Some 
algorithms do not use single source shortest paths 
algorithms as subroutine, like one of the most classical 
algorithm for directed and weighted graph by Floyd and 
Warshall [8]. An all pairs optimized shortest paths 

algorithm does not report the exact shortest paths for every 
pair of vertices and distance reported may have some error. 
 

Almost every algorithm for the all pairs shortest paths 
problem, except those based on fast matrix multiplication, 
has running time of O(n3) in worst case. There exist 
algorithms based on fast matrix multiplication for the all 
pairs shortest   paths problem that achieve sub-cubic 

running time, but these fast matrix multiplication 
algorithms are better than the naive O(n3) time algorithm 
only for very large values of n. This is where the need of 
approximation algorithms arises. Though optimization 
algorithms do not give precise output, but are faster. Many 
sub-cubic running time and simple algorithms have been 
designed for all pairs optimized shortest path problem. 
These algorithms achieve sub-cubic   running time, but the 
distance reported has some multiplicative or additive error. 
 

Definition 1: An algorithm is said to compute all pairs -

optimized shortest paths or all pairs optimized shortest 

paths of stretch  for some   1, if for every pair of 

vertices u, v  V , the distance reported is bounded by 

. (u, v), where (u, v) is the actual shortest distance 
between u and v. 

Definition 2:  An algorithm is said to compute all pairs 
shortest paths with an additive one-sided error of at most  

 or all pairs optimized shortest paths of surplus  for 

some   0, if for every pair of vertices u, v  V, the 

distance reported is bounded by (u, v) + , where (u, v) 

is the actual shortest distance between u and v. 
 

An interesting property of the shortest path is that a 
shortest path between two vertices consists of other 
shortest paths. This optimal substructure property of 
shortest path is used by every shortest path algorithm. For 
an unweighted graph, following lemma states the optimal 
substructure property of shortest paths more precisely. 
 

Lemma 1. Given an unweighted graph G = (V, E) , let path  
p = (v1, v2, …., vk) be a shortest path from a vertex v1 to a 
vertex vk and, let pij = (vi, vi+1. . . . . vj) be the subpath of p, 
for any i and j such that 1 ≤ i ≤ j ≤ k. Then pij is a   shortest 
path from vi to vj. 
 

Proof: Let length(p) be the length of path p. If we 
decompose path p into path from v1 to vi, path from vi to vj 

and path from vj to vk, then we have  
 

     length(p) = length(p1i) + length(pij) + length(pjk).   
 

If there is a shorter path p′ij than pij  from vi to vj, then we 
have a path from v1 to vk, which is path p1i followed by p′ij 
followed by pjk. The length of this path  

 

     length(p1i) + length(p′ij) + length(pjk) < length(p),  
 

since length(p′ij) < length(pij). This contradicts the 
assumption that P is a shortest path from v1 to vk.   
 

2. PREVIOUS WORK: ALL PAIRS 

SHORTEST PATH ALGORITHMS 
 

One of the most classical algorithm for computing all pairs 
shortest paths is F1oyd-Warshall algorithm [8], which runs 
in O(n3) time. Floyd-Warshall algorithm uses the 

technique of dynamic programming. Johnson’s algorithm 
[16] take O(mn + n2logn) time to compute the shortest 
paths between all pairs, and hence it is asymptotically 
better for space graphs, but it requires no negative cycle to 
be present in the graph. It uses a single source shortest 
paths algorithm as subroutine and runs it for all the 
vertices. However, in worst case when m = O(n2) it still 
takes O(n3) time. The all pairs shortest paths problem for 

directed graphs with nonnegative edge weights is closely 
related to the distance product of two matrices.  
 

If A = (aij) and B = (bij ) are n×n, matrices, the distance 
product A×B is the n×n, matrix whose (i, j)th element is 
(AB)ij = mink{aik +bkj}. Fredman gave an O(n3(log log 
n/logn)1/3) running time algorithm [11] to compute the 
distance products of two n×n matrices, whose bound was 

later improved to O(n3(log log n / log n)1/2) by Takaoka 
[22]. For the same type of graphs (nonnegative edge 
weights), Karger et at. [17] and [19] gave an O(m*n + 
n2log n) running time algorithm, where m* denotes the 
number of edges in the essential subgraph H of the input 
graph G = (V, E). The essential subgraph contains an edge 

(u, v)  G if that edge is uniquely the least-cost path 

between its vertices. However, in the worst case m* can be 
as large as m. 
 

For graphs with integer edge weights, Hagerup gave an 
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O(mn+n2 log log n) running time algorithm [14]. For 
undirected graphs, Pettie and Ramachandran gave an O(mn 
α(m, n)) running time algorithm [20], where α(m, n) is 
Tarjan’s inverse-Ackermann  function. For undirected 
graphs with integer edge weights, Thorup [23 24] gave an 

O(mn) running time algorithm. It uses a single source 
shortest paths algorithm, which bypasses the sorting 
bottleneck of Dijkstra’s algorithm [9] and runs in O(m) 
time. 
 

 Directed Weight Complexity Ref. 

yes real      n3 [8] 

yes real mn+n2 log n  [16] 

yes real+ n3 (log log n/log n)1/2 [11], [22] 

yes real+ m*n+n2 log n [17], [19] 

yes integer mn+n2  log log n [14] 

no real mnα(m, n) [20] 

no integer mn [23, 24] 

Table 1: All pairs shortest paths algorithm 
 

Recent work by Alon, Galil, and Margalit [2], Alon and 
Naor [3], Galil and Margalit [12, 13], and Seidel [21] have 
shown that if matrix multiplication can be performed in 
O(M(n)) time, then the all pairs shortest  paths problem for 
unweighted directed graphs can be solved in Õ(√n3 M(n))  
time and the all pairs shortest paths problem for 

unweighted undirected graphs can be solved in Õ(M(n)) 
time. Here Õ(f ) is to hide the polylogarithmic factor i.e. 
Õ(f) means  O(f polylog n). The current best upper bound 
on matrix multiplication is M(n) = O(n2.376) by 
Coopersmith and Winograd [7]. 
 

3. ALL PAIRS OPTIMIZED 

SHORTEST PATHS ALGORITHMS 
 

[1] gave algorithm for all pairs shortest paths with additive 
error for unweighted and undirected graphs. They showed 

that surplus 2 estimate of the distance between k specified 
pairs of vertices can be computed in O(n3/2(klogn)1/2). 
Time, i.e. surplus 2 estimates of all the shortest paths in the 
graph can be computed in O(n5/2(log n)1/2) time. They also 
gave a 2/3-approximation algorithm for the diameter of a 
weighted and directed graph that runs in O(m(n log n)1/2 + 
n2 log n)  time. Dor et al. [10] improved the results of 
Aingworth et al., and gave Õ(n3/2m1/2)Õ(n7/3) running time 

algorithms for all pairs shortest paths with additive error of 
at most 2. They also showed that all pairs shortest paths 
with additive error of at most k can be computed in Õ(n2-1/k 

m1/k, n2+1/(3k-4)) time. For the weighted graphs Cohen and 
Zwick [6] adapted the technique of Dor et al. and obtained 
stretch 2 estimates of al shortest paths in Õ (n3/2 m1/2 ) time, 
stretch 7/3 estimates in Õ(n7/3 ) time and stretch 3 estimates 
in Õ(n2 ) time. 

 Weight Error Time*  Ref.  

No Surplus 2 n5/2 [1] 

No Surplus 2 n3/2 m1/2 , n7/3  [10] 

No Surplus 4 n5/3 m1/3 , n11/5 [10] 

No Surplus 2(k-1) n2-1/k m1/k , n2+1/(3k-4) [10] 

yes Stretch 2 n3/2 m1/2  [6] 

yes Stretch 7/3 n7/3  [6] 

yes Stretch 3 n2  [6] 

*Ignoring  polylogarithmic factors  
 

Table 2: All pairs optimized shortest paths algorithm 
 

For unweighted and undirected graphs Baswana et al. [4] 
gave randomized algorithms   for computing all pairs 
nearly 2-optimized shortest paths. One algorithm takes 
expected O(m2/3 n log n + n2) time and reports the distance 

not more than 2δ(u, v)+1 between any two vertices u and v. 
Another algorithm takes expected O(n2 log3/2 n)  time and 
reports the distance not more than 2δ(u, v) + 3. They also 
obtained an expected O(n2) time algorithm to compute all 
pairs 3-optimized distances in a graph. The work of 

Aingworth et al. [1] and Dor et al. [10] for all pairs 
shortest paths with additive error of at most 2, is based 
upon the simple observation that there is a small set of 
vertices that dominates all the high degree vertices of 
graph. A set of vertices D dominates a set u of vertices 
when every vertex in u has a neighbor in D. Dor et al. have 
shown that there exists a set D of size O((n log n)/s)  such 
that 1 ≤ s ≤ n, that dominates all the vertices of degree at 

least s  in the graph and can be found deterministically in 
O(m+n) time. To achieve the sub-cubic running time, Dor 
et al. run BFS on the input graph for Õ(n3/2 /m1/2) vertices 
only, and for the rest of the vertices they run Dijkstra’s 
algorithm [9] on a weighted graph with O((nm)1/2) edges. 
Let G = (V, E) be an undirected and unweighted graph. 
They partition the set of vertices into low degree vertices 
(degree less than (m/n)1/2) and high degree vertices (degree 

at least (m/n)1/2). Then they find a set D of size Õ(n3/2/m1/2) 
that dominates high degree vertices, in O (m+n) time. They 

also construct an edge set E′  E of size O(n) such that for 

every high degree vertex u there exist a vertex v  D[t] 

such that (u, v)  E′. First the BFS is performed on G for 

every vertex u  D, which gives the shortest distance of u 

from every other vertex. Then for every vector u  V/D a 
weighted graph G′(u) is constructed, which includes all the 

edges that touch low degree vertices, edges in E', and the 
edges connecting the vertex u with all the vertices of 

dominating set. The weight of an edge (u, v) for every v  

D is equal to the shortest distance between u and v in G, 
found by the BFS that started at v, while the weight of the 
rest of the edges is 1. The number of edges in graph G'(u) 
is O(nm)1/2). Finally Dijkstra’s algorithm is run, from 
every vertex u  V/D on the graph G′(u). For every pair of 

vertices u, v  V/D, the distance computed between u and 

v has an additive error of at most 2. 
 

4. OUR APPROACH 
 

To gain sub-cubic running time, instead of running BFS 
for each vertex of the graph, we can BFS for few vertex of 
the graph, and use the information obtained to compute the 
optimized all pairs shortest paths for the entire graph. Let    

G = (V, E) be an unweighted and undirected input graph. 
We divide the vertices into three mutually exclusive and 
exhaustive sets: P, Q, and R. Then the BFS is run for each 
vertex in P. The knowledge of single source shortest paths 
for every vertex in P is then used to compute the optimized 
shortest paths for the vertices in Q and R. 
 

Constructing P, Q, and R 
 

To divide set of vertices V into P, Q, and R we use a 
simple greedy approach. We choose one of the maximum 
degree vertex and put this vertex into the set P and all of 
its neighbors into the set Q. Then from the graph we delete 

this vertex and all of its neighbors including the edges 
incident on these vertices. We repeat this procedure until 
we get a sub graph G' of G, with less than or equal to n√n 
edges. All the vertices of G' constitute R. 
 

Lemma 2.   Set P contains less than √n vertices. 
 

Proof:  We proof this by contradiction. We stop 
constructing P as soon as the number of edges in the sub 
graph G′ (Obtained after deleting from G, the vertices in P 
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and Q and the edges incident on these vertices) becomes 
less than n√n. Suppose even after selecting √n special 
vertices, the number of edges in the subgraph G' is more 
than n√n . It implies that at each iteration the number of 
edges in subgraph were more than n√n because we do not 

add any edge anytime. Suppose Gi = (Vi, Ei) is the 
subgraph at ith  iteration. Thus we have, for 1 ≤ i ≤ √n, 
 

|Ei| ≥ n√n 
 

If d(v) is the degree of vertex v, then for 1 ≤ i ≤ √n , 
 

∑d(v) ≥ 2n√n,    v Vi 
 

If α(V) is the average degree of  the set of vertices V , then 
for 1 ≤ i ≤√n, 
 

α(Vi) ≥ ∑d(v)/n  ≥ 2√n  and v Vi 
 

Since at each iteration, we choose the vertex with 

maximum degree as the special vertex, it must have the 
degree more than or equal to the average degree 2√n .Since 
we delete the chosen special vertex and its neighbors at 
each iteration, it implies that we deleted more than 2√n 
vertices at each iteration. Thus after √n iterations more 
than 2n vertices were deleted. This is a contradiction, as 
the graph consists of n vertices.    
 

Computing shortest distance 
 

After constructing the sets P, Q and R, we compute the 
shortest distances for vertices in the three sets as follows: 
 

1. For each vertex u  P we compute and store the 

shortest distance from every vertex v  V, using the 

BFS with u as root. This would take m√n running 
time, which is sub-cubic O(n5/2) in worst case. 

 

2. For the vertices in Q if s  P is a neighbor of u  Q, 

then we store the shortest distance between u and v 
as δ'(u, v) = δ'(s, v) + 1.The shortest distance δ(s, v) 
between s and v, is known accurately by the BFS 

that started at s. If v  Q, then we store the shortest 

distance between u and v as δ' (u, v) = min{δ(s, v), 

δ'(s', u)} + 1; where s'  P  is a neighbor of v. It can 

be shown that  δ(u, v) ≤ δ'(u, v) ≤ δ(u, v) + 2. 
 

3. The sub-graph G' = (V', E') of G = (V, E) induced  
by the vertices in R has at most n√n edges. For every 

vertex u, v  R we compute the shortest distance 
δ''(u, v) in the subgraph G' using the BFS for each 

vertex. This would take at most |R|*|E'| = n×n√n 
running time, which is O(n5/2). If G' is not a 
connected graph, there may not exist any path 
between u and v. In this case, we store the shortest 
distance δ''(u, v)) between u and v in G', as ∞. Now 
we store the shortest distance between u and v as 

δ'(u, v) = min{ δ''(u, v),  mins S{ δ(s, u)+ δ(s, v)}}. It 

can be shown that δ(u, v) ≤ δ'(u, v) ≤ δ(u, v) + 2. 
 

Lemma 3. If u Q and v V/P, there exists δ(u, v) ≤ δ'(u, 
v) ≤ δ(u, v) + 2. 
 

Proof: As u  Q, let s  P be its neighbor. We have only 

one of the following relation between δ(u, v)and δ(s, v): 
(i) δ(u, v) > δ(s, v) 
(ii) δ(u, v) < δ(s, v) 
(iii) δ(u, v) = δ(s, v) 

 

Case 1. δ(u, v) > δ(s, v) consider the path between u and v, 
which consist of the shortest path between s and v of 

length δ(s, v) and the edge (u, s). The length of this path is 
δ(s, v) + 1. Since no path between u and v can be shorter 
than the shortest path between u and v, δ(s, v) + 1 ≥ δ(u, v). 

But as δ(u, v) > δ(s, v), we have δ(s, v) + 1 ≥ δ(u, v) > δ(s, 
v). Thus δ(u, v) = δ(s, v) + 1 and in a in shortest path from 
u to v, first hop is s as shown in figure 1. 
 

Case 2. This case is same as previous case, except that the 
roles of u and s are interchanged. Hence   if δ(u, v) < δ(s, 
v), δ(s, v) = δ(u, v) + 1 and in a  shortest path from s to v  
first hop is u. 

 
Figure 1:  An illustration of the proof of Lemma 3,  

case 1. δ(u, v) > δ(s, v)   
 

Case 3. If δ(u, v) = δ(s, v) , neither the shortest path from u  
to v passes through s , nor the shortest path from s to v 
passes through u; otherwise they could not have been of 
equal length. As we see that in case δ(u, v) = δ(s, v) + 1,  in 

case 2, we have δ(u, v) = δ(s, v) - 1, and in case 3, we have 
δ(u, v) = δ(s, v), and since all the above three cases are 
exhaustive, δ(u, v) can only have the value from δ(s, v) - 1 
to δ(s, v) + 1. Thus we have:  

δ(s, v) - 1 ≤ δ(u, v) ≤ δ(s, v) + 1 
 

as u  Q, δ'(u, v) = δ(s, v) + 1. Substituting δ'(u, v) - 1 for 

δ(s, v) we get: 
δ'(u, v) – 2 ≤ δ(u, v) ≤ δ'(u, v) 

After rearranging, we get:  
 

δ(u, v) ≤ δ'(u, v) ≤ δ'(u, v) + 2 

It implies that for every vertex u  Q the distance reported 

from every other vertex v  V/P has one sided additive 

error of at most 2. 
 

Lemma 4. For every u, v R, there exists δ(u, v) ≤ δ'(u, v) 

≤ δ'(u, v) + 2. 

Proof: For any two vertices u, v  R, we can have 

following three mutually exclusive cases:   
 

1. Every vertex in a shortest path from u to v is in   R. In 
this case we have, δ(u, v) = δ''(u, v). Also we will have, 

for every s  S, δ''(u, v) ≤ δ(s, u) + δ(s, v), and thus   

    δ'(u, v) = min{ δ' (u, v), mins S { δ(s, u) + δ(s, v)}}  

                = δ''(u, v) = δ(u, v) 
 

2. A shortest path from u to v passes through one of the 

special vertex s  P. Thus, by the optimal substructure 

property of the shortest path, that shortest path from u to 
v constitute of a shortest path from u to s and a shortest 
path from s to v. Thus, we have, δ(u, v) = δ(s, u) + δ(s, 
v). As the shortest path passes through s, we will have 

for every s'  S,  

δ(s, u) + δ(s, v ) ≤ δ(s', u) + δ(s', v),  
    and  

δ(s, u) + δ(s, v) ≤ δ''(u, v).  
    Thus,  

δ'(u, v) = min{δ''(u, v), mins S { δ(s, u)+ δ(s, v)}} 
            = δ(s, u)+ δ(s, v) 

            = δ(u, v) 
 

3.  No shortest path between u and v passes through any 

vertex s  P.  
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Since we have excluded previous cases, a shortest path 

between u and v must pass through a vertex  w  Q. By the 

optimal substructure property of the shortest path, that 
shortest path from u to v constitutes of a shortest path from 
u to w and a shortest path from w to v. Thus we have, δ (u, 

v) = δ(u, w) + δ(w, v). Suppose s  P be the neighbor of w. 

Since the shortest path from u to v does not pass through s, 
the shortest path from u to w also does not pass through s, 

as later is a sub graph of former, as shown in figure 2. 

 
Figure 2: An illustration of the proof of Lemma 4,  

case 3. δ(u, v) = δ(u, w) + δ(w, v) 
 

Consider the path between u and w which consists of the 
shortest path between u and s of length δ (u, s) and the 

edge (w, s). The length of this path is δ(u, s) + 1. As no 
shortest path between u and w passes through s, this path 
cannot be equal to or shorter than the shortest path 
between u and w. Thus, δ(u, s) + 1 > δ(u, w) or δ(u, s) ≥ 
δ(u, w). 
 

Now consider the path between u and s which consists of 
the shortest path between u and w of length δ(u, w) and the 

edge (w, s). The length of this path is δ(u, w) + 1.  Since no 
path between u and s can be shorter than the shortest path 
between u and s, δ(u, w) + 1 ≥ δ(u, s). As δ(u, s) ≥ δ(u, w), 
we have  
 

δ(u, w) ≤ δ(u, s) ≤ δ(u, w) + 1 
 

By interchanging the roles of u and v, we get: 
δ(v, w)  ≤ δ(v, s)  ≤  δ(v, w) + 1 

 

 Adding the two inequalities, we get:  
   δ(u, w) + δ(v, w) ≤ δ(u, s) + δ(v, s) ≤ δ(u, w) + δ(v, w) + 2 
 

Since  δ(u, v) = δ(u, w) + δ(v, w), we get  
 

δ(u, v) ≤ δ(u, s) + δ(v, s) ≤ δ(u, v) + 2 
 

In this case for every s'  S, we will have one of the 

following two cases:  
 

 (a)  δ''(u, v) ≤ δ(s', u) + δ(s', v). Thus we will have δ'(u, v) 
= δ''(u, v). Since δ(u, v)  ≤  δ(u, s) + δ(v, s) ≤ δ(u, v) + 
2  and δ''(u, v) ≤ δ(s', u) + δ(s', v), we have : 

 

δ(u, v) ≤ δ'(u, v) ≤ δ(u, v) + 2 
 

 (b) There exists s such that δ''(u, v) > δ(u, s) + δ(v, s) and 
δ(u, s) + δ(v, s) ≤ δ(s', u) + δ(s', v).  Thus we will have  

δ'(u, v) = δ(u, s) + δ(v, s), and hence,   
δ(u, v) ≤ δ'(u, v) ≤ δ(u, v) + 2 

 

Thus it follows that if the shortest path does not pass 

through any of the special vertices, but through the 
neighbor of a special vertex, then  
 

δ(u, v)  ≤ δ'(u, v)  ≤ δ(u, v) + 2. 
 

All the above three cases are exclusive and exhaustive. For 
case 1 and case 2, we have δ'(u, v) = δ(u, v), and  for case 

3, we have  δ(u, v) ≤ δ'(u, v) ≤ δ(u, v) + 2. 
 

Combining all the three cases we get:  
 

δ(u, v) ≤ δ'(u, v)  ≤  δ(u, v) + 2. 
 

It implies that for every vertex u, v  R, the distance 

reported between u and v has one sided additive error of at 
most 2. 
 

5. THE ALGORITHMS 
 

Now we present an algorithm APASP based on our 
approach to find the optimized shortest paths between all 
pairs of vertices of a graph with one sided additive error of 
at most 2. Algorithm APSAP has four steps:  

1. Identify special vertices and constructs sets P, Q and 
R. 

2. Carry out BFS for each of the special vertices in the 
input graph. 

3. Compute single source optimized shortest paths for 
each vertex in Q. 

4. Compute single source optimized shortest paths for 
each vertex in R. 

 

Algorithms for the subroutine to carry out these tasks are 
given in the following sections. Input to the algorithm 
APASP is an unweighted and undirected graph G = (V, E). 
It calls the four subroutines sequentially and outputs an 
n×n matrix dist[][]; dist[u][v] is the optimized shortest 

distance between vertex u and  vertex v  for every u, v  V. 

Before calling the subroutines, dist[][] is initialized such 

that dist[u][v] = 1 if (u, v)  E, dist[u][v] otherwise. If the 

input graph G = (V, E) is connected, dist[u][v] is initialized 
to n + 1, if(u, v) does not belongs to  E. 
 

Algorithm to CONSTRUCT P, Q, R 
 

This algorithm identify the special vertices in G = (V, E), 

and construct the sets P, Q, R. For every u  Q, it also 

stores a vertex s  P in neighbor[u], such that (u, s)  E. 

Input to this algorithm is the graph G = (V, E). 
 

Algorithm 1: CONSTRUCT 
 

Initialize: G' = (V', E') and G = (V, E) are equivalent. 
n = |V| 
P = Q = ø 
while |E'| > n√n do  
Select a vertex s of maximum degree from V'. 

P = Pus  

for every u  V such that (u, s)  E' do  

Q = Quu 
neighbor[u] = s 

for every v V such that (u, v)  E' do  

E' = E' - (u, v)  
end  for 

E' =E' - (u, s) 
V' = V' - u  

end for 
V' = V' - s  

end while  
R =   V'  
 

Lemma 5. The running time taken by the algorithm 
CONSTRUCT is O(m) if m > n√n, and O(1) otherwise. 
 

Proof: If m ≤ n√n, then body of while loop will not be 

executed and hence time taken  by algorithm is O(1). Also 
if m ≤ n√n, we will have P = Q = ø and R = V.  If m > n√n, 
the while loop will be iterated for |S| times, since one 
vertex is chosen as special vertex in each iteration of while 
loop. Selecting the maximum degree vertex and updating 
the degree of adjacent vertices after deleting the maximum 
degree vertex will take O(d) time, where d is the degree of 
the maximum degree vertex, which cannot be greater than 

n. In each iteration of while loop, the outer for loop is also 
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executed, and in each iteration of outer for loop, inner for 
loop is also executed. In each iteration of inner for loop an 
edge is deleted from the graph. As no edge is added to 
graph at any point of time, the number of statements 
executed will be of order of number of edges deleted, 

which cannot be more than m. Thus the time taken by 
algorithm, if m > n√n, will be O(n|s| + m), which is O(m) 
(since |S| ≤ √n and m > n√n). 
 

Algorithm: Single Source Shortest PathP 

(SSSPP) 
 

This algorithm carries out BFS for every special vertex in 
G = (V, E) and stores the shortest distances of every vertex 
from the special vertices in array dist[][]. Input to this 
algorithm is the graph G = (V, E) and set of special vertices 
P. 
 

Algorithm 2: SSSPP 
 

for every s  P do  

run BFS in G = (V, E) with s as root. 

     for every v V do  

dist[s][v]  = dist[v][s] = δ(s, v)  
(computed during BFS)  

    end for 
end for  
 

Lemma 6. If m > n√n  the running time taken by the 
algorithms SSSPP is O(m√n). 
 

Proof: As SSSPP runs the BSF for every special vertex in   

G = (V, E), the running time would be O(m|S|). Since |S| ≤ 

√n if m > n√n, algorithm SSSPP will take O(m√n) running 

time.   

Algorithm: Single Source Optimized Shortest 

PathQ (SSOSPQ) 
 

This algorithm computes the optimized shortest distance of 
the neighbors of the special vertices from every other non-
special vertex and stores the optimized shortest distance in 
array dist[][]. Input to this algorithm is the graph G = (V, 
E), P, Q, neighbor[]. 
 

Lemma 7. If m > n√n   the running time taken by the 
algorithm SSOSPQ is O(n2). 
 

Algorithm 3: SSOSPQ 
 

for every u  Q do 

      for every v  V/P do 

if dist[u][v] > dist[neighbor[u]][v]+1 then 
  dist[u][v] = dist[v][u] = dist[neighbor[u]][v] + 1 

end if 
      end for 
end for 
 

Proof: As SSOSPQ consists of two nested for loops, the 
running time would be O(|Q||V|), because outer for loop is 
iterated for every vertex in Q and  the inner for loop is 
iterated for every vertex in V/P. If m < n√n, then |Q| = 0 

else |Q| can not be greater than n. Hence algorithm 
SSOSPQ will take O(n2) running time, If m > n√n  
 

Algorithm: Single Source Optimized Shortest 

PathR (SSOSPR) 
 

This algorithm computes the optimized shortest distance 
between all pairs of vertices in R and stores the optimized 
shortest distance in array dist[][]. Input to this algorithm is 
P, R and G' = (V', E'), the subgraph of G = (V, E) induced 

by the vertices in R. Subgraph G' = (V', E') is obtained 
from the algorithm CONSTRUCT. 
 

Lemma 8. The running time taken by the algorithm 
SSOSPR is O(n5/2) if m > n√n, O(mn) otherwise. 
 

Proof: Algorithm SSOSPR runs the BFS in G' = (V', E'), 
for every vertex in R, which will take O(|R||E'|) time. Then 
it executes three nested for loops, which will take 

O(|R|2|P|),  because two outermost for loop are iterated for 
every vertex in R and the inner for loop is iterated for 
every vertex in P. Thus, the total time taken by algorithm 
SSASPR is O(|R||E'|+ |R|2|P|). If m > n√n, it would become 
O(n5/2) as in this case, |R| = O(n), |E'| < n√n and |P| < √n. If 
m < n√n, it would become O(mn), as we have, R = V, E' = 
E and P = ø. Thus, algorithm SSOSPR takes O(n5/2) 
running time if m > n√n, O(mn) otherwise.  
 

Algorithm 4: SSOSPR 
 

for every u  R do  

run BFS in G' = (V', E') with u  as root. 

              for every v  R do  

dist[u][v] = dist[v][u] = δ(u, v)  
(computed during BFS)  

end for  
end for  

for every u  R do 

     for every v  R do  

          for every s  S do 

 if dist[u][v] > dist[s][u] + dist[s][v] then 
      dist[u][v] = dist[v][u] = dist[s][u] + dist[s][v] 

end if 
         end for 
    end for 
end for 
 

Analysis of APOSP 
 

Lemma 9. Algorithm APOSP runs in O(min(mn, n5/2)) 
time. 
 

Proof: From Lemmas, we have if m > n√n, the running 
time of algorithm APOSP will be O(m + m√n + n2 + n5/2) 
i.e., O(n5/2 ) else it will be O(mn). Since n5/2 < mn when    
m > n√n, the running time taken by algorithm APOSP is 
O(min(mn, n5/2 )). 
 

Lemma 10. Algorithm APOSP reports the shortest 
distance between every pair of vertices   with   one sided 
additive error of at most 2. 
 

Proof: A vertex belongs to P, Q or R. Thus, for any pair of 

vertices, if one of the vertices is in P, the true shortest 
distance is reported (since BFS is run on the input graph 
for every vertex of P). If neither of the two vertices is in P, 
but one of the vertex (or both) is in -Q, the shortest 
distance reported has one sided additive error of at most 2. 
And if both vertices are in R, even then the shortest 
distance reported has one sided additive error of at most 2. 
Thus for every pair of vertices algorithm APOSP reports 
the shortest distance with one sided additive error of at 

most 2. Algorithm APOSP can be easily modified to report 
one of the optimized shortest paths between every pair of 
vertices, without increasing the time complexity by more 
than the size of the output. Suppose the shortest path 
between two vertices u and v is to be reported. If one of the 
vertex, lets say u, is in P, BFS in G = (V, E) for u returns 
the breadth-first tree rooted at u, which contains the 

shortest paths form u to every other vertex. If u  Q and s 

 P is a neighbor of u, then report the path between u and 

v in the breadth-first tree rooted at s. If u, v  R and s'  P 



International Journal of Computer Applications (0975 – 8887)  

Volume 2 – No.3, May 2010 

72 

 

such that for every s'  P δ(s', u) + δ(s', v) ≤ δ(s, u) + δ(s, 

v), then report the path between u and v in the breadth-first 
tree rooted at s' or the path between u  and v in the breadth-
first tree rooted at u or v  (returned by the BFS for u or v in 
G'), whichever is minimum. 
 

All Pairs Shortest Paths and Maximal 

Independent Sets 
 

Now we explore the problem of finding a quadratic 
running time algorithm for reporting all pair’s optimized 

shortest paths with one sided additive error of at most 2. 
We will try to identify some graph for which it is possible. 
First we will find a suitable maximal independent set and 
then use this information to compute the all pairs 
approximate shortest paths. 
 

All pairs approximate shortest paths 

algorithm using maximal Independent Set 
 

If we are given a maximal independent set, then 
computation of all pairs approximate shortest paths, with 
one sided additive error of at most 2, can be done in O(ms) 
time, where s is the size of maximal independent set. Let G 

= (V, E) be an unweighted and undirected graph .Suppose 
the set of vertices M (V forms a maximal independent set). 
For Computing the approximate shortest path we will first 
run BFS on G = (V, E), for each vertex in M. Thus for each 

m  M, we have the exact shortest distance from every 

other vertex in V. Since M is a Maximal Independent set, 

every vertex u  V/M has a neighbor in M. Let u and m  

M be one of its neighbors. If we have to compute the 

shortest distance of u from v V/M, then we will report 

δ(m, v) + 1 as the optimized shortest distance. It can be 
easily seen that δ(u, v) ≤ δ(m, v) + 1 ≤ δ(u, v) + 2. Thus for 

every u  V/M, we can now find the optimized shortest 

distance of u from any vertex in V, with one sided additive 
error of at most 2, in constant time, if we have stored a 

neighbor m  M of u. Thus the time taken by algorithm is 

O(m|M|). 
 

Finding   maximal independent set of small size 
 

We now study finding upper bounds on the size of 
maximal independent set of some particular type of graphs. 

Consider the following heuristic to construct a maximal 
independent set M of a connected graph G = (V, E). 
 

1. Choose a vertex v of degree d; d greater than or 
equal to the average degree of the graph, such 
that the number of edges removed from the 

graph after deleting the vertex v and its 
neighbors is O(m2  /n2). 

2. Delete vertex v and all of its neighbors, including 
the edges incident on these vertices, from the 
graph. 

3. Repeat steps 1-2 for residual graph until all the 
vertices are deleted. 

 

Lemma 11. The size of maximal independent set M is 
O(n2/m). 
 

Proof: We have to prove that |M| ≤ cn2 /m. The proof is by 
induction on n. 
Let the value of constant c be 1. Lemma is clearly true 
when n = 2 and m = 1. Assume that the lemma is true for 
all graphs having less than n vertices. 
 

Let the vertex v  have degree d; d greater than or equal to 
the average degree i.e., 2m/n of the graph, such that the 
number of edges removed δ from the graph after deleting 
the vertex v and its neighbors is O(m2 /n2 ). Delete vertex v 

and all d of its neighbors. Thus residual graph has n – d – 1 
vertices and m – δ edges. 
 

Inductively residual graph will have a maximal 

independent set of size at most (n – d – 1)2 /(m – δ).  Thus 
original graph has a maximal independent set M of size at 
most n2 /m, if  

n2  /m ≥ 1 + (n – d – 1)2  /(m – δ) 
 

Let α = d + 1. Since n > d ≥ (2m/n), n ≥ α > (2m/n). Thus,  
|M| ≤ n2 /m, if  

(n2 /m) ≥ 1 + (n – α)2 /(m – δ) 

or if, 
 

mn2 – δn2  ≥ m2 – δm + mn2 +α2 m – 2αmn  
or if, 

m2 + δ(n2 –m) + α2 m – 2αmn ≤ 0 
 

α2 m – 2αmn is minimum at α = n. Since n ≥ α > (2m/n) at    
α = (2m/n) + 1, α2 m – 2αmn will have its maximum value, 

which will be less than 4m3/n2 – 4m2 (obtained after 
substituting α = 2m/n in α2 m – 2αmn). Thus, m2 + δ(n2 – m) 
+ α2 m – 2αmn ≤ m2  + δ(n2 – m) + 4m3 / n2 – 4m2 . 
 

Thus |M| ≤ n2 /m, if  m2 + δ(n2 – m) + 4m3 / n2 – 4m2  ≤ 0, or 
if,  δ ≤ (3m2 – (4m3 / n2 ))/n2 – m, which is true. Hence size 
of maximal independent set M is at most n2 /m. 
 

Clearly the maximal independent set M can be found in 

O(n2) time using a greedy algorithm. For each vertex v  

V, we will add the degree of its neighbors. Let γ(v) is the 
sum of degree of all neighbors of v and δ(v) is the number 
of edges removed from the graph, if vertex v and its 
neighbor are deleted from the graph. It is clear that δ(v) ≤ 
γ(v) ≤ 2δ(v), since in the sum of degree of neighbors, an 

edge that is going to be deleted might be counted once or it 
may be counted twice (if both vertices, on which the edge 
is incident, are the neighbor of v). Also, δ(v) = γ(v ), if and 
only if no two neighbors of v  are adjacent. Computing 
γ(v), will take O(dv) time, where dv is the degree of vertex 
v. Thus computing γ(v) for all the vertices of the graph will 

take O(∑v V  dv) = O(m) time. To update degree dv and γ(v) 

for every vertex v  V,  we subtract 1 and du from dv and 

γ(v), respectively, whenever  an edge (u, v) E is deleted 

form the graph. Since there are m edges in graph and no 
edge is added in the graph while constructing M, the total 

time taken to update dv  and γ(v), for every vertex v  V 

will be O(m). To identify a vertex in M will take O(n) 
time, if we do a linear search on dv and γ(v), for every 

vertex v  V. The size of M is O(n2 /m). Thus the total time 

required to construct M is O(m + n.n2 /m) i.e., O(m + n3 /m) 

= O(n2). 
 

Sub-cubic running time algorithm for 

computing all pairs shortest paths 
 

Suppose we are given an independent set of vertices (not 
necessarily maximal) of sub linear size. If the number of 
edges in the residual graph, after deleting the vertices   in 
the independent set, is sub-quadratic, then the shortest 
paths between all pairs of vertices in graph can be 
computed in sub-cubic time. For this, we will compute the 

single source shortest paths in input graph for each vertex 
in independent set. Then for remaining vertices, we will 
compute the single source shortest paths in residual graph 
(obtained after deleting vertices in independent set). 
Shortest path between every two vertices u and v in the 
independent set will be either in residual graph or through 
one or more vertices in independent set, which can be 
calculated as minw{δ(w, u) + δ(w, v)} for every vertex w in 

independent set. Since size of independent set is sub-linear 
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and number of edges in the residual graph is sub-quadratic, 
this all can be done in O(n3) time. 
 

6. CONCLUSIONS 
 

In this paper we described an O(n5/2) running time 
algorithm to compute all pairs optimized shortest paths in 

an unweighted   and undirected graph, with one sided 
additive error of at most 2. We also studied the problem of 
finding quadratic running time algorithm for some 
particular types of graphs and tried to identify them. We 
also studied upper bounds on the size of a maximal 
independent set of such graphs. 
 

Our technique can be enhanced to find the optimized 
shortest paths in a weighted graph. For a directed graph 
however, this   technique is not likely to work, since in a 
directed graph the adjacency relation is not commutative 
and thus a path p from u to v is not a path from v to u. The 
commutative property of the adjacency relation is the key 
property of undirected graph, which we utilize in our 
technique.  
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