
International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.3, May 2010

67

An Optimized All pair Shortest Paths Algorithm

Vijay Shankar Pandey Rajendra Kumar Dr. P K Singh
 Board of Apprenticeship Training (SR), Vidya College of Engineering, MMM Engineering College,
 Chennai (TN) Baghpat Road, Meerut (UP) Gorakhpur (UP)

ABSTRACT

In this paper, we present an algorithm to compute all pairs
optimized shortest paths in an unweighted and undirected

graph with some additive error of at most 2.This algorithm
can be extended for weighted graph also but it will not
work for directed graph due to absence of commutative

property. The algorithm runs in n5/2) times, where n is

the number of vertices in the graph. This algorithm is
much simpler than the existing algorithms. A study of
upper bounds on the size of a maximal independent set of
such graphs has been performed.

Keywords
Optimized, Commutative, Sub-Cubic, Additive Error,
Multiplicative Error

1. INTRODUCTION

Single source shortest paths algorithm gives the shortest
paths from a source vertex to every other vertex of the
graphs. One such classical algorithm for unweighted
graphs is breadth-first search (BFS) algorithm [8]. Some
algorithms do not use single source shortest paths
algorithms as subroutine, like one of the most classical
algorithm for directed and weighted graph by Floyd and
Warshall [8]. An all pairs optimized shortest paths

algorithm does not report the exact shortest paths for every
pair of vertices and distance reported may have some error.

Almost every algorithm for the all pairs shortest paths
problem, except those based on fast matrix multiplication,
has running time of O(n3) in worst case. There exist
algorithms based on fast matrix multiplication for the all
pairs shortest paths problem that achieve sub-cubic

running time, but these fast matrix multiplication
algorithms are better than the naive O(n3) time algorithm
only for very large values of n. This is where the need of
approximation algorithms arises. Though optimization
algorithms do not give precise output, but are faster. Many
sub-cubic running time and simple algorithms have been
designed for all pairs optimized shortest path problem.
These algorithms achieve sub-cubic running time, but the
distance reported has some multiplicative or additive error.

Definition 1: An algorithm is said to compute all pairs -

optimized shortest paths or all pairs optimized shortest

paths of stretch for some 1, if for every pair of

vertices u, v V , the distance reported is bounded by

. (u, v), where (u, v) is the actual shortest distance
between u and v.

Definition 2: An algorithm is said to compute all pairs
shortest paths with an additive one-sided error of at most

 or all pairs optimized shortest paths of surplus for

some 0, if for every pair of vertices u, v V, the

distance reported is bounded by (u, v) + , where (u, v)

is the actual shortest distance between u and v.

An interesting property of the shortest path is that a
shortest path between two vertices consists of other
shortest paths. This optimal substructure property of
shortest path is used by every shortest path algorithm. For
an unweighted graph, following lemma states the optimal
substructure property of shortest paths more precisely.

Lemma 1. Given an unweighted graph G = (V, E) , let path
p = (v1, v2, …., vk) be a shortest path from a vertex v1 to a
vertex vk and, let pij = (vi, vi+1. vj) be the subpath of p,
for any i and j such that 1 ≤ i ≤ j ≤ k. Then pij is a shortest
path from vi to vj.

Proof: Let length(p) be the length of path p. If we
decompose path p into path from v1 to vi, path from vi to vj

and path from vj to vk, then we have

 length(p) = length(p1i) + length(pij) + length(pjk).

If there is a shorter path p′ij than pij from vi to vj, then we
have a path from v1 to vk, which is path p1i followed by p′ij
followed by pjk. The length of this path

 length(p1i) + length(p′ij) + length(pjk) < length(p),

since length(p′ij) < length(pij). This contradicts the
assumption that P is a shortest path from v1 to vk.

2. PREVIOUS WORK: ALL PAIRS

SHORTEST PATH ALGORITHMS

One of the most classical algorithm for computing all pairs
shortest paths is F1oyd-Warshall algorithm [8], which runs
in O(n3) time. Floyd-Warshall algorithm uses the

technique of dynamic programming. Johnson’s algorithm
[16] take O(mn + n2logn) time to compute the shortest
paths between all pairs, and hence it is asymptotically
better for space graphs, but it requires no negative cycle to
be present in the graph. It uses a single source shortest
paths algorithm as subroutine and runs it for all the
vertices. However, in worst case when m = O(n2) it still
takes O(n3) time. The all pairs shortest paths problem for

directed graphs with nonnegative edge weights is closely
related to the distance product of two matrices.

If A = (aij) and B = (bij) are n×n, matrices, the distance
product A×B is the n×n, matrix whose (i, j)th element is
(AB)ij = mink{aik +bkj}. Fredman gave an O(n3(log log
n/logn)1/3) running time algorithm [11] to compute the
distance products of two n×n matrices, whose bound was

later improved to O(n3(log log n / log n)1/2) by Takaoka
[22]. For the same type of graphs (nonnegative edge
weights), Karger et at. [17] and [19] gave an O(m*n +
n2log n) running time algorithm, where m* denotes the
number of edges in the essential subgraph H of the input
graph G = (V, E). The essential subgraph contains an edge

(u, v) G if that edge is uniquely the least-cost path

between its vertices. However, in the worst case m* can be
as large as m.

For graphs with integer edge weights, Hagerup gave an

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.3, May 2010

68

O(mn+n2 log log n) running time algorithm [14]. For
undirected graphs, Pettie and Ramachandran gave an O(mn
α(m, n)) running time algorithm [20], where α(m, n) is
Tarjan’s inverse-Ackermann function. For undirected
graphs with integer edge weights, Thorup [23 24] gave an

O(mn) running time algorithm. It uses a single source
shortest paths algorithm, which bypasses the sorting
bottleneck of Dijkstra’s algorithm [9] and runs in O(m)
time.

 Directed Weight Complexity Ref.

yes real n3 [8]

yes real mn+n2 log n [16]

yes real+ n3 (log log n/log n)1/2 [11], [22]

yes real+ m*n+n2 log n [17], [19]

yes integer mn+n2 log log n [14]

no real mnα(m, n) [20]

no integer mn [23, 24]

Table 1: All pairs shortest paths algorithm

Recent work by Alon, Galil, and Margalit [2], Alon and
Naor [3], Galil and Margalit [12, 13], and Seidel [21] have
shown that if matrix multiplication can be performed in
O(M(n)) time, then the all pairs shortest paths problem for
unweighted directed graphs can be solved in Õ(√n3 M(n))
time and the all pairs shortest paths problem for

unweighted undirected graphs can be solved in Õ(M(n))
time. Here Õ(f) is to hide the polylogarithmic factor i.e.
Õ(f) means O(f polylog n). The current best upper bound
on matrix multiplication is M(n) = O(n2.376) by
Coopersmith and Winograd [7].

3. ALL PAIRS OPTIMIZED

SHORTEST PATHS ALGORITHMS

[1] gave algorithm for all pairs shortest paths with additive
error for unweighted and undirected graphs. They showed

that surplus 2 estimate of the distance between k specified
pairs of vertices can be computed in O(n3/2(klogn)1/2).
Time, i.e. surplus 2 estimates of all the shortest paths in the
graph can be computed in O(n5/2(log n)1/2) time. They also
gave a 2/3-approximation algorithm for the diameter of a
weighted and directed graph that runs in O(m(n log n)1/2 +
n2 log n) time. Dor et al. [10] improved the results of
Aingworth et al., and gave Õ(n3/2m1/2)Õ(n7/3) running time

algorithms for all pairs shortest paths with additive error of
at most 2. They also showed that all pairs shortest paths
with additive error of at most k can be computed in Õ(n2-1/k

m1/k, n2+1/(3k-4)) time. For the weighted graphs Cohen and
Zwick [6] adapted the technique of Dor et al. and obtained
stretch 2 estimates of al shortest paths in Õ (n3/2 m1/2) time,
stretch 7/3 estimates in Õ(n7/3) time and stretch 3 estimates
in Õ(n2) time.

 Weight Error Time* Ref.

No Surplus 2 n5/2 [1]

No Surplus 2 n3/2 m1/2 , n7/3 [10]

No Surplus 4 n5/3 m1/3 , n11/5 [10]

No Surplus 2(k-1) n2-1/k m1/k , n2+1/(3k-4) [10]

yes Stretch 2 n3/2 m1/2 [6]

yes Stretch 7/3 n7/3 [6]

yes Stretch 3 n2 [6]

*Ignoring polylogarithmic factors

Table 2: All pairs optimized shortest paths algorithm

For unweighted and undirected graphs Baswana et al. [4]
gave randomized algorithms for computing all pairs
nearly 2-optimized shortest paths. One algorithm takes
expected O(m2/3 n log n + n2) time and reports the distance

not more than 2δ(u, v)+1 between any two vertices u and v.
Another algorithm takes expected O(n2 log3/2 n) time and
reports the distance not more than 2δ(u, v) + 3. They also
obtained an expected O(n2) time algorithm to compute all
pairs 3-optimized distances in a graph. The work of

Aingworth et al. [1] and Dor et al. [10] for all pairs
shortest paths with additive error of at most 2, is based
upon the simple observation that there is a small set of
vertices that dominates all the high degree vertices of
graph. A set of vertices D dominates a set u of vertices
when every vertex in u has a neighbor in D. Dor et al. have
shown that there exists a set D of size O((n log n)/s) such
that 1 ≤ s ≤ n, that dominates all the vertices of degree at

least s in the graph and can be found deterministically in
O(m+n) time. To achieve the sub-cubic running time, Dor
et al. run BFS on the input graph for Õ(n3/2 /m1/2) vertices
only, and for the rest of the vertices they run Dijkstra’s
algorithm [9] on a weighted graph with O((nm)1/2) edges.
Let G = (V, E) be an undirected and unweighted graph.
They partition the set of vertices into low degree vertices
(degree less than (m/n)1/2) and high degree vertices (degree

at least (m/n)1/2). Then they find a set D of size Õ(n3/2/m1/2)
that dominates high degree vertices, in O (m+n) time. They

also construct an edge set E′ E of size O(n) such that for

every high degree vertex u there exist a vertex v D[t]

such that (u, v) E′. First the BFS is performed on G for

every vertex u D, which gives the shortest distance of u

from every other vertex. Then for every vector u V/D a
weighted graph G′(u) is constructed, which includes all the

edges that touch low degree vertices, edges in E', and the
edges connecting the vertex u with all the vertices of

dominating set. The weight of an edge (u, v) for every v

D is equal to the shortest distance between u and v in G,
found by the BFS that started at v, while the weight of the
rest of the edges is 1. The number of edges in graph G'(u)
is O(nm)1/2). Finally Dijkstra’s algorithm is run, from
every vertex u V/D on the graph G′(u). For every pair of

vertices u, v V/D, the distance computed between u and

v has an additive error of at most 2.

4. OUR APPROACH

To gain sub-cubic running time, instead of running BFS
for each vertex of the graph, we can BFS for few vertex of
the graph, and use the information obtained to compute the
optimized all pairs shortest paths for the entire graph. Let

G = (V, E) be an unweighted and undirected input graph.
We divide the vertices into three mutually exclusive and
exhaustive sets: P, Q, and R. Then the BFS is run for each
vertex in P. The knowledge of single source shortest paths
for every vertex in P is then used to compute the optimized
shortest paths for the vertices in Q and R.

Constructing P, Q, and R

To divide set of vertices V into P, Q, and R we use a
simple greedy approach. We choose one of the maximum
degree vertex and put this vertex into the set P and all of
its neighbors into the set Q. Then from the graph we delete

this vertex and all of its neighbors including the edges
incident on these vertices. We repeat this procedure until
we get a sub graph G' of G, with less than or equal to n√n
edges. All the vertices of G' constitute R.

Lemma 2. Set P contains less than √n vertices.

Proof: We proof this by contradiction. We stop
constructing P as soon as the number of edges in the sub
graph G′ (Obtained after deleting from G, the vertices in P

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.3, May 2010

69

and Q and the edges incident on these vertices) becomes
less than n√n. Suppose even after selecting √n special
vertices, the number of edges in the subgraph G' is more
than n√n . It implies that at each iteration the number of
edges in subgraph were more than n√n because we do not

add any edge anytime. Suppose Gi = (Vi, Ei) is the
subgraph at ith iteration. Thus we have, for 1 ≤ i ≤ √n,

|Ei| ≥ n√n

If d(v) is the degree of vertex v, then for 1 ≤ i ≤ √n ,

∑d(v) ≥ 2n√n, v Vi

If α(V) is the average degree of the set of vertices V , then
for 1 ≤ i ≤√n,

α(Vi) ≥ ∑d(v)/n ≥ 2√n and v Vi

Since at each iteration, we choose the vertex with

maximum degree as the special vertex, it must have the
degree more than or equal to the average degree 2√n .Since
we delete the chosen special vertex and its neighbors at
each iteration, it implies that we deleted more than 2√n
vertices at each iteration. Thus after √n iterations more
than 2n vertices were deleted. This is a contradiction, as
the graph consists of n vertices.

Computing shortest distance

After constructing the sets P, Q and R, we compute the
shortest distances for vertices in the three sets as follows:

1. For each vertex u P we compute and store the

shortest distance from every vertex v V, using the

BFS with u as root. This would take m√n running
time, which is sub-cubic O(n5/2) in worst case.

2. For the vertices in Q if s P is a neighbor of u Q,

then we store the shortest distance between u and v
as δ'(u, v) = δ'(s, v) + 1.The shortest distance δ(s, v)
between s and v, is known accurately by the BFS

that started at s. If v Q, then we store the shortest

distance between u and v as δ' (u, v) = min{δ(s, v),

δ'(s', u)} + 1; where s' P is a neighbor of v. It can

be shown that δ(u, v) ≤ δ'(u, v) ≤ δ(u, v) + 2.

3. The sub-graph G' = (V', E') of G = (V, E) induced
by the vertices in R has at most n√n edges. For every

vertex u, v R we compute the shortest distance
δ''(u, v) in the subgraph G' using the BFS for each

vertex. This would take at most |R|*|E'| = n×n√n
running time, which is O(n5/2). If G' is not a
connected graph, there may not exist any path
between u and v. In this case, we store the shortest
distance δ''(u, v)) between u and v in G', as ∞. Now
we store the shortest distance between u and v as

δ'(u, v) = min{ δ''(u, v), mins S{ δ(s, u)+ δ(s, v)}}. It

can be shown that δ(u, v) ≤ δ'(u, v) ≤ δ(u, v) + 2.

Lemma 3. If u Q and v V/P, there exists δ(u, v) ≤ δ'(u,
v) ≤ δ(u, v) + 2.

Proof: As u Q, let s P be its neighbor. We have only

one of the following relation between δ(u, v)and δ(s, v):
(i) δ(u, v) > δ(s, v)
(ii) δ(u, v) < δ(s, v)
(iii) δ(u, v) = δ(s, v)

Case 1. δ(u, v) > δ(s, v) consider the path between u and v,
which consist of the shortest path between s and v of

length δ(s, v) and the edge (u, s). The length of this path is
δ(s, v) + 1. Since no path between u and v can be shorter
than the shortest path between u and v, δ(s, v) + 1 ≥ δ(u, v).

But as δ(u, v) > δ(s, v), we have δ(s, v) + 1 ≥ δ(u, v) > δ(s,
v). Thus δ(u, v) = δ(s, v) + 1 and in a in shortest path from
u to v, first hop is s as shown in figure 1.

Case 2. This case is same as previous case, except that the
roles of u and s are interchanged. Hence if δ(u, v) < δ(s,
v), δ(s, v) = δ(u, v) + 1 and in a shortest path from s to v
first hop is u.

Figure 1: An illustration of the proof of Lemma 3,

case 1. δ(u, v) > δ(s, v)

Case 3. If δ(u, v) = δ(s, v) , neither the shortest path from u
to v passes through s , nor the shortest path from s to v
passes through u; otherwise they could not have been of
equal length. As we see that in case δ(u, v) = δ(s, v) + 1, in

case 2, we have δ(u, v) = δ(s, v) - 1, and in case 3, we have
δ(u, v) = δ(s, v), and since all the above three cases are
exhaustive, δ(u, v) can only have the value from δ(s, v) - 1
to δ(s, v) + 1. Thus we have:

δ(s, v) - 1 ≤ δ(u, v) ≤ δ(s, v) + 1

as u Q, δ'(u, v) = δ(s, v) + 1. Substituting δ'(u, v) - 1 for

δ(s, v) we get:
δ'(u, v) – 2 ≤ δ(u, v) ≤ δ'(u, v)

After rearranging, we get:

δ(u, v) ≤ δ'(u, v) ≤ δ'(u, v) + 2

It implies that for every vertex u Q the distance reported

from every other vertex v V/P has one sided additive

error of at most 2.

Lemma 4. For every u, v R, there exists δ(u, v) ≤ δ'(u, v)

≤ δ'(u, v) + 2.

Proof: For any two vertices u, v R, we can have

following three mutually exclusive cases:

1. Every vertex in a shortest path from u to v is in R. In
this case we have, δ(u, v) = δ''(u, v). Also we will have,

for every s S, δ''(u, v) ≤ δ(s, u) + δ(s, v), and thus

 δ'(u, v) = min{ δ' (u, v), mins S { δ(s, u) + δ(s, v)}}

 = δ''(u, v) = δ(u, v)

2. A shortest path from u to v passes through one of the

special vertex s P. Thus, by the optimal substructure

property of the shortest path, that shortest path from u to
v constitute of a shortest path from u to s and a shortest
path from s to v. Thus, we have, δ(u, v) = δ(s, u) + δ(s,
v). As the shortest path passes through s, we will have

for every s' S,

δ(s, u) + δ(s, v) ≤ δ(s', u) + δ(s', v),
 and

δ(s, u) + δ(s, v) ≤ δ''(u, v).
 Thus,

δ'(u, v) = min{δ''(u, v), mins S { δ(s, u)+ δ(s, v)}}
 = δ(s, u)+ δ(s, v)

 = δ(u, v)

3. No shortest path between u and v passes through any

vertex s P.

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.3, May 2010

70

Since we have excluded previous cases, a shortest path

between u and v must pass through a vertex w Q. By the

optimal substructure property of the shortest path, that
shortest path from u to v constitutes of a shortest path from
u to w and a shortest path from w to v. Thus we have, δ (u,

v) = δ(u, w) + δ(w, v). Suppose s P be the neighbor of w.

Since the shortest path from u to v does not pass through s,
the shortest path from u to w also does not pass through s,

as later is a sub graph of former, as shown in figure 2.

Figure 2: An illustration of the proof of Lemma 4,

case 3. δ(u, v) = δ(u, w) + δ(w, v)

Consider the path between u and w which consists of the
shortest path between u and s of length δ (u, s) and the

edge (w, s). The length of this path is δ(u, s) + 1. As no
shortest path between u and w passes through s, this path
cannot be equal to or shorter than the shortest path
between u and w. Thus, δ(u, s) + 1 > δ(u, w) or δ(u, s) ≥
δ(u, w).

Now consider the path between u and s which consists of
the shortest path between u and w of length δ(u, w) and the

edge (w, s). The length of this path is δ(u, w) + 1. Since no
path between u and s can be shorter than the shortest path
between u and s, δ(u, w) + 1 ≥ δ(u, s). As δ(u, s) ≥ δ(u, w),
we have

δ(u, w) ≤ δ(u, s) ≤ δ(u, w) + 1

By interchanging the roles of u and v, we get:
δ(v, w) ≤ δ(v, s) ≤ δ(v, w) + 1

 Adding the two inequalities, we get:
 δ(u, w) + δ(v, w) ≤ δ(u, s) + δ(v, s) ≤ δ(u, w) + δ(v, w) + 2

Since δ(u, v) = δ(u, w) + δ(v, w), we get

δ(u, v) ≤ δ(u, s) + δ(v, s) ≤ δ(u, v) + 2

In this case for every s' S, we will have one of the

following two cases:

 (a) δ''(u, v) ≤ δ(s', u) + δ(s', v). Thus we will have δ'(u, v)
= δ''(u, v). Since δ(u, v) ≤ δ(u, s) + δ(v, s) ≤ δ(u, v) +
2 and δ''(u, v) ≤ δ(s', u) + δ(s', v), we have :

δ(u, v) ≤ δ'(u, v) ≤ δ(u, v) + 2

 (b) There exists s such that δ''(u, v) > δ(u, s) + δ(v, s) and
δ(u, s) + δ(v, s) ≤ δ(s', u) + δ(s', v). Thus we will have

δ'(u, v) = δ(u, s) + δ(v, s), and hence,
δ(u, v) ≤ δ'(u, v) ≤ δ(u, v) + 2

Thus it follows that if the shortest path does not pass

through any of the special vertices, but through the
neighbor of a special vertex, then

δ(u, v) ≤ δ'(u, v) ≤ δ(u, v) + 2.

All the above three cases are exclusive and exhaustive. For
case 1 and case 2, we have δ'(u, v) = δ(u, v), and for case

3, we have δ(u, v) ≤ δ'(u, v) ≤ δ(u, v) + 2.

Combining all the three cases we get:

δ(u, v) ≤ δ'(u, v) ≤ δ(u, v) + 2.

It implies that for every vertex u, v R, the distance

reported between u and v has one sided additive error of at
most 2.

5. THE ALGORITHMS

Now we present an algorithm APASP based on our
approach to find the optimized shortest paths between all
pairs of vertices of a graph with one sided additive error of
at most 2. Algorithm APSAP has four steps:

1. Identify special vertices and constructs sets P, Q and
R.

2. Carry out BFS for each of the special vertices in the
input graph.

3. Compute single source optimized shortest paths for
each vertex in Q.

4. Compute single source optimized shortest paths for
each vertex in R.

Algorithms for the subroutine to carry out these tasks are
given in the following sections. Input to the algorithm
APASP is an unweighted and undirected graph G = (V, E).
It calls the four subroutines sequentially and outputs an
n×n matrix dist[][]; dist[u][v] is the optimized shortest

distance between vertex u and vertex v for every u, v V.

Before calling the subroutines, dist[][] is initialized such

that dist[u][v] = 1 if (u, v) E, dist[u][v] otherwise. If the

input graph G = (V, E) is connected, dist[u][v] is initialized
to n + 1, if(u, v) does not belongs to E.

Algorithm to CONSTRUCT P, Q, R

This algorithm identify the special vertices in G = (V, E),

and construct the sets P, Q, R. For every u Q, it also

stores a vertex s P in neighbor[u], such that (u, s) E.

Input to this algorithm is the graph G = (V, E).

Algorithm 1: CONSTRUCT

Initialize: G' = (V', E') and G = (V, E) are equivalent.
n = |V|
P = Q = ø
while |E'| > n√n do
Select a vertex s of maximum degree from V'.

P = Pus

for every u V such that (u, s) E' do

Q = Quu
neighbor[u] = s

for every v V such that (u, v) E' do

E' = E' - (u, v)
end for

E' =E' - (u, s)
V' = V' - u

end for
V' = V' - s

end while
R = V'

Lemma 5. The running time taken by the algorithm
CONSTRUCT is O(m) if m > n√n, and O(1) otherwise.

Proof: If m ≤ n√n, then body of while loop will not be

executed and hence time taken by algorithm is O(1). Also
if m ≤ n√n, we will have P = Q = ø and R = V. If m > n√n,
the while loop will be iterated for |S| times, since one
vertex is chosen as special vertex in each iteration of while
loop. Selecting the maximum degree vertex and updating
the degree of adjacent vertices after deleting the maximum
degree vertex will take O(d) time, where d is the degree of
the maximum degree vertex, which cannot be greater than

n. In each iteration of while loop, the outer for loop is also

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.3, May 2010

71

executed, and in each iteration of outer for loop, inner for
loop is also executed. In each iteration of inner for loop an
edge is deleted from the graph. As no edge is added to
graph at any point of time, the number of statements
executed will be of order of number of edges deleted,

which cannot be more than m. Thus the time taken by
algorithm, if m > n√n, will be O(n|s| + m), which is O(m)
(since |S| ≤ √n and m > n√n).

Algorithm: Single Source Shortest PathP

(SSSPP)

This algorithm carries out BFS for every special vertex in
G = (V, E) and stores the shortest distances of every vertex
from the special vertices in array dist[][]. Input to this
algorithm is the graph G = (V, E) and set of special vertices
P.

Algorithm 2: SSSPP

for every s P do

run BFS in G = (V, E) with s as root.

 for every v V do

dist[s][v] = dist[v][s] = δ(s, v)
(computed during BFS)

 end for
end for

Lemma 6. If m > n√n the running time taken by the
algorithms SSSPP is O(m√n).

Proof: As SSSPP runs the BSF for every special vertex in

G = (V, E), the running time would be O(m|S|). Since |S| ≤

√n if m > n√n, algorithm SSSPP will take O(m√n) running

time.

Algorithm: Single Source Optimized Shortest

PathQ (SSOSPQ)

This algorithm computes the optimized shortest distance of
the neighbors of the special vertices from every other non-
special vertex and stores the optimized shortest distance in
array dist[][]. Input to this algorithm is the graph G = (V,
E), P, Q, neighbor[].

Lemma 7. If m > n√n the running time taken by the
algorithm SSOSPQ is O(n2).

Algorithm 3: SSOSPQ

for every u Q do

 for every v V/P do

if dist[u][v] > dist[neighbor[u]][v]+1 then
 dist[u][v] = dist[v][u] = dist[neighbor[u]][v] + 1

end if
 end for
end for

Proof: As SSOSPQ consists of two nested for loops, the
running time would be O(|Q||V|), because outer for loop is
iterated for every vertex in Q and the inner for loop is
iterated for every vertex in V/P. If m < n√n, then |Q| = 0

else |Q| can not be greater than n. Hence algorithm
SSOSPQ will take O(n2) running time, If m > n√n

Algorithm: Single Source Optimized Shortest

PathR (SSOSPR)

This algorithm computes the optimized shortest distance
between all pairs of vertices in R and stores the optimized
shortest distance in array dist[][]. Input to this algorithm is
P, R and G' = (V', E'), the subgraph of G = (V, E) induced

by the vertices in R. Subgraph G' = (V', E') is obtained
from the algorithm CONSTRUCT.

Lemma 8. The running time taken by the algorithm
SSOSPR is O(n5/2) if m > n√n, O(mn) otherwise.

Proof: Algorithm SSOSPR runs the BFS in G' = (V', E'),
for every vertex in R, which will take O(|R||E'|) time. Then
it executes three nested for loops, which will take

O(|R|2|P|), because two outermost for loop are iterated for
every vertex in R and the inner for loop is iterated for
every vertex in P. Thus, the total time taken by algorithm
SSASPR is O(|R||E'|+ |R|2|P|). If m > n√n, it would become
O(n5/2) as in this case, |R| = O(n), |E'| < n√n and |P| < √n. If
m < n√n, it would become O(mn), as we have, R = V, E' =
E and P = ø. Thus, algorithm SSOSPR takes O(n5/2)
running time if m > n√n, O(mn) otherwise.

Algorithm 4: SSOSPR

for every u R do

run BFS in G' = (V', E') with u as root.

 for every v R do

dist[u][v] = dist[v][u] = δ(u, v)
(computed during BFS)

end for
end for

for every u R do

 for every v R do

 for every s S do

 if dist[u][v] > dist[s][u] + dist[s][v] then
 dist[u][v] = dist[v][u] = dist[s][u] + dist[s][v]

end if
 end for
 end for
end for

Analysis of APOSP

Lemma 9. Algorithm APOSP runs in O(min(mn, n5/2))
time.

Proof: From Lemmas, we have if m > n√n, the running
time of algorithm APOSP will be O(m + m√n + n2 + n5/2)
i.e., O(n5/2) else it will be O(mn). Since n5/2 < mn when
m > n√n, the running time taken by algorithm APOSP is
O(min(mn, n5/2)).

Lemma 10. Algorithm APOSP reports the shortest
distance between every pair of vertices with one sided
additive error of at most 2.

Proof: A vertex belongs to P, Q or R. Thus, for any pair of

vertices, if one of the vertices is in P, the true shortest
distance is reported (since BFS is run on the input graph
for every vertex of P). If neither of the two vertices is in P,
but one of the vertex (or both) is in -Q, the shortest
distance reported has one sided additive error of at most 2.
And if both vertices are in R, even then the shortest
distance reported has one sided additive error of at most 2.
Thus for every pair of vertices algorithm APOSP reports
the shortest distance with one sided additive error of at

most 2. Algorithm APOSP can be easily modified to report
one of the optimized shortest paths between every pair of
vertices, without increasing the time complexity by more
than the size of the output. Suppose the shortest path
between two vertices u and v is to be reported. If one of the
vertex, lets say u, is in P, BFS in G = (V, E) for u returns
the breadth-first tree rooted at u, which contains the

shortest paths form u to every other vertex. If u Q and s

 P is a neighbor of u, then report the path between u and

v in the breadth-first tree rooted at s. If u, v R and s' P

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.3, May 2010

72

such that for every s' P δ(s', u) + δ(s', v) ≤ δ(s, u) + δ(s,

v), then report the path between u and v in the breadth-first
tree rooted at s' or the path between u and v in the breadth-
first tree rooted at u or v (returned by the BFS for u or v in
G'), whichever is minimum.

All Pairs Shortest Paths and Maximal

Independent Sets

Now we explore the problem of finding a quadratic
running time algorithm for reporting all pair’s optimized

shortest paths with one sided additive error of at most 2.
We will try to identify some graph for which it is possible.
First we will find a suitable maximal independent set and
then use this information to compute the all pairs
approximate shortest paths.

All pairs approximate shortest paths

algorithm using maximal Independent Set

If we are given a maximal independent set, then
computation of all pairs approximate shortest paths, with
one sided additive error of at most 2, can be done in O(ms)
time, where s is the size of maximal independent set. Let G

= (V, E) be an unweighted and undirected graph .Suppose
the set of vertices M (V forms a maximal independent set).
For Computing the approximate shortest path we will first
run BFS on G = (V, E), for each vertex in M. Thus for each

m M, we have the exact shortest distance from every

other vertex in V. Since M is a Maximal Independent set,

every vertex u V/M has a neighbor in M. Let u and m

M be one of its neighbors. If we have to compute the

shortest distance of u from v V/M, then we will report

δ(m, v) + 1 as the optimized shortest distance. It can be
easily seen that δ(u, v) ≤ δ(m, v) + 1 ≤ δ(u, v) + 2. Thus for

every u V/M, we can now find the optimized shortest

distance of u from any vertex in V, with one sided additive
error of at most 2, in constant time, if we have stored a

neighbor m M of u. Thus the time taken by algorithm is

O(m|M|).

Finding maximal independent set of small size

We now study finding upper bounds on the size of
maximal independent set of some particular type of graphs.

Consider the following heuristic to construct a maximal
independent set M of a connected graph G = (V, E).

1. Choose a vertex v of degree d; d greater than or
equal to the average degree of the graph, such
that the number of edges removed from the

graph after deleting the vertex v and its
neighbors is O(m2 /n2).

2. Delete vertex v and all of its neighbors, including
the edges incident on these vertices, from the
graph.

3. Repeat steps 1-2 for residual graph until all the
vertices are deleted.

Lemma 11. The size of maximal independent set M is
O(n2/m).

Proof: We have to prove that |M| ≤ cn2 /m. The proof is by
induction on n.
Let the value of constant c be 1. Lemma is clearly true
when n = 2 and m = 1. Assume that the lemma is true for
all graphs having less than n vertices.

Let the vertex v have degree d; d greater than or equal to
the average degree i.e., 2m/n of the graph, such that the
number of edges removed δ from the graph after deleting
the vertex v and its neighbors is O(m2 /n2). Delete vertex v

and all d of its neighbors. Thus residual graph has n – d – 1
vertices and m – δ edges.

Inductively residual graph will have a maximal

independent set of size at most (n – d – 1)2 /(m – δ). Thus
original graph has a maximal independent set M of size at
most n2 /m, if

n2 /m ≥ 1 + (n – d – 1)2 /(m – δ)

Let α = d + 1. Since n > d ≥ (2m/n), n ≥ α > (2m/n). Thus,
|M| ≤ n2 /m, if

(n2 /m) ≥ 1 + (n – α)2 /(m – δ)

or if,

mn2 – δn2 ≥ m2 – δm + mn2 +α2 m – 2αmn
or if,

m2 + δ(n2 –m) + α2 m – 2αmn ≤ 0

α2 m – 2αmn is minimum at α = n. Since n ≥ α > (2m/n) at
α = (2m/n) + 1, α2 m – 2αmn will have its maximum value,

which will be less than 4m3/n2 – 4m2 (obtained after
substituting α = 2m/n in α2 m – 2αmn). Thus, m2 + δ(n2 – m)
+ α2 m – 2αmn ≤ m2 + δ(n2 – m) + 4m3 / n2 – 4m2 .

Thus |M| ≤ n2 /m, if m2 + δ(n2 – m) + 4m3 / n2 – 4m2 ≤ 0, or
if, δ ≤ (3m2 – (4m3 / n2))/n2 – m, which is true. Hence size
of maximal independent set M is at most n2 /m.

Clearly the maximal independent set M can be found in

O(n2) time using a greedy algorithm. For each vertex v

V, we will add the degree of its neighbors. Let γ(v) is the
sum of degree of all neighbors of v and δ(v) is the number
of edges removed from the graph, if vertex v and its
neighbor are deleted from the graph. It is clear that δ(v) ≤
γ(v) ≤ 2δ(v), since in the sum of degree of neighbors, an

edge that is going to be deleted might be counted once or it
may be counted twice (if both vertices, on which the edge
is incident, are the neighbor of v). Also, δ(v) = γ(v), if and
only if no two neighbors of v are adjacent. Computing
γ(v), will take O(dv) time, where dv is the degree of vertex
v. Thus computing γ(v) for all the vertices of the graph will

take O(∑v V dv) = O(m) time. To update degree dv and γ(v)

for every vertex v V, we subtract 1 and du from dv and

γ(v), respectively, whenever an edge (u, v) E is deleted

form the graph. Since there are m edges in graph and no
edge is added in the graph while constructing M, the total

time taken to update dv and γ(v), for every vertex v V

will be O(m). To identify a vertex in M will take O(n)
time, if we do a linear search on dv and γ(v), for every

vertex v V. The size of M is O(n2 /m). Thus the total time

required to construct M is O(m + n.n2 /m) i.e., O(m + n3 /m)

= O(n2).

Sub-cubic running time algorithm for

computing all pairs shortest paths

Suppose we are given an independent set of vertices (not
necessarily maximal) of sub linear size. If the number of
edges in the residual graph, after deleting the vertices in
the independent set, is sub-quadratic, then the shortest
paths between all pairs of vertices in graph can be
computed in sub-cubic time. For this, we will compute the

single source shortest paths in input graph for each vertex
in independent set. Then for remaining vertices, we will
compute the single source shortest paths in residual graph
(obtained after deleting vertices in independent set).
Shortest path between every two vertices u and v in the
independent set will be either in residual graph or through
one or more vertices in independent set, which can be
calculated as minw{δ(w, u) + δ(w, v)} for every vertex w in

independent set. Since size of independent set is sub-linear

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.3, May 2010

73

and number of edges in the residual graph is sub-quadratic,
this all can be done in O(n3) time.

6. CONCLUSIONS

In this paper we described an O(n5/2) running time
algorithm to compute all pairs optimized shortest paths in

an unweighted and undirected graph, with one sided
additive error of at most 2. We also studied the problem of
finding quadratic running time algorithm for some
particular types of graphs and tried to identify them. We
also studied upper bounds on the size of a maximal
independent set of such graphs.

Our technique can be enhanced to find the optimized
shortest paths in a weighted graph. For a directed graph
however, this technique is not likely to work, since in a
directed graph the adjacency relation is not commutative
and thus a path p from u to v is not a path from v to u. The
commutative property of the adjacency relation is the key
property of undirected graph, which we utilize in our
technique.

7. REFERENCES

[1] Aingworth, D., Chekuri C., Indyk P., Motwani R.,

“Fast estimation of diameter and shortest paths
(without matrix multiplication)”, SIAM Journal on
Computing 28 (1999), 1167-1181.

[2] Alon N., Galil Z., Margalit O., “On the exponent of
the all pairs shortest path problem”, Journal of
Computer and System Sciences 54 (1997) 255 -262.

[3] Alon N., Naor M. Derandomization, “Witnesses for
Boolean matrix multiplication and construction of

perfect hast functions”, Algorithms 16 (1996), 434-
449.

[4] Baswana S., Goyal V., Sen S., “All-pairs nearly 2-
approximate shortest-paths in o(n2 polylog n) time”,
In STACS 2005: 22nd Annual Symposium on
Theoretical Aspects of CS (2005), pp. 666- 679.

[5] Chvtal V., “A greedy heuristic for the set-covering
problem”, Math. Oper. Res. 4 (1979), 233-235.

[6] Cohen E., Zwick U., “All-pairs small-stretch paths”,

Journal of Algorithms 38 (2001), 335- 353.
[7] Coppersmtts D., Winoged S., “Matrix multiplication

via arithmetic progression”, Journal of Symbolic
Computation 9 (1990), 251-280.

[8] Cormen T., Stein C., Rivest R., Leiserson C.,
“Introduction to Algorithms”, PHI, 2001.

[9] Dijkstra, E., “A note on two problems in connection
with graphs. Numeric Mathematic 1 (1959), 269-271.

[10] Dor D., Halperin S., Zwick U., “All pairs almost
shortest paths”, SIAM Journal on Computing 29
(2000), 1740-1759.

[11] Fredmian M., “New bounds on the complexity of the
shortest path problem”, SIAM Journal of computing

5 (1976), 83- 89.
[12] Galil Z., Margalit O., “Witnesses for Boolean matrix

multiplication”, Journal of Complexity 9 (1993)
201- 221.

[13] Galil Z., Margalit O., “All pairs shortest paths for
graph with small integer length edge”, Journal of
Computer and System Science 54 (1997) 243-254.

[14] Hagerup T., “Improved shortest paths on the word

ram”, In Proceedings of the 27th International
Colloquium on Automata, Language and
Programming (2000),pp. 61 -72.

[15] Halldorsson M., “Approximating the minimum
maximal independence number”, Inf. Process. Lett.
46, 4 (1993), 169-172.

[16] Johnson D., “Efficient algorithms for shortest paths
in sparse graphs”, Journal of the ACM 24 (1977), 1-

13.
[17] Karger D., Koller D., Phillips S., “Finding the hidden

path: time bounds for all-pairs shortest paths”,
SIAM Journal on Computing 22 (1993), 1199 -1217.

[18] Lovasz L., “On the ratio of optimal integral and
fractional covers”, Discrete Math. 13 (1975), 383 -
390.

[19] Mcgeoch G., “All-pairs shortest paths and the

essential sub graph”, Algorithmic 13 (1995), 426-
461.

[20] Pettie S., Ramachandran V., “Computing shortest
paths with comparisons and additions”, In SODA
'02: Proceedings of the thirteenth annual ACM-
SIAM symposium on Discrete algorithms (2002),
pp. 267- 276.

[21] Seidel R., “On the all-pairs-shortest-path problem in
unweighted undirected graphs”, Journal of

Computer and System Science 51 (1995), 400- 403.
[22] Takaoka T., “A new upper bound on the complexity

of the all pairs shortest path problem”, Information
Processing Letters 43 (1992), 195-199.

[23] Thorup M., “Undirected single-source shortest paths
with positive integer weights in linear time”, Journal
of the ACM 46 (1999), 362- 394.

[24] Thorup M., “Floats, integers, and single source

shortest paths”, Journal of Algorithms 35 (2000),
189 -201.

