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Abstract—In elastography, the tissue under investigation is compressed and the resulting strain is estimated from
the gradient of the displacement (time-delay) estimates. The displacements are typically estimated by cross-
correlating the radiofrequency (RF) ultrasound signals of the pre- and postcompressed tissue. One of the
parameters used to quantify the resulting quality of the elastogram is the elastographic signal-to-noise ratio
(SNRe). For a uniformly elastic target (a single elastic modulus), the dependence of the SNRe on the applied strain
has a bandpass characteristic that has been termed the strain filter. Theoretical expressions for the upper bound
on the strain filter were developed earlier. Yet, simulated as well as experimental strain filters derived from
uniformly elastic phantoms deviate from these upper bounds. The failure to achieve the upper bounds could be
partially attributed to the fact that, in both simulations and experiments, the RF signals used to compute the
TDEs are sampled and quantized. Using simulated models of uniformly elastic phantoms, a study of the
dependence of the strain filter on the quantization and sampling rates was performed. The results indicated that
the strain filter improves with both the sampling rate and the quantization, as expected. A theoretical analysis
was done to incorporate quantization as a derating factor to the strain filter. (E-mail:
Jonathan.Ophir@uth.tmc.edu) © 2002 World Federation for Ultrasound in Medicine & Biology.
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INTRODUCTION

Ultrasonic techniques for measuring the elastic proper-
ties of compliant tissue generally rely on the estimation
of strain, stress and Young’s and shear moduli of the
tissue. Elastography, a technique of estimating strain
using differential displacements of the tissue elements,
has been well established (Ophir et al. 1991, 1996, 1997,
1999). Strain estimation techniques can be classified into
either coherent or incoherent techniques. Coherent tech-
niques are based on time-domain cross-correlation
(Ophir et al. 1991; Ce´spedes 1993) or on Fourier-based
speckle phase-tracking (O’Donnell et al. 1991) time-
delay estimation (TDEs), while incoherent estimators
include spectral cross-correlation (Varghese et al. 2000)
and optical-flow–based techniques (Bertrand et al.
1989). The commonly used time-domain cross-correla-
tion techniques measure the time delay (the strain is
estimated as the gradient of the time-delay) between the

pre- and the postcompression A-lines. These A-lines are
often modeled as a convolution between the system
impulse response (the point-spread function) and the
tissue scatterers. Stretching the postcompression A-lines
is typically done to undo the effects of the mechanical
compression on the signal (Ce´spedes and Ophir 1993;
Varghese and Ophir 1997a). However, a perfect match
between the pre- and postcompression A-lines is not
achievable. This is because the transmitted impulse re-
sponse gets stretched simultaneously when the stretching
compensates for the tissue motion and, also, because of
the lateral and elevational motion of the scatterers. The
decorrelation between the pre- and postcompression A-
lines increases with the applied strain (Varghese and
Ophir 1997a) and corrupts the strain estimates at large
strains (typically� 10%). On the other hand, for very
low strains (typically� 0.1%), the amplitude of the
measurement noise (determined by the sonographic sig-
nal-to-noise ratio, (SNRs) relative to the measured strain
is typically high. Hence, there is an intermediate range of
strains for which high elastographic signal-to-noise ratio
(SNRe), defined as the ratio of the mean value (�m) of the
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measured strain to the standard deviation (SD) of the
measured strain (�m), can be obtained. A plot of SNRe as
a function of the applied strain looks similar to a band-
pass filter (in the strain domain) and has been termed the
strain filter (SF) (Varghese and Ophir 1997b).

The SF is sensitive to several parameters that can be
categorized as the acoustic parameters (such as the SNRs,
the transducer center frequency and bandwidth), the al-
gorithmic parameters (such as the window size and the
window overlap), and the mechanical parameters (such
as the applied strain and the strain distribution). A func-
tional relationship between SNRe and strain has been
established by Varghese and Ophir (1997b) for boxcar-
shaped bandpass ultrasonic RF signal and noise spectra.
Details on the SF are provided in Appendix A. Such a SF
assumes ideal conditions like stationary ultrasonic and
noise signals, no attenuation and pure axial time delays.
However, in practice, several derating factors, such as
frequency-dependent attenuation, lateral and elevational
tissue motion, are present. Previous work by Varghese
and Ophir (1997c) and Kallel et al. (1997) has accounted
for the effects of frequency-dependent attenuation and
lateral motion on the SF, respectively. In addition to
these derating factors, it is expected that the digitization
parameters (sampling frequency and the amplitude quan-
tization) affect the strain-filter as well. These effects are
important because all modern data-acquisition systems
deal with digitized signals and, hence, the choice of
sampling frequency and quantization is critical to the
understanding of the ultimate performance limitations
imposed on the elastographic system.

This paper is organized as follows. A brief introduc-
tion to the utility of the SF as a benchmark for measuring
SNRe is provided in the next section and the subsequent
sections detail the digitization issues that may result in
corruption of the SF under certain conditions.

The strain filter
The SF is the functional dependence of the SNRe

(defined as the ratio of the mean value, �m, of the
exstimated strain to the SD of the measured starin, �m,
for different values of the applied strain) with the applied
strains. The expression for the upper bound of the SNRe

is given by

SNRe �
S

�s
, (1)

where s is the applied strain and �s is the lower bound of
the SD of the measured strain, given in Céspedes et al.
(1995b) as

�s
2 �

2�ZZLB
2

T�T
, (2)

where T is the segment length used in TDEs, �T is the
separation between adjacent time segments (used to
compute the strain), and �ZZLB

2 is the Ziv–Zakai lower
bound on the variance (Appendix A). The bound on
�ZZLB

2 is derived in Weinstein and Weiss (1984a, 1984b).
The combined SNR (SNRc) used in obtaining �ZZLB is
derived (Varghese and Ophir 1997b) as

SNRc �
SNR�SNRs

1 � SNR� � SNRs
. (3)

Here, SNR� is the correlation SNR (Céspedes and Ophir
1993), given by

SNR� �
�

1 � �
, (4)

where � is the correlation coefficient (defined as the
amplitude of the cross-correlation peak normalized by
the autocorrelation amplitudes at zero lag). The upper
bound on the SNRe as a function of strain has a bandpass
characteristic, as shown in Fig. 1a. Here, two regions of
the Ziv–Zakai lower bound, namely the Cramér–Rao
lower bound (CRLB) and the Barankin bound (BB), are
shown. The CRLB corresponds to the region where there
are no ambiguities in the identification of the correct
cross-correlation peak (i.e., there is ambiguity only in the
phase measurement at the peak), and the BB corresponds
to the region where there are ambiguities in the identi-
fication of the correct cross-correlation peak (i.e., there
are ambiguities in both the location of the peak and the
phase measurement at the peak). Details on these bounds
can be found in Weinstein and Weiss (1984a). The
variance of the TDEs in the CRLB is given (Walker and
Trahey 1995; Céspedes et al. 1997) by

�CRLB
2 �

3

�2Tf o
3�B3 � 12B� ��1 �

1

SNRc
� 2

� 1� , (5)

where fo is the center frequency, and B is the fractional
band width. Combining eqns (1), (2), (3), (4) and (5), the
expression for SNRe in the CRLB becomes

SNRe �
�sT��T� f o

3�B3 � 12B�

�6��1 �
1

SNRc
� 2

� 1� . (6)

Although eqn (6) suggests a linear increase of the SNRe

with strain in the CRLB, the SNRe increases at a less than
linear rate for strains � 1%. This is due to the depen-
dence of SNRc (and SNR�) on the applied strain (Fig. 1b).
SNR� decreases with increasing strain due to decorrela-
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tion, as explained previously. The variation of � with
strain was established in Varghese and Ophir (1997b)
and is given in Appendix C, (eqn (C15)). When SNR� is
larger than SNRs (strains less than 0.3%), the SNRc

asymptotes toward SNRs for decreasing strains. In this
region, the SNRe shows an asymptotic decrease with
decreasing strain (Fig. 1a). When SNR� is comparable to
SNRs (strains between 0.3% and 1%), SNRe increases
linearly with the strain. An inflexion point occurs at

around 1% strain (Fig. 1b) and the SNRe starts deviating
from a linear increase beyond this strain value. For SNR�

that is significantly lower than SNRs, the SF drops due to
a large increase in the variance. This happens when the
product B.T.SNRc exceeds a threshold (i.e., the Barankin
bound is reached). For very high strains (� 20%), an-
other threshold region is entered and the SNR drops
further (due to ambiguity in both the amplitude and
phase measurements of the cross-correlation peak).

The width of the strain-filter at a given SNRe, defined
as the elastographic dynamic range (DRe), is an indicator
of the range of strains over which reliable strain esti-
mates can be made. The height of the strain filter, the
SNRe, is a direct indicator of the quality of the strain
estimate. The area under the SF may also be used as a
gross numerical indicator of overall quality of the elas-
togram.

Simulated and experimental SFs deviate from the the-
oretical SF due to several factors, such as deviation from
a rectangular spectrum, violation of the stationarity as-
sumptions (frequency- and depth-dependent attenuation,
lateral and elevational tissue motion, etc.) and digitiza-
tion effects. The attenuation and the lateral motion have
previously been accounted for as nonstationary derating
factors in the SF (Varghese and Ophir 1997c; Kallel et al.
1997). In the next section, we investigate the effects of
digitization.

Digitization
An appropriate digitization of the RF A-lines is

necessary for a high SNRe. In the sections below, we
investigate the effects of sampling and quantization on
the strain filter.

In the absence of noise and amplitude quantization,
sampling at or above the Nyquist rate is sufficient to
reproduce the analog signal and, hence, to obtain perfect
TDEs. However, quantization and noise corrupt the sig-
nal, thereby affecting the TDEs. It is to be noted that, for
cross-correlation–based algorithms, interpolation of the
cross-correlation function introduces errors that vary ac-
cording to the sampling rate, unless the shape of the
cross-correlation function is known. TDEs in elastogra-
phy utilizes linear stretching, whose accuracy improves
with a decrease in the sampling interval (Céspedes et al.
1995a). Additionally, the bias and the variance of the
TDEs are inversely proportional to the sampling rate
when interpolation techniques (such as parabolic or co-
sine) are used on the cross-correlation function, thereby
improving the performance with sampling rate (Cés-
pedes et al. 1995a). It has been demonstrated that these
interpolation techniques perform poorly if the all-posi-
tive-samples condition, around the peak of the cross-
correlation function, is violated (Céspedes 1993). This
condition is violated if the sampling frequency (fs) is less

Fig. 1. (a) The SF illustrating the distinct regions of strain
estimation obtained using the expressions for �ZZLB and (b)
SNRs, SNR� and SNRc plotted as functions of strain. The SF was
obtained for a 5-MHz, 50% fractional bandwidth transducer
using an observation window of 3 mm and a window overlap of
50% at an SNRs of 30 dB. The CRLB refers to the Cramér–Rao
lower bound that is dominated by random noise. The BB refers
to the Barankin bound that is dominated by decorrelation noise.
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than 6 times the maximum frequency of interest in the
signal (f1) i.e., fs � 6f1. For fs exceeding this value,
marginal improvement with oversampling is expected. It
is to be noted that sampling is not a fundamental limi-
tation of elastographic systems (unlike the derating fac-
tors, such as lateral/elevational motion or attenuation),
and can be improved by incorporating good interpolation
techniques or by oversampling.

The quantization noise depends on the type of the
signal and cannot usually be modeled as additive noise.
For uniform quantization, the noise is higher where the
amplitude of the signal is small and lower where the
amplitude is large. Hence, the role of quantization in
TDEs is important. In elastography, quantization results
in corruption of the relative amplitude and phase infor-
mation and especially affects the estimation of low
strains, as is explained as follows. For low strains, the
delays between the A-lines are smaller than the sample
intervals and, hence, the amplitude differences between
the pre- and postcompression A-lines reflect the time
delay between them. Small differences in signal ampli-
tudes are most likely to be eliminated by quantizing the
signals resulting in inaccurate TDEs and strain for such
quantized signals.

METHODS

One-dimensional simulations in MATLAB (Math-
works, Inc., Natick, MA) were used to generate pre- and
postcompression RF signals, corresponding to a 30-mm
target segment, and were sampled at several sampling
frequencies from 24 MHz to 192 MHz. In addition to
1-D simulations, 2-D simulations were used on a 40 �
40 mm2 uniformly elastic target to show the dependence
of the SF on sampling. However, 1-D simulations were
preferred over 2-D simulations for two reasons: a) lateral
motion and beam effects have been accounted for as
derating factors in the SF, and b) significantly smaller
simulation time is required when statistical analysis over
several parameters, such as the window size, overlap,
center frequency, bandwidth, SNRs, sampling frequency
and quantization, is performed.

The speed of sound in tissue was assumed to be
constant at 1540 m/s. The 1-D point spread function
(PSF), which is the impulse response of the system, was
simulated using a Gaussian-modulated cosine pulse with
a 5-MHz center frequency and a 50% half-power relative
bandwidth. The scattering function was modeled as a
normal distribution of scatterer amplitudes (Meunier and
Bertrand 1995a, 1995b; Walker and Trahey 1995). The
PSF was convolved with the scattering function to obtain
the RF signal. The postcompression signals were gener-
ated after applying a uniform compression of the point
scatterers (Céspedes 1993) and convolving the com-

pressed point scatterers with the original PSF. The SNRs

was varied from 20 to 40 dB by adding other uncorre-
lated RF A-lines to both the pre- and postcompression
A-lines. We used these other RF A-lines as noise sources
(having the same power spectral shape as the signal
A-lines) to model noise in the tissue. Such noise could
arise from unwanted tissue motion, such as vibration,
relaxation and other viscous effects. For example, phase
aberration has been shown to be a significant source of
decorrelation in both elastography and sonography
(Varghese et al. 2001; Trahey and Smith 1988). The
spectra of the ultrasonic noise resemble the shape of the
signal spectrum because the receiver has a bandpass
Gaussian transfer function. Noise sources beyond the
receiver could have wideband spectra and are not con-
sidered here. The resulting postcompression RF A-line
was then stretched by an amount equal and opposite to
the applied strain.

For the 2-D simulations, 2-D displacement and
echo-generation models were used to generate displace-
ment and RF A-lines of a uniformly elastic phantom. The
medium was simulated as a set of uniformly distributed
scatterers (with a density of 40 scatterers/pulse-width).
The 2-D PSF was simulated using a Gaussian-modulated
cosine pulse with a 5-MHz center frequency, and a 50%
fractional bandwidth and a 1-mm full-width half-maxi-
mum (FWHM) Gaussian beamwidth (Kallel et al. 1997).
The pre- and postcompression RF A-lines were obtained
by convolving the PSF with the scattering distribution
before and after compression.

The A-lines were segmented into windows of
lengths varying from 1 to 3 mm, with several overlaps
varying from 0% to 80%. The cross-correlation function
for these segments was computed as:

Rxy��� � IFT�X�wk�Y*�wk��, (7)

where X(wk) and Y(wk) are the discrete-time Fourier
transforms of the pre- and postcompression A-line seg-
ments, Y*(wk) is the complex conjugate of Y(wk), and
IFT is the inverse Fourier transform.

The value of � was computed and used in the SF
equations to calculate the simulated SF. Specifically, the
measured value of � was used in eqns (1) through (5)to
compute the SNRe (and, hence, the SF). The reason for
using such an estimate, instead of measuring the SNRe

directly from the elastogram, is explained in Srinivasan
et al. (2002) and, for convenience, is also briefly ex-
plained in Appendix B. The study was conducted for
several sampling frequencies (fs), window length (T),
window separation (�T), center frequency (fo), band
width (B), and SNRs. Additional studies with respect to
variation in the PSF, the scatter function, noise model,
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band-limitation of the PSF, downsampling and stretch
factor were performed, and are discussed later.

RESULTS

Sampling frequency
A simulation study with values of fs ranging from 24

MHz to 192 MHz was performed, and the results are
summarized below. Typical SFs for sampling frequencies
of 24 MHz, 48 MHz, 96 MHz and 192 MHz at a SNRs of
40 dB using 3-mm windows with 50% overlap are shown in
Fig. 2a. The SFs tend to asymptote to the theoretical SF
with increasing sampling frequency for strains � 10%. For
higher strains (� 10%), the decorrelation effects preclude
the observation of such behavior. It is to be noted that the
SFs have a wider dynamic range than those reported in
Varghese and Ophir (1997b), due to the use of a different
bandwidth definition. We use a half-power bandwidth, but
a half-amplitude bandwidth was used in the previous work.
Assuming Gaussian distributions of the simulated SNRe

values (at each strain), a statistical analysis was performed
to show that the mean values of the simulated SFs at several
sampling frequencies differed from each other significantly
(p values � 0.01) for fs values of 24 MHz, 48 MHz and 96
MHz for strain values less than 6%. No statistically signif-
icant difference was found between the SFs at fs values of
96 MHz and 192 MHz over 50 independent realizations.
For higher strains (� 6%), no statistically significant dif-
ference was found (p values � 0.01) between the simulated
SFs. Figure 2b shows the correlation coefficients that cor-
respond to the SFs in Fig. 2a. The SDs in � (��) are less than
0.004�. A statistical analysis was performed to show that
the mean values of the correlation coefficients at several
sampling frequencies differed from each other significantly
(p-values � 0.01) at strains less than 6%.

SNRe is sensitive to change in �, due to the nonlin-
ear relationship with �, as evident from eqns (1) through
(5). Small changes in � result in large changes in SNRe

that motivates the need for accurate stretching, and also
the use of adaptive stretching techniques like those sug-
gested in Alam et al. (1998) and Chaturvedi et al. (1998)
for nonhomogenous materials. For example, the change
in SNRe due to using (� 	 ��) as opposed to using � (i.e.,
SNRe�� 	 SNRe��	��

) is larger (Fig. 3) than the SDs in
SNRe (Fig. 2a). We attribute such high SDs to the non-
linear relationship between SNRe and � that enhances
small variations in �. A sensitivity analysis of SNRe with
respect to change in � was performed (Appendix C), and
the results indicate that such a behavior is expected.

SNRe is an indicator of the quality of the SF (and the
elastogram), and the dynamic range (the range of strains
for which the SNRe exceeds a threshold) is an indicator of
the amount of reliable information contained in the SF.
The area contained under the SF would, therefore, be an

indicator of both the quality and the quantity of infor-
mation contained. Such an area measure incorporates
both the SNRe and the dynamic range and could be useful
in quantifying the SF, thereby facilitating a relatively
simple comparison of strain-estimation techniques.
Henceforth, this SF area is called the “fi gure-of-merit”
(FOM). The FOM normalized by the theoretical SF area
(corresponding to strains ranging from 0.1% to 30%) as
a function of the normalized sampling rate (fs/fo) is
shown in Fig. 4. The areas were computed as the sum of
the trapezoidal areas between adjacent strain estimates in

Fig. 2. (a) Simulated SFs and (b) the correlation coefficient as
a function of strain for various sampling frequencies (fs) for a
5-MHz, 50% fractional band width Gaussian PSF, and 3-mm
window with a 50% overlap on a uniformly elastic phantom at
an SNRs of 40 dB. The error bars correspond to 
 � over 50

independent realizations.
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the SF. It can be seen that the mean statistics show a clear
trend. The error bars represent 
 �. A total of 50
independent realizations were used to compute these
statistics. The difference in the means at a normalized
sampling rate of 5 and a normalized sampling rate of 10
were statistically significant (p-values � 0.01).

The 2-D simulation results are summarized in Figs. 5
and 6. Figure 5a shows the theoretical (Kallel et al. 1997)
and the simulated SFs at the axis of lateral symmetry (20
mm from either edge) for the simulations on a 40 � 40

Fig. 5. (a) 2-D SF at the axis of lateral symmetry and compar-
ison with the theoretical and 1-D SFs; (b) the correlation
coefficient as a function of strain at the axis of lateral symme-
try; and (c) the correlation coefficients as a function of the
lateral location for a strain of 1%. The simulations were per-
formed on a 40 � 40 mm2 uniformly elastic phantom with a
5-MHz, 50% fractional bandwidth Gaussian PSF, and 3-mm
window with a 50% overlap at an SNRs of 40 dB and a
sampling frequency (fs) of 48 MHz. The error bars correspond
to 
 � over 50 independent realizations.

Fig. 3. SD in SNRe using the SDs in � of the simulated SFs for
various sampling frequencies (fs) for a 5-MHz, 50% fractional
bandwidth Gaussian PSF, and 3-mm window with a 50%
overlap on a uniformly elastic phantom at an SNRs of 40 dB.

Fig. 4. Asymptotic improvement of the figure-of-merit with fs
for a 5-MHz, 50% fractional bandwidth Gaussian PSF, and
3-mm window with a 50% overlap at an SNRs of 40 dB. The
error bars correspond to 
 � over 50 independent realizations.
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mm2 uniformly elastic phantom with a 100-element array
transducer (pitch � 0.4 mm) and a Gaussian beam profile
of beamwidth (half-amplitude) of 0.7 mm. The SF at the
axis of lateral symmetry has smaller values of the SNRe

and dynamic range than those corresponding to the 1-D
SF. This is attributed to the nonrigid scatterer motion (in
the lateral direction) within the beamwidth. The values of
� corresponding to the SFs in Fig. 5a are shown as a
function of strain in Fig. 5b. Figure 5c shows the corre-
lation coefficient as a function of the lateral location at a
strain of 1%. The change in the values of � with the
lateral location are similar to those obtained by Kallel et
al. (1997). A statistical comparison of the SFs over 50
realizations was performed to compare SFs based on a
95% confidence interval (p-value � 0.05). The true
means of the simulated SFs were found to be signifi-
cantly different from one another, as can be seen in Fig.
5a. Figure 6 shows the improvement in the SF with fs for
the 2-D simulations. The difference of the SFs at values
of fs of 96 MHz and 24 MHz was statistically significant
(p-value � 0.01).

The 2-D simulations produce SFs that have lower
values of SNRe and dynamic range than the 1-D simula-
tion. This is due to the lateral motion and the presence of
a beam in the 2-D simulation. It is to be noted that
derating the SFs to accommodate lateral motion (Kallel
et al. 1997) still does not account for the nonrigid scat-
terer motion within the beam. Therefore, the SF at the
axis of lateral symmetry (i.e., at 20 mm in Fig. 5a) is
generally inferior to that of the 1-D simulation. An
analysis of nonuniform displacement within the beam

width needs to be done to account for such a difference
between the theoretical and simulation results.

Quantization
An empirical relationship between the number of

quantization bits and the effective SNRs of the RF A-
lines can be established as follows. For a signal that is
quantized, the noise introduced due to quantization can
be modeled as an effective SNR (SNRq) of the signal

Fig. 6. Simulated SFs for various sampling frequencies (fs) for
a 5-MHz, 50% fractional bandwidth Gaussian PSF, and 3-mm
window with a 50% overlap on a 2-D simulation of a uniformly
elastic phantom of 40 � 40 mm2 at an SNRs of 40 dB. The error

bars correspond to 
 � over 50 independent realizations.

Fig. 7. SFs for (a) several bit resolutions at an SNRs of 40 dB;
and (b) comparison of the SFs for several bit resolutions at an
infinite SNRs. The SFs were obtained for a 5-MHz, 50% frac-
tional bandwidth Gaussian PSF, and 3-mm window with a 50%
overlap on a uniformly elastic phantom sample at a sampling
frequency (fs) of 96 MHz. The error bars correspond to 
 �

over 50 independent realizations.
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(Bendat and Piersol 1986). In elastography, the SF com-
puted using quantized pre- and postcompression RF sig-
nals can be considered as analogous to having nonquan-
tized RF signals (i.e., analog values of the signal ampli-
tudes), but with an effectively reduced SNRs. Thus, an
empirical correspondence between SNRq and SNRs can
be established, thereby incorporating quantization as a
derating factor of the SF.

Quantization at several bit resolutions, from 1 to
64 bits, was tried for several values of fs. The results
are summarized as follows. Figure 7a shows the im-
provement in the SF with the bit resolution. It can be
seen that the improvement in performance with the
number of bits is asymptotic and no significant differ-
ences between an 8-bit and 64-bit quantization can be
seen. Values of SNRe approximately equal to those
corresponding to these derated SFs can be obtained
empirically by changing the SNRs. Thus, an empirical
correspondence between a bit resolution and a SNRs

can be obtained by comparing SFs, even though quan-
tization noise cannot be modeled as an additive noise,
while the SF theory assumes additive uncorrelated
noise. Such a correspondence of the bit resolution to
an approximate SNRs is shown in Fig. 7b. Here, the
simulations for the quantization rate are done in the
absence of additive noise (at an infinite SNRs). It can
be seen that an 8-bit quantization corresponds roughly
to an SNRs of 38 dB, (6-bit � 30 dB SNRs, 4-bit � 20
dB SNRs, and 2-bit � 13 dB SNRs). This correspon-
dence is based on the mean statistics, as explained
previously.

The RF A-line is assumed to be a cosine signal
with an envelope that is Rayleigh-distributed (Zagzeb-
ski et al. 1999). Because the Rayleigh distribution
allows infinite signal amplitudes that are not realizable
in simulations and experiments, the RF A-line is sat-
urated at some arbitrary amplitude and the effective bit
resolution is found for the “chopped” distribution.
Such an empirical procedure facilitates a comparison
between simulations and the experiments and is de-
tailed below.

An analytical expression for the SNRs introduced
due to quantization (SNRq) can be obtained as follows.
The RF A-line is assumed to be a cosine signal with an
envelope that is Rayleigh-distributed. The mean
square error (E) due to uniform quantization is given
by

E �
S2

12
, (8)

where S is the height of the quantizing levels (Bendat and

Piersol 1986). For a dynamic range D (peak-to-peak am-
plitude) of the signal that is quantized into m bits, we obtain

E �
D2

12
2	2m . (9)

For a cosine signal of peak amplitude A, we have D �2A.
Therefore, for each cycle in the RF A-line, the SNR due
to quantization becomes

SNRq �
A2/ 2

E
�

3

2
22m , (10)

where m is the number of bits used for quantization of
that cycle. The quantity m varies with the peak am-
plitude of the cosine signal and is, therefore, Rayleigh-
distributed. For an 8-bit quantization, the maximum
value of SNRq would be approximately 50 dB. How-
ever, not all the bits get utilized for each cycle of the
A-line. This is because the peak amplitude of the
cosine signal is Rayleigh-distributed and m varies with
the amplitude of the cosine signal. Hence, the SNRq

has to be derated according to an effective number of
bits, which is less than the actual number of bits used.
An empirical expression for the effective bit resolution
is derived as follows. For a zero mean RF A-line, m	1
bits are used for positive amplitudes. The Rayleigh
probability density function (pdf) of the amplitudes is
of the form

f � A� �
A

�2 e
	A2

2�2 , (11)

where A is the amplitude and � is the SD of the pdf.
Because, in practice, the dynamic range of the ampli-
tudes is limited, we saturate the signals at an arbitrary
value of A � k�. Quantizing these amplitudes (from 0 to
k�) uniformly into t (t � 2n	1 	 1) amplitude levels,
where n is the available bit resolution, we assign a set of
probabilities for the discrete amplitudes. These probabil-
ities are obtained as the area of the pdf between adjacent
amplitude levels (l 	 1 and l) given by

P�l � � �
�l	1�

k�

t

l
k�

t
f � A�dA. (12)

The expected number of the amplitude levels is, there-
fore, given by
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E�t� � � �
l�1

l�t

lP�l � � �t � 1��
k�



f � A�dA�
� � �l�1

l�t�
�l	1�

k�

t

l
k�

t
f� A�dA � �t � 1��

k�



f� A�dA� .

(13)

Because a total of (t � 1) amplitude levels correspond to
a bit resolution of n, the effective bit resolution (m) is
obtained as:

m � n
E�t�

t � 1

� n��l�1

l�t�
�l	1�

k�

t

l
k�

t
f � A�dA � �t � 1��

k�



f� A�dA

�t � 1�
	 . (14)

m depends on k and n. Figure 8 shows m as a function of
n for several values of k�, obtained using eqn (14). The
simulated values of m, shown as the dotted lines in Fig.
8 were obtained using eqn (10) with the values of SNRs

in Fig. 7b substituting the values of SNRq in eqn (10)
(i.e., the values of SNRq in eqn (10) were replaced by the
corresponding values of SNRs in Fig. 7b, with the as-
sumption that the quantization noise corresponds to an
equivalent SNRs). A coarse agreement between the sim-
ulated and the empirical values can be seen for a k of
1.25.

The improvement of the SF with the number of bits
is asymptotic, as evident from Fig. 9, which shows the
normalized SF area as a function of the bit resolution. A
linear trend can be seen with the bit resolution up to 8
bits. The improvement with fs is significant at higher bit
resolutions than at lower bit resolutions, indicating the
dependence of SNRq on the sampling rate. The SF area at
a fs of 48 MHz is approximately 0.6 for a bit resolution
of 8. Thus, the FOM for the SF at this fs is approximately
60% of the theoretical SF.

DISCUSSION

The use of the measured value of the correlation
coefficient to estimate SNRe is robust and less sensitive
to bias errors in TDE than a direct measure of SNRe from
the elastogram. Using � facilitates a direct comparison
among theory, simulations and experiments, and could
be used as a benchmark in comparing algorithms and
apparatus (Srinivasan et al. 2002).

An asymptotic improvement of the FOM with
sampling frequency is observed in the simulations.
This improvement is primarily due to the use of linear
interpolation to implement stretching. It is to be noted
that, to implement stretching in a digital domain,
interpolation of the A-lines at the modified sample
locations (that are not integers) is performed. To con-
firm this hypothesis, simulations involving RF A-lines
sampled at very high sampling rates (to mimic exper-
iments, i.e., an analog process) were performed and
stretching the postcompression A-lines was done. This
was followed by downsampling the A-lines and, sub-
sequently, TDE of the downsampled A-lines. No sig-

Fig. 8. Effective bit resolution plotted a function of the bit
resolution for several values of k for both the empirical esti-

mates and the simulations.

Fig. 9. Asymptotic improvement of the figure-of-merit with the
bit rate for a 5-MHz, 50% fractional bandwidth Gaussian PSF
and 3-mm window with a 50% overlap at a SNRs of 40 dB.
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nificant and/or consistent improvement of the SNRe

with the sampling frequency was observed (Fig. 10a).
Such an interpolation was done to fit the theoretical
model, eqns (A1) and (A3), which incorporates linear
stretching. Using nonlinear interpolation schemes like
cubic or spline interpolation improved the perfor-

mance at low sampling frequencies. This is because
the interpolation is sensitive to the shape of the func-
tion (here, we have a cosine with a Rayleigh enve-
lope). At high sampling frequencies, the results using
cubic or spline interpolation were similar to those
obtained using linear interpolation. Further, it is to be
noted that a subsample interpolation of the cross-
correlation peak is typically done in TDE.

Sampling the RF A-lines at a high frequency also
improves the performance of the interpolation technique
used in TDE (Céspedes et al. 1995a). However, in the
absence of pure time delays (typical in elastography
when stretching is incorporated), we expect the perfor-
mance improvement due to interpolation of the cross-
correlation function to be insignificant. To verify that,
the tissue compression was avoided by stretching the
point-spread function analytically, eqn (A3), and retain-
ing the same tissue scatterer distribution for the pre- and
postcompression signals. The results did not show sig-
nificant improvement with the sampling frequency, un-
like the situation where the tissue was compressed (Fig.
2a). Hence, in elastography, the role of sampling fre-
quency is more significant in stretching the A-line than in
the interpolation used for TDE. For the same reason, no
significant improvement was observed when an unbiased
interpolation, like the sinc interpolation instead of para-
bolic or cosine interpolation, was used for the TDE
(Céspedes et al. 1995a). Note that, in the presence of
residual time delays after stretching (which could occur
due to incorrect stretching or nonhomogeneous phan-
toms), there still is an improvement of the TDE with
increasing sampling frequencies due to a reduction of the
bias and the random errors in the TDE (Céspedes et al.
1995).

Although the role of sampling frequency seems
counterintuitive (i.e., the performance improves with
the sampling frequency even although the Nyquist
sampling theorem is assumed to be satisfied), it is to be
noted that we use Gaussian spectra for the PSF. The
use of Gaussian signal spectra implies that the noise
introduced by aliasing is reduced by increasing the
sampling frequency. Moreover, the shapes of the A-
lines depend to a large extent on the shapes of the
aliased A-lines and the interpolation of such aliased
signals (to do stretching) improves with high sampling
frequencies. The simulation model assumes the same
power spectral shapes for both the additive noise and
the signal A-lines. Hence, no improvement of the SF
with upsampling the A-lines, after the addition of
noise, is observed (Fig. 10b).

The improvement in the FOM with the number of
quantization bits is predicted by an empirical model
that assumes a very high sampling rate and a large
number of bits. Although a coarse match between the

Fig. 10. SFs for (a) comparison of the SF at an fs of 48 MHz
with the SF generated by downsampling A-lines sampled at
720 MHz and downsampled to 48 MHz and 24 MHz; and (b)
comparison of the SF at an fs of 48 MHz with the SF generated
by upsampling the A-lines to an fs of 720 MHz. The SFs were
obtained for a 5-MHz, 50% fractional bandwidth Gaussian
PSF, and 3-mm window with a 50% overlap on a uniformly
elastic phantom sample at a sampling frequency (fs) of 96 MHz
and an SNRs of 40 dB. The error bars correspond to 
 � over

50 independent realizations.
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simulated results and the empirical model is found in
some cases, the choice of some of the parameters in
the model (k, SNRs) to obtain such an agreement is not
justified. However, an SNR improvement of approxi-
mately 6 dB per bit for sinusoidal signals is prevalent
in the literature (Ziemer et al. 1983). We essentially
obtained a similar improvement in SNRs by assuming
an effective number of bits that is a fraction of the
actual number of bits (� 0.8) (i.e., an SNRs improve-
ment of approximately 4.8 dB per bit was observed).

Studies with respect to the other algorithmic and
acoustic parameters, such as transducer band width, win-
dow length and window overlap, were performed and the
results were consistent with previous observations
(Varghese and Ophir 1997b).

CONCLUSION

An asymptotic improvement of the figure-of-merit
with sampling frequency is observed in the simulations.
Similarly, an asymptotic improvement of the figure-of-
merit with the number of quantization bits was also
observed. The noise introduced due to quantization was
incorporated into an effective songographic SNR (SNRs)
and was then used to derate the SF. An improvement of
approximately 4.8 dB per bit was found to agree well
with the simulations. The area of the SF was used as a
gross figure-of-merit of the SF and is expected to be
useful in evaluating algorithms and apparatus. Such a fig-
ure-of-merit can be used to derate the SF with the sampling
frequency. The analysis of the digitization aspects would
help in the appropriate choice of the signal-processing pa-
rameters for a reliable elastographic system.
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Céspedes I, Ophir J, Alam KS. The combined effect of signal decor-
relation and random noise on the variance of time delay estimation.
IEEE Trans Ultrason Ferroelec Freq Control 1997;44(1):220–225.

Chaturvedi P, Insana M, Hall TJ. 2-D companding for noise reduction
in strain imaging. IEEE Trans Ultrason Ferroelec Freq Control
1998;45(1):179–191.

Kallel F, Varghese T, Ophir J, Bilgen M. The nonstationary strain filter
in elastography: Part II. Lateral and elevational decorrelation. Ul-
trasound Med Biol 1997;23(9):1357–1369.

Knapp CH, Carter GC. The generalized correlation method for estima-
tion of time delay. IEEE Trans Acoust Speech Sig Proc 1976;24:
320–327.

Meunier J, Bertrand M. Ultrasonic texture motion analysis: Theory and
simulation. IEEE Trans Ultrason Ferroel Freq Control 1995a;14:
293–300.

Meunier J, Bertand M. Echographic image mean gray level changes
with tissue dynamics: A system-based model study. IEEE Trans
Biomed Eng 1995b;42(4):403–410.

O’Donnell M, Skovoroda AR, Shapo BM. Measurement of arterial wall
motion using Fourier based speckle tracking algorithms. Proc 1991
IEEE Ultrason Sympos 1991;2:1101–1104.

Ophir J, Alam KS, Garra B, et al. Elastography. Ultrasonic estimation
and imaging of the elastic properties of tissues. Engineering in
Medicine, Part HJ. Proc Inst Mech Eng 1999;213:203–233.
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APPENDIX A

THEORETICAL BOUNDS ON THE SF

Strain measurement in elastography involves estimating time
delays between the pre- and postcompression A-lines followed by
computing the gradients of these time delays. For a base signal s1(t), a
delayed signal s1(t 	 D), and additive noise sources n1, and n2, the
model (Varghese and Ophir 1997a) can be expressed as

r1�t� � s1�t� � n1�t� � s�t�*p�t� � n1�t�

r2�t� � s� t

a
� to�*p�t� � n2�t�, (A1)

where s(t) is the scatterer function, p(t) is the impulse response of the
system (the point spread function, PSF), to is the time delay between
the pre- and postcompression RF A-lines, and a is defined as a � 1 	s,
where s is the applied strain. Here, s1, n1, and n2 are real, stationary
random processes. s1 is uncorrelated with n1 and n2, which are both
uncorrelated. The time-delay estimate (TDE) can be obtained through
the correlation of r1 and r2 as

Rr1r2��� � E�r1�t�r2�t � ��� �
1

T � � �
�

T

r1�t�r2�t � ��dt, (A2)

where T represents the observation period.
The estimate of the time delay is the location of the peak of the

cross-correlation function in the lag domain. For processing in a digital
domain, interpolation around the peak sample is done to improve the
accuracy of time-delay estimation.

Stretching the postcompression RF A-line (r2(t)) by the factor a
is done to undo the scaling effects of mechanical compression on the
signal (Varghese and Ophir 1997b). The resulting A-line can be ex-
pressed as

r3�t� � r2�at� � s�t � to�*p�at� � n2�at�. (A3)

It can be seen that there is signal decorrelation due to strain in
both r2(t) and r3(t). This is because the strain is a continuous function
of t and it affects the scatterer function in r2(t) and the PSF in r3(t).
Analytical expressions on the lowest bound on the variance, known as
the Cramér–Rao lower bound (CRLB), has been obtained for TDE
(Knapp and Carter 1976; Carter 1987; Quazi 1981) for correlated
signals and pure time delays. The CRLB for partially correlated band-
pass signals was obtained by Walker and Trahey (1995) and adapted to
elastography by Céspedes et al. (1997) as

�CRLB
2 �

3

�2Tf o
3�B3 � 12B� ��1 �

1

SNRc
� 2

� 1� , (A4)

where T is the segment length, fo is the center frequency, B is the
fractional bandwidth, and SNRc is the combined SNR and is derived
(Weinstein and Weiss 1984a, 1984b) as

SNRc �
SNR� SNRs

1 � SNR� � SNRs
, (A5)

where SNRs is the sonographic SNR and SNR� is the correlation SNR
(Céspedes and Ophir 1993) given by

SNR� �
�

1 � �
, (A6)

and � is the correlation coefficient.

The threshold behavior of the variance has been adapted for
elastography by Varghese and Ophir (1997b), in terms of the variation
of the variance with the strain. The lower bound of the variance of the
TDE (called as the Ziv–Zakai lower bound) (Weinstein and Weiss
1984a, 1984b) is given by

�ZZLB
2 � 


�sT�2

6T�T
,

Threshold,

2
�BB

2

T�T
,

Threshold,

2
�CRLB

2

T�T
,

BTSNRc 	 



 	 BTSNRc 	 �

� 	 BTSNRc 	 �

� 	 BTSNRc 	 �

� 	 BTSNRc

(A7)

The expressions for the thresholds 
, �, � and � are detailed in
Varghese and Ophir (1997b) as

� �
12

�2T�T � f 0

B�
2�	1� B2

24f0
2�� 2

� �
5.52

�2T�T � f0

B�
2

� � �/T�T


  0.92/T�T (A8)

where

� y� �
1

�2��
y



e	�2/ 2d�, and ��/ 2����/ 2� � �12�/BsT�2

(A9)

and the Barankin bound is given by

�BB
2 � 12� fo

B�
2

�CRLB
2 . (A10)

The SD of the strain �s is related to the SD of the TDE �t by

�s
2 �

2�t
2

T�T
, (A11)

where �T is the separation between adjacent time segments (Céspedes
et al. 1995b). The expression for the SNRe is given by

SNRe �
�m

�m
, (A12)

where �m is the mean value of the measured strain and �m is the SD of
the measured strain. The upper bound of the SNRe is obtained by
substituting s instead of �m, �s instead of �m, and the �ZZLB instead of
�t in eqn (A12).
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APPENDIX B

USING THE CORRELATION COEFFICIENT
TO COMPUTE SNRE

Biased interpolation for estimating time delays tends to pro-
duce smooth strain estimates and results in image artefacts such as
image periodicities, commonly known as “zebras and worms” (Ophir
et al. 1999; Céspedes 1993). This could result in higher elasto-
graphic SNR (SNRe) values that are not representative of the ex-
pected values and could result in loss of image contrast. As an
illustration, consider a TDE estimation where no subsample inter-
polation is performed (i.e., the sample corresponding to the corre-
lation peak is taken as the true TDE); this corresponds to a highly
biased interpolator. For such a case, the TDE on a uniformly elastic
phantom would most likely fall at the same sample location (the first
sample if there is no shift between the A-lines) for each segment.
Hence, the strain estimates for all the segments would be identical
to each other, resulting in an infinite SNRe despite the presence of
additive noise or imperfect stretching (Varghese and Ophir 1997a;
Céspedes 1993). Thus, biased interpolation could result in a high
SNRe that does not represent the signal decorrelation between the
pre- and postcompression RF A-lines. Additionally, postprocessing
the elastogram (such as low-pass filtering the elastogram) could
improve the SNRe without changing the correlation coefficient (�)
between the pre- and the postcompression A-lines, implying a lack
of consistency in computing SNRe directly from the elastogram.

To avoid these image-related problems, we use the estimated
value of � to compute the SNRe indirectly as follows. The estimated
value of � is used in eqn (4) to compute the SNR�. This computed value
of SNR� is used in eqn (3) to compute the SNRc, which, in turn, is used
in eqn (A7) to estimate the �ZZLB. Equation (2) is then used to compute
the lower bound on �s (the lower bound is obtained when �t � �ZZLB)
and eqn (1) uses �s to compute the SNRe. This results in SNRe values
that are bounded by the SF theory and also facilitates a direct compar-
ison of simulations and experiments with the theory. More details on
the use of � to compute the SNRe can be found in Srinivasan et al.
(2002).

APPENDIX C

SENSITIVITY ANALYSIS WITH RESPECT TO
THE CORRELATION COEFFICIENT �

The CRLB for TDE in elastography, eqn (A4) is given by

�CRLB
2 �

3

�2Tf o
3�B3 � 12B� �1 �

1

SNRc
� 2

� 1, (C1)

where T is the segment length, fo is the center frequency, B is the
fractional band width, and SNRc is the combined SNR, defined as

SNRc �
SNR�SNRs

1 � SNR� � SNRs
. (C2)

SNRs is the sonographic SNR, and SNR� is the correlation SNR, defined
as

SNR� �
�

1 � �
. (C3)

The upper bound of the SNRe is given by

SNRe �
s

�s
, (C4)

where s is the applied strain and �s is the lower bound of the variance
of the measured strain, given in Céspedes et aln. (1995b) as

�s2 �
2�CRLB

2

T�T
. (C5)

Therefore, from eqns (C5), (C4) and (C1), we have

SNRe �

s�T�T

2 ��2Tfo
3�B3 � 12B�

3

��1 �
1

SNRc
� 2

� 1

(C6)

or

SNRe �
k

��1 �
1

SNRc
� 2

� 1

, (C7)

where k is the numerator in eqn (C6). Equation (C2) can be approxi-
mated as

SNRc �
SNR�SNRs

SNR� � SNRs
. (C8)

Using eqn (C8) in (C7), we obtain

SNRe �
k

��1 �
1

SNRs
�

1

SNR�
� 2

� 1

. (C9)

Simplifying eqn (C9) and using eqn (C3), we obtain

SNRe �
k

�� k1 �
1 � �

� � 2

� 1

, (C10)

where

k1 � 1 �
1

SNRs
. (C11)

Now

dSNRe

d�
�

1

2�2 k�� k1 �
1 � �

� � 2

� 1�	3/ 2� k1 �
1 � �

� � .

(C12)

that is

dSNRe

d�
�

1

2�2 k�� k1 �
1 � �

� � 2

� 1�	3/ 2� k1 �
1 � �

� � . (C13)

This is a nonlinear function of �. In this expression, k is assumed to be
a constant. However,

k � s�T�T

2 ��2Tfo
3�B3 � 12B�

3
(C14)
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and � as a function of strain s is given in Varghese and Ophir (1997a)
as

� � � �2�1 � s�

�1 � e	��ko�2
���1 � s�2 � 1

�

� � e	���ko�2

2
s2

��1	s�2�1�
�� e	���ko�2

2
�2	s�2

��1	s�2�1�
�� . (C15)

Equations (C14) and (C15) can be incorporated into eqn (C10) and the
derivative can then be obtained. However, obtaining s as a function of
� is rather involved and, hence, obtaining a closed form solution for the
sensitivity of SNRe with respect to � is complicated. A simpler method
would be to effect a change in � and obtain SNRe numerically. Figure
C1 shows the change in the SF for a 0.2% standard deviation in �. A
comparison of the standard deviation in SNRe for the theoretical and
the simulated results (corresponding to the 192 MHz case in Fig. 3)
indicates the strain dependence. For the theory, �� was held constant
and �� varies with the strain in the simulations. If we accommodate the
change in ��, using eqn (C15), then we can have a quantitative
comparison of the simulation �SNR with those allowed by the theory.

Fig. C1. Theoretical SF and the SD in the SF corresponding
to a �� of 0.2% for a 5-MHz, 50% band width Gaussian PSF
and 3-mm window with a 50% overlap on a uniformly
elastic phantom at an SNRs of 40 dB. (�) the simulation
results of Fig. 5b.
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