
Noname manuscript No.
(will be inserted by the editor)

YuruBackup: A Space-Efficient and Highly Scalable
Incremental Backup System in the Cloud ∗

Quanqing Xu # · Liang Zhao · Mingzhong
Xiao · Anna Liu · Yafei Dai

Received: date / Accepted: date

Abstract In this paper, we present YuruBackup, a space-efficient and highly scal-
able incremental backup system in the cloud. YuruBackup enables fine-grained data
de-duplication with hierarchical partitioning to improve space efficiency to reduce
bandwidth of both backup and restore processes, and storage costs. On the other
hand, YuruBackup explores a highly scalable architecture for fingerprint servers that
allows to add one or more fingerprint servers dynamically to cope with increasing
clients. In this architecture, the fingerprint servers in a DB cluster are used for scaling
writes of fingerprint catalog, while the slaves are used for scaling reads of finger-
print catalog. We present the system architecture of YuruBackup and its components,
and we have implemented a proof-of-concept prototype of YuruBackup. By conduct-
ing performance evaluation in a public cloud, experimental results demonstrate the
efficiency of the system.

Keywords Incremental Backup · Data De-duplication · Cloud Storage

1 Introduction

In recent years, cloud storage services become increasingly popular since they pro-
vide high reliability and scalability at relatively low cost. Also, cloud storage provider-

Quanqing Xu (�)
Data Storage Institute, A*STAR, Singapore
E-mail: Xu Quanqing@dsi.a-star.edu.sg

Liang Zhao · Anna Liu
National ICT Australia, Sydney, Australia

Mingzhong Xiao
Beijing Normal Univeristy, Beijing, China

Yafei Dai
Peking University, Beijing, China

∗Yuru means cloud in Australian aboriginal language.
#The work was mostly done while the author was with NICTA and visiting Peking University.

2 Short form of author list

s offer ultra large-scale storage space, e.g., there were 905 billion objects in Amazon
S3 in the first quarter 20121. Customers need to backup and restore their progres-
sively huge amounts of data to and from cloud storage providers within rather short
time. On the other hand, continuously growing volume of data has raised a criti-
cal challenge for effectively and efficiently incremental backup through large-scale
and high-performance backup systems. Many cloud providers build cloud-scale dis-
tributed storage systems, such as Amazon S3, typically consisting of ten thousands
of storage nodes. They offer us an excellent chance to construct a large-scale backup
system for customers over their cloud storage systems in which the backup system is
able to back up at least petabytes of data.

In order to meet the fast-growing demand on backup capacity and performance,
the backup systems thus must adopt effective solutions to enhance both storage effi-
ciency and system scalability. Cloud providers that support online storage and long-
term archives generally have the need to offer high-performance storage services to
millions of users, such as archiving trillions of files for many years. A new generation
of backup system over cloud storage has to perform well in system scalability, which
makes sure that the backup system is able to meet the progressive demands of backup
from a large number of clients. Lack of scalability will eventually make the backup
system hard to survive. Also, the vital step for these new backup systems is to use the
elasticity mechanism of cloud, such as varying EC2 instances as fingerprint servers
with the number of clients.

Data de-duplication technology has emerged as a key solution to space efficien-
cy problems of both storage and bandwidth intensive incremental backup system-
s [28]. Early de-duplication systems performed mostly file-level or block-level de-
duplication by putting a lot of effort into optimizing duplicate lookup. By eliminating
duplicate data across the system, a data de-duplication backup system can achieve far
more efficient data compression than other backup systems. There are increasingly
redundant replicas of data including file-level and block-level, which may be stored
in a single machine or a storage cluster across many machines. De-duplication sys-
tems take advantage of data redundancy to reduce the underlying space, in which de-
duplication working at block-level is much better than that working at file-level [11].
Data de-duplication has two typical advantages including 1) reducing cost, and 2)
increasing space-efficiency, e.g., reducing network bandwidth in LBFS [13] and de-
creasing storage space in Deep Store [27].

In this paper, we present a space-efficient and highly scalable incremental back-
up system in the cloud named YuruBackup. In YuruBackup, file/chunk (item) fin-
gerprint hash values are calculated in-line, i.e., if it spots an item that has been
stored it does not store the new item, just referring to the existing one. Howev-
er, in-line de-duplication might be slower thereby reducing the backup throughput
because hash calculations and lookups take so long. To decrease both backup and
restore time, YuruBackup combines source-side de-duplication with target-side de-
duplication. Source-side de-duplication ensures that data is deduplicated on the data
source, which generally takes place directly within a file system. New files will be
periodically scanned for creating hashes and comparing them to hashes of existing

1 http://aws.typepad.com/aws/2012/04/amazon-s3-905-billion-objects-and-650000-requestssecond.html

Title Suppressed Due to Excessive Length 3

items. When items with the same hashes are found, the item copy is removed and
the new one points to the old one. The de-duplication process is transparent to the
users and backup applications. Target-side de-duplication is the process of removing
duplicates of data in the target store. We confirm the effectiveness and efficiency of
YuruBackup by conducting an extensive experimental study, and the performance is
measured by de-duplication effectiveness and overhead, scalability measurement on
fingerprint server cluster, backup performance, and restore performance.

The rest of the paper is organized as follows. Section 2 presents the system archi-
tecture of YuruBackup. We describe the Backup Agent running in clients in Section 3,
and the Fingerprint Agent running fingerprint servers in Section 4. In Section 5 we
present performance evaluation results of YuruBackup. Section 6 describes related
work. In Section 7 we conclude this paper.

2 System Architecture

To develop a new generation of data backup system in the cloud, there are three vital
technical challenges that we have to address: 1) increasing scalability to accommo-
date growing amounts of data; 2) improving space efficiency to reduce costs; and 3)
saving bandwidth as efficiently as possible to adapt to the low bandwidth of WAN.

2.1 Architectural overview

To present YuruBackup clearly, we first describe its system architecture briefly, as
shown in Figure 1. Backup Agent is distributed and installed on client machines,
while Fingerprint Agent is located in fingerprint servers in private or public data cen-
ters. They communicate with each other via an RPC-based component named Task
Agent. Individual clients maintain their own local fingerprint catalog, while finger-
print servers maintain global fingerprint catalog including chunks and files. In or-
der to make clients run lightly, they utilize a high-performance embedded database
BerkeleyDB, while fingerprint servers use a full-featured database system MySQL
with master-slave replication over a DB cluster. Since YuruBackup never relies on
the correctness of file/chunk fingerprint catalog, it also does not care about whether
the fingerprint catalog is available.

YuruBackup avoids any synchronous updates of fingerprint catalog between clients
and fingerprint servers, and fingerprint servers reply to clients before inserting new
files/chunks into the fingerprint catalog. If the global fingerprint catalog in finger-
print servers loses some hashes of items, clients will simply utilize more bandwidth
until the fingerprint catalog comes up to date. The fingerprint server just creates the
fingerprint catalog and populates it as clients access files when running without a fin-
gerprint catalog at the beginning. There is a cluster of fingerprint servers running in
a private or public cloud for global target de-duplication [18], and Fingerprint Agent
is deployed in each fingerprint server in 4.3. Backup Agent is deployed in each client,
which directly backs up its data including file data and metadata to a cloud storage
system, e.g., Amazon S3.

4 Short form of author list

StorageFingerprint Server

Cluster

Fingerprint

Agent

Backup

Client

Master /W

Slave /R
Slave /R

Slave /R

Backup

Client

Fingerprint

Agent

Fig. 1 System Architecture

2.2 Storage Hierarchy

As shown in Figure 2, the storage hierarchy of YuruBackup physically includes 1)
chunk that is the smallest storage unit, 2) block that includes a number of continuous
chunks with a tag “new” or “old”, and 3) collection that consists of a group of blocks.
A snapshot consisting of a number of collections is built dynamically according to its
description file, and it is an incremental backup providing a point-in-time backup of
data, where only the revised sections of a file have been stored since its last snapshot,
e.g., if there is a 10 GB file and only 100 MB data has been changed since the last
backup, only the 100 MB of changed data will be stored. If a snapshot expires, only its
description file and related data are deleted, which is not involved in other snapshots.

Snapshot A Snapshot B

... ...Collection

Block

Chunk

Fig. 2 Storage Hierarchy

Memory Block

Block Proxy

TAR Store

Collection

Memory Block Memory Block

Collection Collection

In Memory

In Disk

Fig. 3 Mapping blocks from memory to disk

As for organizing blocks in memory and disk, two components Memory Block
and TAR Store are used, as shown in Figure 3. Memory Block is utilized to represent a
block residing in memory, and it can be built incrementally by organizing continuous
new chunks. Finally, it is written into a collection residing in disk using the following
two components: Block Proxy and TAR Store. To facilitate restore without fingerprint
servers, there are two types of blocks: data and metadata, to be stored in the same
snapshot namespace. Block Proxy is employed to manage memory blocks, where
a block is represented by a five-tuple: <collectionUuid, blockNo, checksum, start,
length>, where a collection is represented by an Uuid, a block has a sequence No.

Title Suppressed Due to Excessive Length 5

in the collection and a checksum, start and length are the start and length of the
block in the collection. Every memory block is mapped to a unique Block Proxy that
is leveraged to read the metadata of a block in a collection.

Tar is a popular file format2 used in backup systems, and it can store many files
in one tar archive. Files are appended one after the other, and file data is written and
kept to be constant except that its length comes up to a multiple of 512 bytes. Each
Tar file is preceded by a header containing information including user and group
permissions, and dates, and Tar files are compressed as a whole. We thus designed
and implemented a component named TAR Store that is used to store one or more
blocks into a collection. If the collection’s size is not less than a given size, it will be
written into a tar file by the component to organize blocks efficiently. To avoid the
collision of collection names without central authority, randomly generated 128-bit
UUIDs are assigned to collections.

2.3 Backup Process

Table 1 lists symbols and their meanings utilized in our algorithms. For a given di-
rectory, the backup process reads as shown in Algorithm 1. Firstly, we perform ini-
tialization operations for backing up a directory (lines 1-2). There is a loop to deal
with all files in the directory (lines 4-9), where a function is used to write a file’s in-
cremental backup into one or more collections (line 6), as shown in Algorithm 2. We
release resources and close DB connection to the fingerprint catalog (lines 11-12).

Table 1 Symbols and their meanings

Symbols Meanings
Fpf /Fpc a file f ’s/chunk c’s fingerprint
Ifl/Icl local file/chunk Index Summary
Ffl/Fcl local file/chunk fingerprint catalog
Ifg /Icg global file/chunk Index Summary
Ffg /Fcg global file/chunk fingerprint catalog

In file systems, most accesses to files are read-only, which means most files are
never changed after their creations [14]. In Microsoft’s five-year file metadata s-
tudy [1], more than two thirds of files have not been modified since they were initially
copied into file systems. Most of duplicate files can be found in the local file Index
Summary that is discussed in Section 3.2 and fingerprint catalog, and the remaining
duplicate files will be found in the global file Index Summary and fingerprint catalog
(line 1), where they are referred to the existing files (line 16). For a changed file, its
content-defined chunks are got easily, if a chunk is old it is just referred to the existing
chunk (line 8), and it is processed if it is new for the local chunk Index Summary and
fingerprint catalog (lines 5-6). If chunks are new for the global chunk Index Summary
and fingerprint catalog, they are processed in a batch (lines 10-12); otherwise, they
are referred to the existing chunks in the cloud storage system.

2 http://en.wikipedia.org/wiki/Tar (file format)

6 Short form of author list

Algorithm 1: Backup a directory
Input: A given directory D
Output: A snapshot S

1 Create DB connection to fingerprint catalog;
2 Initialize the Metadata Manager M and the TAR store T ;
3 Scan D to get a file list L;
4 while L ̸= ∅ do
5 F = L.front();
6 Write F ’s incremental backup into T ;
7 L.pop front();
8 if T ’s size >= a given size then
9 Write T into S and clear it;

10 Write T into S; // Process the rest of files
11 Release the Metadata Manager M and the TAR store T ;
12 Close DB connection to fingerprint catalog;
13 return S;

Algorithm 2: Write a file incremental backup
Input: A given file f
Output: A TAR Store T

1 if (Fpf /∈ Ifl || Fpf /∈ Ffl) && (Fpf /∈ Ifg || Fpf /∈ Ffg) then
2 Compute f ’s Content-defined chunks C;
3 for c ∈ C do
4 S = ∅;
5 if Fpc /∈ Icl || Fpc /∈ Fcl then
6 Insert Fpc into S;
7 else
8 Refer to the existing chunk;
9

10 Get S′ = {c|c ∈ S, (Fpc /∈ Icg ||Fpc /∈ Fcg)};
11 Store cs (∀c ∈ S′) into T in batch;
12 Insert batched Fpcs(∀c ∈ S′) into Icl/Icg , Fcl/Fcg ;
13 Refer to the existing chunks (∀c ∈ S − S′);
14 Insert Fpf into Ifl/Ifg and Ffl/Ffg ;

15 else
16 Refer to the existing file;

17 return T ;

2.4 Restore Process

The restore operation is shown in Algorithm 3. For a given snapshot S, its file list
F is retrieved from a cloud storage system (line 1). For each file f in F , the local
file Index Summary Ifl and fingerprint catalog Ffl are exploited to determine if f
can be obtained from the client, where most files can be quickly determined if it
exists because Index Summary is a Bloom filter without disk I/O (lines 3-5). For the
remaining files in F − F ′, the chunk list C of them is retrieved from S’s description
file (line 7). For each chunk c in C, the local chunk Index Summary Icl and fingerprint
catalog Fcl are used to decide whether it exists (line 10). In order to reduce bandwidth

Title Suppressed Due to Excessive Length 7

consumption, all the chunks in C −C ′ are transferred from the remote cloud storage
system to the client in batch mode (line 13). The worst restore performance is on the
newest backup since it typically contains the most pointers, while the best restore
performance is found on the oldest data, where there are the fewest pointers.

Algorithm 3: Restore a snapshot
Input: A given snapshot S
Output: A restore R

1 Retrieve the list F of S’s all files;
2 F ′ = ∅;
3 for f ∈ F do
4 if (Fpf ∈ Ifl) && (Fpf ∈ Ffl) then
5 F ′ += f ; // Get f from the local

6 Load F ′ into R;
7 Retrieve the list C of all chunks for files F − F ′;
8 C′ = ∅;
9 for c ∈ C do

10 if (Fpc ∈ Icl) && (Fpc ∈ Fcl) then
11 C′ += c; // Get c from the local

12 Get all chunks in C − C′ from cloud storage in batch;
13 Load all the chunks into R;
14 return R;

3 Backup Client

Backup Agent as a client program provides a functional interface such as backup
and restore to users. It is responsible for scanning files, and archiving/restoring them
to/from a cloud storage system for backups and restores. It is shown in Figure 4.

Metadata
Management

Read Buffer

Hierarchical
Partitioning

Backup Manager

Task Agent Transfer Agent

File

Scan

Data

Transmission

File Sources

Cloud Storage

Write Buffer
Duplication
Detection

Fingerprint Servers

Data

De-duplcation

Fig. 4 Backup Agent

8 Short form of author list

3.1 File Scan

Given a directory that is backed up, Backup Manager creates a database connection
to fingerprint catalog, initializes TAR Store and Metadata Manager. For each backup,
a read buffer in memory is allocated to temporarily buffer some files of the directory.
When the read buffer is full, the data de-duplication module will be invoked to deal
with the files in the read buffer. By doing so, the number of costly I/O requests to
disk will be increasingly reduced. This cycle is repeated until the entire directory has
been incrementally stored to disk. Note that Backup Manager supports parallelism
that multiple threads can concurrently perform the backup function. However, the
performance of the backup operation is actually affected by other two bottlenecks:
the read/write throughput from/to disk.

3.2 Data De-duplication

To improve duplicate coverage, de-duplication techniques that perform content-aware
chunk boundary calculation have been investigated in many storage systems [28,4].
Such variable-size chunking algorithms leverage different variations of byte-level ap-
proaches [13] to improve space efficiency.

3.2.1 Hierarchical Partitioning

To minimize storage overhead, duplicated data across different versions of files must
be found quickly, where the files may be in a single client or across multiple clients.
The challenge is to find duplicated data across the different versions of files without
the knowledge of the underlying structure. We propose a content-defined chunking
based hierarchical partitioning approach to efficiently organize chunks, as shown in
Figure 5. Content-defined chunking (CDC) [13] can easily deal with it by identifying
boundary regions using Rabin fingerprints [15]. Its basic mechanism is shown in Fig-
ure 5(a). For each overlapping w-byte sub-string in a file F , the procedure calculating
its fingerprint reads as follows. If the low-order k bits of the fingerprint f match a pre-
determined value c (i.e., low order(f, k) = c), the offset is marked as an anchor. By
doing it, the file F is divided into variable-length chunks by anchors. In YuruBackup,
SHA-1 hash values of chunks’ contents are utilized to name these chunks that form
the basis of file structures to easily share data among different backups.

Figure 5(b) shows how hierarchical partitioning works and what happens to chunk
boundaries after a series of edit operations, which are represented by gray shading.
Bytes are inserted in chunks c1 and c4, producing new and larger chunks c9 and c11.
After a modification in which the anchor is eliminated, chunks c2 and c3 of the old file
are combined into a new chunk c10. Bytes are inserted in c6, splitting it into two new
chunks c12 and c13. Similarly, c8 becomes c14 and c15. Continuous chunks consist
of a block, and new blocks are written into a collection. Compared to conventional
CDC, hierarchical partitioning reduces I/O requests, e.g., there are only four not nine
I/O requests, and easily uses buffer or cache because of its hierarchical structure.

Title Suppressed Due to Excessive Length 9

C1 C2 C3 C4 C5 C6 C7 C8

low_order(f,k)=c

w B1

(a) Content-defined chunking

C13 C9 C10 C11 C5 C12 C7 C14 C15

B2 B3 B4

B1 B2 B3 B4 ... Collection

(b) Chunk organization

Fig. 5 Hierarchical Partitioning

3.2.2 Metadata Management

Each client stores the fingerprint catalog of previous backups into its local disk, and
it can quickly detect which files have been changed and properly reuse data from
previous snapshots. In order to reduce network bandwidth and increase backup ef-
ficiency, the fingerprint catalog is kept in both clients and fingerprint servers, but it
is not necessary for data recovery from a backup. The loss of the fingerprint catalog
is not destructive in the clients or the fingerprint servers, but the fingerprint catalog
enables various performance optimizations during backups and restores. The client
fingerprint catalog stored in a BerkeleyDB database is divided into two parts: 1) local
file fingerprint catalog and 2) local chunk fingerprint catalog. The former is used to
quickly detect and skip over unchanged files based on 1) modification time for the
same file name, and 2) checksum for identical files with different file names. The
latter keeps track of recent snapshots and all collections, blocks and chunks stored in
them. In this way, data de-duplication is supported, and client data can be restored
from backups, while the file/chunk index can be rebuilt from collection data as it is
downloaded during the restore.

3.2.3 Source-side Duplication Detection

Source-side de-duplication can reduce the amount of transferred data, thus decreas-
ing the transmission cost. However, it typically does not work with de-duplication
appliances because it requires client updates. There are two types of duplication de-
tections in YuruBackup clients, one is Local File-level Duplication Detection (LFD-
D), and the other is Local Chunk-level Duplication Detection (LCDD) in fingerprint
catalog. Before arriving at them, the hashes of files/chunks are passed as arguments to
identify and remove duplicate files/chunks via Index Summary that is an in-memory
compressed Bloom filter [12], and compactly represents the file/chunk fingerprint set
in the current client.

If Index Summary indicates an item (file/chunk) is not in the index, it is no need
to do a further lookup for the item, and it is new and should be stored into Index
Summary. On the other hand, if Index Summary indicates the item belongs to the in-
dex, it is actually in the item index with a high probability, but there is no guarantee.
Index Summary implements the following operations: 1) Initialize(n, p), where n is
a predefined number for all the items and p is a desired false positive probability; 2)
Insert(fp) and 3) Lookup(fp). By testing whether an item is new to the system, Index
Summary can avoid unnecessary lookups for items that do not exist in the fingerprint
catalog. YuruBackup quickly identifies same files via LFDD to avoid the retransmis-
sion of data when performing backup to the cloud. After LFDD, YuruBackup breaks

10 Short form of author list

the remaining files into a series of variable-length chunks and determines whether
they are duplicates by inspecting the local chunk fingerprint catalog through LCDD.

3.3 Data Transmission

Transfer Agent is used for uploading a snapshot and its description file to the remote
cloud storage system. Usually, it needs local storage space for staging files and their
metadata before being transferred to the cloud storage system. In order to transfer the
files to the remote storage efficiently, they are written into Write Buffer as memory
files, which are enqueued and transferred asynchronously by Transfer Agent. The
fingerprint information of the files is uploaded to fingerprint servers via Task Agent.

Task Agent is implemented using the RPC (Remote Procedure Call) mechanis-
m, consisting RPC client and server. As an RPC client, Task Agent running in Yu-
ruBackup clients provides query services to determine whether the fingerprint of a
given file resides in a fingerprint server so that it can determine if the file itself is
located in the cloud storage system. The RPC mechanism is implemented via mes-
sage passing over TCP streams for remote communication, or system inter-process
communication (IPC) mechanisms for local communication since they can provide a
faster local connection than TCP streams. The remote communication utilizes mul-
tiple TCP connections to meet the throughput requirements. All the RPC requests
from clients are asynchronous and batched, thus minimizing round-trip overhead and
improving throughput. For different RPC invocations, each client registers different
callback functions to map them, which are used to return the RPC results to the caller
as they are available. In order to achieve high backup/restore throughput, the RPC
client exploits a simple and fully asynchronous RPC implementation via an event
driven and pipelined design.

4 Fingerprint Server Cluster

The cluster of fingerprint servers is the administrative center of fingerprint catalog,
which globally manages all fingerprints. It uses a catalog database to keep track of
which files and chunks are stored on which buckets in a cloud storage system. It is
shown in Figure 6.

4.1 Communication with Clients

High throughput is essential to a highly scalable backup system, so an optimized
client-server interface is necessary to improve de-duplication performance and re-
duce cost. The fingerprint server in YuruBackup receives the hash values of items
and delivers index lookup results to the inquiry client. For each index miss, the server
will receive new relevant fingerprint linking to its data in the cloud storage system;
otherwise it will return the references of the existing items to the client. This process
may suffer from a performance bottleneck that is high latency and low communica-
tion throughput. The fingerprint server receives a single, batched and asynchronous

Title Suppressed Due to Excessive Length 11

ChunkFP Lookup

Index Summary

FileFP Lookup

Task Agent

FileFP Store ChunkFP Store

Fingerprint

Lookup

Fingerprint

Store

Data from Backup Agent

Fingerprint

Catalog

Fig. 6 Fingerprint Agent

lookup RPC from the client, incurring a single RPC round-trip for all n fingerprints.
The lookup function delivers the RPC reply and creates references to the container-
s of the fingerprints that are found on the server. If one or more fingerprints were
not found in the current sharding server, the lookup function enqueues the updated
request in a queue to the global fingerprint catalog in the whole fingerprint server
cluster.

A MySQL database deployed in fingerprint servers is utilized by YuruBack-
up to store the global fingerprint catalog, thus identifying and locating duplicate
files/chunks. The global fingerprint catalog must be updated whenever a file is changed
in a client. Significant overhead could potentially be caused due to synchronizing
the global fingerprint catalog with file systems of clients. To avoid synchronization
problems, YuruBackup never relies on the correctness of the fingerprint catalog. It
recomputes the SHA-1 hash of any file/chunk before using it to restore a backup. It
is not necessary to worry about crash recovery because YuruBackup does not rely
on database integrity, which in turn makes YuruBackup avoid expensive synchronous
database updates.

4.2 Global Fingerprint Lookup and Store

In large-scale distributed backup systems, a fast and scalable fingerprint lookup ser-
vice has to be provided, and multiple fingerprint servers are deployed to enhance
scalability. As deployments of data de-duplication are applied to PB-scale data, Yu-
ruBackup has to make target-side de-duplication scalable by deploying Fingerprint
Agent that could share items’ fingerprints, thus improving de-duplication efficien-
cy. Source-side de-duplication works with this global target-side de-duplication to
minimize network traffic, but there is a balance between transfers of fingerprints of
redundant files/chunks from a local fingerprint catalog and updates of the global fin-
gerprint catalog. In YuruBackup, global target-side de-duplication is utilized to look

12 Short form of author list

up incoming files/chunks, some files/chunks are duplicates to an existing file/chunk
and a pointer to that original one was recorded. The removal of duplicate chunks
represents a real step forward over file-level de-duplication. There are some widely
varying results, depending upon the method used to make the comparison.

In the RPC server, Index Summary is utilized to reduce the number of times of
accessing disk and save bandwidth to look for a duplicate item. There are two com-
ponents to use Index Summary, i.e., Global File-level Duplication Detection (GFDD)
and Global Chunk-level Duplication Detection (GCDD), which are similar to LFDD
and LCDD, and are deployed in the cluster of fingerprint servers as discussed in Sec-
tion 4.3. Both of them compare the fingerprints of incoming items with those already
stored in the global fingerprint catalog to identify and remove duplicate items. They
can become a potential performance bottleneck if the cluster of fingerprint servers is
not scalable. At the same time, there is a counter in the cluster to determine if a data
item (file/chunk) is popular according to the Zipfian distribution. Only popular data
items are stored in the cluster of fingerprint servers because of two aspects: 1) lookup
performance and 2) storage cost.

4.3 Highly Scalable Cluster of Fingerprint Servers

To make large-scale distributed backup systems scalable and available, fingerprint
catalog is administered by multiple distributed fingerprint servers. A load-balancing
DB sharding (partitioning) and replication architecture is designed and implemented
for fingerprint server cluster as shown in Figure 7, where the slaves are used for
scalable DB reads and the SQL nodes are utilized for scalable DB writes with the load
balancer. The load balancer shares the workload as evenly as possible among a group
of servers, and then routes incoming read and write requests to the least busy available
slave and SQL node respectively. Load balancing comes across multiple nodes in the
sharding and replication architecture, where there is a master-master replication pair
with many slaves in a MySQL cluster. DB replication is deployed to provide state-
of-the-art database scalable reads, and deliver high availability by offering a way to
mirror data across multiple nodes for tolerating failures. In YuruBackup, there is a
load balancer that is aware of which nodes are readable and writable. Writes are the
bottleneck of DB replication with which it is hard to scale writes, and the only way
to scale writes is to partition data.

In YuruBackup, MySQL master-master replication is used, where one master A
is configured as follows: auto increment offset=1, auto increment increment=2 in its
configuration, while the other one B is configured as follows: auto increment offset=2,
auto increment increment=2 in its configuration. Note that it can scale up to N
(N > 2) master servers by modifying their configurations, but it will bring perfor-
mance issues because of N(N−1)

2 connections among the masters. When a single-
node MySQL cannot store fingerprint catalog so that sharding must be used, the
single-node MySQL will be extended a MySQL cluster3 based on the NDB clus-
ter engine. Therefore, this cluster architecture is scalable for both reads and writes on
the global fingerprint catalog.

3 http://www.mysql.com/products/cluster/

Title Suppressed Due to Excessive Length 13

Slaves

YuruBackup Clients

Load Balancer

....

DataNodes

SQL Nodes

with NDB

....

....

SQL Nodes with

NDB+InnoDB

Read Write Replication

Masters

Fig. 7 Highly Scalable Cluster of Fingerprint Servers

5 Performance Evaluation

In this section, we evaluate the performance of YuruBackup in four parts. We have
built the YuruBackup prototype system in C++, which consists of about twelve t-
housand lines of code, and used real-world data sets to evaluate its performance. We
first empirically evaluate the de-duplication performance including effectiveness and
overhead. We second present scalability measurement of reads and writes on finger-
print catalog atop AWS (Amazon Web Services) S3 and EC2. In the third part, we
measure the backup performance of YuruBackup atop AWS. Lastly, we also mea-
sures the restore performance of YuruBackup like its backup performance. Table 2
summaries eight datasets used in our experiments. Backup Client is deployed on an
Intel Core 2 PC (2.50GHz) with 4GB RAM, a 500-GB 7200-RPM Seagate SATA
hard disk and a 10/100 Mbps Ethernet port, running 32-bit Ubuntu 12.04.

We empirically evaluate YuruBackup and compare its performance with other
two incremental backup systems: 1) rdiff-backup [8] that uses libsync delta encoding
and stores increments as diffs; and 2) Brackup [6] that utilizes an optimized scheme
including rsync-like deltas and better reclamation of storage space for incremental
backups. All the experiments are repeated three times, and the average results are
reported.

5.1 De-duplication Performance

De-duplication performance includes de-duplication effectiveness and hierarchial par-
titioning I/O efficiency.

14 Short form of author list

Table 2 Datasets

Dataset Version Size (MB) Overlap
Files Data (MB)(%)

23.2a 155.4
emacs 23.3a 155.9 957 15.7 (10.09)

23.4 155.9 980 15.9 (10.17)
1.0.1 167.1

hadoop 1.0.2 171.9 3517 96.8 (56.32)

1.0.3 177.5 3517 95.1 (53.60)
0.7.0 143.7

hive 0.7.1 143.9 3720 49.1 (34.10)
0.8.0 161.4 2763 15.9 (12.16)
3.3.0 136.9

lucene 3.4.0 156.4 208 13.3 (8.51)
3.5.0 168.7 206 4.9 (2.91)
5.1.61 173.0

mysql 5.1.62 173.2 7877 143.1 (82.64)

5.1.63 173.4 8038 148.1 (85.45)
9.1.2 92.6

postgresql 9.1.3 94.1 3773 66.1 (70.02)

9.1.4 94.2 3728 64.4 (68.36)
4.1.0 45.2

xen 4.1.1 45.2 4276 41.7 (92.20)
4.1.2 45.2 4143 40.7 (89.99)
3.4.1 35.7

zookeeper 3.4.2 35.7 1205 20.2 (56.56)

3.4.3 35.9 1126 16.4 (45.58)

5.1.1 De-duplication Effectiveness

De-duplication effectiveness is of crucial importance to both cloud storage providers
and customers. Providers expect less data stored in their clouds to reduce data stor-
age and management costs, whereas customers prefer to transfer less data to make
backup/restore time shorter. Figure 8 presents de-duplication effectiveness on eight
datasets using three different de-duplication systems. Note that rdiff-backup uses
rsync and its statistical result is based on compressed metadata, so we utilize rsync as
YuruBackup’s competitor instead of rdiff-backup.

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�
� �

�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�

�
�
�

��

�
�
�
�

��

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

emacs hadoop hive lucene mysql postgresql xen zookeeper

D
e−

du
pl

ic
at

io
n

E
ffe

ct
iv

en
es

s
(M

B
)

YuruBackup
rsync
Brackup

(a) First De-duplication

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�� �
�
�
�

�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�� �
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

emacs hadoop hive lucene mysql postgresql xen zookeeper

D
e−

du
pl

ic
at

io
n

E
ffe

ct
iv

en
es

s
(M

B
)

YuruBackup
rsync
Brackup

(b) Second De-duplication

Fig. 8 De-duplication Effectiveness

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

����

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

 100%

emacs hadoop hive lucene mysql postgresql xen zookeeper

R
ed

uc
ed

 I/
O

 R
at

io

First De−duplication
Second De−duplication

Fig. 9 Hierarchical Partitioning
I/O Efficiency

Both Figure 8(a) and Figure 8(b) illustrate that YuruBackup has much better de-
duplication effectiveness than rsync and Brackup for the given eight datasets. We
define speedup using the following formula: S = A

B , where A is the de-duplication
effectiveness of YuruBackup or Brackup, B is the de-duplication effectiveness of
rsync. The speedups of both YuruBackup and Brackup reach the highest points of
12.04 and 6.74 at the xen dataset. The speedup of YuruBackup bottoms out at lucene,
while the speedup of Brackup is the lowest point at hive. Their speedups are 5.17

Title Suppressed Due to Excessive Length 15

 0

 50

 100

 150

 200

 250

 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

op
s/

s)

of users

R/W=80/20
R/W=90/10
R/W=95/05

(a) Varying # of users

 0

 50

 100

 150

 200

 250

2MY+2ND 3MY+4ND 4MY+4ND 5MY+6ND 6MY+6ND

T
hr

ou
gh

pu
t (

op
s/

s)

of servers

R/W=80/20
R/W=90/10
R/W=95/05

(b) Varying # of servers

 0

 50

 100

 150

 200

 250

 2 3 4 5 6

T
hr

ou
gh

pu
t (

op
s/

s)

of slaves

R/W=80/20
R/W=90/10
R/W=95/05

(c) Varying # of slaves

Fig. 10 Scalability on Fingerprint Server Cluster. a) with 6 slaves, 6 MySQLDs and 6 NDBDs, b) with
1,000 users and 6 slaves, and c) with 1,000 users, 6 MySQLDs and 6 NDBDs.

and 2.97 respectively. YuruBackup is much better than rsync and Brackup in de-
duplication effectiveness because it uses the variable-size chunking approach, which
is more effective than the fixed-size chunking one.

5.1.2 Hierarchical Partitioning I/O Efficiency

Figure 9 shows the reduced I/O ratio in the first and second de-duplications. The
reduced I/O ratio is calculated as follows: C−B

C , where C is the number of chunks
and B is the number of blocks. By using this metric, we can measure how many I/O
requests hierarchical partitioning can reduce compared to the conventional content-
defined chunking approach. From Figure 9, we can see that hierarchical partitioning
can reduce I/O requests by 68 percent in average. The reduced I/O ratio is the best at
mysql, more than 95% in both de-duplications, while it is the worst at xen, 46.8% and
28.3% in the first and second de-duplications respectively.

5.2 Scalability Measurement on Fingerprint Server Cluster

We have customized the Cloudstone4 benchmark to measure the scalability of fin-
gerprint server cluster to simulate that many backup clients send massive read/writes
requests to the fingerprint server cluster because we do not have a real workload
trace of cloud incremental backup. Cloudstone [16] is mainly designed as a per-
formance measurement tool for Web 2.0 applications including many complicated
database operations such as join, which take much more computations and I/Os than
our fingerprint management mechanism. In the following three experiments, a large
number of read/write requests on fingerprint entries are submitted to the fingerprint
server cluster, where there are 10 minutes ramp-up, 20 minutes steady stage and 5
minutes ramp-down. Slaves connect to a hot-backup cluster node that does not take
any requests. All the clients start up simultaneously and send their requests to the
fingerprint server cluster concurrently.

We first vary the number of users when there are 6 slaves, 6 MySQL servers and 6
MySQL cluster data nodes. The content of the fingerprint catalog is fixed and evenly
range partitioned over all fingerprint servers. Figure 10(a) depicts that the fingerprint
server cluster can always maintain a stable and relatively good throughput, no matter
how the total request number and the user number vary in a real cloud environment.

4 The source code of the customized Cloudstone is available on http://code.google.com/p/clouddb-replication/.

16 Short form of author list

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��

����

����

 1

 10

 100

 1,000

 10,000

emacs hadoop hive lucene mysql postgresql xen zookeeper

T
im

e
C

os
t (

s)

YuruBackup
rdiff−backup
Brackup

(a) First Incremental Backup

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��

����

��
��
��
��

 1

 10

 100

 1,000

 10,000

emacs hadoop hive lucene mysql postgresql xen zookeeper

T
im

e
C

os
t (

s)

YuruBackup
rdiff−backup
Brackup

(b) Second Incremental Backup

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���
���

����
����
����
����

��

�
�
�
�

��

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

First Second

T
hr

ou
gh

t (
M

B
/s

)

YuruBackup
rdiff−backup
Brackup

(c) Backup Throughput

Fig. 11 Backup Performance Comparison in a Public Cloud (AWS)

As the total number of read/write requests is fixed, more write requests result in
longer processing time since write is always more expensive than read because of
locking. It always leads to the worst performance when R/W is 80/20, followed by
90/10, and 95/05 that generates the best scalability.

We fix the number of users, vary the numbers of MySQL servers and cluster data
nodes when there are 6 slaves. As shown in Figure 10(b), the total throughput in-
creases almost linearly where R/W is 80/20 since the number of servers in MySQL
Cluster increases, causing each server hosts a smaller portion of the fingerprint cata-
log. It brings two benefits: 1) decreasing the average consistency overhead of entries
and 2) reducing the time spent on entry search. In addition, we change the number
of slaves when there are 1,000 users, 6 MySQL servers and 6 MySQL cluster data n-
odes. Figure 10(c) shows that the throughput rises by increasing the number of slaves
when the read/write ratio is no more than 90/10, which fits in with incremental back-
up systems. From both Figure 10(b) and Figure 10(c), we can conclude that we need
to deploy more slaves in MySQL Replication and less servers in MySQL Cluster in
YuruBackup to make read/write requests scalable.

5.3 Backup Performance

5.3.1 Backup Window

Backup window means the time cost spent on backing up a given dataset, depending
on the transferred dataset’s size and available network bandwidth. Figure 11(a) and
Figure 11(b) present the first and second incremental backup window results in a pub-
lic cloud, i.e., AWS. From both of figures, we can see that YuruBackup is still the best
one in backup window among the three systems. YuruBackup takes 47.61 seconds
and 57.28 seconds in the first and second incremental backups respectively, while
rdiff-backup takes around 783 and 1029 seconds respectively, and Brackup takes
about 2720 and 2692 seconds respectively. There are several reasons for this. Firstly,
YuruBackup’s backup client uses Read Buffer to reduce I/O operations, compressed
Bloom filter and BerkeleyDB to locate items fast, content-defined chunking with hi-
erarchical partitioning to do source-side de-duplication, and an efficient transmission
mechanism including batched RPC and parallel uploading/downloading. Secondly,
Yurubakup’s fingerprint server utilizes global Index Summary and global target-side
de-duplication to identify items using a single, batched and asynchronous lookup R-
PC for n FPs. In addition, the storage hierarchy used in YuruBackup packs small files
into a file before uploading to S3, which greatly reduces backup latency.

Title Suppressed Due to Excessive Length 17

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����

��
��
��
��

��
��
��
��

 1

 10

 100

 1,000

 10,000

emacs hadoop hive lucene mysql postgresql xen zookeeper

T
im

e
C

os
t (

s)

YuruBackup
rdiff−backup
Brackup

(a) First Incremental Restore

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��

����

����

 1

 10

 100

 1,000

 10,000

emacs hadoop hive lucene mysql postgresql xen zookeeper

T
im

e
C

os
t (

s)

YuruBackup
rdiff−backup
Brackup

(b) Second Incremental Restore

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

����
����
����
���������� ��������

�
�
�
�

��

�
�
�
�

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

First Second

T
hr

ou
gh

t (
M

B
/s

)

YuruBackup
rdiff−backup
Brackup

(c) Restore Throughput

Fig. 12 Restore Performance Comparison in a Public Cloud (AWS)

5.3.2 Backup Throughput

Figure 11(c) shows that YuruBackup has excellent speedups in a public cloud, while
the speedup is S = A

B , where A is the throughput of YuruBackup, B is the through-
put of rdiff-backup or Brackup. The speedups are around 16 and 54 respectively in
the first incremental backup, while they are 17.5 and 44 respectively in the second
incremental backup.

5.4 Restore Performance

Restore performance is also important to backup systems. Most backup systems
should pay attention to the issue of restore performance [9] since the goal of backup
is to restore when it is necessary. We have to evaluate restore performance carefully
when reviewing backup systems.

5.4.1 Restore Window

Restore window represents how long a restore of snapshots takes. Forward referenc-
ing avoids the restore problems inherent in most de-duplication systems. Figure 12(a)
and Figure 12(b) present the first and second incremental restore window results in
a public cloud, i.e., AWS. In the first incremental restore, the restore window of Yu-
ruBackup (48.9 seconds) is only 5.4% and 2.8% of rdiff-backup’s and Brackup’s
restore windows respectively. YuruBackup’s restore window (61.9 seconds) is only
5.8% and 3.4% of rdiff-backup’s and Brackup’s restore windows in the second incre-
mental restore. The reason for this is that YuruBackup concerns that how redundant
files/chunks are found and how their information is organized and stored better. Yu-
ruBackup exploits compressed Bloom filter and Berkeley DB to fast locate items. It
decreases the number of traversed pointers, and reduces I/O operations during the
process of restoring a backup. The more pointers there are, the more fragments the
data becomes as more data is online. It also reduces the fragments caused by pointers
better than the other two systems. Besides the reasons mentioned above, YuruBack-
up utilizes a reasonable and effective storage hierarchy discussed in Section 2.2 to
make I/O operations as few as possible to S35, and uses Write Buffer to decrease I/O
requests.

5 Uploading/downloading a file to S3 is an I/O operation.

18 Short form of author list

5.4.2 Restore Throughput

In backup systems, the backup throughput is paid more attention to than the restore
throughput because the restore correctness is the main goal. However, restore is also
an important operation and we want to ensure that YuruBackup provides sufficient
throughput. Figure 12(c) presents restore throughput comparisons among YuruBack-
up and its competitors in a public cloud respectively. YuruBackup is much better than
rdiff-backup and Brackup in restore throughput. The throughput of YuruBackup is
18.5 and 36 times those of rdiff-backup and Brackup in a public cloud.

6 Related Work

6.1 Data De-duplication

As a standard incremental transfer tool, rsync [21] that is used by Dropbox explores
schemes to find identical subsets in two different versions of the same file, but it
cannot easily capture the same data between them. Data de-duplication as a space-
efficient approach, is being exploited widely in backup systems [28,4,7,23], which
are increasingly being deployed to reduce cost and increase space-efficiency. The
opportunities become scarce to optimize de-duplication efficiency. We thus have to
face the challenge that is to design de-duplication systems effectively addressing the
capacity, throughput and management requirements of PB-scale data. Existing litera-
tures [28,4,17] on data de-duplication rely on workloads consisting of daily full back-
ups, which represent the most attractive scenario for de-duplication since the content
of file systems itself does not change rapidly. The size of historical data quickly ex-
ceeds that of the running system because of frequent and persistent backups.

Many organizations have dramatic increases in total storage system costs [10] in
spite of obvious decline at storage cost per GB. They thus are very interested in re-
ducing the total storage costs, which has caused de-duplication techniques both in a-
cademia and industry. The Data Domain File System (DDFS) [28] addressed the disk
bottleneck by introducing a series of optimizations including Bloom filter, Stream-
Informed Segment Layout (SISL) and Locality Preserved Caching (LPC). However,
the system can support a limited amount of raw storage, and is limited by network
performance, since duplicate detection is performed only at the server, which is called
target/server de-duplication. Additionally, it is not clear whether DDFS can perform
really scalable resource reclamation. HYDRAstor [4] achieves good scalability using
a highly distributed and hierarchical model, where each node holds a few tens of TB
of storage. It yields a high backup throughput, but it costs too high because of its
highly distributed costly system architecture.

6.2 Cloud Storage and Backup

Cloud storage supports EB-scale data or trillions of files [24], and even cloud-scale
data management [3]. Traditionally, users back up their data by storing multiple repli-
cas, where the backup window is often restricted by the volume of data. Further

Title Suppressed Due to Excessive Length 19

complexity is caused if remote users have data retention requirements, which mean
historical data must be stored into tape. Cloud backup services are attracting much
more attention than traditional ones from both the industry community [5,19,2] and
the academic community [22,20] as cloud computing is increasingly popular. As a
cloud backup system, Cumulus [22] leverages the source-side de-duplication based
on chunk-level to remove duplicates from transmission for backups but not for re-
stores. CABdedupe [20] is a causality-based de-duplication performance booster for
both backups and restores in the cloud by enabling the removal of the unmodified
data from transmission for backups and restores.

To improve backup performance and decrease backup cost, cloud backup systems
such as EMC Avamar [5], Asigra [2] and Symantec NetBackup [19], use the source
de-duplication technology to remove redundant data from transmission. Although
they have done backup well, they do not pay attention to the problem that happens
in restores over the low bandwidth network. Existing cloud recovery solutions either
transfer and restore data locally over high bandwidth network by deploying complete
servers in the clients [5], or even transfer the data from providers to costumers by
vehicles to avoid transmission in the Internet [2], or feature built-in wide area network
replication so that backups from the source can be classified and selectively replicated
to the recovery site for restore at any time [19].

7 Conclusion and Future Work

We have designed and implemented YuruBackup that is a space-efficient and high-
ly scalable incremental backup system in the cloud. In Backup Client, read buffer
is for reading files before data de-duplication, and write buffer is for writing files
after data de-duplication, thus reducing I/O requests. Using compressed Bloom fil-
ter in the first round and Berkeley DB in the second round is to fast locate items.
Source-side de-duplication with hierarchical partitioning improves space-efficiency
when performing backups, and data transmission using batched RPC and parallel up-
loading/downloading decrease the communication overhead of backups and restores.
Fingerprint Server Cluster allows to add one or more servers dynamically to deal
with increasing requests from clients. It efficiently communicates with Backup Client
via RPC, and provides global fingerprint lookup to backup clients, thus facilitating
backups and restores. By conducting performance evaluation in AWS, experimen-
tal results demonstrate the efficiency of YuruBackup including data de-duplication
effectiveness, I/O overhead, the scalability of fingerprint server cluster, backup and
restore performance. To achieve much more scalable Fingerprint Server Cluster in
the cloud, to replace MySQL cluster is one possible work with a key-value store on
DHT-based publishing and searching [25]. To deploy cooperative cache [26] in Fin-
gerprint Server Cluster is another possible work for facilitating item retrieval.

Acknowledgements We would like to thank Alan Fekete at the University of Sydney, Yong Khai Leong,
Khin Mi Mi Aung and Rajesh Vellore Arumugam at Data Storage Institute, A*STAR for their help, and
the anonymous reviewers for their suggestions. This work is supported by the National Basic Research
Program of China (973) under Grant. 2011CB302305, and National Science Foundation of China under

20 Short form of author list

Grant No. 61073015. NICTA is funded by the Australian Government through the Department of Com-
munications and the Australian Research Council through the ICT Centre of Excellence Program.

References

1. Agrawal, N., Bolosky, W.J., Douceur, J.R., Lorch, J.R.: A five-year study of file-system metadata. In:
FAST, pp. 31–45 (2007)

2. Asigra: Asigra cloud backup and recovery software. White Paper (2012)
3. Cao, Y., Chen, C., Guo, F., Jiang, D., Lin, Y., Ooi, B.C., Vo, H.T., Wu, S., Xu, Q.: Es2: A cloud data

storage system for supporting both oltp and olap. In: ICDE, pp. 291–302 (2011)
4. Dubnicki, C., Gryz, L., Heldt, L., Kaczmarczyk, M., Kilian, W., Strzelczak, P., Szczepkowski, J.,

Ungureanu, C., Welnicki, M.: Hydrastor: A scalable secondary storage. In: FAST, pp. 197–210 (2009)
5. EMC: Efficient data protection with emc avamar global deduplication software. White Paper (2010)
6. Fitzpatrick, B.: Brackup (2010). URL http://code.google.com/p/brackup/
7. Guo, F., Efstathopoulos, P.: Building a high-performance deduplication system. In: USENIX Annual

Technical Conference (2011)
8. rdiff-backup (2009). URL http://www.nongnu.org/rdiff-backup/
9. Lillibridge, M., Eshghi, K., Bhagwat, D.: Improving restore speed for backup systems that use inline

chunk-based deduplication. In: FAST, pp. 183–197 (2013)
10. Merrill, D.R.: Four principles for reducing total cost of ownership. four-principles-for-reducing-total-

cost-of-ownership.pdf (2011). URL http://www.hds.com/assets/pdf/
11. Meyer, D.T., Bolosky, W.J.: A study of practical deduplication. In: FAST, pp. 1–13 (2011)
12. Mitzenmacher, M.: Compressed bloom filters. In: PODC, pp. 144–150 (2001)
13. Muthitacharoen, A., Chen, B., Mazières, D.: A low-bandwidth network file system. In: SOSP, pp.

174–187 (2001)
14. Policroniades, C., Pratt, I.: Alternatives for detecting redundancy in storage systems data. In: USENIX

Annual Technical Conference, General Track, pp. 73–86 (2004)
15. Rabin, M.O.: Fingerprinting by random polynomials. Tech. Rep. Technical Report TR-15-81, Center

for Research in Computing Technology, Harvard University, MA (1981)
16. Sobel, W., Subramanyam, S., Sucharitakul, A., Nguyen, J., Wong, H., Patil, S., Fox, A., Patterson, D.:

Cloudstone: Multi-platform, multi-language benchmark and measurement tools for web 2.0. In: CCA
(2008)

17. Srinivasan, K., Bisson, T., Goodson, G., Voruganti, K.: idedup: Latency-aware, inline data deduplica-
tion for primary storage. In: FAST (2012)

18. Strzelczak, P., Adamczyk, E., Herman-Izycka, U., Sakowicz, J., Slusarczyk, L., Wrona, J., Dubnicki,
C.: Concurrent deletion in a distributed content-addressable storage system with global deduplication.
In: FAST, pp. 161–174 (2013)

19. Symantec: Symantec netbackup appliances: Key considerations in modernizing your backup and d-
eduplication solutions. White Paper (2011)

20. Tan, Y., Jiang, H., Feng, D., Tian, L., Yan, Z.: Cabdedupe: A causality-based deduplication perfor-
mance booster for cloud backup services. In: IPDPS, pp. 1266–1277 (2011)

21. Tridgell, A., Mackerras, P.: The rsync algorithm. Tech. Rep. TR-CS-96-05, Department of Computer
Science, The Australian National University, Canberra (1996)

22. Vrable, M., Savage, S., Voelker, G.M.: Cumulus: Filesystem backup to the cloud. In: FAST, pp.
225–238 (2009)

23. Xia, W., Jiang, H., Feng, D., Hua, Y.: Silo: A similarity-locality based near-exact deduplication
scheme with low ram overhead and high throughput. In: USENIX Annual Technical Conference
(2011)

24. Xu, Q., Arumugam, R.V., Yong, K.L., Mahadevan, S.: Drop: Facilitating distributed metadata man-
agement in eb-scale storage systems. In: MSST (2013)

25. Xu, Q., Hou, X., Cui, B., Shen, H.T., Dai, Y.: Facilitating effective resource publishing and searching
in dht networks. HKIE Transactions 16(3), 32–41 (2009)

26. Xu, Q., Shen, H.T., Chen, Z., Cui, B., Zhou, X., Dai, Y.: Hybrid information retrieval policies based
on cooperative cache in mobile p2p networks. Frontiers of Computer Science in China 3(3), 381–395
(2009)

27. You, L., Pollack, K.T., Long, D.D.E.: Deep store: an archival storage system architecture. In: ICDE,
pp. 804–815 (2005)

28. Zhu, B., Li, K., Patterson, R.H.: Avoiding the disk bottleneck in the data domain deduplication file
system. In: FAST, pp. 269–282 (2008)

