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Abstract— Matching 2D range scans is a basic component
of many localization and mapping algorithms. Most scan
match algorithms require finding correspondences between
the used features, i.e. points or lines. We propose an alterna-
tive representation for a range scan, the Normal Distributions
Transform. Similar to an occupancy grid, we subdivide the 2D
plane into cells. To each cell, we assign a normal distribution,
which locally models the probability of measuring a point.
The result of the transform is a piecewise continuous and
differentiable probability density, that can be used to match
another scan using Newton’s algorithm. Thereby, no explicit
correspondences have to be established.

We present the algorithm in detail and show the ap-
plication to relative position tracking and simultaneous
localization and map building (SLAM). First results on real
data demonstrate, that the algorithm is capable to map
unmodified indoor environments reliable and in real time,
even without using odometry data (see video).

I. INTRODUCTION

Undoubtedly, simultaneous localization and mapping
(SLAM) is a basic capability of a mobile robot system.
Laser range scanners are popular sensors to get the needed
input, mainly for their high reliability and their low noise
in a broad class of situations. Many SLAM algorithms are
based on the ability to match two range scans or to match
a range scan to a map. Here we present a new approach
to the low-level task of scan matching and show, how we
use it to build maps.

The main purpose of this paper is the introduction of the
Normal Distributions Transform (in the following called
NDT) and its application to the matching of one scan
to another scan or of one scan to several other scans.
The NDT transforms the discrete set of 2D points recon-
structed from a single scan into a piecewise continuous
and differentiable probability density defined on the 2D
plane. This probability density consists of a set of normal
distributions, that can be easily calculated. Matching a
second scan to the NDT is then defined as maximizing
the sum, that the aligned points of the second scan score
on this density.

We also present a simple algorithm for the SLAM
problem, that fits nicely into our matching scheme. How-
ever, the proposed matching scheme does not depend on
this algorithm. For this reason, we review only methods

concerning the matching of two scans in the related
work in section II and not methods for building whole
maps like the approaches of Thrun [15] or Gutmann [6].
Nevertheless, one component of such approaches is a
perceptual model, that is the likelihood of a single scan
given a map and a pose estimate. Since our methods
yields exactly a measure for such a model, we believe,
that our scan matcher could also be integrated into more
sophisticated SLAM algorithms.

The rest of this paper is organized as follows: Section
III introduces the NDT, section IV gives an overview
of the scan matching approach and defines the measure
for comparing a scan to a NDT, which is optimized in
section V using the Newton algorithm. The scan matcher
is applied to position tracking in section VI and to a simple
SLAM approach in section VII. We finally show some
results on real data and conclude the paper with an outlook
on future work.

II. PREVIOUS WORK

The goal of matching two range scans is to find the
relative pose between the two positions, at which the scans
were taken. The basis of most successful algorithms is the
establishment of correspondences between primitives of
the two scans. Out of this, an error measure can be derived
and minimized. Cox used points as primitives and matched
them to lines, which were given in an a priori model [3].
In the Amos Project [7], these lines were extracted from
the scans. Gutmann matched lines extracted from a scan to
lines in a model [8]. The most general approach, matching
points to points, was introduced by Lu and Milios [9]. This
is essentially a variant of the ICP (Iterated Closest Point)
algorithm ([1],[2],[18]) applied to laser scan matching. We
share with Lu and Milios our mapping strategy. As in [10],
we do not build an explicit map, but use a collection of
selected scans with their recovered poses as an implicit
map.

In all of these approaches, explicit correspondences
have to be established. Our approach differs in this point,
as we never need to establish a correspondence between
primitives. There are also other approaches, that avoid



solving the correspondence problem. In [12], Mojaev com-
bines the correlation of local polar occupancy grids with
a probabilistic odometry model for pose determination
(using laser scanner and sonar). Weiss and Puttkammer
[17] used angular histograms to recover the rotation be-
tween two poses. Then x- and y-histograms, which were
calculated after finding the most common direction were
used to recover the translation. This approach can be
extended by using a second main direction [7].

Our work was also inspired by computer vision tech-
niques. If the word probability density is replaced by
image intensity, our approach shares a similar structure
to feature tracking [13] or composing of panoramas [14].
These techniques use the image gradient at each relevant
position to estimate the parameters. Here, derivatives of
normal distributions are used. Opposed to image gradients,
these can be calculated analytically.

III. THE NORMAL DISTRIBUTIONS TRANSFORM

This section describes the Normal Distributions Trans-
form (NDT) of a single laser scan. This is meant to be the
central contribution of the paper. The use of the NDT for
position tracking and SLAM, described in the following
sections, is then relatively straightforward.

The NDT models the distribution of all reconstructed
2D-Points of one laser scan by a collection of local normal
distributions. First, the 2D space around the robot is
subdivided regularly into cells with constant size. Then for
each cell, that contains at least three points, the following
is done:

1) Collect all 2D-Points xi=1..n contained in this box.
2) Calculate the mean q = 1

n

∑

i xi.
3) Calculate the covariance matrix

Σ = 1

n

∑

i(xi − q)(xi − q)t.
The probability of measuring a sample at 2D-point

x contained in this cell is now modeled by the normal
distribution N(q,Σ):

p(x) ∼ exp(−
(x− q)tΣ−1(x− q)

2
). (1)

Similar to an occupancy grid, the NDT establishes a
regular subdivision of the plane. But where the occupancy
grid represents the probability of a cell being occupied, the
NDT represents the probability of measuring a sample for
each position within the cell. We use a cell size of 100
cm by 100 cm.

What‘s the use for this representation? We now have a
piecewise continuous and differentiable description of the
2D plane in the form of a probability density. Before we
show an example, we have to note two implementation
details.

To minimize effects of discretization, we decided to use
four overlapping grids. That is, one grid with side length
l of a single cell is placed first, then a second one, shifted

Fig. 1. An example of the NDT: The original laser scan and the resulting
probability density.

by l
2

horizontally, a third one, shifted by l
2

vertically and
finally a fourth one, shifted by l

2
horizontally and verti-

cally. Now each 2D point falls into four cells. This will not
be taken into account for the rest of the paper explicitly
and we will describe our algorithm, as if there were only
one cell per point. So if the probability density of a point
is calculated, it is done with the tacit understanding, that
the densities of all four cells are evaluated and the result
is summed up.

A second issue is, that for a noise free measured world
line, the covariance matrix will get singular and can not be
inverted. In practice, the covariance matrix can sometimes
get near singular. To prevent this effect, we check, whether
the smaller eigenvalue of Σ is at least 0.001 times the
larger eigenvalue. If not, it is set to this value.

Fig. 1 shows an example laser scan and a visualization
of the resulting NDT. The visualization is created by
evaluating the probability density at each point, bright
areas indicate high probability densities. The next section
shows, how this transformation is used to align two laser
scans.

IV. SCAN ALIGNMENT

The spatial mapping T between two robot coordinate
frames is given by

T :

(

x′

y′

)

=

(

cos φ − sin φ
sinφ cosφ

) (

x
y

)

+

(

tx
ty

)

, (2)

where (tx, ty)t describes the translation and φ the
rotation between the two frames. The goal of the scan
alignment is to recover these parameters using the laser
scans taken at two positions. The outline of the proposed
approach, given two scans (the first one and the second
one), is as follows:

1) Build the NDT of the first scan.
2) Initialize the estimate for the parameters (by zero or

by using odometry data).
3) For each sample of the second scan: Map the

reconstructed 2D point into the coordinate frame of
the first scan according to the parameters.

4) Determine the corresponding normal distributions
for each mapped point.



5) The score for the parameters is determined by
evaluating the distribution for each mapped point
and summing the result.

6) Calculate a new parameter estimate by trying to
optimize the score. This is done by performing one
step of Newton’s Algorithm.

7) Goto 3 until a convergence criterion is met.
The first four steps are straightforward: Building the

NDT was described in the last section. As noted above,
odometry data could be used to initialize the estimate.
Mapping the second scan is done using T and finding the
corresponding normal distribution is a simple lookup in
the grid of the NDT.

The rest is now described in detail using the following
notation:

• p = (pi)
t
i=1..3 = (tx, ty, φ)t: The vector of the

parameters to estimate.
• xi: The reconstructed 2D point of laser scan sample

i of the second scan in the coordinate frame of the
second scan.

• x′

i
: The point xi mapped into the coordinate frame

of the first scan according to the parameters p, that
is x′

i
= T (xi,p).

• Σi,qi: The covariance matrix and the mean of the
corresponding normal distribution to point x′

i
, looked

up in the NDT of the first scan.
The mapping according to p could be considered opti-

mal, if the sum evaluating the normal distributions of all
points x′

i with parameters Σi and qi is a maximum. We
call this sum the score of p. It is defined as:

score(p) =
∑

i

exp(
−(x′

i
− qi)

tΣ−1

i
(x′

i
− qi)

2
). (3)

This score is optimized in the next section.

V. OPTIMIZATION USING NEWTON’S ALGORITHM

Since optimization problems normally are described as
minimization problems, we will adopt our notation to this
convention. Thus the function to be minimized in this
section is −score. Newton’s algorithm iteratively finds
the parameters p = (pi)

t, that minimize a function f .
Each iteration solves the following equation:

H∆p = −g (4)

Where g is the transposed gradient of f with entries

gi =
∂f

∂pi

(5)

and H is the Hessian of f with entries

Hij =
∂f

∂pi∂pj

. (6)

The solution of this linear system is an increment ∆p,
which is added to the current estimate:

p← p + ∆p (7)

If H is positive definite, f(p) will initially decrease in
the direction of ∆p. If this is not the case, H is replaced
by H′ = H + λI, with λ chosen such, that H′ is safely
positive definite. Practical details on the minimization
algorithm itself can be found for example in [4].

This algorithm is now applied to the function −score.
The gradient and the Hessian are built by collecting the
partial derivatives of all summands of equation 3. For
a shorter notation and to avoid confusing the parameter
number i and the index of the laser scan sample i, the
index i for the sample number is dropped. Additionally,
we write

q = x′

i
− qi (8)

As can be verified easily, the partial derivatives of q

with respect to p equal the partial derivatives of x′

i
. One

summand s of −score is then given by

s = − exp
−qtΣ−1q

2
. (9)

For on such summand, the entries of the gradient are
then (using the chain rule):

g̃i = −

∂s

∂pi

= −
∂s

∂q

∂q

∂pi

(10)

= qtΣ−1
∂q

∂pi

exp
−qtΣ−1q

2
.

The partial derivatives of q with respect to pi are given
by the Jacobi matrix JT of T (see equation 2):

JT =

(

1 0 −x sinφ− y cos φ
0 1 x cos φ− y sin φ

)

. (11)

A summand’s entries in the Hessian H are given by:

H̃ij = −
∂s

∂pi∂pj

= − exp
−qtΣ−1q

2

((−qtΣ−1
∂q

∂pi

)(−qtΣ−1
∂q

∂pj

) + (12)

(−qtΣ−1
∂2q

∂pi∂pj

) + (−
∂qt

∂pj

Σ−1
∂q

∂pi

))

The second derivatives of q are (see eq. 11):

∂2q

∂pi∂pj

=















(

−x cosφ + y sinφ
−x sinφ− y cosφ

)

i = j = 3
(

0
0

)

otherwise

(13)
As can be seen from these equations, the computational

costs to build the gradient and the Hessian are low. There



is only one call to the exponential function per point
and a small number of multiplications. The trigonometric
functions only depend on φ (the current estimate for the
angle) and must therefore be called only once per iteration.
The next two sections will now use this algorithm for
position tracking and for SLAM.

VI. POSITION TRACKING

This section describes, how the scan match algorithm
can be applied to tracking the current position from a
given time t = tstart. The next section then extends this
approach to SLAM.

The global reference coordinate frame is defined by the
local robot coordinate frame at this time. The respective
laser scan is called the keyframe in the following. Tracking
is performed with respect to this keyframe. At time tk, the
algorithm performs the following steps:

1) Let δ be the estimate for the movement between
time tk−1 and tk (for example from the odometry).

2) Map the position estimate of time tk−1 according to
δ.

3) Perform the optimization algorithm using the current
scan, the NDT of the keyframe and the new position
estimate.

4) Check, whether the the keyframe is “near” enough
to the current scan. If yes, iterate. Otherwise take the
last successfully matched scan as new keyframe.

The decision, whether a scan is still near enough is
based on a simple empiric criterion involving the transla-
tional and the angular distance between the keyframe and
the current frame and the resulting score. To be useful for
position tracking, the algorithm has to be performed in
real-time: Building the NDT of a scan needs around 10
ms on a 1.4 GHz machine. For small movements between
scans the optimization algorithm typically needs around
1-5 iterations (and rarely more then ten). One iteration
needs around 2 ms, so real-time is no problem.

VII. APPLICATION TO SLAM

We define a map as a collection of keyframes together
with their global poses. This section describes how to
localize with respect to this map and how to extend
and optimize this map, when the robot reaches unknown
territory.

A. Localizing with respect to multiple scans

To each scan i in the map, an angle φi (or a rotation
matrix Ri) and a translation vector (tx, ty)t

i = Ti is
associated. These describe the pose of scan i in the global
coordinate frame. The current robot pose is denoted by a
rotation matrix R and a translation vector T. The mapping
T ′ from the robot coordinate frame to the coordinate frame
of scan i is then given by:

T ′ :

(

x′

y′

)

= Rt
i(R

(

x
y

)

+ T−Ti) (14)

Only small changes are required to adapt the algorithm
of section V to this situation. The mapping of a 2D-point
of scan i is now calculated by applying T ′. Further, the
Jacobian and the second partial derivatives of T ′ get now
slightly more complicated. The Jacobian of the mapping
is now given by:

JT′ = Ri
tJT (15)

and second partial derivatives of T ′ are now given by:

∂2x′

∂pi∂pj

=















Ri
t

(

−x cos φ + y sin φ
−x sin φ− y cosφ

)

i = j = 3
(

0
0

)

otherwise

(16)
The gradient and the Hessian for the optimization

algorithm could be built by summing over all overlapping
scans. But we found an alternative, that is faster and yields
equally good results: For each sample of the scan taken at
the robot position, determine the scan, where the result of
evaluating the probability density is maximal. Only this
scan is used for this sample and for the current iteration.
This way, the operations needed to build the gradient and
the Hessian for the optimization algorithm are independent
of the number of overlapping keyframes, except for finding
the mentioned maximum.

B. Adding a new keyframe and optimizing the map

At each time step, the map consists of a set of keyframes
with their poses in the global coordinate frame. If the
overlap of the current scan with the map is too small, the
map is extended by the last successfully matched scan.
Then every overlapping scan is matched separately to the
new keyframe, yielding the relative pose between the two
scans. A graph is maintained, that holds the information
of the pairwise matching result.

In this graph, every keyframe is represented by a node.
A node holds the estimate for the pose of the keyframe
in the global coordinate frame. An edge between two
nodes indicates that the corresponding scans have been
pairwise matched and holds the relative pose between the
two scans.

After a new keyframe is added, the map is refined by
optimizing an error function defined over the parameters
of all keyframes. The results of the pairwise registration
are used to define a quadratic error model for each
matched pair as follows: The global parameters of two
scans also define the relative pose between two scans. Let
∆p be the difference between the relative pose defined by
the global parameters and the relative pose defined by the
result of the pairwise matching. Then we model the score
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Fig. 2: A map, that was built using our scan matcher. Lengths are given in cm. Shown are the set of keyframes and
the estimated trajectory (see video). More videos can be found on the authors’ homepage [11].

of this two scans as function of ∆p, using the quadratic
model

score
′(∆p) = score +

1

2
(∆p)tH(∆p). (17)

Thereby score is the final score, when the pairwise
matching had converged and H is the thereby obtained
Hessian. This model is derived by a Taylor expansion of
score around ∆p = 0 up to the quadratic term. Notice,
that the linear term is missing, because we expanded about
an extreme point. This score is now summed over all edges
and optimized.

If the number of keyframes gets large, this minimization
can no longer be performed under realtime conditions (the
number of free parameters is 3N − 3, where N is the
number of keyframes). We therefore optimize only on a
subgraph of the map. This subgraph is built by collecting
all keyframes, which can be reached from the node of the
new keyframe by traversing no more than three edges. We
optimize the error function above now only with respect
to the parameters, which belong to the keyframe contained
in this subgraph. Of course, if a cycle had to be closed,
we would have to optimize over all keyframes.

VIII. RESULTS

The results we present now (and also the example in
section 6) were performed without using odometry. This
should demonstrate the robustness of the approach. Of
course, as Thrun already noted in [15], this is only possible
as long as any 2D structure is present in the world.

The built map presented in fig. 2 was acquired by
driving the robot out of its lab, up the corridor, down
the corridor and then back into the lab.

So the situation requires both the extension of the
map and the localization with respect to the map. The
robot collected 28430 laser scans during a travel of 20
minutes, where it traversed approximately 83 meters. The
scans were taken with a SICK laser scanner covering
180 degree with an angular resolution of one degree. To
simulate a higher speed, only every fifth scan was used.
The simulated speed is then around 35 cm/s and the
number of scans per second is around 23. The map was
built using a combined strategy. The position tracker of
section 4 was applied to every scan, whereas we initialize
the parameters by extrapolating the result of the last time
step linearly. Every tenth scan, the procedure of section
VII was applied.

Fig. 2 shows the resulting map. Shown are the 33
keyframes, that the final map consisted of. A closer look



reveals also, that our scan match algorithm is tolerant
against small changes in the environment like opened
or closed doors. Processing all frames offline needs 58
seconds on a 1.4 GHz machine, that’s 97 scans per second.
More speed could perhaps be gained by porting our current
implementation from Java to a faster language.

IX. CONCLUSION AND FUTURE WORK

We have presented a new representation of range scans,
the Normal Distributions Transform (NDT). This trans-
form can be used to derive analytic expressions for match-
ing another scan. We also showed, how our scan matcher
could be incorporated for the problem of position tracking
and for the SLAM problem. The major advantages of our
method are:

• No explicit correspondences between points or fea-
tures have to established. Since this is the most error-
prone part in most approaches, we are more robust
without correspondences.

• All derivatives can be calculated analytically. This is
both fast and correct.

The question is of course: Can everything be modeled well
enough by local normal distributions?

Up to now, our tests were performed in indoor envi-
ronments, where this was never a problem. Further tests
in less structured environments, preferably outdoors, are
planned. We also intend to systematically compare the
radius of convergence of our method with the method of
Lu and Milios.
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