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Abstract: A difficulty with constrained nonlinear control is the minimization of the
cost function. With complex system representations such as fundamental models,
the required optimization algorithm may be complex to implement, setting its
parameters may be difficult and the calculation time may be long. To overcome
these problems, an innovative optimization algorithm is proposed. The quadratic
criterion is written as a function of approximate linear models which makes
possible the use of well known and easy to implement optimization techniques.
The properties of the algorithm are analyzed and an example illustrates its very
good performances.Copyright c© 2004 IFAC
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1. INTRODUCTION

For many nonlinear processes, linear controllers
can perform quite adequately. However, nonlinear
control can be justified when the plant is highly
nonlinear and subject to large and frequent dis-
turbances or when the operating points span a
wide range of nonlinear dynamics (Qin and Badg-
well, 1997). Nonlinear predictive control has to
be considered as a solution if safety and actuator
constraints are present, which is always the case
for real processes.

To describe the dynamic behavior of a process,
two possible ways are physical modeling and em-
pirical modeling, both having attractive charac-
teristics and drawbacks (Söderström and Stoica,
1988). Fundamental models are obtained in an
analytical way from basic physical laws while em-
pirical modeling is an experimental approach con-
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sisting in adjusting the parameters of an empirical
mathematical relation between the variables of
interest to fit the recorded data. The main draw-
back of physical models is that some processes
are so complex that it is almost impossible to
explain their behavior using only first principles.
Empirical models are much easier to obtain and
to use but their parameters do not have any
physical meaning and a priori information is al-
most completely neglected. Furthermore, unlike
fundamental models, they represent adequately
the process only for conditions (operating points,
types of inputs, etc.) similar to those found in the
recorded data. On the other hand, if the under-
lying assumptions of the fundamental models are
respected, they can mimic behaviours outside the
range of calibration and less data is required for
their development.

Because of their qualities, fundamental models
have been used for nonlinear model predictive
control. However, the considered plants are almost
always a single unit operation with a relatively



simple dynamic model (Henson, 1998). Writing
fundamental models is a difficult task but com-
mercial dynamic simulators are now available.
However, using commercial dynamic simulators
for nonlinear predictive control does not seem to
have been reported yet in the litterature (Henson,
1998). A main reason why complex fundamental
nonlinear models are not used to design predictive
control is certainly that the complexity of the on-
line solution of the nonlinear programming prob-
lem increases with the one of the model, hence
leading to computational and reliability difficul-
ties. Another reason why commercial simulators
are not used is probably the unavailability of the
model equations to the control designer (Henson,
1998).

In recent years, many research works have focused
on the nominal stability problem for nonlinear
model predictive control. Most proposed solutions
consist in insuring nominal stability by imposing
penalties or constraints on the terminal state of
the prediction horizon (Qin and Badgwell, 1997;
Mayne et al., 2000). These solutions are usually
computationally quite demanding. Fortunaltely,
algorithms to reduce the computational effort are
now appearing in the litterature (Fontes, 2001;
Magni et al., 2001). However, all main indus-
trial nonlinear model predictive controllers do not
use terminal state constraints of any kind (Qin
and Badgwell, 1997). They instead allow to set
the prediction horizon long enough to go beyond
the steady-state hence approximating the infinite
horizon solution, which leads to nominal stability
(Meadows et al., 1995).

The proposed scheme makes use of two internal
model control (IMC) structures, restricting its ap-
plication to plants that are stable in the operating
region. The first IMC acts as a disturbance esti-
mator. The second IMC structure is an innovative
way to optimize a static constrained nonlinear
problem (Desbiens and Shook, 2003) and it is
used to minimize the performance index at each
sampling time. The predictive control quadratic
criterion is not written as a function of nonlinear
models but it is instead based on approximate
linear models. Since the cost is then a function
of linear models, traditional techniques, such as
quadratic programming, can be used to find the
global optimum of that convex problem. Obvi-
ously, that minimum does not necessarily corre-
spond to an optimum of the nonlinear predictive
control problem. Therefore, a correction is cal-
culated by applying the solution to both linear
and nonlinear models and evaluating the differ-
ence between their two outputs, through an IMC
structure. The nonlinear plant models may be
complex and commercial fundamental simulators
could be used even if the equations are completely
unknown.

The proposed controller is presented in its sim-
plest form, without relying on terminal state con-

straints. This is still the norm in industry where
using a long enough prediction horizon seems to
lead to successful applications (Qin and Badgwell,
1997).

2. NONLINEAR PREDICTIVE CONTROL

2.1 Notation

The plant inputs and outputs at time t = k are
respectively u(k) ∈ <nu and yP (k) ∈ <ny (all
vectors in the paper are columns). The set points
are rP (k) ∈ <ny . The best possible plant model
MNy, possibly based on phenomenological rela-
tionships and therefore probably highly complex
and nonlinear, is described by

xNy(k + 1) = fy (xNy(k),u(k)) (1)

yN (k) = gy (xNy(k)) (2)

A simplified linear plant model is MLy, whose
dynamics are given by

xLy(k + 1) = AyxLy(k) + Byu(k) (3)

yL(k) = CyxLy(k) (4)

Other states or secondary outputs of the plant
are denoted wP (k) ∈ <nw and tP (k) ∈ <nt .
Again these signals can be predicted using either
nonlinear (MNw, MNt) or simpler linear models
(MLw, MLt)

xNw(k + 1) = fw (xNw(k),u(k)) (5)

wN (k) = gw (xNw(k)) (6)

xNt(k + 1) = ft (xNt(k),u(k)) (7)

tN (k) = gt (xNt(k)) (8)

xLw(k + 1) = AwxLw(k) + Bwu(k) (9)

wL(k) = CwxLw(k) (10)

xLt(k + 1) = AtxLt(k) + Btu(k) (11)

tL(k) = CtxLt(k) (12)

To represent the plant disturbances, the following
stochastic model MS is used

xS(k + 1) = ASxS(k) + BSξ(k) (13)

yS(k) = CSxS(k) + DSξ(k) (14)

where ξ(k) ∈ <ny is a zero mean random signal
and yS(k) ∈ <ny . The model MS usually con-
tains an integration to represent non-stationary



disturbances hence adding an integral action in
the proposed control scheme.

In the following, the notation Ŝ(1 : H) will refer
to the vector of predictions of the vector signal s
over a future horizon H

Ŝ(1 : H) = [ ŝT (k + 1/k) ŝT (k + 2/k)
. . . ŝT (k + H/k) ]T

(15)

The vector U(0 : H − 1) denotes the present and
future values of the plant inputs

U(0 : H − 1) = [ uT (k) uT (k + 1)
. . . uT (k + H − 1) ]T

(16)

A similar notation is also used for U ′(0 : H −
1), whose elements are defined by u′(k) =
Q(z−1)u(k) where usually Q(z−1) = I

[
1− z−1

]
.

The corresponding state-space representation is

xQ(k + 1) = AQxQ(k) + BQu(k) (17)

u′(k) = CQxQ(k) + DQu(k) (18)

2.2 Controller design

According to a receding horizon procedure, the
objective consists in minimizing at each sampling
time the following cost function

JN = 1
2 Ξ̂

T (1 : H)ΩΞ̂(1 : H)

+ 1
2U ′T (0 : H − 1)ΛU ′(0 : H − 1)

(19)

where Ξ̂(1 : H) = ŶN (1 : H) + ŶS(1 : H) −
R̂P (1 : H). The positive definite matrices Ω
and Λ are weights to make a trade off between
the control actions and the deviations to the set
points. The minimization of the cost function is
subject to a control horizon (Hc) constraint

u(k + H − 1) = u(k + H − 2) = . . .
= u(k + Hc − 1) (20)

and to constraints on wN and tN over the pre-
diction horizon H

ŴN (1 : H) < Wmax(1 : H) (21)

T̂N (1 : H) = Teq(1 : H) (22)

To achieve the above objective, a new predictive
control scheme is proposed. The control is calcu-
lated by repeating the following receding horizon
steps at every sampling time.

Step 1 : Measure the plant outputs yP (k).

Step 2 : The plant disturbance is estimated with a
first IMC structure: ŷS(k) = yP (k)−yN (k) where
yN (k) is calculated with (2). Using the stochas-
tic model (13) and (14), stochastic predictions
Ŷs(1 : H) can then be calculated as described in
Desbiens et al. (2000).
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Fig. 1. IMC-optimization

Step 3 : This step consists in minimizing the cost
function (19) with respects of constraints (20),
(21) and (22). The minimization is achieved by
simulating the system depicted in Figure 1 un-
til convergence. The subscript j represents the
simulation steps (which will be referred to as the
optimization steps) for the optimization at time k.
The cost function appearing in Figure 1 is defined
as follows

JL j = 1
2ÊT (1 : H)jΩÊ(1 : H)j

+ 1
2U ′T (0 : H − 1)jΛU ′(0 : H − 1)j

(23)

where Ê(1 : H)j = ŶL(1 : H)j + ŶS(1 : H)j −
R̂c(1 : H)j . The minimization of the cost function
is subject to the control horizon constraint (20)
and to

ŴL(1 : H)j < Wmax−c(1 : H)j (24)

T̂L(1 : H)j = Teq−c(1 : H)j (25)

Note that the set point in JL j and the above
constraints are the ones corrected through the
IMC structure at each step j. As with any IMC
structure, the addition of a unitary gain low-pass
filter (LPF) increases the stability but slows down
the convergence. The cost JL j is not function of
the nonlinear models MNy, NNw and MNt. They
only need to be simulated using Uf (0 : H−1)j as
a sequence of inputs to generate the predictions
ŶN (1 : H)j , ŴN (1 : H)j and T̂N (1 : H)j .
Those calculations are represented by the static
operators or deterministic predictors HNy, HNw

and HNt in Figure 1. Linear models MLy, NLw

and MLt are also simulated in a similar way, rep-
resented by the operators HLy, HLw and HLt.
When calculating the outputs of the six mod-
els for the sequence of inputs Uf (0 : H − 1)j ,
the initial conditions are set to xNy(k), xLy(k),
xNw(k), xLw(k), xNt(k), xLt(k) at every new
step j. The quadratic objective JL j is based on
the linear models which greatly facilitates its min-
imization. An analytical solution even exists if the
control horizon is the only constraint. If the con-
straints (21) and (22) are also taken into account,
quadratic programming (Maciejowski, 2002) or



alternative methods (Kouvaritakis and Cannon,
2002) exist to solve the constrained minimization.
Once Figure 1 has converged (j = jend), apply
u(k) = uf (k)jend

to the plant and reset j = 1.

Step 4 : Update the state vectors using (1), (3),
(5), (7), (9), (11), (13) and (17). Go back to Step
1 at the next sampling time (k = k + 1).

In practice, during step 3, the simulation can be
stopped if

‖Uf (0:Hc−1)j −Uf (0:Hc−1)j−1‖2 < η
√

nuHc (26)

where η > 0. The parameter η is therefore the
desired precision for the elements of the solution,
equivalent to the termination tolerance for usual
optimization algorithms. To accelerate the con-
vergence, before starting simulating Figure 1 at
time t = k, some variables should be initialized
equal to the values they had at the steady-state
(j = jend) of the preceding sampling time (k− 1).
This is the case for the initial state of the low-pass
filter and for R̂c(1 : H)1, Wmax−c(1 : H)1 and
Teq−c(1 : H)1.

2.3 IMC-optimization properties

Constraints on the manipulated variables and
constraints such as (21) and (22) are often nec-
essary in practice because of actuators, opera-
tion and safety limits. Even in presence of mis-
matches between nonlinear and linear models, it
is obvious that constraints on u could be added
and would be respected with the proposed algo-
rithm. Constraints (21) and (22) will also be re-
spected because of the corrections brought by the
IMC structure, as demonstrated in Desbiens and
Shook (2003). Since the equality constraints are
respected, terminal state constraints could then
be implemented with the proposed controller.

Because of the nonlinearities, establishing the con-
vergence conditions when simulating Figure 1 is a
difficult topic. Since the constraints (21) and (22)
are respected, it will be assumed that the control
horizon is the only constraint. Figure 1 is an IMC
structure and therefore the first stability condition
is that ŶL(1 : H)j is bounded if there is no
feedback. In terms of usual IMC, and referring
to the labels of Figure 1, the ”controller” K must
stabilize the ”model” HNy in open-loop. This is
achieved by correctly selecting the predictive con-
trol parameters (a long enough prediction horizon,
etc.).

The second condition is to preserve the stability
when ŶN (1 : H)j− ŶL(1 : H)j is fed back. A tool
to analyze the stability of discrete multivariable
nonlinear systems is the Tsypkin criterion, which
is the discrete version of the Popov criterion used
for analyzing continuous nonlinear systems. Even
if HLy and HNy can be seen as static operators
acting on Uf (0 : H − 1)j to respectively generate

ŶL(1 : H)j and ŶN (1 : H)j , structural restric-
tions of even the more recent results (Kapila and
Haddad, 1996; Park and Kim, 1998; Larsen and
Kokotović, 2001) make impossible the stability
analysis of Figure 1. Indeed, to apply the Tsypkin
criterion and its extensions, it is required to know
the nonlinearities sector bounds which is difficult
in practice when HNy consists of phenomenolog-
ical equations (which is the ultimate goal). But
even worse, HNy must be diagonal.

Fortunately, it is known that increasing ρ eventu-
ally makes the IMC structure stable for linear sys-
tems (Morari, 1987) if both HLy and HNy have
the same ’sign’, i.e. if detHLy/detHNy > 0. The-
orem 6.7 in Skogestad and Postlethwaite (1996)
also confirms that property for any controller with
integral action in all channel (which is the case
for Figure 1). The parameter ρ of the proposed
IMC-optimization is therefore similar to the step
length for usual optimization algorithms: a larger
value makes it more robust but slows down the
convergence.

Even if the IMC-optimization converges, is the
steady-state solution optimal? For an easier anal-
ysis and understanding, it will be again assumed
that the control horizon is the only constraint and
that MNy is linear. As it will be illustrated by
the simulation example, the conclusions drawn for
linear systems are similar for nonlinear systems.

Theorem 1. (Optimality). If MNy is linear and
nuHc ≤ nyH, the IMC-optimization solution (for
the weights Λ and ΩIMC) corresponds to the
optimal solution (for the weights Λ and Ω), if
ΩIMC is adequately selected.

Proof. In the linear case with a control horizon
constraint, the optimal solution can analytically
be found. The solution provided by simulating
Figure 1 until convergence can also be easily
calculated. It can then be demonstrated that both
solutions become identical if ΩIMC is correctly
choosen - see Desbiens and Shook (2003) for more
details. �

In practice, the limitation nuHc ≤ nyH is not
restrictive since usually nu ≈ ny and Hc << H.
Also, the difference in the weight on the deviations
is not critical since it must often be fine tuned
by trials and errors. The important point is that
ΩIMC has the expected effect on U(0 : Hc − 1)
(but not with the same magnitude as a direct
optimization of the nonlinear problem).

If MNy is linear and Λ = 0, it could also be
shown that the optimal solution and the IMC-
optimization solution are identical if MNy differs
from MLy only by its static gain or if nyH =
nuHc.

The example presented in Sections 3, dealing with
a nonlinear system, illustrates that when Λ = 0,
a direct minimization of (19) and the method



proposed in this paper both lead to very similar
results. Other examples confirming that similarity
are detailed in Desbiens and Shook (2003) and
Pomerleau et al. (2003a).

Setting Λ 6= 0 with nonlinear systems is simi-
lar to what was concluded with linear systems:
the weight Λ for the proposed method has the
expected effect on the manipulated variables but
not with the same magnitude as with a direct opti-
mization based on the nonlinear model. However,
selecting Λ = 0 is not limitative because a similar
smoothing can be obtained by low-pass filtering
the set points (tracking tuning) and by adding
high-pass filters to MS (regulation tuning). This
is even recommended since it allows independent
tunings for tracking and regulation, which is not
possible to achieve with Λ, while leading to a
solution close to the true optimum.

3. SIMULATION EXAMPLE

The plant to be controlled is a pellet cooling phe-
nomenological simulator described in Pomerleau
et al. (2003b). It simulates the cooling zone of an
induration furnace used for the concentration and
agglomeration of iron ore oxide pellets. The two
manipulated variables are the shutter positions
for two fans forcing the air circulation through
the moving bed of pellets (one above and one
below). The gas temperature and pressure above
the pellet bed are the controlled variables. The
simulator is based on energy balance equations
for the pellets and the gas. The pressure drop
in the bed is calculated with the Ergun’s model.
The fans characteristics, the pressure drops in
the shutters and the pressure loss in the outlet
resistance are explained by nonlinear empirical
relationships. The linear model was obtained by
applying a 1 % step to each manipulated variable
and by fitting first- or second-order models for
each input-output transfer function.

The sampling period is 10 seconds. The initial
operating points are u1 = 75 %, u2 = 75 %,
y1 = −105.401 Pa and y2 = 1344.626 K. The
horizons are H = 25 and Hc = 1. To give
each output approximately the same weight in the
cost function, the following are selected: Λ = 0
and Ω = diag

(
1, 104, 1, 104, . . . , 1, 104

)
. The

settings for the nonlinear controller based on the
IMC-optimization (IMNLPC) are ρ = 0.6 and
η = 1/6. The stochastic model is

yS(k) =
[
1− 0.8z−1

1− z−1
I

]
ξ(k) (27)

The nonlinear model MNy is identical to the plant.
The set points are 144.599 Pa and 1349.626 K.
Figures 2 and 3 compare IMNLPC and a nonlinear
predictive controller which directly minimizes (19)
(NLPC). IMNLPC uses the same optimization

routine (fmincon from Matlab) as NLPC to min-
imize (23) even if an analytical solution exists.
Both approaches lead to vey similar results but
IMNLPC requires a smaller number of iterations
at each sampling period (8 to 45 times smaller).
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4. CONCLUSION

A constrained nonlinear predictive controller is
presented. A simulation example illustrates its
very good performances in terms of optimality and
rate of convergence.

The novelty of the proposed scheme lies in the
minimization of the cost function at each sampling
period. The optimization is seen and solved as
a control problem by itself, showing a duality
between optimization and control (Desbiens and
Shook, 2003). The criterion is written as a func-
tion of linear transfer functions approximating the
plant nonlinear models. The model mismatches
are compensated with an IMC structure allowing
to find a solution very close to the optimal spe-
cially when Λ = 0 while respecting the constraints
(filters can be used to obtain a similar effect of
having Λ 6= 0).



The main advantages of using the proposed IMC-
optimization to calculate the solution at each
sampling time are:

• Use of a simple optimization algorithm: Since
the quadratic criterion is a function of linear
models, its minimum can be found simply
using quadratic programming. An analytical
solution even exists if the control horizon is
the only constraint.

• Easy to implement: Because of the preced-
ing point, the IMC-optimization is easier
to implement in an industrial environment
than complex optimization algorithms. In-
deed, commercial and simple optimization
routines can be used. In Desbiens and Shook
(2003), a commercial routine written in C
was used to optimize a static nonlinear
phenomenological simulator. Divergence oc-
curred frequently when directly solving the
nonlinear problem, which has never been the
case with the IMC-optimization (using the
same commercial routine).

• Easy to tune: Because of the simplicity of the
model appearing in the cost function, the de-
fault parameters of the optimization routine
are usually adequate. The only parameters to
tune are η and ρ, both with clear meanings.
The proposed algorithm seems less sensitive
to the optimization tuning parameters than
a direct nonlinear optimization.

• Fast convergence (short calculation time): As
illustrated by the example (other examples
can be found in Desbiens and Shook (2003)
and Pomerleau et al. (2003a)), the IMC-
optimization usually converges much faster
than a direct nonlinear optimization and
leads to a similar final cost. This would also
be the case even if the nonlinear optimiza-
tion was initialized with the solution found
with the linear model (Desbiens and Shook,
2003). It seems that the difference of con-
vergence rate becomes even larger for higher
dimension problems. The convergence will
slow down if the linear models become sig-
nificantly different from the nonlinear mod-
els (for instance, when controlling at various
operating points). It is then recommended
to switch between different linear models.
Unlike most multi-model techniques, there is
no need to weight in any way the contribution
of the various linear models.
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