
A Truthful Mechanism for Value-Based
Scheduling in Cloud Computing

Navendu Jain1, Ishai Menache1, Joseph (Seffi) Naor2?†, and Jonathan Yaniv2†

1 Extreme Computing Group, Microsoft Research, Redmond, WA
2 Computer Science Department, Technion, Haifa, Israel

Abstract. We introduce a novel pricing and resource allocation ap-
proach for batch jobs on cloud systems. In our economic model, users
submit jobs with a value function that specifies willingness to pay as
a function of job due dates. The cloud provider in response allocates a
subset of these jobs, taking into advantage the flexibility of allocating
resources to jobs in the cloud environment. Focusing on social-welfare as
the system objective (especially relevant for private or in-house clouds),
we construct a resource allocation algorithm which provides a small ap-
proximation factor that approaches 2 as the number of servers increases.
An appealing property of our scheme is that jobs are allocated non-
preemptively, i.e., jobs run in one shot without interruption. This prop-
erty has practical significance, as it avoids significant network and stor-
age resources for checkpointing. Based on this algorithm, we then design
an efficient truthful-in-expectation mechanism, which significantly im-
proves the running complexity of black-box reduction mechanisms that
can be applied to the problem, thereby facilitating its implementation in
real systems.

1 Introduction

Cloud computing offers easily accessible computing resources of variable size and
capabilities. This paradigm allows applications to rent computing resources and
services on-demand, benefiting from dynamic allocation and the economy of scale
of large data centers. Cloud computing providers, such as Microsoft, Amazon
and Google, are offering cloud hosting of user applications under a utility pricing
model. The most common purchasing options are pay-as-you-go (or on-demand)
schemes, in which users pay per-unit resource (e.g., a virtual machine) per-unit
time (e.g., per hour). The advantage of this pricing approach is in its simplicity,
in the sense that users pay for the resources they get. However, such an approach
suffers from two shortcomings. First, the user pays for computation as if it were
a tangible commodity, rather than paying for desired performance. To exemplify
this point, consider a finance firm which has to process the daily stock exchange
data with a deadline of an hour before the next trading day. Such a firm does

? Supported in part by the Google Inter-university center for Elec-
tronic Markets and Auctions, and by ISF grants 1366/07 and 954/11.
† Part of this work was done while visiting Microsoft Research.

not care about allocation of servers over time as long as the job is finished by
its due date. At the same time, the cloud can deliver higher value to users by
knowing user-centric valuation for the limited resources being contended for.
This form of value-based scheduling, however, is not supported by pay-as-you-
go pricing. Second, current pricing schemes lack a market feedback signal that
prevents users from submitting unbounded amounts of work. Thus, users are not
incentivized to respond to variation in resource demand and supply.

In this paper, we propose a novel pricing model for cloud environments, which
focuses on quality rather than quantity. Specifically, we incorporate the signifi-
cance of the completion time of a job, rather than the exact number of servers
that the job gets at any given time. In our economic model, customers specify
the overall amount of resources (server or virtual machine hours) which they
require for their job, and how much they are willing to pay for these resources
as a function of due date. For example, a particular customer may submit a job
at 9am, specifying that she needs a total of 1000 server hours, and is willing
to pay $100 if she gets them by 5pm and $200 if she gets them by 2pm. This
framework is especially relevant for batch jobs (e.g., financial analytics, image
processing, search index updates) that are carried out until completion. Under
our scheme, the cloud determines the scheduling of resources according to the
submitted jobs, the users’ willingness to pay and its own capacity constraints.
This entire approach raises fundamental issues in mechanism design, as users
may try to game the system by reporting false values and potentially increasing
their utility. Hence, any algorithmic solution should incentivize users to report
their true values (or willingness to pay) for the different job due dates.

Pricing in shared computing systems such as cloud computing can have di-
verse objectives, such as maximizing profits or optimizing system-related metrics
(e.g., delay or throughput). We focus in this work on maximizing the social wel-
fare, i.e., the sum of users’ values. This objective is especially relevant for private
or in-house clouds, such as a government cloud, or enterprize computing clusters.

Our results. We design an efficient truthful-in-expectation mechanism for a
new scheduling problem, called the Bounded Flexible Scheduling (BFS) problem,
which is directly motivated by the cloud computing paradigm. A cloud containing
C servers receives a set of job requests with heterogeneous demand and values per
deadline (or due date), where the objective is to maximize the social welfare, i.e.,
the sum of the values of the scheduled jobs. The scheduling of a job is flexible,
i.e., it can be allocated a different number of servers per time unit and in a
possibly preemptive (non-contiguous) manner, under parallelism thresholds. The
parallelism threshold represents the job’s limitations on parallelized execution.
For every job j, we denote by kj the maximum number of servers that can be
allocated to job j in any given time unit. The maximal parallelism thresholds
across jobs, denoted by k, is assumed to be much smaller than the cloud capacity
C, as typical in practical settings.

No approximation algorithm is known for the BFS problem. When relaxing
the parallelism threshold constraint, our model coincides with the problem of
maximizing the profit of preemptively scheduling jobs on a single server. Lawler

[9] gives an optimal solution in pseudo-polynomial time via dynamic program-
ming to this problem, implying also an FPTAS for it. However, his algorithm
cannot be extended to the case where jobs have parallelization limits.

Our first result is an LP-based approximation algorithm for BFS that gives

an approximation factor of α ,
(

1 + C
C−k

)
(1 + ε) to the optimal social welfare

for every ε > 0. With the gap between k and C being large, the approximation
factor approaches 2. The running time of the algorithm, apart from solving the
linear program, is polynomial in the number of jobs, the number of time slots and
1
ε . The design of the algorithm proceeds through several steps. We first consider
the natural LP formulation for the BFS problem. Since this LP has a very
large integrality gap, we strengthen it by incorporating additional constraints
that decrease the this gap. We proceed by defining a reallocation algorithm that
converts any solution of the LP to a value-equivalent canonical form, in which the
number of servers allocated per job does not decrease over the execution period
of the job. Our approximation algorithm then decomposes the optimal solution
in canonical form to a relatively small number of feasible BFS solutions, with
their average social welfare being an α-approximation (thus, at least one of them
is an α-approximation). An appealing property of our scheme is that jobs are
allocated non-preemptively, i.e., jobs run in one shot without interruption. This
property has practical significance, as it avoids significant network and storage
resources for checkpointing the intermediate state of jobs that are distributed
across multiple servers running in parallel.

The approximation algorithm that we develop is essential for constructing an
efficient truthful-in-expectation mechanism that preserves the α-approximation.
To obtain this result, we slightly modify the approximation algorithm to get
an exact decomposition of an optimal fractional solution. This decomposition is
then used to simulate (in expectation) a “fractional” VCG mechanism, which
is truthful. The main advantage of our mechanism is that the allocation rule
requires only a single execution of the approximation algorithm, whereas known
black-box reductions that can be applied invoke the approximation algorithm
many times, providing only a polynomial bound on the number of invocations. At
the end of the paper, we discuss the process of computing the charged payments.

Related Work. We compare our results to known work in algorithmic mecha-
nism design and scheduling. An extensive amount of work has been carried out
in these fields, starting with the seminal paper of Nisan and Ronen [10] (see also
[11] for a survey book). Of relevance to our work are papers which introduce
black-box schemes of turning approximation algorithms to incentive compat-
ible mechanisms, while maintaining the approximation ratio of the algorithm.
Specifically, Lavi and Swamy [7] show how to construct a truthful-in-expectation
mechanism for packing problems that are solved through LP-based approxima-
tion algorithms. Dughmi and Roughgarden [6] prove that packing problems that
have an FPTAS solution can be turned into a truthful-in-expectation mechanism
which is also an FPTAS. We note that there are several papers that combine
scheduling and mechanism design (e.g., [8,1]), mostly focusing on makespan min-
imization.

Scheduling has been a perpetual field of research in operations research and
computer science (see e.g., [5,3,4,12,9] and references therein). Of specific rele-
vance to our work are [4,12], which consider variations of the interval-scheduling
problem. These papers utilize a decomposition technique for their solutions,
which we extend to a more complex model in which the amount of resources
allocated to a job can change over time.

2 Definitions and Notation

In the Bounded Flexible Scheduling (BFS) problem, a cloud provider is in
charge of a cloud containing a fixed number of C servers. The time axis is
divided into T time slots T = {1, 2, . . . T}. The cloud provider receives requests
from n clients, denoted by J = {1, 2, . . . n}, where each client has a job that
needs to be executed. We will often refer to a client either as a player or by the
job belonging to her. The cloud provider can choose to reject some of the job
requests, for instance if allocating other jobs increases its profit. In this model,
the cloud can gain profit only by fully completing a job.

Every job j is described by a tuple 〈Dj , kj , vj〉. The first parameter Dj , the
demand of job j, is the total amount of demand units required to complete the
job, where a demand unit corresponds to a single server being assigned to the
job for a single time slot. Parallel execution of a job is allowed, that is, the job
can be executed on several servers in parallel. In this model we assume that the
additional overhead due to parallelism is negligible. However, parallel execution
of a job is limited by a threshold kj , which is the maximal number of servers that
can be simultaneously assigned to job j in a single time slot. We assume that
k , maxj {kj} is substantially smaller than the total capacity C, i.e., k � C.

Let vj : T → R+,0 be the valuation function of job j. That is, vj (t) is the
value gained by the owner of job j if job j is completed at time t. The valuation
function vj is naturally assumed to be monotonically non-increasing in t. The
goal is to maximize the sum of values of the jobs that are scheduled by the cloud.
In this paper, two types of valuation functions will be of specific interest to us:
•Deadline Valuation Functions: Here, players have a deadline dj which they
need to meet. Formally, vj (t) is a step down function, which is equal to a con-
stant scalar vj until the deadline dj and 0 afterwards.
• General Valuation Functions: The functions vj(t) are arbitrary monoton-
ically non-increasing functions.

For simplicity of notation, when discussing the case of general valuation func-
tions, we will set dj = T for every player. Define Tj = {t ∈ T : t ≤ dj} as the set
of time slots in which job j can be executed and Jt = {j ∈ J : t ≤ dj} as the
set of jobs that can be executed at time t.

A mapping yj : Tj → [0, kj] is an assignment of servers to job j per time
unit, which does not violate the parallelism threshold kj

3. A mapping which fully
executes job j is called an allocation. Formally, an allocation aj : Tj → [0, kj] is

3 For tractability, we assume that the assignment yj is a continuous decision variable.
In practice, non-integer allocations will have to be translated to integer ones, for
example by processor sharing within each time interval.

a mapping for job j with
∑
t aj (t) = Dj . Denote by Aj the set of allocations aj

which fully execute job j and let A =
⋃n
j=1Aj . Let s (yj) = min {t : yj (t) > 0}

and e (yj) = max {t : yj (t) > 0} denote the start and end times of a mapping yj ,
respectively. Specifically, for an allocation aj , e (aj) is the time in which job j is
completed when the job is allocated according to aj , and vj (e (aj)) is the value
gained by the owner of job j. We will often use vj (aj) instead of vj (e (aj)) to
shorten notations.

3 Approximation Algorithm for BFS

In this section we present an algorithm for BFS that approximates the social wel-
fare, i.e., the sum of values gained by the players. When discussing the approxi-
mation algorithm, we assume that players bid truthfully. In Section 4, we describe
a payment scheme that gives players an incentive to bid truthfully. We begin this
section by describing an LP relaxation for the case of deadline valuation func-
tions and continue by presenting a canonical solution form in which all mappings
are Monotonically Non Decreasing (MND) mappings, defined later. This result
is then generalized for general valuation functions (Section 3.2). Finally, we give
a decomposition algorithm (Section 3.3) which yields an α-approximation to the
optimal social welfare of BFS.

3.1 LP Relaxation of BFS with Deadline Valuation Functions

Linear Relaxation Consider the following relaxed linear program. Every vari-
able yj (t) for t ∈ Tj in (LP-D) denotes the number of servers assigned to j at
time t. We use yj to denote the mapping induced by the variables {yj (t)}t∈Tj
and xj as the completed fraction of job j.

(LP-D) max

n∑
j=1

vjxj

s.t.
∑
t∈Tj

yj (t) = Dj · xj ∀j ∈ J (1)

∑
j∈Jt

yj (t) ≤ C ∀t ∈ T (2)

0 ≤ yj (t) ≤ kjxj ∀j ∈ J , t ∈ Tj (3)

0 ≤ xj ≤ 1 ∀j ∈ J (4)

Constraints (1) and (2) are job demand and capacity constraints. Typically, the
parallelized execution constraints would take the form 0 ≤ yj (t) ≤ k. How-
ever, the integrality gap in this case can be as high as Ω (n). Intuitively, (3)
“prevents” us from getting bad mappings which do not correspond to feasible
allocations. That is, if we would have extended a mapping yj (disregarding ca-
pacity constraints) by dividing every entry in yj by xj , we would have exceeded

Reallocate(y)
1. While y contains non-MND mappings

1.1. Let j be a job generating a maximal(a, b)-violation according to �
1.2. ReallocationStep(y, j, a, b)

ReallocationStep(y, j, a, b)
1. Let j′ be a job such that yj′ (a) < yj′ (b)
2. Tmax = {t ∈ [a, b] : yj′ (t) = yj′ (b)}
3. δ = max {yj′ (t) : t ∈ [a, b] \ Tmax}
4. ∆ = min

{
yj(a)−yj(b)

1+|Tmax| ,
yj′ (b)−yj′ (a)

1+|Tmax| , yj′ (b)− δ
}

5. Reallocate as follows:
5.1. yj′ (t)← yj′ (t)−∆ for every t ∈ Tmax

5.2. yj′ (a)← yj′ (a) +∆ · |Tmax|
5.3. yj (a)← yj (a)−∆ · |Tmax|
5.4. yj (t)← yj (t) +∆ for every t ∈ Tmax

the parallelization threshold of job j. Before continuing, we mention that there
is a strong connection between the choice of (3) and the configuration LP for
the BFS problem. In fact, (3) can be viewed as an efficient way of implementing
the configuration LP. We leave the details to the full version of this paper.

MND Mappings and the Reallocation Algorithm We now present a
canonical solution form of solutions for (LP-D), in which all mappings are mono-
tonically non decreasing (defined next). This canonical form will allow us to con-
struct an approximation algorithm for BFS with a good approximation factor.

Definition 1. A monotonically non-decreasing (MND) mapping (alloca-
tion) yj : Tj → [0, kj] is a mapping (allocation) which is monotonically non-
decreasing in the interval [s (yj) , e (yj)].

MND mappings propose implementation advantages, such as the allocation al-
gorithm being non-preemptive, as well as theoretical advantages which will allow
us to construct a good approximation algorithm for BFS. We first present the
main result of this subsection:

Theorem 1. There is a poly(n, T) time algorithm that transforms any feasible
solution y of (LP-D) to an equivalent solution that obtains the same social welfare
as y, in which all mappings are MND mappings.

This theorem is a result of the following reallocation algorithm. Let y be a
feasible solution to (LP-D). To simplify arguments, we add an additional “idle”
job which is allocated whenever there are free servers. This allows us to assume
without loss of generality that in every time slot, all C servers are in use. We
present a reallocation algorithm that transforms the mappings in y to MND
mappings. The reallocation algorithm will swap between assignments of jobs to
servers, without changing the completed fraction of every job (xj), such that
no completion time of a job will be delayed. Since the valuation functions are

deadline valuation functions, the social welfare of the resulting solution will be
equal to the social welfare matching y. Specifically, an optimal solution to (LP-
D) will remain optimal. We introduce some definitions and notations prior to
the description of the reallocation algorithm.

Definition 2. Job j generates an (a, b)-violation, a < b, if yj (a) > yj (b) > 0.
Violations are weakly ordered according to a binary relation � over T × T :

(a, b) � (a′, b′) ⇔ b < b′ or (b = b′) ∧ (a ≤ a′) (5)

Note that there can be several maximal pairs (a, b) according to �.

Given a solution y to (LP-D), our goal is to eliminate all (a, b)-violations
in y and consequently remain with only MND mappings, keeping y a feasible
solution to (LP-D). The reallocation algorithm works as follows: In every step
we try to eliminate one of the maximal (a, b)-violations, according to the order
induced by �. Let j be the job generating this maximal (a, b)-violation. The
main observation is that there must be some job j′ with yj′ (a) < yj′ (b), since
in every time slot all C servers are in use. We apply a reallocation step, which
tries to eliminate this violation by shifting workload of job j from a to later
time slots (b in particular), and by doing the opposite to j′. To be precise, we
increase yj in time slots in Tmax (line 2) by a value ∆ > 0 (line 4), and increase
yj′ (a) by the amount we decreased from other variables. We note that if we do
not decrease yj′ for all time slots in Tmax, we will generate (ã, b)-violations for
a < ã and therefore the reallocation algorithm may not terminate.

We choose ∆ such that after calling the reallocation step either: 1. yj (a) =
yj (b) 2. yj′ (a) = yj′ (b) 3. The size of Tmax increases. In the second case, if
the (a, b)-violation hasn’t been resolved, there must be a different job j′′ with
yj′′ (a) < yj′′ (b), and therefore we can call the reallocation step again. In the
third case, we simply expand Tmax and recalculate ∆. The reallocation algorithm
repeatedly applies the reallocation step, choosing the maximal (a, b)-violation
under �, until all mappings become MND mappings. The following lemma guar-
antees the correctness of the reallocation algorithm.

Lemma 1. Let y be a feasible solution of (LP-D) and let j be a job generat-
ing a maximal (a, b)-violation over �. Denote by ỹ the vector y after calling

ReallocationStep(y, j, a, b) and let
(
ã, b̃
)

be the maximal violation in ỹ. Then:

1. ỹ is a feasible solution of (LP-D).

2.
(
ã, b̃
)
� (a, b)

3. No new (a, b)-violations are added to ỹ.

The reallocation algorithm runs in poly (n, T) time. To show this, consider a
potential function which is the total number of violations. The reallocation al-
gorithm resolves at least one violation after at most nT calls to the reallocation
step. The maximal initial number of such violations is bounded by O

(
nT 2

)
and

a reallocation step can be efficiently implemented, proving the statement.

Fig. 1. Resolving an (a, b)-violation generated by j, with Tmax = {b, b− 1, b− 4}. X-
axis represents time.

3.2 Extension to General Valuation Functions

To extend the results presented so far to the case of general valuation functions,
we expand (LP-D) by splitting every player into T subplayers, one for each end
time, each associated with a deadline valuation function. Formally, every player
j will be substituted by T subplayers j1, j2, . . . jT , all with the same demand
and parallelization bound as j. For ease of notation, we denote by yej (t) the
variables in the linear program matching subplayer je, and use similar super-
script notations henceforth. For every subplayer je, we set vej = vj (e) and dej = e.
Apart from demand and capacity constraints, we include constraint (3) for every
subplayer je and add an additional set of constraints:∑

e∈T
xej ≤ 1 ∀j ∈ J (6)

This is indeed a relaxation of BFS (we can map an allocation aj in a BFS solution
to the subplayer je(aj)). The reallocation algorithm does not change the values
xej , thus it will not violate (6). We note that these results can be extended to
the case where valuation functions are non-monotone. From this point on, we
refer to (LP) as the relaxed linear program for general valuation functions, after
adding (6). When applying results to deadline valuation functions settings, every
player j will be viewed as a single subplayer jdj (making (6) redundant).

3.3 Decomposing an Optimal MND Fractional Solution

The approximation algorithm presented in this section constructs a set of feasible
solutions to BFS from a fractional optimal solution to (LP) given in the canonical
MND form. The algorithm is similar to the coloring algorithm used in [4,12] for
the weighted job interval scheduling problem. The first step of the algorithm
constructs a multiset S ⊂

⋃n
j=1Aj of allocations out of an optimal solution of

(LP) given in MND form and then divides the allocations in S into a set of
feasible solutions to BFS.

Coloring Algorithm(S)
1. Sort the MND allocations a ∈ S according to e (a) in descending order.
2. For every MND allocation a in this order

2.1 Color a in some color c such that c remains a feasible integral solution.

Step I: Construction of S. Let N be a large number to be determined later.
Consider a job j which is substituted by a set of subplayers j1, j2, . . . , jT (or a
single subplayer jdj for the case of deadline valuation functions). Let y be an
optimal solution of (LP) after applying the reallocation algorithm. For every

subplayer je, let aej be the allocation corresponding to yej , defined: aej (t) =
yej (t)

xe
j

for every t ∈ Tj . Note that aej is an allocation by the definition of xej and by (3).
We construct S as follows: Let x̄ej denote the value xej rounded up to the nearest

integer multiplication of 1
N . For every subplayer je, add Nx̄ej copies of aej to S.

Step II: Coloring Allocations. The coloring algorithm will color copies of MND
allocations in S such that any set of allocations with identical color will induce a
feasible integral solution to BFS. Let 1, 2, ..., COL denote the set of colors used
by the coloring algorithm, described above. We use a ∈ c to represent that an
allocation a is colored in color c. Given a color c, let c (t) =

∑
a∈c a (t) denote

the total load of MND allocations colored in c at time t. The following two
lemmas prove that the number of colors used is relatively small. This allows us
to construct an α-approximation algorithm in Theorem 2.

Lemma 2. Consider an iteration after some allocation a ∈ S is colored. Then,
for every color c, c (t) is monotonically non-decreasing in the range [1, e (a)].

Proof (Sketch). Since the sum of MND vectors is MND. Proof by induction. ut

Lemma 3. If COL = N ·
(

1 + C
C−k

)(
1 + nT

N

)
, then when the algorithm handles

an allocation a ∈ S there is always a free color c in which a can be colored.

Proof (Sketch). Consider the point when a copy of an allocation aj is colored.
Job j is associated with at most N

(
1 + nT

N

)
− 1 copies other than aj (since we

rounded up the values xej . For any color c that cannot be used due to capacity
constraints we must have: c (e (aj)) ≥ C − k. Thus, there is always a free color
in which aj can be colored. ut

Theorem 2. There is a poly
(
n, T, 1

ε

)
time approximation algorithm that given

an optimal solution to (LP) returns an α ,
(

1 + C
C−k

)
(1 + ε) approximation to

BFS for every ε > 0.

Proof (Sketch). Set N = nT
ε . The social welfare obtained by the best color out

of the COL colors is at least:
N ·

∑
je vj x̄

e
j

COL ≥ N ·OPT∗
COL = OPT∗

α ut

4 Truthfulness-in-Expectation

Up until now we have assumed that players report their true valuation functions
to the cloud provider and that prices are charged accordingly. However, in reality,
players may choose to untruthfully report a valuation function bj which differs
from their true valuation function vj if they may gain from it. In this section, we
construct an efficient mechanism that charges costs from players such that re-
porting their valuation function untruthfully cannot benefit them. Unlike known
black-box reductions for constructing such mechanisms, our construction calls
the approximation algorithm only once, significantly improving the complexity
of the mechanism.

We begin by introducing the common terminology used in mechanism design.
Every participating player chooses a type out of a known type space. In our
model, players choose a valuation function vj out of the set of monotonically
non-increasing valuation functions (or deadline valuation functions) to represent
its true type. Denote by Vj the set of types from which player j can choose and
let V = V1 × · · · × Vn. For a vector v, denote by v−j the vector v restricted to
entries of players other than j and denote V−j accordingly. Let O denote the set
of all possible outcomes of the mechanism and let vj (o) for o ∈ O represents the
value gained by player j under outcome o. A mechanism M = (f, p) consists of
an allocation rule f : V → O and a pricing rule pj : V → R for each player j.
Players report a bid type bj ∈ Vj to the mechanism, which can be different from
their true type vj . The mechanism, given a reported type vector b = (b1, . . . , bn)
computes an outcome o = f (b) and charges pj (b) from each player. Each player
strives to maximize its utility: uj (b) = vj (o) − pj (b), where oj in our model
is the allocation according to which job j is allocated, if at all. Mechanisms
such as this, where the valuation function does not consist of a single scalar are
called multi-parameter mechanisms. Our goal is to construct a multi-parameter
mechanism where players benefit by declaring their true type. Another desired
property is that players do not lose when truthfully reporting their values.

Definition 3. A deterministic mechanism is truthful if for any player j, re-
porting its true type maximizes uj (b). That is, given any bid bj ∈ Vj and any
v−j ∈ V−j, we have:

uj ((vj , v−j)) ≥ uj ((bj , v−j)) (7)

where vj ∈ Vj is the true type of player j. A randomized mechanism is truthful-
in-expectation if for any player j, reporting its true type maximizes the expected
value of uj (b). That is, (7) holds in expectation.

Definition 4. A mechanism is individually rational (IR) if uj (v) does not
receive negative values when player j bids truthfully, for every j and v−j ∈ V−j.

4.1 The Fractional VCG Mechanism

We start by giving a truthful, IR fractional mechanism that can return a frac-
tional allocation, that is, allocate fractions of jobs according to (LP):

1. Given reported types bj : T → R+,0, Solve (LP) and get an optimal solution
y∗. Let o ∈ O be the outcome matching y∗.

2. Charge pj (b) = hj (o−j)−
∑
i6=j bi (oi) from every player j, where hj is any

function independent of oj .

This is the well known VCG mechanism. Recall that (LP) maximizes the social
welfare, i.e., the sum of values gained by all players. Assuming all other players
act truthful, player j gains uj (b) = OPT ∗ − hj (o−j) by bidding truthfully and
therefore the mechanism is optimal, since deviating can only decrease

∑
i vi (o).

Note that by dividing both valuation functions and charged prices by some
constant, the fractional VCG mechanism remains truthful. This will be useful
later on. Individual rationality of the fractional VCG mechanism is obtained by
setting the functions hj according to Clarke’s pivot rule [11].

4.2 A New Efficient Truthful-in-Expectation Mechanism

Lavi and Swamy [7] give a black-box reduction for combinatorial auction packing
problems from constructing a truthful-in-expectation mechanism to finding an
approximation algorithm that verifies an integrality gap of the “natural” LP
for the problem. Their reduction finds an exact decomposition of the optimal
fractional solution (scaled down by some constant β) into a distribution over
feasible integer solutions. By sampling a solution out of this distribution and
charging payments according to the fractional VCG mechanism (scaled down
by β), they obtain truthfulness-in-expectation. The downside of the reduction
given in [7] is that the approximation algorithm A is used as a separation oracle
for an additional linear program used as part of the reduction, making their
construction inefficient. We follow along the lines of [7] in order to construct
a truthful-in-expectation mechanism for the BFS problem, and show how to
achieve the same results as [7] by calling our approximation algorithm once.

Recall that the algorithm from Theorem 2 constructs a set of feasible solu-
tions to BFS out of an optimal solution to LP. Ideally, we would have wanted to
replace the exact decomposition found by [7] with the output of our decomposi-
tion algorithm (by drawing one of the colors uniformly). However, this does not
work since our decomposition is not an exact one, because the values xej have
been rounded up to x̄ej prior to the construction of S.

To overcome this issue, we use a simple alternative technique to round the
entries in x to integer multiplications of 1

N . We construct a vector x̃ such that
E
[
x̃ej
]

= xej for every subplayer je, as follows: Assume that xej = q
N +r for q ∈ N

and 0 ≤ r < 1
N . Then, set x̃ej = q+1

N with probability N ·r and x̃ej = q
N otherwise.

Note that E
[
x̃ej
]

= xej as required. Now, we construct S out of x̃ and call the
coloring algorithm. By uniformly drawing one of the colors c and scheduling
jobs according to the allocations colored in c, we obtain an expected welfare

of: E
[

N
COL

∑
je vj x̃

e
j

]
= OPT∗

α . By charging fractional VCG prices, scaled down

by α, we obtain truthfulness-in-expectation. Notice that this mechanism is not
individually rational, since unallocated jobs may be charged. Lavi and Swamy

[7] solve this problem by showing how to modify the pricing rule so that the
mechanism will be individually rational. Notice that the number of colors used
by the coloring algorithm must always be COL, even though it is an upper bound
on the number of colors needed. Otherwise, players might benefit from reporting
their valuation functions untruthfully by effecting the number of solutions.

Theorem 3. There is a truthful-in-expectation, individually rational mechanism
for BFS that provides an expected α-approximation of the optimal social welfare.

Finally, we discuss the process of computing the payments pj (b). Note that
to directly calculate the payments charged by VCG, one must solve a linear pro-
gram for every player j. [2] describes an implicit pricing scheme that requires
only a single invocation of the approximation algorithm to construct both an
allocation rule and pricing rules of a truthful-in-expectation mechanism. This
result can be plugged into our mechanism, thus decreasing the number of calls
to our approximation algorithm to one. However, their scheme induces a mecha-
nism that is only individually rational in expectation (specifically, it may charge
negative prices) and causes a multiplicative (constant) loss to social welfare.

References

1. A. Archer and Éva Tardos. Truthful mechanisms for one-parameter agents. In
FOCS, pages 482–491, 2001.

2. M. Babaioff, R. Kleinberg, and A. Slivkins. Truthful mechanisms with implicit
payment computation. In EC, pages 43–52, 2010.

3. A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Schieber. A unified ap-
proach to approximating resource allocation and scheduling. JACM, 48:1069–1090,
2001.

4. A. Bar-Noy, S. Guha, J. Naor, and B. Schieber. Approximating the throughput of
multiple machines in real-time scheduling. SIAM Journal of Computing, 31(2):331–
352, 2001.

5. P. Brucker. Scheduling Algorithms. Springer, 4th edition, 2004.
6. S. Dughmi and T. Roughgarden. Black-box randomized reductions in algorithmic

mechanism design. In FOCS, pages 775–784, 2010.
7. R. Lavi and C. Swamy. Truthful and near-optimal mechanism design via linear

programming. In FOCS, pages 595–604, 2005.
8. R. Lavi and C. Swamy. Truthful mechanism design for multi-dimensional schedul-

ing via cycle monotonicity. In EC, 2007.
9. E. L. Lawler. A dynamic programming algorithm for preemptive scheduling of a

single machine to minimize the number of late jobs. Annals of Oper. Research,
26:125–133, 1991.

10. N. Nisan and A. Ronen. Algorithmic mechanism design. In STOC, 1999.
11. N. Nisan, T. Roughgarden, Éva Tardos, and V. V. Vazirani. Algorithmic game

theory. Cambridge University Press, 2007.
12. C. A. Phillips, R. N. Uma, and J. Wein. Off-line admission control for general

scheduling problems. In SODA, pages 879–888, 2000.

