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Abstract

We present a novel representation and method for detect-
ing and explaining anomalous activities in a video stream.
Drawing from natural language processing, we introduce a
representation of activities as bags of event n-grams, where
we analyze the global structural information of activities
using their local event statistics. We demonstrate how max-
imal cliques in an undirected edge-weighted graph of activ-
ities, can be used in an unsupervised manner, to discover
regular sub-classes of an activity class. Based on these dis-
covered sub-classes, we formulate a definition of anoma-
lous activities and present a way to detect them. Finally,
we characterize each discovered sub-class in terms of its
“most representative member,” and present an information-
theoretic method to explain the detected anomalies in a
human-interpretable form.

1. Introduction and Previous Work

Looking up the word anomaly in a dictionary, we find de-
scriptions such as “deviation from common or regular”. But
what is meant by regular? What do we mean by being dif-
ferent? And finally, what features of a particular anomaly
differentiate it from something regular? We address these
questions in the context of understanding everyday activi-
ties, and explaining anomalies in such situations.

Before the notion of regular can be established, the ques-
tion of activity representation must be addressed. In the
past, various approaches have been proposed to this end
(see e.g. [15], [8]). These representations presume some
prior knowledge regarding the activity structure, and do not
facilitate learning this structure in an unsupervised manner.
We propose considering activities as bags of event n-grams,
where we look simply at the local event statistics of an ac-
tivity. This transition from a fundamentally grammar-driven
or a state-based approach, to a scheme primarily concerned
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with local event statistics of a sequence is very similar to
recent developments in natural language processing [7].

Most of the previous attempts to tackle the problem of
anomaly detection have focused on model-based anomaly
recognition. These methods pre-define a particular type of
activity as being anomalous, model it in some way, and then
detect whether a new activity-instance is anomalous [3]. For
any reasonably unconstrained situation however, anomalies
are hard to define a priori. We argue that a better approach
towards anomaly detection is to first learn the model of
regular activities, and then detect an anomaly based on its
dissimilarity from regular. We therefore assert two proper-
ties of anomalous activity-instances: (1) they are dissimilar
from regular instances, and (2) they are rare, with low sim-
ilarity amongst other anomalous instances.

Although the idea of defining anomalies based on the
dissimilarity from regular has been explored in other fields
(e.g. network intrusion detection [6]), it has only recently
been applied to the field of activity recognition [17], [16].
Our work is novel from [17] and [16] in a few key ways.
Work done in [17] clusters activities into its constituent
sub-classes, labelling the clusters with low internal cohe-
siveness as anomalous clusters. This makes it infeasible
for online anomaly detection. We propose an incremental
method of classifying a new test activity-instance and de-
tecting whether it is a regular or an anomalous member of
its membership sub-class. Moreover [17] and [16] represent
activities as event-monograms. Because event-monograms
do not capture temporal information, we use higher order
n-grams to represent activities.

Finally, we propose an information-theoretic method that
explains how an anomalous activity is different from regular
activities in a human-interpretable form. Such explanations
can be useful for vision based surveillance systems.

We first demonstrate the competence of our method
by learning the activity class Package Delivery from
manually-annotated video data captured daily from 9 a.m.
to 5 p.m. for over one month, in the loading dock area of
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Figure 1. A Person pushes a Cart carrying Packages into the Back
Door of a Delivery Vehicle.

a retail bookstore. To show the robustness and accuracy of
our proposed framework, we performed noise analyses us-
ing different noise models. To move one step closer to us-
ing low-level vision, we automatically detected events from
manually labelled objects of interest, and compared the re-
sults to those of the manually annotated events.

2. Activity Representation

An active environment consists of animate and inanimate
objects interacting with each other. The interaction of these
objects in a particular manner constitutes an event. Looking
at an activity as a sequence of events, two important quan-
tities emerge, i.e. (1) Content - events that span the activity,
and (2) Order - the arrangement of the set of events.

This treatment of an activity is similar to the represen-
tation of a document as a set of words - also known as the
Vector Space Model (VSM) [12], in which a document is
represented as a vector of its word-counts, in the space of
possible words.

To use such a scheme, we must define a set of possi-
ble events (event vocabulary) that could take place in the
situation under consideration. Because the everyday activi-
ties that we are concerned with have humans as agents, we
therefore use a human-defined vocabulary of 61 events that
spans the space of the class Package Delivery. A key-
frame of a representative event is shown in Figure 1.

While VSM captures the content of a sequence in an
efficient way, it ignores its order. Because the word con-
tent in documents often implies causal structure, this is usu-
ally not a significant problem. Generally activities are not
fully defined by their event-content alone; however, there
are preferred or typical event-orderings. Therefore a model
for capturing the order of events is needed. To this end,
we consider histograms of higher order event n-grams (fig-
ure 2), where we represent an activity by a (sparse) vector
of counts of overlapping event n-grams in a (very) high di-
mensional space of possible event n-grams. It is evident that
higher values of n would capture the temporal order infor-
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Figure 2. Transformation of an example activity from sequence of
discrete events to histogram of event n-grams. n is shown to be
equal to 3. V is event vocabulary, S is event sequence, and T is
sequence of overlapping n-grams. Step-d shows the non-zero n-
gram counts of V.

mation of events more explicitly. However as n increases,
the dimensionality of the space grows exponentially.

3 Activity Similarity Metric

Sequence comparison is a well-studied problem and has
numerous applications in such fields as text retrieval, bio-
informatics etc. [2]. Our view of the similarity between a
pair of sequences consists of two factors, the core struc-
tural differences and differences based on the frequency of
occurrence of event n-grams.

The core structural differences relate to the distinct n-
grams that occurred in either one of the sequences in a
sequence-pair, but not in both. We believe that for such
differences, the the number of these mutually exclusive n-
grams is of fundamental interest. On the other hand, if a par-
ticular n-gram is inclusive in both the sequences, the only
discrimination that can be drawn between the sequence pair
is purely based on the frequency of the occurrence of that
n-gram.

Let A and B denote two sequences of events, and let
their corresponding histogram of n-grams be denoted by
H,4 and Hp. Let Y and Z be the sets of indices of n-grams
with counts greater than zero in H 4 and Hp respectively.
Let «; denote different n-grams. f(o;|Ha) and f(a;|Hp)
denote the counts of «; in sequences A and B respectively.
We define the similarity between two event sequences as:

sim(A4,B)=1-r 3 |f(ai|Ha) — floulHB)|
ey flailla) + f(ailHB)

(€]

where k = 1/(||Y|| + || Z]|) is the normalizing factor, and
|| - || computes the cardinality of a set. While our proposed
similarity metric conforms to: (1) the property of Identity of
indiscernibles, (2) is commutative, and (3) is positive semi-
definite, it does not however follow Cauchy-Schwartz in-
equality, making it a divergence rather than a true distance
metric.

4. Activity Sub-Class Discovery
It is argued that while facing a new piece of information,
humans first classify it into an existing class [11] [13], and



then compare it to the previous class members to understand
how it varies in relation to the general characteristics of the
membership class. Using this hypothesis as our motivation,
we represent an activity class by a set of mutually disjunc-
tive sub-classes, and then detect a new activity as a regular
or an anomalous member of its membership sub-class.

4.1 Sub-Class as Maximal Clique

Starting off with a set of K activity-instances, we consider
this activity-set as an undirected edge-weighted graph with
K nodes, each node representing a histogram of n-grams of
one of the K activity-instances. The weight of an edge is
the similarity between a pair of nodes as defined in § 3. We
formalize the problem of discovering sub-classes of activi-
ties as searching for edge-weighted maximal cliques' in the
graph of K activity-instances [1]. We proceed by finding
a maximal clique in the graph, removing that set of nodes
from the graph, and repeating this process iteratively with
the remaining set of nodes, until there remain no non-trivial
maximal cliques in the graph. The leftover nodes after the
removal of maximal cliques are dissimilar from most of
the (regular) nodes. Because we define anomalies as rare
sets of activities that are different from regular (more fre-
quent) activities, this implies that the leftover nodes satisfy
the condition for being different than regular. Moreover,
since the leftover nodes did not form their own maximal
clique(s), they satisfy the condition of rarity with low simi-
larity amongst each other.

4.2 Maximal Cliques using Dominant Sets

Finding maximal cliques in an edge-weighted undirected
graph is a classic graph theoretic problem. Because com-
binatorially searching for maximal cliques is computation-
ally hard, numerous approximations to the solution of this
problem have been proposed [10]. For our purposes, we
adopt the approximate approach of iteratively finding dom-
inant sets of maximally similar nodes in a graph (equiva-
lent to finding maximal cliques) as proposed in [9]. Be-
sides providing an efficient approximation to finding maxi-
mal cliques, the framework of dominant sets naturally pro-
vides a principled measure of the cohesiveness of a sub-
class as well as a measure of node participation in its mem-
bership sub-class. We now give an overview of dominant
sets showing how they can be used for our problem.

Let the data to be clustered be represented by an
undirected edge-weighted graph with no self-loops G =
(V,E,9) where V is the vertex set V ={1,2,.. K}, ECV
x V is the edge set, and ¥ : E — R™ is the positive weight
function. The weight on the edges of the graph are repre-

IRecall that a subset of nodes of a graph is a clique if all its nodes are
mutually adjacent; a maximal clique is is not contained in any larger clique,
whereas a maximum clique has largest cardinality.

sented by a corresponding K x K symmetric similarity ma-
trix A = (a;;) defined as:

P sim(i,j) if (i,5) € E
Y10 otherwise

(@)

stm is computed using our proposed notion of similarity as
described in §3. To quantize the cohesiveness of a node in
a cluster, let us define its “average weighted degree”. Let S
C V be a non-empty subset of vertices and ¢ € .S, such that,

awdegs (i) = ﬁz aij 3
j€s
Moreover, for j ¢S, we define ®g as:
@s5(i,7) = aij — awdegs (i) “
Intuitively, ® ¢ (i, ) measures the similarity between nodes
7 and 4, with respect to the average similarity between node
i and its neighbors in S. Note that ®g(i,j) can either be
positive or negative.
Now let us consider how weights are assigned to individ-
ual nodes®. Let S C V be a non-empty subset of vertices
and ¢ € S. The weight of ¢ w.r.t. S is given as:

ws(i) = { 12

jes\{i}

if ISl =1

@5\ (4} (4, Dwsy 143 (4) otherwise (5)

Moreover, the total weight of S is defined to be:

W(S) = ws(i) (6)

i€s

Intuitively, wg(7) gives a measure of the overall similarity
between vertex ¢ and the vertices of S\{i} with respect to
the overall similarity among the vertices in S\{i}. We are
now in a position to define dominant sets. A non-empty
sub-set of vertices SCV such that W (T") > 0 for any non-
empty T'CS, is said to be dominant if:

1. wg(i) > 0,V i€ S, ie. internal homogeneity
2. wg iy (i) <0VidgS, ie. external inhomogeneity.

Because solving Equation 5 combinatorially is infeasible,
we use a continuous optimization technique proposed in [9]
which applies replicator dynamics (for details please refer
to [9]).

5. Activity Classification and Detection

Given ||C|| discovered sub-classes, we are now interested
in finding if a new activity instance is regular or anomalous.
Unlike [17] we do not wish to re-analyze the entire data set
for every new activity instance. Therefore, we present an
incremental approach to classification and detection for a
new activity instance.

Each member j of a sub-class ¢ has some weight w.(7),
that indicates the participation of j in ¢. We compute the

Note that here the term weight is being used to describe both the edge-
weights and the node-weights. However, these two are different quantities.
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Figure 3. A schematic diagram of the camera setup at the loading
dock area with overlapping fields of view (FOV). The FOV of camera
1 is shown in blue while that of camera 2 is in red. The overlapping
area of the dock is shown in purple.

similarity between a new activity-instance 7 and previous
members of each sub-class by defining a function A.(7) as:

Ac(r) = Z sim(7, j)we(g) Vj€Ec (7)

Here w.(j) is the same as defined in equation 5. A, rep-
resents the average weighted similarity between the new
activity-instance 7 and any one of the discovered sub-
classes c. The selected membership sub-class c¢* can be
found as
c¢* = argmax Ac(T) (8)

Once the membership decisvii)n of a new test activity has
been made, we now focus our attention on deciding whether
the new class member is regular or anomalous. Intuitively
speaking, we want to decide the normality of a new instance
based on its closeness to the previous members of its mem-
bership sub-class. This is done with respect to the average
closeness between all the previous members of its member-
ship sub-class. Let us define a function I'(7) as:

D(r) = > @ (j, T)wex (5) ©

jecr

where @ in is defined by Equation 4. We define a new sub-
class member 7 as regular if T'(7) is greater than a particu-
lar threshold. The threshold on I'(7) is learned by mapping
all the anomalous activity instances detected in the training
activity-set to their closest sub-class (using Equation 7, 8),
and computing the value of I" for both regular and anoma-
lous activity instances. We can now observe the variation in
false acceptance rate (FAR) and true positives (HITS)
as a function I'. This gives a “Receiver Operating Curve”
(ROC). The area under this curve is indicative of the confi-
dence in our detection metric I'(7) [4]. Based on our toler-
ance for HITS and FAR we can now choose an appropriate
threshold.

6. Experiments & Results
6.1 Experimental Setup

To test our proposed algorithms on the activity class
Package Delivery, we collected video data at the loading

dock area of a retail bookstore. To visually span the area of
activities in the loading dock, we installed two cameras with
partially overlapping fields of view. A schematic diagram
with sample views from the two cameras is shown in Fig-
ure 3. Daily activities from 9a.m. to Sp.m., 5 days a week,
for over one month were recorded. Based on our observa-
tions of the activities taking place in that environment, we
constructed an event vocabulary of 61 events. Every pack-
age delivery activity has a known starting event, i.e. Deliv-
ery Vehicle Enters the Loading Dock and a known ending
event, i.e. Delivery Vehicle Leaves the Loading Dock. We
were able to collect 195 instances of package delivery ac-
tivities. Based on our vocabulary of 61 events, we manually
annotate these 195 activities. We randomly divided this set
into 150 activities to be used as training set, and 45 activities
as our testing set.

We chose the value of n for the n-grams to be equal
to 3. The reason for choosing n = 3 is that for any given
event, it encodes its past, present and future information.
From hereon we refer to n-grams as tri-grams. We con-
sider event-sequences generated by multiple persons in an
activity-instance, independently. Therefore, a multi-person
activity is represented by adding the individual event n-
gram histograms of each person involved.

6.2 Analysis of Discovered Sub-Classes

Of the 150 training activities, we found 7 sub-classes with
106 regular activities and 44 anomalous activities. The vi-
sual representation for the similarity matrices of the origi-
nal 150 activities and the arranged activities in 7 clusters is
shown in Figure 4. Analysis of the discovered sub-classes
reveals a strong structural similarity amongst the sub-class
members. A brief description of the discovered sub-classes
is given as follows:

e Sub-Class 1 - UPS® delivery-vehicles that picked up multiple pack-

ages using hand carts.

e Sub-Class 2 - Pickup trucks (mostly Fed Ex®) and vans that dropped
off a few packages without needing a hand cart.

e Sub-Class 3 - Delivery trucks that dropped off multiple packages,
using hand carts, that required multiple people.

e Sub-Class 4 - A mixture of car, van, and truck delivery vehicles that
dropped off one or two packages without needing a hand cart.

e Sub-Class 5 - Delivery-vehicles that picked up and dropped-off mul-
tiple packages using a motorized hand cart and multiple people.

e Sub-Class 6 - Van delivery-vehicles that dropped off one or two
packages without needing a hand cart.

e Sub-Class 7 - Delivery trucks that dropped off multiple packages
using hand carts.

6.3 Learning Threshold Using ROC

Using the 7 discovered sub-classes and the anomalous ac-
tivities, we first classified the anomalous activities into one
of the 7 sub-classes using Equations 7 and 8. Based on these
sub-class labels, we then computed I" defined in Equation 9
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for all 150 activities. The area under the obtained ROC was
0.94, which indicates a confidence of 94% in our detection
metric [4].

6.4 Analysis of Detected Anomalies

Analyzing the detected anomalous activities reveals the in-
teresting fact that there are essentially two kinds of activi-
ties that are being considered non-regular, (1) ones that are
truly alarming, where someone must be notified, and (2)
ones that are simply unusual delivery activities with respect
to the other regular activities. Key-frames for three of the
truly alarming anomalous activities are shown in Figure 5.
Figure 5-a shows a truck driving out without closing it’s
back door. Not shown in the key-frame is the sequence of
events where a loading-dock personnel runs after the de-
livery vehicle to tell the driver of his mistake. Figure 5-b
shows a delivery activity where a relatively excessive num-
ber of people unload the delivery vehicle. Usually only one
or two people unload a delivery vehicle, however as can be
seen from Figure 5-b, in this case there were five people
involved in the process of unloading. Finally, Figure 5-c
shows a person cleaning the dock floor which is very un-
usual.

It is interesting to see that our algorithm can detect the
alarming activities. On the other hand detection of unusual
activities means that the system has not seen enough in-
stances of the activities to start considering that group as
regular. Moreover, in an uncontrolled environment such as a
loading dock, variance between activities is high. It is there-
fore plausible to believe that as our training data starts span-
ning the space of all regular activities, the detected number
of unusual activities would reduce.

6.5 User Study For Detected Anomalies

To analyze how intuitive the detected anomalies are to hu-
mans, we performed a user test involving 7 users. First we
selected 8 regular activities for a subject so they could un-
derstand the notion of a regular activity in our environment.

a

Figure 5. Anomalous Activities - (a) shows a delivery vehicle leav-
ing the loading dock with its back door still open. (b) shows an
unusual number of people unloading a delivery vehicle. (c) shows a
person cleaning the loading dock floor.

We then selected 10 more activities, 5 of which were la-
belled as regular by our system while the rest of the 5 were
detected as anomalies. Each of the 7 users were shown these
10 activities and asked to label every one of them as a reg-
ular instance or an anomaly based on the regular activities
previously shown. Each of the 10 activities were given la-
bels based on what the majority agreed upon. 8 out of 10
activities labelled by the users, corresponded with the labels
of our system. The probability of our system choosing the
correct label 8 out of 10 times by chance is 4.4% 3. This
highlights the interesting fact that the anomalies detected
by our system fairly match the natural intuition of a human
observers.

6.6 Noise Sensitivity

The results presented thus far were generated using activi-
ties with hand-labelled events. However, using low-level vi-
sion sensors to detect these events will generate noise. This
invites the question as to how well would our system per-
form over noisy data. We now present noise analysis to
check the stability and robustness of our proposed frame-
work; allowing us to make some predictions about its per-
formance on data using low-level vision.

Given the discovered sub-classes and the learned de-
tection threshold using the training set of 150 activity-
instances, we add various types and amounts of noise to the
45 test sequences, and perform the following two tests:

1. Regular Classification Rate: what percent of activ-
ities classified as regular members in the 45 ground
truth test activities maintain their correct sub-class and
regular-membership labels in the face of noise.

2. Anomaly Detection Rate: what percent of 45 ground
truth test activities detected as anomalies still get de-
tected as anomalies in the face of noise.

We first synthetically generate different amounts of noise
using four types of noise models, Insertion Noise, Deletion
Noise, Substitution Noise and Swap Noise. We generated

3Given that the probability of correctly choosing the true label by sim-
ply guessing is 0.5, the binomial probability states that the chance of an 8
out of 10 success is C3°(0.5)8(0.5)2 ~ .0439
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Figure 6. Performance Analysis - Each graph shows system-
performance under synthetically generated noise using different
generative noise models. The X-axis represents the noise inter-
val where the amount of noise is inversely proportional to the noise
interval. The Y-axis represents the percentage of regular test ac-
tivities that remain regular members of the original sub-classes in
the face of noise. The horizontal line in all these graphs shows the
classification performance using automatically detected events as
described in § 6.7.

one noisy event-symbol using a particular noise model, any-
where within a window of a time-period for each activity in
the testing data set. For instance Insertion Noise of time
period 10 would insert one event-symbol between any two
consecutive event-symbols, every 10 symbols. The classifi-
cation performance of our system under such noise model is
shown in Figure 6. The system performs robustly in the face
of noise and degrades gracefully as the amount of noise in-
creases. Likewise, the anomaly detection capability of our
system in the face of synthetically generated noise is shown
in table 1. The reason for such high detection rate even with
large amount of synthetic noise is that it is unlikely that an
anomaly would transform into something regular when per-
turbed randomly.

6.7 Automatic Event Detection

To move one step closer towards using low-level vision, we
wrote a feature-labelling software that a user uses only to
label the various objects of interest in the scene such as
the doors of the loading dock, the delivery vehicles and its
doors, people, packages and carts. We assign each object
a unique ID during labelling. The ID numbers and object
locations are stored in an XML format on a per-frame ba-
sis. We also wrote event detectors that parsed the XML data
files to compute the distances between these objects for the
45 test activities. Based on the relative locations and veloc-
ities of these objects, the detectors automatically decided
when one of the 61 events took place.

The horizontal line in Figure 6 shows the Regular Clas-
sification Rate of our system over these automatically gen-
erated event sequences, i.e. 70.8%. The results for Anomaly
Detection Rate for the automatically generated event se-
quences is 90.48%.

| Noise Model | Percentage Correct |
Insertion Noise 100%
Deletion Noise 99%
Swap Noise 97%
Substitution Noise 100%

Table 1. The average detection rate of the system in the face of
noise.

7. Anomalous Activity Explanation

We now address the question of characterizing the anoma-
lous members. We first construct a model for the regular
members of a sub-class against which its anomalous mem-
bers could be compared [13]. We then find the most in-
formative features of our space in terms of discriminability
between the regular and the anomalous sub-class members.

7.1 Sub-Class Modelling

Because of the huge dimensionality of our feature space
and the availability of meager (and sparse) training data,
we resort to the idea of sub-class representation using class
prototype(s) (the exampler view [14]) to model the regular
members of a sub-class. We formulate this problem as find-
ing the member that is the “most representative” of the rest
of the sub-class members. Fining the best representative
member of a cluster in terms of its similarity to other cluster
members has been studied in other fields. For instance [5]
finds the most authoritative nodes in a cluster by iteratively
assigning authority weights to each node member. An ad-
vantage of using the dominant sets framework for discov-
ering constituent sub-class structure of an activity class is
that it naturally provides a principled measure of a node’s
representativeness of its membership sub-class, defined by
wg (1) in Equation 5. We propose using the member node of
a sub-class with maximum weight wg(4) as the representa-
tive model of the sub-class. This most representative node
is used to explain the anomalous members of the sub-class.

7.2 Explanatory Features

We now focus on the problem of finding the features
that can be used to explain an anomalous activity in a
maximally- informative manner. We are interested in fea-
tures of a sub-class with minimum entropy and substantive
frequency of occurrence. The entropy of a tri-gram indi-
cates the variation in its observed frequency, which indi-
cates the confidence in the prediction of its frequency. The
frequency of occurrence of a tri-gram suggests its participa-
tion in a sub-class. We want to analyze the extraneous and
the pertinent features in an activity that made it anomalous
with respect to the most explanatory features of the regu-
lar members of the membership sub-class. We now con-
struct our approach mathematically (a figurative illustration



is given in Figure 7).

Let «; denote a particular tri-gram ¢ for an activity, and
¢ denote any of of the ||C|| discovered sub-classes. If R
denotes the most representative member of ¢ as described
in §7.1, and 7 denotes a new anomalous sub-class member,
then we can define the difference between their counts for
o as:

D(ai) = fr(ow) = fr(on) (10)
where f(«;) denotes the count of a tri-gram «;. Let us de-
fine the distribution of the probability of occurrence of «;
in c as:

> fr(as)
kec
M

> 2 Jrlow)

i=1k€Ec
where M represents all the non-zero tri-grams in all the
members of sub-class c. Let us define multiset . as:

Xt = {fr(ci)lk € c} (12)

We can now define probability Q(x) of occurrence of a par-
ticular member = € ¢ for o; in c as:

Q(z):dJZ{ é if fla)) = = (13)

. otherwise
JjEC

Pe(oi) = an

where 1 is the normalization factor. Let us define Shan-
non’s Entropy of a tri-gram ¢ for a sub-class ¢ by H.(«;)
as:
He(ai) = Y Qe(2)In(Qe(x)) (14)
zEXé
We can now define the notion of predictability, PRD.(«;),
of the values of tri-gram «; of cluster c as:

He(ai)

M
> He(aq)

i=1

PRDc(a;) =1— (15)

It is evident from this definition, that «; with high entropy
H.(c;) would have high variability, and therefore would
have low predictability.

We define the explainability of a tri-gram «; € c that
was frequently and consistently present in the regular sub-
cluster as:

€ (i) = PRDc(ai) Pe(ai) (16)
Intuitively, & f indicates how much an «; is instrumental in
representing a sub-class c.

Similarly, we can define the explainability of o; € ¢ in

terms of how consistently was it absent in representing c.

&M (ai) = PRDe(0i) (PI"* (i) — Pe(w)) 17

where P"%*(«;) is the maximum probability of occurrence
of any «; in c.

The first term in both Equation 16 and 17 indicates how
consistent «; is in its frequency over the different members
of a cluster. The second term in Equation 16 and 17 dic-
tates how representative and non-representative «; is for ¢
respectively.

Illustration of Most Explanatory Features
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Figure 7. «; has low value of P, its entropy H. is low and there-
fore its predictability is high, while as has medium P, its entropy
H. is also low and its predictability is high. «; could be useful in
explaining the extraneous features in an anomalous activity, while
a4 could be useful in explaining the features that were deficient in
an anomaly.

Given an anomalous member of a sub-class, we can
now find the features that were frequently and consistently
present in the regular members of the sub-class, but were
deficient in the anomaly 7. To this end, we define the func-
tion DEFICIENT(T) as:

DEFICIENT(7) = arg max[¢X (a;) De(a)] (18)
Similarly, we can find the most explanatory features that
were consistently absent in the regular members of the

membership sub-class but were extraneous in the anomaly.
We define the function EXTRAN EOUS(7) as:

EXTRANEOUS(7) = arg min[€2 (a; ) De(cvi)] (19)

We can now explain anomalies based on these features that
were

e deficient from an anomaly but were frequently and
consistently present in the regular members

e extraneous in the anomaly but were consistently ab-
sent from the regular members of the sub-class.

7.3 Anomaly Explanation Results

Figure 8 shows the explanation generated by the system
for the three anomalous activities shown in Figure 5. The
anomaly shown in Figure 5-a was classified to a sub-class
where people frequently carry packages through the front
door of the building. There was only one person in this
anomaly who delivers the package through the side door.
This is evident by looking at the extraneous features of the
anomaly (Figure 8-b) where the tri-gram Person Full Handed
— Person Exits from Side Door of Building — Person Empty
Handed captures this difference. The second tri-gram of Fig-
ure 8-b,(Person Full Handed — Person Exits from Garage Back
Door — Person Full Handed) shows the fact that there was
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Figure 8. Anomaly Explanation - explanations generated by the
system for the three anomalies in Figure 5.
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another person who went out of the garage to tell the driver
of the delivery vehicle that his back door was still open.

The membership sub-class of anomaly in Figure 5-b has
people frequently carrying packages through the front door
of the building. In this anomaly, all of the workers go to
the side door of the building. Moreover, majority of events
in this anomaly were related to carts that is not one of the
general characteristic of its membership sub-class. This is
shown in Figure 8-d by the tri-grams Person Enters Back Door
of DV — Person Empty Handed — Person Pushes Cart from Back
Door of DV, and Person Empty Handed — Person Pushes Cart
from Back Door of DV — Cart Empty. Similarly Figure 8-e and
Figure 8-f explain how anomaly in Figure 5-c was different
from its membership sub-class.

8. Conclusions and Future Work

In this paper, we propose a novel representation for an activ-
ity as bags of event n-grams that captures the global struc-
ture of an activity using its local event statistics. Mak-
ing use of this representation, we show how activity sub-
classes can be discovered by exploiting the notion of max-
imal cliques in an edge-weighted graph. Using the discov-
ered sub-classes and detected anomalies, we show how to
learn the decision boundary between an anomalous and a
regular member of a sub-class. We present an incremental
method to classify and detect a new activity-instance with-
out re-analyzing the entire activity data-set. We present an
information-theoretic method of explaining how a new test
member is anomalous in a human-interpretable form.

In the future, we plan to use low-level vision as input
to our automatic event generator. We intend to explore the
idea of “soft n-grams” where different n-grams would be
weighted based on the time elapsed between the occurrence
of events of that n-gram. Finally, we also plan to capture

the quasi-dependence of multiple people in multi-person
activities.
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