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Slope reliability under incomplete probability information is a challenging problem. In this study, three
copula-based approaches are proposed to evaluate slope reliability under incomplete probability infor-
mation. The Nataf distribution and copula models for characterizing the bivariate distribution of shear
strength parameters are briefly introduced. Then, both global and local dispersion factors are defined
to characterize the dispersion in probability of slope failure. Two illustrative examples are presented
to demonstrate the validity of the proposed approaches. The results indicate that the probabilities of
slope failure associated with different copulas differ considerably. The commonly used Nataf distribution
or Gaussian copula produces only one of the various possible solutions of probability of slope failure. The
probability of slope failure under incomplete probability information exhibits large dispersion. Both glo-
bal and local dispersion factors increase with decreasing probability of slope failure, especially for small
coefficients of variation and strongly negative correlations underlying shear strength parameters. The
proposed three copula-based approaches can effectively reduce the dispersion in probability of slope fail-
ure and significantly improve the estimate of probability of slope failure. In comparison with the Nataf
distribution, the copula-based approaches result in a more reasonable estimate of slope reliability.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that the shear strength parameters [cohesion
(c) and tangent of friction angle (tan/)] are important parameters
for slope reliability analysis [6,12,5,20,25]. Furthermore, it is
widely accepted that c and tan/ are negatively correlated (e.g.,
[26,31,15]). To achieve a realistic evaluation of slope reliability,
the joint cumulative distribution function (CDF) or probability
density function (PDF) of the shear strength parameters should
be known. In geotechnical engineering practice, however, the joint
CDF or PDF is often unknown due to limited data from field test or
laboratory test. Based on these limited data, only the marginal
distributions and covariance underlying the shear strength param-
eters can be determined. It is concluded that the joint probability
distribution of the shear strength parameters based on these lim-
ited data cannot be determined uniquely [7,3,32].
Traditionally, the Nataf distribution is employed to construct
the joint probability distribution of correlated non-normal vari-
ables based on incomplete probability information that refers to
the case where only marginal distributions and covariance are
available (e.g., [8,24,22,16]). For instance, Li et al. [16] investigated
the rock slope reliability involving correlated non-normal variables
using Nataf distribution. Although the Nataf distribution provides a
convenient way for dealing with the correlated non-normal vari-
ables, it essentially adopts a Gaussian copula for modeling the
dependence structure among variables [22,23,17–19]. In other
words, there is an implicit assumption that the Gaussian copula
is adequate for characterizing the dependence structure.
Unfortunately, this commonly used assumption is not validated
in a rigorous way for most applications. Furthermore, the Nataf dis-
tribution produces only one of the various possible solutions of
probability of slope failure and such a probability may be biased
towards the unconservative side [32]. Hence, it is of practical inter-
est to question if there are any other models that can be used to
characterize the dependence structure between the two shear
strength parameters and provide a relatively reasonable estimate
of probability of slope failure.
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Recently, the copula theory (e.g., [29]) has found wide applica-
tions in constructing the joint probability distribution of multivar-
iate data. The copula theory provides a general and flexible way for
modeling nonlinear dependence among multivariate data in isola-
tion from their marginal probability distributions [11,33,34,14,39].
In recent years, the copula theory has been applied to geotechnical
engineering. For example, Uzielli and Mayne [35] investigated the
dependence among load-displacement model parameters underly-
ing vertically loaded shallow footings on sands using copula. Tang
et al. [32] investigated the impact of copula selection on slope and
retaining wall reliability. Wu [36] employed the Gaussian and
Frank copulas to model the trivariate distribution among cohesion,
friction angle and unit weight of soils. Wu [37] investigated the
series system reliability of a retaining wall using a copula-based
approach. Tang et al. [32] concluded that the probabilities of slope
failure associated with different copulas differ considerably.
Therefore, a robust evaluation of slope reliability under incomplete
probability information needs to be further studied. However, this
problem is difficult due to the following reasons. First, since the
slope reliability under incomplete probability information cannot
be determined uniquely, it is hard to make a quantitative estimate
of the slope reliability in this situation. Second, to achieve a robust
estimate of slope reliability, the dispersion in probability of slope
failure should be reduced as low as possible. Unfortunately, it is
still a challenging problem because the probability of slope failure
under incomplete information varies over a wide range.

This paper aims to propose three copula-based approaches to
evaluate slope reliability in the presence of incomplete probability
information. To achieve this goal, this article is organized as follows.
In Section 2, the Nataf and copula models for constructing the bivar-
iate distribution of the shear strength parameters are first intro-
duced. Then, a global and a local dispersion factors to represent
the dispersion in probability of slope failure are defined in Section 3.
In Section 4, three copula-based approaches are developed to pro-
vide a robust estimate of probability of slope failure under incom-
plete probability information. Two illustrative examples, namely
an infinite slope and the Jinping slope in China are presented in Sec-
tion 5 to demonstrate the validity of the proposed approaches.

2. Bivariate distribution of shear strength parameters

2.1. The Nataf distribution for modeling bivariate distribution of shear
strength parameters

As stated in the introduction, when the information on shear
strength parameters is available only in terms of marginal distribu-
tions and covariance, the Nataf model is usually employed to con-
struct the joint probability distribution of shear strength
parameters for slope reliability analysis (e.g., [16,31]). To facilitate
the understanding of the proposed approaches in the subsequent
sections, the Nataf model is first introduced as below.

Let the random vector X = (X1, X2) denote the shear strength
parameters (c, tan/). Assume that the marginal CDFs of X1 and
X2, and the correlation coefficient, q, between X1 and X2 are known.
Then, the standard normal random vector Z = (Z1, Z2) can be
obtained using the following transformations:

Zi ¼ U�1½FiðXiÞ�; i ¼ 1; 2 ð1Þ

where U�1(.) is the inverse standard normal CDF. Fi(Xi) is the mar-
ginal CDF of Xi. Following Liu and Der Kiureghian [24], a joint prob-
ability distribution is assigned to X = (X1, X2) such that Z = (Z1, Z2)
are jointly normal. Using the rules of probability transformation,
the joint PDF of X1 and X2, f (x1, x2), is derived as

f ðx1; x2Þ ¼
f 1ðx1Þf 2ðx2Þ
uðz1Þuðz2Þ

u2ðz1; z2; q0Þ ð2Þ
where f1(x1) and f2(x2) are the marginal PDFs of X1 and X2, respec-
tively; u(z1) and u(z2) are the standard normal PDFs of Z1 and Z2,
respectively; u2(z1, z2, q0) is the bivariate normal PDF with zero
means, unit standard deviations and correlation coefficient q0.
Generally, this distribution model is referred to as the Nataf
distribution. The Pearson correlation coefficient q0 is expressed in
terms of q through the following integral relation:

q ¼
Z 1

�1

Z 1

�1

x1 � l1

r1

� �
x2 � l2

r2

� �
f 1ðx1Þf 2ðx2Þ
uðz1Þuðz2Þ

u2ðz1; z2; q0Þdx1dx2

ð3Þ

where l1 and l2 are the means of X1 and X2, respectively; r1 and r2

are the standard deviations of X1 and X2, respectively. For the given
marginal distributions and correlation coefficient q of X1 and X2, the
above equation can be solved iteratively to find q0. The Nataf distri-
bution can be easily generalized to N-dimensions. This is one reason
that the Nataf distribution is widely used in structural reliability
analysis [8,24]. The Nataf distribution has been the standard for
more than 20 years because it is not always possible to find a joint
PDF with prescribed marginal distributions that is consistent with
given linear correlations. Engineers and researchers have used the
Nataf distribution though since nothing else was available.
Recently, the copula based approach provides a new insight into
the joint distribution with prescribed marginal distributions and
correlation coefficient (e.g., [29,19,33,34]), which will be presented
in the following.

2.2. Copula based approach for modeling bivariate distribution of
shear strength parameters

Copulas are functions that couple a multivariate distribution to
its one-dimensional marginal distributions. Alternatively, copulas
are multivariate distribution functions whose one-dimensional
marginal distributions are uniform on the interval of [0, 1] (e.g.,
[29]). There are many copulas in the literature such as Gaussian,
t, Plackett, Frank, Gumbel and Clayton copulas. Each copula is char-
acterized by its own dependence structure. According to Sklar’s
theorem (e.g., [29]), a bivariate distribution, F(x1, x2), of X1 and X2

can be expressed in terms of a copula function C(u1, u2; h) and
the marginal distributions u1 = F1(x1) and u2 = F2(x2):

F x1; x2ð Þ ¼ C F1 x1ð Þ; F2 x2ð Þ; hð Þ ¼ C u1; u2; hð Þ ð4Þ

where h is a copula parameter describing the dependency between
X1 and X2. From Eq. (4), the bivariate PDF, f (x1, x2), of X1 and X2 can
be obtained as (e.g., [29])

f x1; x2ð Þ ¼ f 1 x1ð Þf 2 x2ð Þc F1 x1ð Þ; F2 x2ð Þ; hð Þ ð5Þ

where c (F1(x1), F2(x2); h) is a copula density function, which is given
by

c F1 x1ð Þ; F2 x2ð Þ; hð Þ ¼ c u1; u2; hð Þ ¼ @2C u1; u2; hð Þ=@u1@u2 ð6Þ

It is evident that both the copula function C(u1, u2; h) and the copula
density function c(u1, u2; h) are related to the copula parameter h.
Like q0 in the Nataf distribution, the copula parameter h can be
determined through the correlation coefficient q between X1 and
X2. According to the definition of Pearson correlation coefficient
(e.g., [1]), the following integral relationship between q and h can
be obtained:

q ¼
Z 1

�1

Z 1

�1

x1 �l1

r1

� �
x2 �l2

r2

� �
f 1 x1ð Þf 2 x2ð Þc F1 x1ð Þ; F2 x2ð Þ; hð Þdx1dx2

ð7Þ

For prescribed marginal distributions and correlation coefficient q
of X1 and X2, the preceding integral equation can be solved itera-
tively. For example, Li et al. [21] developed a two-dimensional



Table 1
Summary of the adopted bivariate copula functions and their parameter domains.

Copula Copula function, C(u1, u2; h) Copula density function, c(u1, u2; h) Range of h

Gaussian Uh U�1 u1ð Þ; U�1 u2ð Þ
� �

1ffiffiffiffiffiffiffiffi
1�h2
p exp � 12

1h2�2h1112þ12
2h2

2 1�h2ð Þ

� �
, 11 ¼ U�1 u1ð Þ; 12 ¼ U�1 u2ð Þ

[�1, 1]

Plackett S�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2�4u1u2h h�1ð Þ
p

2 h�1ð Þ , S ¼ 1þ h� 1ð Þ u1 þ u2ð Þ
h 1þ h�1ð Þ u1þu2�2u1u2ð Þ½ �

1þ h�1ð Þ u1þu2ð Þ½ �2�4u1 u2h h�1ð Þf g
3
2

(0, 1)n{1}

Frank � 1
h ln 1þ e�hu1�1ð Þ e�hu2�1ð Þ

e�h�1

� �
�h e�h�1ð Þe�h u1þu2ð Þ

e�h�1ð Þþ e�hu1�1ð Þ e�hu2�1ð Þ½ �2
(�1, 1)n{0}

1
2 Sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ 4h

p� �
,

S ¼ u1 þ u2 � 1� h 1
u1
þ 1

u2
� 1

� � 1
2 1þ h

u2
1

� �
1þ h

u2
2

� �
S�

1
2 �S�1 u1 þ u2 � 1� h 1

u1
þ 1

u2
� 1

� �h i2
þ 1

	 

,

S ¼ u1 þ u2 � 1� h 1
u1
þ 1

u2
� 1

� �h i2
þ 4h

[0, 1)
No.16

Note: U�1 denotes the inverse of standard normal distribution function.
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Gaussian-Hermite integral technique to solve the above integral
equation. This general technique is also adopted in this study. The
joint CDF and PDF of X1 and X2 can be directly determined using
Eqs. (4) and (5) with a selected copula and the known marginal dis-
tributions of X1 and X2.

As mentioned previously, when the probability information on
shear strength parameters is only limited to marginal distributions
and covariance, a large number of copulas that are consistent with
such information can be used to characterize the dependence
structure. Since there exists a negative correlation between c and
tan/, thus, the copulas that allow a wide range of negative correla-
tion coefficients are selected to characterize the dependence
between c and tan/. A review of the literature reveals that the
Gaussian copula, Plackett copula, Frank copula and No.16 copula
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Fig. 1. Contour plots of the joint PDFs of shear
(e.g., [29]) are appropriate for describing the dependence structure
between c and tan/. The aforementioned four copulas, along with
the domains of the h parameter are summarized in Table 1. Among
the four copulas, the Gaussian copula is an elliptical copula. The
Plackett copula is a member of the Plackett copula family. The
Frank and No.16 copulas are commonly used Archimedean
copulas. All the four copulas can describe negative dependences,
and the values of the correlation coefficients between c and tan/
can approach �1.

It is evident that substituting the copula density function of the
Gaussian copula shown in Table 1 into Eq. (5) yields Eq. (2). Thus,
the bivariate distribution using the Nataf distribution is the same
as that using the Gaussian copula. In other words, the well-known
Nataf distribution is nothing but a joint PDF with the Gaussian
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strength parameters for the four copulas.
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Fig. 2. Infinite slope example.
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copula. The Gaussian copula can be easily generalized to N-dimen-
sions. The Archimedean copulas such as the Frank and No.16 cop-
ulas also have a multivariate PDF, but it is hard to relate the
correlation coefficients between variables to their copula parame-
ters one by one. This is because the Archimedean copulas have only
up to N�1 different generator functions and thus only up to N�1
copula parameters (e.g., [29]). These parameters are commonly
determined from the measured multivariate data using Maximum
Likelihood Estimation (MLE) (e.g., [29]) rather than relating the
correlation coefficients between variables. Notwithstanding this,
as noted by Dutfoy and Lebrun [9], multivariate data are usually
independent by blocks in real-life applications, each block
involving only a small number of correlated variables such as
two variables [13,30,38,32–34,18,19]. In this case, the multivariate
data can be analyzed pair by pair using multiple bivariate copulas
[36].

To visualize the dependence structures underlying different
copulas, the contour plots of the bivariate PDFs of shear strength
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(c) λ varying from 1 to 2.6

Fig. 3. Probabilities of slope failure produced
parameters associated with the four copulas are presented in
Fig. 1. In this figure, a lognormal distribution with a mean of
11 kPa and a coefficient of variation (COV) of 0.4 for cohesion c
and a lognormal distribution with a mean of 0.5774 and a COV of
0.2 for tan/ are used to compare the four copulas. In addition, a
correlation coefficient q = �0.5 between c and tan/ is assumed to
determine the copula parameters h underlying the four copulas.
It can be seen that there is a significant difference in dependence
structures associated with the four copulas even though the same
marginal distributions and correlation coefficient are used. The
joint PDF of shear strength parameters produced by the No.16 cop-
ula differs significantly from those produced by the other three
copulas. Such a difference can lead to significant difference in prob-
abilities of slope failure, as illustrated by Tang et al. [32].
3. Dispersion factor of probability of slope failure

As discussed in the previous sections, the probabilities of slope
failure produced by different copulas may differ greatly [32]. To
quantify the maximum possible dispersion in probability of slope
failure when the dependence structure between shear strength
parameters varies within the set of copulas e = {Gaussian, Plackett,
Frank and No.16 copulas}, a global dispersion factor associated
with probability of slope failure is introduced. Let pfmin = min{pf(C),
C 2 e} and pfmax = max{pf(C), C 2 e} in which pf(C) is the probability
of slope failure associated with a specific copula C. Following Dut-
foy and Lebrun [9], the global dispersion factor of probability of
slope failure, r, is defined as
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by different copulas for the infinite slope.
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r ¼
pf max

pf min
ð8Þ

A large r denotes the calculated probabilities of slope failure varying
over a wide range, while a small r denotes the calculated probabil-
ities of slope failure varying over a narrow range. It is stated that the
probability of slope failure under incomplete probability informa-
tion can be evaluated quantitatively if 1 6 r 6 1.5, and it can be
evaluated qualitatively if 1.5 6 r 6 10. If r > 10, the estimated
probability of slope failure may exceed the actual probability of
slope failure by at least one order of magnitude, which is possibly
unacceptable for practical slope reliability analysis [9].

Besides the global dispersion factor of probability of slope
failure, a local dispersion factor of probability of slope failure with
respect to a reference copula C can also be defined. The local
dispersion factor of probability of slope failure with respect to a
reference copula C, r0, is defined as

r0 ¼max
pf max

pf ðCÞ
;

pf ðCÞ
pf min

( )
ð9Þ

where pf(C), pfmax and pfmin are the same as those defined
previously.

The global dispersion factor r defined in Eq. (8) can only charac-
terize the maximum possible dispersion in probability of slope fail-
ure for the whole set of copulas e, whereas the local dispersion
factor r0 can effectively quantify the maximum possible dispersion
in probability of slope failure for a reference copula C in e. Hence, it
is possible to obtain the maximum difference between pf(C) and pf-
max or pfmin when a specific copula C is used to model the depen-
dence structure between c and tan/ for slope reliability analysis.
This local dispersion factor is adopted to examine the performance
of the proposed reliability approaches to evaluate the slope reli-
ability under incomplete probability information.
4. Three copula-based approaches for evaluating probability of
slope failure

From the copula viewpoint, the Nataf distribution adopts the
Gaussian copula for modeling the dependence structure between
the shear strength parameters. Consequently, the probability of
slope failure associated with the Nataf distribution is only one of
the various possible solutions of the slope reliability and may be
biased towards the unconservative side [32]. In this section, three
copula-based approaches are proposed to evaluate the slope reli-
ability under incomplete probability information. One objective
of these approaches is to provide a more reasonable estimate of
probability of slope failure. With these approaches, reliability
analysis of slopes is simplified to the selection of an appropriate
copula for modeling the dependence structure between the shear
strength parameters. These three approaches are developed in
the following.

4.1. Copula approach 1

In the first approach, one selects a copula from the set of candi-
date copulas e = {Gaussian, Plackett, Frank and No.16 copulas} that
results in the highest estimate of the probability of slope failure.
The rationale behind this approach is that a conservative estimate
of the slope reliability is generally accepted by engineers when
limited information on shear strength parameters is available
(e.g., [1,8,15]). When the quality of dependence information is
improved, the set of acceptable candidate copulas is reduced and
the accuracy in estimating probability of slope failure remains
unchanged or increases. This approach requires engineers to col-
lect more data to improve the dependence information available.
4.2. Copula approach 2

The second approach is developed based on the concept of the
local dispersion factor of probability of slope failure as defined in
Section 3. Since the local dispersion factor measures the maximum
difference between pf(C) and pfmax or pfmin, an effective approach
for evaluating slope reliability is to choose a copula that results
in the minimum value of the local dispersion factor among the
set of candidate copulas e = {Gaussian, Plackett, Frank and No.16
copulas}. This copula is taken as the optimal copula to model the
given dependence structure between the shear strength parame-
ters. With this approach, the selected copula minimizes the local
dispersion in probability of slope failure. It can provide a more rea-
sonable estimate of probability of slope failure.

4.3. Copula approach 3

The third and more appealing approach is based on a Bayesian
notion [4]. The copula for modeling the dependence structure
between c and tan/ is assumed to be a weighted average of all can-
didate copulas in e. For the dependence structure between c and
tan/ characterized by m candidate copulas Ci (u1, u2; hi), i = 1, 2,
. . ., m, the Bayesian copula C(u1, u2; h) is expressed as

C u1; u2; hð Þ ¼
Xm

i¼1

piCi u1; u2; hið Þ ð10Þ

where pi is the weight representing potential probability of each
candidate copula being the true copula, and satisfies

Pm
i¼1pi ¼ 1.

The Bayesian copula can be directly used to compute the probability
of slope failure. Note that the copula parameters hi for all candidate
copulas are determined using Eq. (7) with the same correlation
coefficient q between c and tan/. This approach provides a robust
estimate of probability of slope failure because it accounts for the
potential probability of each candidate copula being the true
copula.

The potential probability of each candidate copula being the
true copula could be determined by several methods, such as sub-
jective judgment, engineering experience, and bootstrapping
approach. In this study, the bootstrapping approach [10] is adopted
for such a purpose. The bootstrap method is a nonparametric and
straightforward approach to derive the sampling distributions of
sample statistics. With the measured data set X = {(ci, tan/i), i =
1, 2, . . ., N}, the Akaike Information Criterion (AIC) [2] is often used
to identify the best-fit copula between c and tan/ [19, 32]. A copula
corresponding to the smallest AIC value is considered to be the
best-fit copula. It should be noted that, in geotechnical engineering
practice, the best-fit copula is often identified from a very limited
data set [32], which inevitably leads to uncertainty in the AIC val-
ues and the identification results. This uncertainty is characterized
by the bootstrap approach. Following Luo et al. [28], a value of
Ns = 10000 bootstrap sample sets is adopted for bootstrapping.
The sample size of each bootstrap sample set is equal to the sample
size of the original data set, N. Based on the Ns sets of bootstrap
samples, the AIC values associated with the candidate copulas
are calculated. Then, the best-fit copula can be identified from
the AIC values, which results in Ns best-fit copulas for Ns bootstrap
sample sets. The numbers of times being the best-fit copula for
each candidate copula are obtained. In this way, the probability
of each candidate copula being the true copula is obtained. Taking
the CS-ET data set of shear strength parameters in Table 2 of Tang
et al. [32] as an example, the numbers of times being the best-fit
copula are 3783, 794, 3452 and 1971 for the Gaussian, Plackett,
Frank and No.16 copulas, respectively. Thus, the corresponding
probabilities being the true copula are 37.83%, 7.94%, 34.52% and
19.71%. For illustration, the above four probabilities are taken as
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pi in Eq. (10) for the slope reliability analyses in the following
section.
5. Illustrative examples

In this section, two slope reliability examples are studied to
demonstrate the validity of the proposed copula-based approaches
for evaluating the slope reliability under incomplete probability
information: (1) an infinite slope example with one pair of shear
strength parameters and (2) the Jinping slope example in China
[31] with multiple pairs of shear strength parameters.

5.1. Example 1: an infinite slope with one pair of shear strength
parameters

An infinite slope as shown in Fig. 2 is studied to demonstrate
the validity of the proposed copula-based approaches. By assuming
a deep groundwater table to the slope, the factor of safety of the
infinite slope, FS, can be calculated as (e.g., [32])

FS ¼ c þ cH cos2 a tan /
cH sina cos a

ð11Þ

where c and tan/ are effective cohesion and tangent of friction
angle of the soil, respectively; H, a and c denote the depth of the soil
above bedrock, slope inclination and unit weight of the soil, respec-
tively. In this example, c and tan/ are considered as uncertain vari-
ables. Both c and tan/ are assumed to be lognormally distributed.
The mean values of c and tan/ are 11 kPa and 0.5774, respectively.
The COVs of c and tan/ are 0.4 and 0.2, respectively. Also, a corre-
lation coefficient q = �0.5 between c and tan/ is adopted to account
for the effect of correlation on slope reliability. The deterministic
quantities are c = 17 kN/m3, H = 5 m, and a = 30�. These values lead
to a mean factor of safety of FS = 1.30 calculated by Eq. (11).

The performance function for the infinite slope reliability prob-
lem is expressed as

gðc; tan /Þ ¼ FSðc; tan /Þ � 1 ð12Þ

where FS(c, tan/) is evaluated by Eq. (11). Many reliability methods
in the literature [27] can be used to conduct reliability analysis
associated with Eq. (12). As studied by Tang et al. [32], the probabil-
ity of slope failure can be computed using the direct integration
method. The probability of slope failure is studied based on the fol-
lowing three factors: (1) geometrical parameters (H, a), (2) COV
scaling factor, k defined as COVc = 0.4/k and COVtan/ = 0.2/k, and
(3) correlation coefficient q. In the parametric studies as shown in
Fig. 3, each factor varies over a range while the other parameters
remain unchanged.

Fig. 3 compares the probabilities of slope failure on log scale
produced by different copulas. To facilitate a comparison between
Figs. 3(a) and (b), the changes in H and a are transformed into the
changes in FS in a uniform way. In Figs. 3(a) and (b), the FS
increases from 1.30 to 1.70 when H decreases from 5 to 2.14 m
or a decreases from 30� to 23.27�. It is evident that the probabili-
ties of slope failure produced by different copula models differ con-
siderably. Among the four copulas, the Gaussian copula produces
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the smallest probability of slope failure, whereas the No.16 copula
leads to the largest probability of slope failure. In addition, the
probabilities of slope failure are more sensitive to the COVs of
shear strength parameters and the negative correlation between
c and tan/. These results indicate that the probability of slope fail-
ure under incomplete probability information cannot be deter-
mined uniquely. The commonly used Gaussian copula may
underestimate the probability of slope failure significantly if it is
inadequate to model the dependence structure between c and
tan/, which is unconservative for slope safety assessment.

Based on the above results, the global dispersion factors of
probability of slope failure can be obtained using Eq. (8). Here, pf-
max denote the probabilities of slope failure produced by the No.16
copula, whereas pfmin are the probabilities of slope failure for the
Gaussian copula. Fig. 4 shows the global dispersion factors corre-
sponding to the four cases shown in Fig. 3. Note that the probabil-
ity of slope failure exhibits large global dispersion because of the
significant difference in the probabilities of slope failure produced
by different copulas. The global dispersion factor increases with
Table 2
Comparison of local dispersion factors of probability of slope failure produced by differen

Approach H = [5 m, 2.14 m] a = [30�, 23.27�]

FS = 1.3 FS = 1.5 FS = 1.7 FS = 1.3 FS = 1.5 FS

Nataf distribution 2.02 25.67 382.45 2.02 19.08 29
Copula approach 1 2.02 25.67 382.45 2.02 19.08 29
Copula approach 2 1.61 6.06 19.95 1.61 5.56 2
Copula approach 3 1.56 6.83 81.33 1.56 5.39 6
decreasing probability of slope failure, which means that the error
in probability of slope failure based on incomplete probability
information becomes larger as the probability of slope failure
decreases, especially for small COVs of the shear strength parame-
ters or a strongly negative correlation between c and tan/. Since all
the calculated values of r exceed 1.5 as shown in Fig. 4, the proba-
bility of the infinite slope failure based on the marginal distribu-
tions and correlation coefficient of shear strength parameters
may not be estimated quantitatively. When the probability of slope
failure is larger than 1.0 � 10�3, the calculated global dispersion
factors fall within [1.5, 10], which means that a qualitative esti-
mate of the true probability of slope failure based on incomplete
probability information can be made. When the probability of
slope failure is below 1.0 � 10�3, the calculated global dispersion
factors significantly exceed 10. For instance, they can be up to
1.26 � 104 in Fig. 4(c) for k = 2.6 or 4.21 � 104 in Fig. 4(d) for
q = �0.88. In this situation, the estimated probability of slope fail-
ure exceeds the true probability of slope failure by at least one
order of magnitude. These results indicate that the knowledge of
t approaches for the infinite slope.

k = [1, 2.6] q = [�0.5, �0.88]

= 1.7 k = 1 k = 1.8 k = 2.6 q = �0.5 q = �0.7 q = �0.88

9.77 2.02 72.60 1.26 � 104 2.02 5.42 4.21 � 104

9.77 2.02 72.60 1.26 � 104 2.02 5.42 4.21 � 104

0.39 1.61 11.32 1.05 � 102 1.67 2.36 6.72 � 103

4.32 1.56 16.92 2.52 � 103 1.56 2.45 1.16 � 104
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Fig. 6. Section II1–II1 of the Jinping slope.

Table 3
Statistics of the shear strength parameters in the Jinping slope example.

Materials Parameters Distribution Mean COV

Lamprophyre dike X c1 (kPa) Lognormal 20 0.25
tan/1 Lognormal 0.3 0.15

Fault f42-9 c2 (kPa) Lognormal 20 0.30
tan/2 Lognormal 0.3 0.20

Class III2 rock mass c3 (kPa) Lognormal 1020 0.15
tan/3 Lognormal 0.9 0.08

Class IV1 rock mass c4 (kPa) Lognormal 700 0.18
tan/4 Lognormal 0.6 0.10

Class IV2 rock mass c5 (kPa) Lognormal 600 0.20
tan/5 Lognormal 0.4 0.12
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the marginal distributions and covariance of the shear strength
parameters is not enough to estimate the probability of slope fail-
ure accurately.

Applying copula approach 1, the No.16 copula is selected to
model the dependence structure between c and tan/ because it
results in the largest probability of slope failure. For copula
approach 2, the Plackett copula that produces the minimum local
dispersion factors among the four copulas is selected to model
the dependence structure between c and tan/ in Figs. 3(a)–(c). In
Fig. 3(d), the Frank copula is selected because it leads to the min-
imum local dispersion factors. For copula approach 3, the assumed
weights 37.83%, 7.94%, 34.52% and 19.71% for Gaussian, Plackett,
Frank and No.16 copulas, respectively are used to construct the
Bayesian copula shown in Eq. (10).

After determining the type of copula for each copula-based
approach, the local dispersion factors of probability of slope failure
are obtained using Eq. (9). Fig. 5 shows the local dispersion factors
r0 for each copula-based approach along with the Nataf distribu-
tion. Essentially, the local dispersion factors for the Nataf distribu-
tion are the same as those for the Gaussian copula. The Nataf
distribution produces the largest local dispersion factors, which
implies that the probability of slope failure using the Nataf distri-
bution may significantly deviate from the true probability of slope
failure. As to be expected, copula approach 1 results in the same
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Fig. 7. Probabilities of slope failure produced
local dispersion factors as those using the Nataf distribution for
the considered infinite slope. However, in comparison with the
Nataf distribution, copula approach 1 can always produce conser-
vative reliability results. Unlike copula approach 1, both copula
approaches 2 and 3 can reduce the local dispersion factors signifi-
cantly, and provide a more reasonable estimate of the probability
of slope failure. Table 2 summarizes the local dispersion factors
produced by different approaches. Compared with copula
approach 1 and the Nataf distribution, the local dispersion factors
for approaches 2 and 3 are reduced substantially.

5.2. Example 2: the Jinping slope in China with multiple pairs of shear
strength parameters

The Jinping slope studied by Tang et al. [31] is investigated
again to demonstrate the validity of the proposed copula-based
approaches. Fig. 6 shows a typical section, Section II1–II1 of the
slope. In Fig. 6, faults f5, f8, f42-9 and a lamprophyre dike X are
found. The slope is likely to slide along a potential surface that is
highlighted with a thick line in Fig. 6. There are five pairs of shear
strength parameters belonging to five different materials of the
slope. Among them, (c1, tan/1) is the shear strength parameters
for lamprophyre dike X; (c2, tan/2) is for fault f42–9; (c3, tan/3) is
for class III2 rock mass; (c4, tan/4) is for class IV1 rock mass; (c5,
tan/5) is for class IV2 rock mass. In this example, all the five pairs
of shear strength parameters are treated as random variables. The
statistical properties of the shear strength parameters are summa-
rized in Table 3. Additionally, the unit weight of the rock is treated
as a deterministic quantity, c = 27 kN/m3. For illustration, the fac-
tor of safety is calculated by the residual thrust method [31] under
the natural condition. Substituting the mean values of the shear
strength parameters into the slope stability model leads to a mean
factor of safety of FS = 1.18.
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by different copulas for the Jinping slope.
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The performance function similar to Eq. (12) for the infinite
slope is used again. The Monte Carlo simulation with a sample size
of 107 is adopted to compute the probability of slope failure. The
probability of the Jinping slope failure is studied based on two fac-
tors: (1) COV scaling factor, k and (2) correlation coefficient q
between shear strength parameters. It is noted that there are five
pairs of shear strength parameters. Hence, five bivariate copulas
are employed to model the dependence structures. For simplicity,
the same correlation coefficients q are applied to all the five pairs
of shear strength parameters.

Fig. 7 shows the probabilities of slope failure produced by dif-
ferent copula models for shear strength parameters. In Fig. 7(a),
k varies over a range for q = �0.5. Similarly, q varies over a
range for k = 1 in Fig. 7(b). Like the results shown in Fig. 3, the
probabilities of slope failure associated with different copula
models differ considerably. Again, the Gaussian copula produces
the smallest probability of slope failure and the No.16 copula
leads to the largest probability of slope failure. The probabilities
of slope failure produced by the Gaussian copula in Fig. 7(b) are
the same as those produced by the Nataf distribution in Fig. 8 of
Tang et al. [31]. These results indicate that the commonly used
Nataf distribution may underestimate the probability of slope
failure significantly, which is unconservative for slope safety
assessment.
Fig. 8 shows the global dispersion factors of probability of slope
failure. The probability of slope failure exhibits large global disper-
sion. The global dispersion factor r increases with decreasing prob-
ability of slope failure. However, when q = �0.9, the global
dispersion factor becomes smaller. This is because all the selected
copulas converge to the Fréchet-Hoeffding lower bound W(u1, u2)
= max(u1 + u2�1, 0) when q approaches �1 (e.g., [29]). Hence,
the probabilities of slope failure produced by different copulas
are the same when q approaches �1. In this example, most of
the calculated global dispersion factors generally fall within [1.5,
10]. Thus, a qualitative estimate of the probability of slope failure
under incomplete probability information can be made. These
results indicate that the knowledge of the marginal distributions
and covariance of the shear strength parameters is generally not
enough to estimate the probability of slope failure with a sufficient
accuracy.

Fig. 9 shows the local dispersion factors for the three copula-
based approaches as well as the Nataf distribution. In Fig. 9, the
No.16 copula is used to model the dependence structure between
c and tan/ for copula approach 1. For copula approach 2, the Plack-
ett copula and the Frank copula resulting in the minimum local dis-
persion factors are selected for Fig. 7(a) and (b), respectively. To
construct the Bayesian copula for copula approach 3, the assumed
weights 37.83%, 7.94%, 34.52% and 19.71% are used for the Gauss-



X.-S. Tang et al. / Structural Safety 52 (2015) 90–99 99
ian, Plackett, Frank and No.16 copulas, respectively. It can be
observed that the Nataf distribution produces the largest local dis-
persion factors, and copula approach 1 results in the same values
as the Nataf distribution. Compared with copula approach 1, both
copula approaches 2 and 3 reduce the local dispersion factors
greatly. They provide a more reasonable estimate of the probability
of slope failure. The local dispersion factors become smaller when
q approaches �1 as discussed previously.

6. Summary and conclusions

This paper has proposed three copula-based approaches for
evaluating slope reliability under incomplete probability informa-
tion. Two illustrative examples are presented to demonstrate the
validity of the proposed approaches. Several conclusions can be
drawn from this study:

(1) The slope reliability under incomplete probability informa-
tion cannot be determined uniquely from a theoretical view-
point. The probabilities of slope failure produced by different
copulas for modeling dependence structure between shear
strength parameters differ significantly. The commonly used
Nataf distribution or Gaussian copula produces only one of
the various possible solutions of probability of slope failure.
They may overestimate the slope reliability significantly.
This finding should be noted in practical geotechnical
applications.

(2) The probability of slope failure under incomplete probability
information exhibits large dispersion. Both the global and
the local dispersion factors increase with decreasing
probability of slope failure, especially for small COVs of
shear strength parameters and strongly negative correla-
tions between c and tan/.

(3) The proposed three copula-based approaches can effectively
reduce the dispersion in probability of slope failure and sig-
nificantly improve the estimate of probability of slope fail-
ure. In comparison with the Nataf distribution, the
proposed copula-based approaches result in a more reason-
able estimate of slope reliability, which provide practical
tools for evaluating the slope reliability under incomplete
probability information. However, slope reliability under
incomplete probability information is still a challenging
problem in geotechnical engineering. More efforts on this
topic should be further made.
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