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Abstract—The complexity of intelligent computer vision systems
demands novel system architectures that are capable of integrating
various computer vision algorithms into a working system with
high scalability. The real-time applications of human-centered
computing are based on multiple cameras in current systems,
which require a transparent distributed architecture. This paper
presents an application-oriented service share model for the
generalization of vision processing. Based on the model, a vi-
sion system architecture is presented that can readily integrate
computer vision processing and make application modules share
services and exchange messages transparently. The architecture
provides a standard interface for loading various modules and a
mechanism for modules to acquire inputs and publish processing
results that can be used as inputs by others. Using this architec-
ture, a system can load specific applications without considering
the common low-layer data processing. We have implemented a
prototype vision system based on the proposed architecture. The
latency performance and 3-D track function were tested with the
prototype system. The architecture is scalable and open, so it will
be useful for supporting the development of an intelligent vision
system, as well as a distributed sensor system.

Index Terms—Distributed architecture, ontology, service share,
system integration.

I. INTRODUCTION

I N RECENT years, there has been an increasing research in-
terest in human-centered computing. The main motivating

principle is that computers should adapt to people rather than
vice versa [1]. An intelligent vision system that is adapted to
this new computing mode would greatly facilitate the develop-
ment of intelligent surveillance systems and it could be applied
in more fields. CCTV cameras have become cheaper in recent
years, but considerable human resources are required to view
the CCTV output and this remains expensive. There is a pressing
need for automated surveillance systems with commercial, mili-
tary, and law enforcement applications [1]. They are continually
used in some industrial fields, but surveillance systems can also
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be used to assist human life and in different healthcare fields.
For example, smart home systems can be used to care for older
people’s health, where subjects can move freely in a scene and
the system seamlessly provides suitable services or useful in-
formation to a remote monitoring system. A key functionality
of these applications is the detection of abnormal events using
a multicamera system. However, several challenges face intel-
ligent video systems. First, vast volumes of data must be man-
aged. The limitations of the visual fields of single camera means
that these systems need to employ multiple video sensors and
this produces very large volumes of video data. Second, the
freedom of human actions mean the system is confronted with
many unpredictable tasks and this leads to unlimited computing
requirements. Third, the provision of suitable services requires
that the system knows the scene context, which means that even
more complex tasks need to be processed. To overcome these
challenges, we propose that a system should virtualize the dif-
ferent computing tasks into limited layer service spaces. After
such virtualization, the application does not care how the com-
puting resources are managed and higher layers do not need to
know how basic services are provided, such as capturing sensor
data, compressing video data, and transforming data. This will
make the system sufficiently scalable that it can be applied to a
wide variety of applications.

Activity in the field of computer vision algorithm research
has accelerated rapidly during recent decades, and this makes it
more pressing to research architectures for vision systems that
can easily support the deployment of common, new vision pro-
cessing algorithms or methods that are specific to an industrial
field. Most previous vision systems [3], [5]–[7] are adapted for
processing a specific task and the lack of focus on system de-
velopment issues has forced each system developer to explicitly
consider low-level data-processing details. This has led to in-
sufficient reusability of the developed modules. Therefore, co-
operative distributed vision systems with multiple cameras are
required and more scalable architectures should be considered.
The main goal of this study is to propose a general architecture
for a scalable intelligent vision system that can more readily in-
tegrate diverse types of algorithms into a working system, espe-
cially vision algorithms.

II. RELATED WORK

In recent years, computer vision algorithm research has
placed greater emphasis on practical applications and the
development of hardware. However, the adaptability of most
computer vision algorithms is determined by specific physical
conditions. For example, it is difficult to design a general
tracking algorithm for different environments and targets. To
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be used in different application, fixed component structures are
not capable of dealing with all situations [29] and a system
needs the flexibility to support a variety of integrated com-
puting modules and researchers have proposed several models
or architecture to facilitate integration. Muja et al. [8] proposed
a framework for vision based object recognition. The proposed
framework treats each specific algorithm as a black box that
defines several standard interfaces, including a set of inputs,
outputs, and parameters. Using this framework, systems can
dynamically load various detectors as plug-ins and execute
them sequentially or in parallel. However, this framework is
only applicable to visual detection algorithms for use with
static images. Quigley et al. [9] proposed a framework that
was mainly applicable to robot operating systems (ROS frame-
work). The proposed ROS framework provides a structured
communication layer that can quickly integrate existing sys-
tems and a variety of different processing modules (including
some computer vision processing algorithms). The main goal
of the ROS framework was to hide much of the hardware
and the underlying software architecture, so as to maximize
the reuse of existing code. However, this paper mainly dealt
with framework design goals and the integration of robotic
handling modules. To address the key issues in vision systems,
the ROS framework simply proposed several specifications for
integrating general vision algorithms, particularly, the OpenCV
code library, so it cannot be directly used with vision systems.
The current study is limited from the perspective of integrating
multiple processing modules in the computer vision field,
because it is mainly focused on providing a framework for
integrating typical vision algorithms.

Current vision systems have introduced several different ar-
chitectures that can be divided three types according to the cen-
tralized level of computing. 1) Centralized processing: in this
model, the system often has a central host that processes all
the data (message), including video data from different cam-
eras, using only one program (thread). This model is often only
applicable to a specific case and the level of distributed pro-
cessing is the lowest in this model [19], [20]. 2) Layered dis-
tributed processing: in this model, the system consists of many
processing nodes (units), where each node is assigned a suit-
able task, and concurrently processed results from nodes are in-
tegrated by a higher level node that takes charge of advanced
tasks. The different nodes form a distributed computing system.
NIST’s smart data flow system [16] is middleware that sup-
ports sensor data transmission in distributed environments, but
it cannot explore problems over the whole lifetime of video
streams. Many other distributed vision based systems also adopt
this processing model [21]–[24]. 3) Autonomous computing: in
this model, the system is divided into equal computing units de-
pending on their logical function. Matsuyama et al. developed
a real-time cooperative multitarget tracking system consisting
of a group of Active Vision Agents (AVAs), where an AVA was
a logical model of a network-connected computer with an ac-
tive camera [15]. However, the system required a complex com-
munication protocol and this demanded greater computing re-
sources. The different units had to communicate with each other
to integrate the processing results from other units to deliver an
advanced result. This model has the most flexible architecture,

although it requires a highly complex communication protocol
[25], [26]. The third distributed computing mode can only be
used during common computer vision processing in a vision
system and it requires the addition of centralized processing to
integrate the outputs from common vision processing modules
in an actual application.

Previous studies have presented several frameworks or solu-
tions that can be useful in the development and implementa-
tion of computer vision based systems. Afrah et al. [11] ad-
dressed two aspects of vision based system development that
are not fully exploited in current frameworks, i.e., abstraction
above low-level details and high-level module reusability. They
proposed a systematic classification of subtasks in vision based
system development and defined a clear scope for vision based
system development framework. Vrěcko et al. [12] proposed a
general method for integrating visual components into a mul-
timodal cognitive system. Their main goal was that integration
should be very generic so it could work with an arbitrary set of
modalities. However, its ability to extend to cross-modal con-
cepts is currently quite limited. Tsinghua’s SISS [13] is a plat-
form for agent management and interagent collaboration in a
multiagent system. It was designed for pervasive computing, so
it does not meet some requirements of video information anal-
ysis. USCs MFSM [14] is middleware that can support efficient
real-time media data processing, but it pays little attention to is-
sues of the distributed environment.

Thus, it would be useful to design a flexible software architec-
ture for cooperative distributed visual computation that is based
on scalable configurations. We implemented a flexible multi-
server platform for distributed visual information processing in
our previous research. Using the proposed platform, developers
or researchers can ignore the details of low-level data manipu-
lation and focus on the research application [17]. Based on pre-
vious work, we propose an Application-oriented Service Share
Model (A-SSM) specifically for developing intelligent vision
systems with a scalable architecture that facilitates distributed,
easy-access, vision processing.

III. GENERALIZATION OF INTELLIGENT

VISUAL INFORMATION PROCESSING

An intelligent video system, such as a smart home system,
is based on computer vision technology that generally includes
video data capture, transmission, analysis, storage, and re-
trieval [28]. These different components form a pipeline for
video stream processing that requires a common platform.
However, most researchers only focus on the computer vision
algorithm when analyzing the pipeline. Thus, our basic concept
was to initially model generalized vision processing, because
this can provide an easy-use interface for plugging in further
applications.

A. Generalized Vision Information Processing

Object tracking is a key technique for developing intelligent
vision systems [18]. Without knowing the location of an object,
systems cannot provide users with an active service and this
is an essential characteristic of an intelligent system. Thus, we
start the discussion of analysis using a typical vision processing
method known as 3-D locating.
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Fig. 1. Process of multicamera 3-D positioning.

Fig. 2. Information processing in a generalized vision system.

In a 3-D tracking process, the system uses a background
model to acquire the foreground information based on the
image data obtained by each camera. It then uses the appro-
priate mapping cameras while ground homograph pixels project
foreground pixels onto the common ground plane to form a
ground plane in the projection of a collection of pixels. Each
angle is detected based on a multicamera image with appro-
priate geometric constraint conditions and this information can
be combined to estimate the location of the body. Fig. 1 shows
a simplified version of the process of body positioning using a
multicamera vision system.

To promote the process described earlier, we can acquire the
information processed by a generalized visual system, as shown
in Fig. 2. When a visual system processes information, it gen-
erally follows a process of detecting, tracking, and analyzing
the object. An intelligent video system should also combine this
with contextual information to understand the scene and pro-
vide users with suitable proactive services. This requires that
a system provides a variety of bottom-up visual information
processing functions and a function of high-level semantic rea-
soning to alleviate tedious manual tasks, such as an operator
monitoring the screen of a video surveillance system. Semantic
reasoning requires that the system knows the context, because
the same state may convey different meanings in a different con-
text. In addition to semantic reasoning, the system must effec-
tively process the low-level data under the guidance of specific
context information. As shown in Fig. 2, context management
is added to the traditional vision process.

Fig. 3. Brief overview of the architecture of A-SSM. In general, it is divided
into three layers, each composed of one specific space.

The intelligent vision system will always be confronted with
a disparity between unlimited computing requirements and lim-
ited computing resources, because of dynamic changes in the
contextual information. To resolve this disparity, we propose an
A-SSM, as explained in the following section.

B. A-SSM

Computer vision algorithms are characterized by insta-
bility and high computational complexity, and we considered
that high-layer applications will require dynamic computing
services depending on variations in the environment and re-
quirements. This means that the system must provide a dynamic
customized computing service for the high-layer application.
We propose an A-SSM that abstracts the different services
used in system and virtualizes different computing sources
into various service spaces, thereby enabling services that are
more standardized and transparent. In this model, the service
resources are distributed and high-layer applications can be
provided via more ready-accessible transparent services to
ensure the scalability of the system.

In general, the A-SSM can be divided into a server domain
and application domain. In the server domain, various types of
servers are connected and they communicate with each other.
All servers can be classified into one of the three service spaces,
as shown in Fig. 3. The effective service space is responsible
for managing all the actual computing resources, such as video
compression and computer vision computing. The virtual ser-
vice space virtualizes the actual computing from the effective
service space as virtual services and provides these services to
the application service space via a standard and unified inter-
face. Modules are treated as independent applications in the ap-
plication service space and they communicate with the server
via a standard interface defined in the virtual service space. This
separation of server space and application space brings two fur-
ther benefits as well as the separation into effective and virtual
services. First, it divides the tasks of high-layer analysis from
low-layer tasks, such as data collection and many preprocessing
tasks. This allows the application concentrate to process more of
its own tasks with greater transparency. Second, the servers and
applications are designed as separate processes that communi-
cated in a consistent mode. This means that many modules can
be dynamically plugged in, even during runtime, and applica-
tion crashes will not result in the breakdown of servers or other
applications.
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Fig. 4. Overview of the implemented components and their relationships.

Different servers, such as the capture server, archive server,
and analysis server, can be allocated to different hosts although
they belong in the same space. Thus, all servers in a system
have equal weight and no central server exists. In a distributed
system, the services provided by various servers are transparent
to all applications. Applications simply collaborate with a suit-
able server or several suitable servers, although they remain un-
aware of the source of the computing resources or how resources
are managed. Thus, the server acts like an agent that serves ap-
plications and collaborates or negotiates with other servers. We
summarize the main services that should be provided as follows,
although the system is not limited.

1) Interface with sensors including cameras, collect sensor
data, locate sensor data streams, and collect them, before
buffering them for applications.

2) Compress and decompress video data for transmission via
a network.

3) Locate applications, route their metadata, and manage the
running of their local applications.

4) Manage the buffer pool, refresh it for real-time streams,
and acquire the specified buffer for applications.

5) Provide context services to applications, so they can run in
a context-aware manner.

IV. INTELLIGENT VISION SYSTEM ARCHITECTURE

Our main goal was to create a more flexible architecture that
can conveniently integrate CV algorithms with intelligent vision
systems and make such systems smart enough to help people
with unobtrusive computing. Computer vision algorithms are
complex and sensitive to natural condition, such as illumination
variation. Thus, our development of the CV algorithm led to a
recognition that the system layer support is of great importance.

A. Overview of the Components

Fig. 4 shows that five components are used in the proposed ar-
chitecture. 1) Core Center: this component maintains the overall
configuration of the system, e.g., the number of video streams
and modules deployed in the system. Processing using this con-
figuration can provide other components with information that

allows them to initiate or communicate with each other. 2) Core:
this component mainly manages different services, such as cap-
turing sensor data, encoding and decoding video streams, and
transforming different types of data. A Core mainly fulfills its
tasks by managing multiple types of dynamic Queues that ap-
plications use for reading or writing. 3) Module Runner: this
component mainly provides a standard interface for a module,
such as a CV processing unit that accesses a specific Queue in
a Core. Using the Module Runner, the system can determine
the module (especially vision processing) that should be loaded
and run. 4) Module DLL: this includes the actual vision algo-
rithm that will be dynamically loaded by the Module Runner
in the system, according to specified requirements. Using the
DLL mode ensures that the system is more scalable. 5) Plug-in
DLL: this indicates that a plug-in model will be used to help the
Module DLL acquire more accurate and specific results. The
CV algorithm is often sensitive to conditions and sometimes it
will produce different behaviors when using different parame-
ters, such as different shapes, and this will be especially helpful
when running detection or tracking tasks.

Of the five components, Core Center, Core, and Module
Runner run independently, while Module DLL is usually
loaded by the Module Runner and sometimes by the plug-in
DLL. The Core Center must maintain the whole configura-
tion of the system from a file or another mode before other
components can start to work. The Core and Module Runner
components connect to the Core Center which initiates itself
and begin work and acquire on how to collect inputs and
communicate with other components. A specific module can
communicate with a Core and accomplish some specific tasks
after being loaded by a Module Runner. The Core Center’s
main responsibility is to manage the whole configuration of
system, hence its name the “Core Center.” There is only one
Core Center, whereas there can be more than one Core in
a system, and Cores can be flexibly located at one host or
different hosts. Some common services are provided by the
Core, including raw data acquisition, video compressing/un-
compressing, and net transmission, which simplified system
development by reusing these services. Each Module Runner
can share the Core’s services without knowing where the Core
is or how the Core is working.

With this architecture, the main model of providing/getting
services and communication is abstracted as operations of
writing/reading different Queues. The system has the charac-
teristic of hierarchical transparency, which means that there is
less dependence among the different components. Furthermore,
implementations based on the proposed architecture allow the
system’s combinational development to be broken down into
the independent development of modules, which improves
efficiency.

B. Dynamic Queue Management

The system’s state and environment conditions are variable,
so the system must be able to adapt itself to the dynamics of the
system. When the system works, its components must cooperate
to function together. Thus, several problems must be considered
as follows.

1) Variable inputs: some modules have to wait for other pro-
cessing results as their input.
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2) Source management: some modules may utilize the same
source, such as video.

3) Latency: different latencies in image processing and se-
mantic reasoning mean that vision processing modules
may not recognize each other.

To solve these problems and produce real-time applications,
we propose a dynamic queue model, where the modules run in
parallel and dynamically exchange information via a specialized
shared memory known as the Dynamic Queue.

In addition to some descriptive information, such as the type
and name, the queue data item is a binary sequence described
by modules, which makes it easy to import a new type of queue
into the system. Currently, queues are classified into three types
according to the data item. 1) Video Queue: these are composed
of images sequence from cameras, files, or other sources. The
images item in these queues are often used as the input for com-
puter vision processing modules. 2) Stream Queue: this type
of queue is used for video compression. It is mainly used to
transmit to other hosts throughout the network and it is decom-
pressed to a Video Queue. 3) Text Queue: this type of queue
mainly stores the results of module processing. Some modules
may utilize these queues as inputs. By combining various Text
Queues from different module processing results, the system
can share and integrate much more useful information.

The queue is designed to enable a writer and multiple readers
with different reading gaps, e.g., a blob detector processes each
frame while a face tracker may process
only once every five frames . Using this
mechanism, the computer vision algorithm can be organized
more effectively. In this scenario, multiple different CV algo-
rithms can process multicamera data and their processing results
can be flexibly integrated. This makes it easier for high-layer ap-
plications to reason about the actual meaning of a scenario. Ba-
sically, using this mechanism can provide the precise location
of a user, despite the user “vanishing” from the field of view of
a camera and appearing in other cameras.

C. Virtualization of Computer Vision Computing

In the vision system, many modules apply various CV algo-
rithms that work together to fulfill a system task. Among these
processing modules, some are connected in series, some are
connected in parallel, and some are connected indirectly. In tra-
ditional vision systems, these modules are coupled tightly to re-
solve a specific issue that limits the scalability of system. If each
module is transparent to others, with no regard for how they are
connected with others, inputs can be allocated automatically by
the system when adapting to variations in conditions and out-
puts can be readily available to others. Thus, transparency fa-
cilitates the scalability of the system. We consider that virtu-
alization of these modules is the best way of obtaining trans-
parency, especially with common computer vision algorithms
such as Blob Detect, Face Detect, Background Generation, and
Foreground Detection, and that it has an important role in dis-
tributed vision systems. Virtualization has two aspects. One is
the virtualization of the module, while the other is the virtu-
alization of module input/output. Virtualization of the module
is mainly concerned with its key properties and function de-
scriptions. After the virtualization of the module, the system

can judge whether a module meets the requests of an applica-
tion. The virtualization of inputs/outputs is mainly concerned
with the standardization of how a module interacts with others.
This virtualization makes it possible for the system to configure
modules automatically. Furthermore, it will be possible to com-
bine a series of results from modules to get new results. Thus,
the communicating system can integrate information more flex-
ibly. For example, by combining the information of a human’s
head and leg, the system can infer the information of a human’s
body even when some parts of the body are occluded. This is
useful for improving the efficiency and accuracy of CV human-
tracking algorithms. A key function of intelligent vision sys-
tems based on the proposed A-SSM is that transparency pro-
vides the results of various computer vision algorithms as ser-
vices for applications. This means that the researcher can focus
more energy on resolving the actual problem in their research
field. In the virtualization process, we are inclined to import an
ontology for virtualization.

The term “ontology” was borrowed from philosophy and it
was introduced into the knowledge engineering field as a means
of abstracting and representing knowledge. More recently, on-
tology has been applied in many fields of computer science,
such as the semantic Web, e-commerce, and information sys-
tems [6]. Moreover, ontology has been introduced in some con-
text-aware systems in the pervasive computing domain, e.g.,
CoBrA, Gaia, and SOCAM. Poppe et al. introduced an appli-
cation of Semantic Web Technology to overcome metadata in-
teroperability problems in a surveillance system [27].

Using ontology may have some benefits as follows.
1) Making systems better at understanding multimedia data. It
will be convenient for analyzing and reasoning with data [10].
2) It will be useful for fusing different modules and systems.
Using the inference capability, a new module can be created by
integrating results from other modules. 3) It will help devel-
opers to understand and evolve the system. After introducing
an ontology, the system can load suitable modules depending
on various task ontology descriptions. For example, if an appli-
cation wants to know a man’s orientation, it simply proposes a
task to system. Upon receiving a task about detecting a man’s
orientation, the system runs relevant face tracker modules
according to the available camera data. Thus, the application
does not care how the system schedule is processed. This
transformation can be achieved using the following description.

Setting a task:
Task xsi:type=“HumanActivity”

Participant Person/
Output Orientation of Head/
/Task

The corresponding episode of the module running configura-
tion may be as follows:

ModuleConfig
RunModule tag=“FaceDetect1”
QuReading

Queue name=“1 Cam” manner=“FileMap” gap=“1”
/

/QuReading
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Fig. 5. Impact of video compress/uncompressing and net transmission.

QuWriting
Queue name=“1 Face Dectect” manner=“TCP” /

/QuWriting
Module
DLL HaarObjDetector.dll /DLL

QuReading cnt=“1” qu1=“1 Cam” /
QuWriting cnt=“1” qu1=“1 Face Dectect” /
Plugins

DLL ShapePluginRectangle.dll /DLL
/Plugins

/Module
/RunModule

/ModuleConfig

V. EXPERIMENTAL SYSTEM AND RESULTS

In this section, we developed a prototype vision system based
on the proposed architecture and we present the results of per-
formance tests. Four video sensors were installed in the proto-
type system. The system’s goal was to monitor an object and
its trajectory, which can be used to reason about its semantic
meaning. The system supports distributed multimedia data cap-
turing, compressing/uncompressing, transferring, and integrates
some common vision algorithms such as blob detect, track, and
skin detect. We also implemented a runtime switcher mecha-
nism to select queues from candidate queues according to sig-
nals emitted by a module, which is a commonly used technique
in a multiple camera system.

Latency is a basic parameter for real-time applications, so
we conducted an experiment to test the latency of video data
from when it was captured to when it was used as an input of a
module. We wrote some testing code to record the interval from
when the system captured the video data to when image in the
module received the same data. We determined the latency for
500 frames and computed their average latency in each experi-
ment. When video data were needed by different modules and

these modules were not on one host, the typical latency was the
total interval of the capture, compress, transmit, buffering, and
decompress actions. To test the affect of compress/uncompress
and net transmission, we determined the latency of video data
in a single host and in different hosts. The results are shown in
Fig. 5.

Fig. 5 shows that the latency from the system capturing
the video data to the module acquiring it via net transmission
was slightly larger than on a single host, showing that the
net transmission had very little affect upon the latency. The
latency was mainly affected by the processing latency, i.e., the
processing power of the CPU, mainly because of the video
compression/decompression. This implies that when more and
more applications are running, the processing power of the
CPU will be a bottleneck. To handle such situations, it will be
convenient to use video sensors with compression functions or
to allocate applications to many more hosts using the proposed
architecture.

We tested the performance of the implemented components
working on the proposed architecture by deploying a 3-D
tracking module in the system, as shown in Fig. 6. For every
video data stream captured by camera, the core created a
corresponding video queue for vision processing modules to be
used as the input. Three FG detectors created three FG Queues,
using video queue as inputs, while three Blob Detectors will
create Blob Queues for a human body, using the FG Queue
as the input. When the 3-D tracker is running, it combines the
three Blob Queues to reconstruct the 3-D information from
the object so as to acquire its real-time location and trajectory.
In our experiment, we configured two cores in one computer
(Intel Duo CPU E8400 @ 3.00 GHz, 4G memory) with one
core in another computer (Intel i7 CPU @ 3.07 GHz, 6.00 GB
memory). Three types of Run modules were running on these
two computers, as shown in Fig. 7. A screenshot of the running
process is shown in Fig. 7. In this configuration, the 3-D track
can run normally at a frame rate of 21 frames/s and a video
resolution of 320 240, showing the system can meet real
time needs. In fact, the cores and modules can be configured
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Fig. 6. Components configured for 3-D tracking.

Fig. 7. Screenshot of a 3-D Tracker Module running on the proposed system. The left column shows the original video, while the center shows the processing
results for the respective video. The right graph shows the results of 3-D locating and tracking.

very flexibly in many more computers or a single computer,
because they run independently and they are transparent to each

other, because they connect to each other locally or remotely
automatically depending on the configuration.
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VI. CONCLUSION

In this study, the generalization of computer vision processing
is summarized using a common model that can be used in intelli-
gent video systems. A novel flexible and real-time distributed ar-
chitecture was proposed based on our model. In the proposed ar-
chitecture, the core data manipulation is abstracted into three ab-
stract elements, i.e., the queue, queue reader, and queue writer,
where the behavior of acquiring inputs and sending outputs for
data processing (including visual processing) is generalized as
different types of queue accessing. The queue is managed con-
currently, so it can be treated as a bridge that enables cooperation
among different processing units in a system. Fewer elements
with higher generalization will ensure the scalability and trans-
parency of the system. These three elements provide a basic IO
structure that
can be integrated to give the system smart control over resources
and processing modules, with low computational and commu-
nication costs. Using this architecture, vision systems can au-
tomatically load various processing modules according to dif-
ferent tasks, so they can easily exhibit intelligent characteristics.
Context management is a very important role and the use of an
ontology representing metadata in the system has just been ini-
tiated. Further research will investigate how the system applies
the ontology with more inference power to make the system
more smart and extensible.
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