
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

27

A Novel Multiple Key Block Ciphering Mechanism with

Reduced Computational Overhead
V.S.Shankar Sriram

Dept. Of Information Technology
Birls Institute of Technology
Mesra,Ranchi,India-835215

Abhishek Kumar Maurya
Dept. Of Computer Science & Engg.

Birla Institute of Technology
Mesra,Ranchi,India-835215

G.Sahoo
Dept. Of Information Technology

Birla Institute of Technology
Mesra,Ranchi,India-835215

ABSTRACT
Cryptanalysis of symmetric key cryptography encourages large

key size and complex operations to achieve message

confidentiality. All these techniques pose computational

overhead at both the sender & receiver ends. In this paper, we

propose a simple yet powerful Block Cipher Multiple Key

Symmetric Encryption (BCMKSE) algorithm for achieving both

confidentiality & integrity with reduced computational and

message overheads. Our algorithm changes the key after

encrypting/decrypting a piece of the whole message. While the

key changes during the whole message encryption/decryption

process without increasing network traffic or message overhead.

This methodology becomes faster as it uses the simplest

operations like shift, XOR, addition and comparison operations.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Access controls,

Authentication, Cryptographic controls, Information flow controls

General Terms

Security

Keywords

 Block Cipher, Confidentiality, Cryptography, Message

Integrity, Symmetric Key.

1. INTRODUCTION
Symmetric-key algorithms are a class of algorithms for

cryptography that use trivially related, often identical,

cryptographic keys for both decryption and encryption. The

encryption key is trivially related to the decryption key, in that

they may be identical or there is a simple transform to go

between the two keys. The keys, in practice, represent a shared

secret between two or more parties that can be used to maintain a

private information link. Other terms for symmetric-key

encryption are secret-key, single-key, shared-key, one-key and

eventually private-key encryption [1].

There are two ways in which the plaintext is processed in the

cryptography: block cipher and stream cipher. The block cipher

method divides a large data set into blocks (based on predefined

size or the key size), processes the input block of elements one at

a time, producing an output block for each input block. A stream

cipher processes the element continuously, producing one output

element at a time, as it goes along [2].

All the symmetric key cryptographic algorithms encourage

using large key size and/or complex procedure and/or multiple

keys (but limited number of keys i.e. two, three, four, ten, etc.) in

the ciphering process to achieve confidentiality. Examples of

such algorithms are Data Encryption Standard (DES), Advance

Encryption Standard

All the symmetric key cryptographic algorithms encourage

using large key size and/or complex procedure and/or multiple

keys (but limited number of keys i.e. two, three, four, ten, etc.) in

the ciphering process to achieve confidentiality. Examples of

such algorithms are Data Encryption Standard (DES), Advance

Encryption Standard (AES), and Blowfish etc. The mechanisms

used by these algorithms follow complex procedure for

encryption and decryption. Some like Triple DES (3DES)

follows complex procedure and multiple keys technique to make

it difficult for an attacker to decipher it. These mechanisms not

only increase the complexity for the attacker to crack, but also

puts a lot of computational overhead to the sender and receiver in

the process of ciphering and deciphering. Employing Complex

encryption procedure to secure messages at the cost of speed is

not a preferred one. Using multiple keys in the ciphering process

is a good alternative. But it puts other types of overhead in terms

of the key generation and exchange process which results in

increased network traffic. Why do not we have such a mechanism

which doesn‟t use any complex process that, can reduce the

network traffic, can also achieve message integrity and does not

encourage using large key size? With this in mind we have

designed a Block Cipher Multiple Key Symmetric Encryption

(BCMKSE) algorithm for achieving both confidentiality &

integrity with reduced computational overhead.

Rest of this paper is organized as follows. Section 2 addresses

the computational overhead in some popular existing symmetric

key algorithms. Section 3 explores our proposed work (i.e. Key

Generation and Block Cipher Multiple Key Symmetric

Encryption (BCMKSE) algorithms). Section 4 will describe its

benefits. Simulation results are discussed in section 5 followed

by conclusion in section 6.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

28

2. OVERHEADS IN EXISTING

SYMMETRIC KEY ALGORITHMS
It is worth to mention here that the existing symmetric key

encryption algorithms pose several computational overheads. A

brief note on the operational mechanism and overheads posed by

some popular symmetric key algorithms are discussed below.

2.1 DES/3DES
DES applies a symmetric 56-bit key to each 64-bit block of

data. The process can run in several modes and involves 16

rounds of operations. DES is breakable as the key size is too less.

Hence Triple DES (3DES) an Enhancement of DES emerged as a

stronger method. Triple DES encrypts the data three times and

uses a different key for at least one of the three passes for giving

a cumulative key of size 112-168 bits. If we consider a triple

length key to consist of three 56-bit keys K1, K2, K3 then

encryption is as following order :- encryption with K1, decryption

with K2, encryption with K3. Whereas, decryption is the reverse

process of encryption, so the decryption of the cipher text will be

as follows: - decryption with K3, encryption with K2, decryption

with K1 [3].

The computational overhead at the sender and receiver ends,

are as high as 3DES that involves three times the operations of

normal DES, with each DES contributing 16 rounds of operation

[4]. Further the increasing key size increases the process run time

complexity. Moreover the keys are of fixed size and do not

change with sessions, they has to be changed periodically

between the parties for achieving more message confidentiality.

2.2 AES
An Advanced Encryption Standard (AES) has basically three

different configurations with respect to the number of rounds and

key sizes. It has 10 rounds for 128-bit keys, 12 rounds for 192-bit

keys, and 14 rounds for 256-bit keys. By 2006, the best known

attacks were on 7 rounds for 128-bit keys, 8 rounds for 192-bit

keys, and 9 rounds for 256-bit keys [5, 6]. It is worth mentioning

here that any increase in the number of iterations or rounds and

key size is a burden for both the sender and the receiver. Even

the key is fixed and it doesn‟t change with the respective session.

So, using a single key for long time decreases the message

confidentiality.

2.3 Blowfish Encryption
Blowfish encrypts data in 8-byte blocks. The algorithm

consists of two parts: a key-expansion part and a data-encryption

part. Key expansion converts a variable-length key of at most 56

bytes (448 bits) into several sub key arrays totaling 4168 bytes.

Blowfish has 16 rounds. Each round consists of a key dependent

permutation, and a key and data-dependent substitution. All

operations are XORs and additions on 32-bit words [7, 8].

Blowfish Encryption is modified version of DES with simplified

operations like XORs and additions. The run time complexity of

Blowfish is much lesser than that of DES and AES, using the

same concept, but suffers the same problem as DES.

Session key uses multiple keys for ciphering and deciphering

the message for a period of time. In session key mechanism after

a particular time t, both the sender and receiver will change

the keys which are being used to cipher and decipher. The

problem with this technique is that if there is lack of

synchronization between the sender and receiver, one end might

have changed the key whereas other might be using the previous

key. But instead of using a time stamp to change a key, we

consider here the change of key after encrypting some number of

bits (i.e. some piece of message) and similarly on receiver side it

changes the key after decrypting same number of bits. We

emphasize here that this novel idea is more suitable for this

process of encryption or decryption which has been justified

through experimental results.

3. BLOCK CIPHER MULTIPLE KEY

SYMMETRIC ENCRYPTION (BCMKSE)

ALGORITHM
On the basis of the above mentioned problems of the popular

crypto algorithms, we propose Block Cipher Multiple Key

Symmetric Encryption (BCMKSE) algorithm which doesn‟t

suffer from any of the overheads mentioned above. Our algorithm

falls under the category of symmetric key block ciphering and

uses a key of 128 bits. The numbers of keys which are used to

cipher/decipher are dependent on message size and the NOB

(number of bits) variable. NOB variable will decide, after how

many number of bits the key should change, where the decimal

value of NOB has been taken from random number and the

number of bits required to represent NOB variable, are agreed

previously by both communicating parties. The proposed

algorithm is based upon the following consideration.

We consider 128 bits key size and n bits NOB. The decimal

value of n-bit NOB is random in nature where 7<=n<=128. The

NOB variable will decide, after how many bits of

encryption/decryption, the key should change. This NOB variable

must be greater than zero and in the multiples of 128. The key

and NOB will be known to both the sender and receiver by the

exchange of an initial message. The multiple numbers of keys

will depend on the overall message size and NOB. At the

sender‟s end, key will change after transmitting NOB bit of

original message and at the receiver‟s end, after receiving same

number of bits, key will be changed. For message integrity, we

will use message authentication code (MAC) using MD5.

The encryption and decryption process of the proposed

algorithm uses bit_count as a variable to count the number of bits

to be encrypted and decrypted. The bit_count will be compared

to NOB. If it is equal to the NOB, a new key will be generated.

The encryption and decryption will then be performed with the

new key generated; otherwise the message will be encrypted or

decrypted by the same key.

3.1 Key Generation Algorithm
Let us assume that there is a server S and there are i number

of nodes in the network where each node is represented by Ni.

The key and NOB will be generated at the server end and will be

exchanged between the server and the client nodes. Our key

generation process consists of generating MINi (client node

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

29

related), MINs (server related), SRMPNi (based on screen

resolution and mouse position) and Ti (which is a time

component). Based on SRMPNi and Ti, a random number of 128

bits Ri is generated. The MINi and MINs make use of MAC

address, IP address, host name of the server S and node Ni

respectively. So, the key comprises of various components and is

a combination of various server and client related information.

This makes it hard for the attacker to guess the key.

 The step by step procedure is as follows:

KeyGeneration (n)

{

/* n represents the number of bits required to represent the NOB

variable. */

/* acquiring Ni’s information */

1. Acquire node Ni‟s MAC address (MACNi), IP

address (IPNi), Host Name (NNi), Screen Resolution (SRNi),

Mouse Position (MPNi).

/*generate MINi of 128 bits*/

2. Generate MINi a variable by appending MACNi,

IPNi, NNi.

3. If MINi < 128 bits

 Pad „0‟ in the MINi

 goto step 3

4. If MINi > 128 bits

 Retaining the most significant 128 bits of MINi

and discard the remaining bits.

/* acquiring server’s information */

5. Acquire Server MAC Address (MACs), IP address

(IPs), ServerName (Ns).

6. Acquire current Date (dd/mm/yyyy), Time

(hh:MM:ssss) from server when node Ni occurred.

/*generating MINs of 128 bits*/

7. Generate MINs a variable by appending MACs,

IPs and Ns.

8. If MINs < 128 bits

 Pad „0‟ in the MINs

 goto step 8

9. If MINs > 128 bits

 Retaining the most significant 128 bits of MINs

and discard the remaining bits.

/*generate Ti of 128 bits*/

10. Generate Ti by appending dd, mm, yyyy, hh, MM

and ssss in the string format.

/* generate random number Ri */

11. Generate 128 bits SRMPNi a variable by

appending 64 bits SRNi with 64 bits MPNi

/* SRNi will be in the string format (width

appended by length). e. g. 10240768 where width= 1024

and length=768*/

 /* MPNi will be in the string format (x-coordinate

appended by y-coordinate). e. g. 07400568 where x-cord=

740 and y-cord=568*/

12. Ri=SRMPNi (XOR) Ti /* Here, Ri is 128 bits */

/* calculating n bits NOB variable from Ri for dynamic key

generation */

13. NOB = last n-7 bits of Ri.

/*(i. e. NOB=Ri((128-n) to 128))*/

 /* Here, no. of bits in (NOB) = n-7 bits*/

14. append seven „0‟s in to the LSB side of NOB

 /* Here, no. of bits in (NOB) = n bits*/

15. If NOB<128

 NOB=128

 /* maximum value of (NOB) = (2
n
-1), minimum

 value of (NOB) =128 where n is agreed

value between the communicating parties. */

/* generating key Ki*/

/*MINis , MINTis are variables*/

16. MINis = MINi (XOR) MINs

17. MINTis = MINis(XOR) Ti

18. Ki = MINTis (XOR) Ri

/* dispatch key */

19. Dispatch key Ki and NOB to node Ni.

20. END

}

3.2 Encryption Algorithm
The encryption algorithm divides the whole message into 120

bits blocks and each block is appended by 8 bits message

authentication code (MAC). Now, these 128 bits blocks are

encrypted by the key. After every NOB bits of the message, the

key is changed and encrypted by the new key. This key changing

procedure is repeated till the end of the message. The step by

step procedure is as follows:

Encryption (Key K, NOB, Plain Text)

{

1. Cipher_Text = null

/* At the end of ciphering process Cipher_Text variable will hold

the whole cipher text of the whole plain text. */

2. M = First 120 bits of Plain Text

 /* If plain text size is not of 120 bits. So, pad blank at the end of

the message to make it of 120 bits.*/

3. bit_count = 0

4. If M = null

 goto step 12

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

30

 Else

 goto step 5

5. 8 bits MAC = MD (NOB, M)

/*Here, we are generating 8-bits message authentication code by

passing NOB as a key and a 120 bits message M into MD

function of the communicating part‟s choice for maintaining

message integrity.*/

6. 128 bits (M + MAC) = append 120 bits M with 8 bits MAC

7. 128 bits C = 128 bits (M + MAC) (XOR) 128 bits key K

8. Cipher_Text =Append C with Cipher_Text

9. bit_count = bit_count + 128

10. M= next 120 bits of Plain text /

* If plain text size is not of 120 bits. So, pad blank at the end of

the message to make it of 120 bits. */

11. If bit_count != NOB

 goto step 4

 Else

 { /*new key generation*/

 Perform shift operation at K

 K = K + NOB

 K = K (XOR) NOB

 goto step 3

 }

12. END

}

3.3 Decryption Algorithm
The decryption algorithm divides the whole cipher text into

128-bit blocks which are further decrypted by same multiple keys

(which was used for encryption). But now, these keys are

generated by decryption algorithm by taking only the initial key

and NOB which was exchanged earlier. After NOB bit, the key is

changed and the next blocks are decrypted by the respective new

keys. 8-bit MAC and 120-bit message will be separated from the

decrypted message. It calculates the MAC for 120-bit message

and also performs the comparison between, the decrypted

message MAC and the calculated MAC by decryption algorithm.

If both are equal then message is integrated and proceeds for

next block, otherwise the connection will be reset since the

message has been altered by someone. After every NOB bits, the

key will be changed and this procedure is repeated till the

encrypted message ends. The step by step procedure is as

follows:

Decryption (Key K, NOB, Cipher Text)

{

1. Plain_Text = null

/*At the end of deciphering process Plain_Text variable will hold

the whole plain text of the whole cipher text*/

2. C = First 128 bits of Cipher Text

3. bit_count = 0

4. If C = null

goto step 11

 Else

goto step 5

5. 128 bits (M + MAC) = C (XOR) 128 bits Key K

6. Separate 120 bits M and 8 bits MAC from 128 bits (M +

MAC)

7. Append M with Plain_Text

8. C = next 128 bits of Cipher Text

9. 8 bits MAC‟ = MD (NOB, M)

/*Here, we are generating 8-bit MAC‟ by passing NOB as a key

and 120 bits message M into MD function*/

10. If MAC‟ = MAC

{ /*Message integrity verified*/

bit_count = bit_count + 128

If bit_count != NOB

 goto step 4

Else

 {/*new key generation*/

Perform shift operation at k

 K = K + NOB

 K = K (XOR) NOB

 Goto step 3

 }

 }

 Else

 /*Message not integrated*/

 Select proper action (e. g. reset connection)

11. END

}

The maximum & minimum data which can be encrypted or

decrypted by using same key is 2n-1 bits & 27 bits respectively.

We can vary the min and max boundary by modifying the require

bit size to represent NOB which we have taken „n‟.

4. KEY BENEFITS IN THE PROPOSED

ALGORITHM
1. The algorithm involves few XORs, SHIFTs, additions,

comparisons and appends operations. So, the algorithm works

faster and the run time complexity is less.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

31

2. Due to the change of keys after the random bits, it is very

hard to perform the cryptanalysis in order to deduce the secret

keys.

3. Due to 128-bit key and n-bit NOB, the cipher becomes

more secure. Because, a total 2128 + 2n number of permutations

are possible where 128 >= n>=7. So, brute force attack is much

time taking, nearly 1.079x1028 year for a personal computer

which permutes thousands of 128-bit numbers in 1 second for

n=7. If we increase the value of n then the number of years

required for brute force attack will increase. The lesser the size

of n, the number of key generation is more. Hence, in both the

cases, we are optimizing security.

4. Although the key is changing frequently but no need of key

exchange. So, it reduces the network traffic.

5. If an attacker is so lucky and he does the best guess, the

probability for guessing the key will be (1/2128) or 2.938*10-39,

for NOB it will be (1/ 27) or 7.812x10-3 where n=7 and the joint

probability for both will be (1/2128)*(1/ 27) or 2.295*10-41. If we

increase the value of n then the joint probability of best guess

will decrease.

6. This mechanism achieves message confidentiality as well as

integrity where as other mechanisms only provides message

confidentiality.

7. The time requires to achieving message

Confidentiality is comparably much less than other

existing mechanisms.

5. SIMULATION RESULTS
We have used java cryptographic environment (JCE) as a

coding standard. To perform the simulation, we have used a

desktop with the following specification [9]-[11]. Windows XP

sp2 as the operating system with java run time environment

(JRE), Intel Coretm2 Duo 2.53 GHz processor and 2 GB RAM.

We have implemented our algorithm and compared it with DES,

3DES, AES and Blowfish. The time delays for

encrypting/decrypting of 1Kilobit of data are as follows:

Table 1. Time taken for Encryption/Decryption

Algorithm

Encryption

Time

(second/Kbit)

Decryption Time

(second/Kbit)

DES

(56 bit key)

0.296957406

0.237437491

3DES

(56bit three key)

0.765329835

0.709092870

AES

(128 bit key)

0.264974528

0.265052825

Blowfish

(128 bit key)

0.204341515

0.001350465

BCMKSE

0.177459598

0.000123706

(128 bit key)

On the basis of table 1, we plotted the following Graphs. The

Graphs are plotted for the algorithms against their respective

times taken for encryption/decryption.

Figure 1. Time taken for Encyption

Figure 2. Time taken for decyption

So, considering the evidences provided by the above stated

algorithm, it is clear that the time required to encrypt/decrypt

1Kbit data taken by BCMKSE algorithm is lesser than the

existing symmetric key algorithms. Additionally BCMKSE

algorithm also provides message integrity. The following are the

snapshots of Key and NOB generation, Encryption and

Decryption Operations for 1 kilobit data where number of bit

require to represent NOB is 16.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

32

Figure 3. Encryption with BCMKSE

Figure 4. Key and NOB generation

Figure 5. Decryption with BCMKSE

The proposed algorithm shows how multiple keys have been

used to encrypt the message and these multiple keys are being

decided by the NOB variable. So, the NOB and key will be

different at any time not only for all the nodes, but also for the

individual node and for the same message as well. In this

experiment NOB equals to 768 or 6*27 (that means after every

96 characters of encryption/decryption, the key will be changed).

6. CONCLUSION
In this paper, algorithms for key generation, encryption and

decryption are proposed. The proposed algorithms are efficient

because they are simple and easily implementable. The algorithm

achieves message confidentiality with less run time complexity

and computational overhead as compared to the existing

algorithms, which has been justified in the previous section. Also

it provides message integrity which is not provided by other

symmetric key algorithms. This paper presents a new way of

using multiple keys concept without increasing message

overhead. We can improve its efficiency by changing its

implementation platform, language, programming style and

network technology. Instead of developing a complex algorithm

by involving complex and time taking operations, this paper

emphasize to think about logically complex algorithm with

simple operations.

7. REFERENCES
[1] Wikipedia Symmetric key algorithm. Updated February,

2007.

http://en.wikipedia.org/wiki/Symmetric_key_algorithm

(March, 2009).

[2] H W. Stallings. Cryptography and Network Security:

Principles and Practice, 3rd Edition. Prentice Hall, New

Jersey, USA, 2003.

[3] FIPS Publication 46-3, “Data Encryption Standard (DES).”

U.S. DoC/NIST, October 25, 1999.

[4] American National Standard for Financial Services X9.52-

1998, “Triple Data Encryption Algorithm Modes of

Operation.” American Bankers Association, Washington,

D.C., July 29, 1998.

[5] FIPS Publication 197, “Advanced Encryption Standard

(AES).” U.S. DoC/NIST, November 26, 2001.

[6] Wikipedia Advanced Encryption Standard. Updated

February, 2007.

http://en.wikipedia.org/wiki/Advanced_Encryption_Standar

d (March, 2009).

[7] B. Schneier, Description of a New Variable-Length Key, 64-

Bit Block Cipher (Blowfish) Fast Software Encryption,

Cambridge Security Workshop Proceedings (December

1993), Springer-Verlag, 1994.

[8] B. Schneier, Applied Cryptography, John Wiley & Sons,

New York, 1994.

[9] Menezes, P. van Oorschot, and S. Vanstone, “Handbook of

Applied Cryptography.” CRC Press, New York, 1997.

[10] GridCrypt: High Performance Symmetric Key Cryptography

using Enterprise Grids by Agus Setiawan, David Adiutama,

Julius Liman, Akshay Luther and Rajkumar Buyya Grid

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

33

Computing and Distributed Systems Laboratory Dept. of

Computer Science and Software Engineering The University

of Melbourne, Australia.

[11] Performance of the AES Candidate Algorithms in Java by

Andreas Sterbenz, Peter Lipp Institute for Applied

Information Processing and Communications Graz,

University of Technology Inffeldgasse 16, A-8010 Graz,

Austria.

