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Abstract
Descriptive names are crucial to understand code. How-
ever, good names are notoriously hard to choose and manu-
ally changing a globally visible name can be a maintenance
nightmare. Hence, tool support for automated renaming is an
essential aid for developers and widely supported by popular
development environments.

This work improves on two limitations in current refac-
toring tools: too weak preconditions that lead to unsound-
ness where names do not bind to the correct declarations
after renaming, and too strong preconditions that prevent re-
naming of certain programs. We identify two main reasons
for unsoundness: complex name lookup rules make it hard
to define sufficient preconditions, and new language features
require additional preconditions. We alleviate both problems
by presenting a novel extensible technique for creating sym-
bolic names that are guaranteed to bind to a desired entity
in a particular context by inverting lookup functions. The in-
verted lookup functions can then be tailored to create quali-
fied names where otherwise a conflict would occur, allowing
the refactoring to proceed and improve on the problem with
too strong preconditions.

We have implemented renaming for Java as an extension
to the JastAdd Extensible Java Compiler and integrated it
in Eclipse. We show examples for which other refactoring
engines have too weak preconditions, as well as examples
where our approach succeeds in renaming entities by insert-
ing qualifications. To validate the extensibility of the ap-
proach we have implemented renaming support for Java 5
and AspectJ like inter-type declarations as modular exten-
sions to the initial Java 1.4 refactoring engine. The renaming
engine is only a few thousand lines of code including ex-
tensions and performance is on par with industrial strength
refactoring tools.
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1. Introduction
Renaming is one of the most commonly used refactorings
[OJ90]. Well chosen names for classes, methods, and fields,
play a key role in software systems to complement docu-
mentation, but as systems evolve it is important to be able to
change these names to reflect updated designs.

Most languages allow globally visible declarations, and
renaming therefore requires a global analysis to find which
source files to change. To avoid manual inspection of the en-
tire source code, automated tool support for such name based
refactorings provide an invaluable aid in everyday develop-
ment. An important property of refactorings is that they are
behaviour preserving [Opd92, Fow00]. This is particularly
important for global refactorings, such as renaming, where
it is not reasonable to manually inspect the performed trans-
formations. Behaviour preservation is most often ensured by
having a set of preconditions that must be met for a refactor-
ing to be valid.

In this work we look at two limitations of a purely precon-
dition based approach. Too weak preconditions lead to un-
soundness where programs will not compile after the refac-
toring, or even worse, to programs where names refer to dif-
ferent declarations after the renaming than before the trans-
formation. During this work we found examples that lead
to the severe latter case, exposing bugs in refactoring en-
gines in common IDEs such as Eclipse, NetBeans, IntelliJ,
and JBuilder [Ecl07, Net07, Jet07, JBU07]. Moreover, lan-
guages like Java provide several ways to refer to the same
entity using different symbolic names. For example, a field
shadowed by a local variable can still be accessed by quali-
fying it with this, and a type in a distant package can often
be accessed using a qualified name. We thus do not want
too strong preconditions either, since they prevent renaming
programs where some minor qualifications would enable the
refactoring.
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This work improves on too strong preconditions that pre-
vent refactorings, by using more flexible renaming, and
present a systematic approach to avoid too weak precon-
ditions which lead to unsoundness. Rather than stating pre-
conditions that guarantee behaviour preservation, we use the
following correctness criterion: Rename refactorings should
preserve the invariant that only names are affected by the
refactoring, and that each name refers to the same declared
entity before and after the transformation. This is slightly
weaker than behaviour preservation, which is impossible to
achieve in the presence of dynamic class loading and reflec-
tion, but on the other hand it provides us with an implemen-
tation strategy.

We present a novel technique for creating symbolic
names that are guaranteed to bind to a desired entity in a
particular context by inverting lookup functions. By apply-
ing this operation for each bound name that could possibly
be affected by a renaming operation we guarantee that our
correctness invariant described above is preserved. This also
allows us to re-qualify names that would otherwise refer to
different declarations before and after the refactoring. If no
symbolic name can be computed for a desired context we
abort the rename operation and revert all changes. We have
previously showed how name lookup can be implemented
in a modular syntax directed fashion using attribute gram-
mars [EH06]. In this work we show how to systematically
invert each lookup rule by providing a corresponding in-
verted rule to each lookup rule to which creates a symbolic
name. The rules can be tailored for various levels of qual-
ification which enable flexible renaming where the desired
intrusiveness can be selected by the tool developer or even
the tool user. The notion of inverted lookup aligns well with
Opdyke’s preconditions for renaming, where he states that
the actual conditions are closely tied to name lookup for a
particular language [Opd92].

A major challenge for analysis tools is how to handle
changes and extensions to a language. Indeed, we found sev-
eral examples of unsoundness in refactoring engines due to
unsupported language extensions, e.g., static imports as in-
troduced in Java 5. To address this problem we show how
to extend renaming specifications in a modular fashion to
support new language features. The close correspondence
between lookup and renaming enables the compiler imple-
mentor to preserve the renaming invariant by adding a re-
verse rule each time she implements a language construct
that affects name binding.

We have implemented a complete renaming engine for
Java as a modular extension to the JastAdd Extensible Java
Compiler (JastAddJ) [EH07] and integrated it as a plugin to
Eclipse1. The engine has been validated against both auto-
matically generated tests, and our own renaming test suite
for benchmarking refactoring engines. The suite exposes

1 All tools including source are available for download at
http://jastadd.org/refactoring-tools.

several bugs due to too weak preconditions in other ma-
jor refactoring engines which causes the binding invariant
to be violated. Moreover, it includes numerous examples
where our approach succeeds in renaming entities by insert-
ing qualifications where other refactoring engines fail.

Extensibility is validated by adding renaming support for
Java 5 and AspectJ like inter-type declarations as modular
extensions to the Java 1.4 refactoring engine. Both exten-
sions can be used individually with their corresponding com-
pilers or together to support renaming for the combined set
of language features. All in all the implementation is less
than 3000 lines of code.

The renaming infrastructure can also be used as a build-
ing block when implementing more high-level refactorings.
Refactorings that rearrange or produce new code need to
ensure that the binding structure is preserved. A common
framework handling these low-level details allows the im-
plementor to focus on issues germane to the refactoring at
hand. This could reduce the number of naming related bugs
which we have found to be pervasive in all major refactoring
engines.

In summary, we present a systematic approach to renam-
ing Java based on inverted lookup rules. The approach is:

Sound when each lookup rule in the name analysis has a
corresponding inversion rule.

Flexible in that the level of qualification in names intro-
duced during renaming can be tailored as desired.

Modular where each language construct is specified in iso-
lation using syntax directed rules.

Extensible since both lookup rules and inversion rules are
implemented in a declarative modular fashion and auto-
matically composed into a global solution.

The rest of this paper is structured as follows. In Section 2
we give an introduction to renaming and describe deficien-
cies in existing refactoring engines. We also give an intro-
duction to the correctness criterion used throughout the pa-
per. An introduction to name lookup using JastAdd is given
in Section 3. Section 4 gives a detailed presentation of the
reverse lookup strategy and shows how to tailor the desired
level of name qualification. We show how to support renam-
ing of an extended language in Section 5.The approach is
evaluated in Section 6 with respect to its correctness, perfor-
mance, and extensibility. Related work is discussed in Sec-
tion 7 and we finally conclude and present future work in
Section 8.

2. Example: Rename Variable
Throughout this paper, we will take the Rename Variable
refactoring as our running example. In standard Java termi-
nology [GJSB05], both local variables (including parame-
ters) and fields (either static or instance) are referred to sim-
ply as variables. The aim of the Rename Variable refactoring
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class A {
int x;
A(int y) {

x = y;
}

}

Figure 1. A simple example program to refactor

class A {
int x;
A(int newX) {

x = newX;
}

}

Figure 2. A simple example program, refactored

is to change the name of a variable and make all necessary
changes to the program such that all bindings are preserved.

In this section, we will give several example programs to
refactor. We will use these examples to contrast our imple-
mentation with the refactoring engine of Eclipse, which is
mature and widely used.

A first example program is shown in Figure 1. There are
two variable declarations in this program, one for the field x,
which is an instance member field of class A, and one for the
parameter y of method m, which is itself an instance member
method of class A.

The field x is referenced once in the body of m by the sim-
ple name x. We collectively refer to all expressions that refer
to a field as (field) accesses, and likewise for other named en-
tities such as types and methods. Beside the example here,
there are many more possible accesses that could also refer
to the field x from inside method m, for example this.x,
((A)this).x, or even A.this.x.

The local variable y is also referenced once, by the simple
name y (which is, of course, a local variable access). In
contrast to fields, there is no way to qualify local variable
accesses. A local variable is thus either directly visible or
inaccessible.

Now our little example program is perhaps not in very
good style, since the name of the constructor parameter y
bears no relation to the name of the field it is used to ini-
tialise, which may be a bit confusing. We could, for example,
rename the parameter to newX; this is easily accomplished,
for example, in Eclipse, and will yield the refactored code
in Figure 2, in which the parameter declaration and all refer-
ences to it use the new name.

Observe that the refactored program has the same binding
structure as the original, i.e., every access still refers to the
same entity as in the original program; our refactoring was
successful.

class A {
int x;
A(int x) {

this.x = x;
}

}

Figure 3. A simple example program, refactored again

Another commonly seen idiom is for the parameter to
have the same name as the field it initialises. But trying to
perform this refactoring will fail, for example, in Eclipse
since the newly renamed parameter collides with the field.

The same refactoring will, however, be successfully per-
formed if we first change the access to field x to this.x
manually. Ideally, one would like the IDE to carry out this
sort of adjustment automatically. Our implementation does
this, and yields the code in Figure 3.

Again, the binding structure of the refactored program is
the same, although the access x has changed to this.x.
To achieve this, our implementation proceeds as follows:
For every access occurring in the program, we know which
declaration it should bind to (the same one as in the original
program); if needed, we compute a new access that will in
fact bind to that declaration in the refactored program, and
replace the old access by the new one. This ensures that the
binding structure of the refactored program is the same as
that of the input program, i.e. the refactoring is correct.

The key observation about the access computation func-
tion is that it is a (partial) right inverse to the lookup func-
tion: We can think of the lookup function at a certain pro-
gram position p as a partial function

lookupp: access ⇀ decl

that determines for a given access the declaration it refers
to (if any). The access computation function at the same
position should now be a partial function

accessp: decl ⇀ access

that determines for a given declaration an access that refers
to it (if there is one). Correctness of our access computation
means that

lookupp(accessp(d)) = d

for every declaration d and program position p, if accessp(d)
is defined.

We will not formally prove that our refactoring engine
fulfills this condition, but it provides a basic guideline for
implementation. Our access computation is directly mod-
elled after the lookup machinery of the JastAddJ Java com-
piler with the code for access computation closely mirroring
the code for lookup. This ensures that we will not forget one
of the many border cases that exist in a complex language
like Java.
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class A {
public static void main(String[] args) {

final int y = 23;
new Thread() {
int x = 42;
void run() {

System.out.println(y);
}

}.start();
}

}

Figure 4. A more complex example

class A {
public static void main(String[] args) {

final int x = 23;
new Thread() {
int x = 42;
void run() {

System.out.println(x);
}

}.start();
}

}

Figure 5. A more complex example, wrongly refactored

Traditionally, many implementations of automatic refac-
torings have tried to avoid tricky cases by checking a set of
preconditions before performing the refactoring. However,
these preconditions are formulated from scratch and it is
very hard to ensure that they really cover every nook and
cranny.

When we tried to rename newX to x above, the precondi-
tions were strong enough and warned about the name colli-
sion. In fact, we argued that they were too strong, since the
refactoring can easily be carried out with only slightly more
invasive changes to the user’s code. However, in Figure 4
we have a not much more complex program where Eclipse’s
preconditions are not strong enough.

This little program constructs a thread and runs it; the
thread will print 23. Similar to before, we have a field x

and a local variable y, but this time their scopes are nested
in the opposite way. If we tell Eclipse to rename the local
variable to x, it obliges, but creates the output program seen
in Figure 5 whose binding structure is not the same as the
input program’s. Incidentally, its behaviour is different as
well: the refactored program prints 42.

Our implementation does not check preconditions in ad-
vance. Instead, when a rename is performed, it tries to adjust
all accesses such that they resolve to the same declaration
as before. In our last example, the refactoring engine tries
to compute an access to the newly renamed local variable x
from inside the thread class. There it will discover that there

import static java.lang.Math.*;

class Indiana {
static double myPI = 3.2;
static double CircleArea(double r) {

return PI*r*r;
}

}

Figure 6. Example program using the static import feature

is in fact no such access, reject the refactoring, and undo all
previous changes.

It may seem to be prohibitive to adjust all accesses oc-
curring in the input program. Intuitively, it is clear that most
of them will not be influenced by the refactoring. But which
ones do need adjustment? For one, certainly every reference
to the entity being renamed has to be updated. But as the ex-
ample above shows there might be other entities which are
“endangered” by the rename and will need to have some or
all of their accesses adjusted. Towards the end of Section 4
we will discuss a very simple approximation to determine
the endangered set that works well in practice.

Another major issue for refactoring engines is language
evolution: Since its inception, the Java language has gone
through seven major revisions (Java 1.0 to 1.4, Java 5, and
Java 6) with an eighth on the horizon. While some of these
revisions mostly concerned the standard library or minor is-
sues of language syntax, the transition from Java 1.4 to Java
5, in particular, brought with it a wealth of new features and
concepts, which refactoring engines are, of course, expected
to support.

To pick just one example, let us look at the static import
feature. It allows the programmer to import static fields and
methods of classes so that they do not have to be explicitly
qualified, which is very useful for frequently used constants
like Math.PI.

But the introduction of static imports also had a signif-
icant impact on the way name lookup is performed: Previ-
ously, only types could be imported, so import statements
never affected the visibility of variables. Static imports do,
however, and what affects lookup also affects renaming.

Take, for example, the program in Figure 6. The class
Indiana is located in a compilation unit that statically im-
ports the field Math.PI so that it can be accessed using the
simple name PI; at the same time, the class also defines a
static field named myPI.

If we want to rename myPI to PI, we must also qualify
the access to Math.PI, as our implementation does, yielding
the program of Figure 7. Before the introduction of static
imports, when renaming the field in this example it would
have been enough to check for collisions with other variables
in class Indiana, but now we also need to consider the
import declarations of the surrounding compilation unit.
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import static java.lang.Math.*;

class Indiana {
static double PI = 3.2;
static double CircleArea(double r) {

return Math.PI*r*r;
}

}

Figure 7. Example program with static import, refactored

Two of the most popular Java IDEs, Netbeans and IntelliJ,
fail to take this into account and incorrectly refactor this
example. Eclipse and JBuilder both detect the name clash in
this case, but fail on a very similar example where we instead
import a static method and shadow it locally [EESV08].
Thus none of surveyed IDEs offers complete support for
static imports.

Our implementation covers this example as well as all
other Java 5 features. The refactoring engine for Java 1.4 is
implemented as an extension of JastAddJ’s Java 1.4 frontend
with its access computation modelled after the lookup rules.
To support Java 5, we only need to implement a correspond-
ing extension for the Java 1.5 module of the frontend. Since
all the lookup rules for the new language features are care-
fully implemented there, we only need to equally carefully
translate them into access computation rules.

3. Lookup
The approach we present to flexible renaming is closely re-
lated to name lookup and its implementation in the JastAddJ
compiler. We therefore give an introduction to that approach
as background before presenting the reverse lookup strategy
in Section 4. A more detailed description and a thorough
evaluation are given in [EH07, EH06].

The purpose of name lookup is to bind each symbolic
name to a corresponding declaration. This is traditionally
done by traversing the program’s abstract syntax tree and
populating a symbol table with declarations that are in scope
at various locations in the tree. This often leads to scheduling
problems of traversals due to dependencies between analy-
ses such as name name lookup and type analysis [AET08].
We therefore take a different approach in JastAddJ and use
the AST itself as a symbol table, by specifying name lookup
as a function of the tree location for each symbolic name.
Lookup rules are specified in a syntax directed fashion over
the AST extended with additional graph structure such as
name bindings, type hierarchies, etc. That technique gives
us the following properties:

Modularity in that we can specify the name lookup for each
language construct that affects scoping in isolation.

Composability in that rules for individual language con-
structs can be combined to support the complete language
automatically.

class X {
int a;

}
class Y {
int b;
class Z extend X {
int c;
void m(boolean d) {

int e;
if(d) {

int f;
•

}
}

}
}

Figure 8. Name lookup in Java with numerous nested
scopes and inheritance. Declarations a to f are all accessible
with their simple names from the position marked •

Declarativity in that we need not specify the order in which
these rules are executed or combined.

Extensibility in that we can support lookup for language
extensions by either adding new rules or refine existing
rules.

Object-oriented languages with nested classes and inheri-
tance provide many challenges from a name lookup point of
view. Consider the Java example in Figure 8. Variable dec-
larations a-f are all accessible with a simple name in the lo-
cation marked •. To bind f we search the local block; e is
visible since it is declared in an enclosing block; d is a pa-
rameter in an enclosing method; the field c is a local member
field in the current class; a is an inherited member field from
its superclass; b is visible since it is declared in an enclosing
class. This strategy can be viewed as if lookup progresses
outwards lexically with the exception that member lookup
does a detour upwards the inheritance hierarchy.

We now present how Java name lookup with lexically
nested structures and inheritance can be implemented using
attribute grammars in JastAdd. First we present the static
structure of the language and then show how to add name
lookup on top of that structure using syntax directed rules.

3.1 Abstract Grammars
JastAdd uses an abstract grammar to model the structure of
the AST. Consider the grammar in Figure 9 which models
a subset of Java with nested blocks, nested classes, inheri-
tance, and qualified access. It consists of a set of productions
where each production describes an AST node type and a
list of children, which can be either subtrees or terminals.
For example, a ClassDecl has a string typed terminal child
named ID to hold the name of the class, an optional child
named Super which is an Access, and a list of BodyDecl
children.
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ClassDecl ::=
<ID:String> [Super:Access] BodyDecl*;

abstract BodyDecl;
FieldDecl : BodyDecl ::=
Type:Access <ID:String> [Init:Expr];

MethodDecl : BodyDecl ::=
Type:Access <ID:String> ParameterDecl*
[Block];

MemberClass : BodyDecl ::=
ClassDecl;

ParameterDecl ::=
Type:Access <ID:String>;

abstract Stmt;
Block : Stmt ::=
Stmt*;

VariableDecl : Stmt ::=
Type:Access <ID:String> [Init:Expr];

abstract Expr;
abstract Access : Expr;
VarAccess : Access ::= <ID:String>;
TypeAccess : Access ::= <ID:String>;
Dot : Access ::= Left:Expr Right:Access;

Figure 9. An abstract grammar for an object-oriented lan-
guage with nested blocks, nested classes, and inheritance,
used to introduce name lookup

A class will be generated for each production with get-
ters and setters for accessing the children. For example,
ClassDecl will have a getter String getID() for its ter-
minal child. The optional child Super exists when the flag
boolean hasSuper() is true, and can then be queried us-
ing Access getSuper(). The list of body declarations has
getters for length, int getNumBodyDecl(), access to in-
dividual elements, BodyDecl getBodyDecl(int i), and
iteration by Iterable<BodyDecl> getBodyDecls().

A production can inherit from another production, which
translates into inheritance between the classes generated
from them. For instance, FieldDecl inherits the abstract
node type BodyDecl. All nodes implicitly inherit ASTNode,
just like all Java classes extend Object. The type ASTNode
holds generic node traversal code and other behaviour com-
mon to all tree nodes.

3.2 Lookup and type analysis external API
Lookup and type analysis are specified using declarative at-
tribute grammars. Attributes can be seen as normal meth-
ods when invoked from imperative Java code, but an at-
tribute evaluation engine derives a suitable evaluation order
between dependent attributes. JastAdd allows attributes to be
reference valued, i.e., refer to other nodes in the AST. Name
lookup is then cast into the problem of binding a name to

/ / L o o k u p i s u s e d t o f i n d a v i s i b l e
/ / d e c l a r a t i o n i n a p a r t i c u l a r c o n t e x t
Variable ASTNode.lookupVariable(String name);
MethodDecl ASTNode.lookupMethod(String name);
TypeDecl ASTNode.lookupType(String name);

/ / T h e l o o k u p f r a m e w o r k i s u s e d t o b i n d
/ / a c c e s s e s t o c o r r e s p o n d i n g d e c l a r a t i o n s
Declaration ASTNode.lookup(Access acc);

/ / E a c h e x p r e s s i o n h a s a t y p e a n d b i n d s
/ / t o i t s c o r r e s p o n d i n g d e c l a r a t i o n
TypeDecl Expr.type();

Figure 10. The API for name lookup and type analysis rel-
evant to renaming. The node types are declared in Figure 9.

its corresponding declaration. Type analysis is similarly un-
derstood as binding each expression to a type declaration
representing its static type.

Throughout this presentation we will use the API in Fig-
ure 10. It is possible to lookup variables, methods, and types
from all nodes in the AST. We define a common inter-
face Variable for VariableDecl, ParameterDecl, and
FieldDecl since they are treated the same during lookup.
We have a similar interface Declaration to abstract over
all kinds of declarations. Lookup is then used to bind each
access to a declaration through the attribute lookup(). The
type of an expression is similarly accessible through the
type() attribute. The following sections will show how
these attributes are implemented.

3.3 Nesting with shadowing
The purpose of name lookup is to find the declaration that
corresponds to a symbolic name in a particular context. At-
tribute grammars provide inherited attributes which enable
abstraction over the current context. An inherited attribute
is declared in a node and any ancestral node may provide
an equation defining the value for that attribute. That way
the symbolic name need not be aware if it is, for example,
nested in a block, method, or field initialiser.

Consider the code snippet in Figure 11. We declare an in-
herited attribute named lookupVariable(String name)

in the Access type using an inter-type declaration. This will
allow all access nodes to lookup variables visible from their
particular contexts. Inter-type declarations are implemented
outside their classes but otherwise act as if they were de-
clared locally. This enables us to group attribute definitions
by their concerns rather than by the type of their receiver.

Next we define an equation for that attribute provided
by the Block node since it introduces a new scope. The rule
gives an equation for the lookupVariable(String name)

attribute in each subtree that can be reached from the Block
node using the accessor getStmt(int i). Such a subtree
corresponds to the ith statement within the block.
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To look up a variable from such a statement, we first
search for local declarations which is done by the attribute
localVariable(String name). If there is no such dec-
laration we call lookupVariable(name) from the Block
to find a declaration in the enclosing context of the block.
Since we only delegate to the enclosing context when no
local declarations are found we effectively implement shad-
owing. Additional filters can be used to also check that vari-
ables are not used before they are defined, and to enforce
accessibility restrictions.

Notice that the equation is only valid for the subtrees
reachable through getStmt(int i) and not the Block it-
self. When we call lookupVariable(name) on the Block
we therefore read the inherited attribute declared in Block

which has an equation in an ancestor to the block, e.g., a
nested block or method. This kind of chaining of inherited
equations allow us to gradually progress outwards through
the nested scopes when searching for declarations.

The local search is implemented using a synthesised at-
tribute to iterate over local declarations to find a Variable
in the Block itself. For this presentation they can be seen as
virtual methods added as inter-type declarations. However,
the implementation may not contain any externally visible
side-effects, which enables caching of attribute values.

These kinds of attributes and equations are used for all
language constructs introducing new scopes. A MethodDecl

needs, for instance, an eq lookupVariable(String name)

that is identical to the one in Block, a synthesised attribute
localVariable(String s) that iterates over its formal
parameters, and an equation isVariable(String name)

in ParameterDecl identical to the one in VariableDecl.
The same technique is used to implement lookup for

types and methods. Type lookup is for instance quite similar
to variable lookup in that equations are needed to lookup
local classes in a block, member classes that are inherited,
and nested classes. There is also an outermost equation for
lookupType(String name) in CompilationUnit that
handles imports.

3.4 Member inheritance
A ClassDecl is similar to a Block in that it is a nested
structure that introduces a scope for variables, in this case
member fields, and therefore needs to provides equations for
lookupVariable(String name). It differs a bit in that
not only local declarations should be considered but also
member inherited from superclasses. Nested scope lookup
is, so to speak, an outwards movement that searches enclos-
ing scopes, while member lookup searches upwards in the
inheritance hierarchy.

Consider the implementation in Figure 12. Besides the
usual localVariable(String name) in ClassDecl and
isVariable(String name) in FieldDecl, we also in-
troduce an attribute memberFields(String name) which
is synthesised. This attribute includes local declarations as
well as declarations inherited from superclasses. Notice that

inh Variable Access.
lookupVariable(String name);

eq Block.getStmt(int i).
lookupVariable(String name)

{
/ / f i n d l o c a l d e c l a r a t i o n s
Variable v = localVariable(name);
if(v != null) return v;
/ / o t h e r w i s e d e l e g a t e t o e n c l o s i n g c o n t e x t
return lookupVariable(name);

}
/ / t h e b l o c k w i l l n e e d t o d e l e g a t e l o o k u p
inh Variable Block.
lookupVariable(String name);

syn Variable Block.localVariable(String name)
{

/ / i t e r a t e o v e r c o n t a i n e d s t a t e m e n t s
for(Stmt s : getStmts())
if(s.isVariable(name))

return (Variable)s;
return null;

}

/ / m o s t n o d e s a r e n o t v a r i a b l e d e c l a r a t i o n s
syn boolean ASTNode.isVariable(String name)
= false;

/ / o n l y d e c l a r a t i o n s w i t h m a t c h i n g n a m e s
eq VariableDecl.isVariable(String name)
= name.equals(getID());

Figure 11. Nested scopes variable lookup implementation.

we include superclasses transitively by recursively invok-
ing memberFields on the type of the specified superclass
name. This introduces a dependency between name lookup
and type analysis, but fortunately the attribute evaluation
scheme will schedule the computations automatically.

3.5 Qualified access
A ClassDecl plays two roles from a name lookup perspec-
tive. It provides an equation for its members when using
lookupVariable(String name). This includes its mem-
bers as well as declarations from lexically enclosing con-
structs, e.g., nested classes, final local variables in enclosing
methods for anonymous classes, statically imported fields,
etc. However, during qualified lookup, e.g., accessing a field
in an object, only members should be considered as illus-
trated in Figure 13.

The equation for memberFields(String name) is
thus kept separate not only for understandability and sep-
aration of concerns but also to be reused during qualified
lookup. Qualified lookup can then be implemented by look-
ing up remote members similar to the way members are
looked up in superclasses. A qualified name is modelled as
two separate accesses that share a common Dot parent node.
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syn Variable ClassDecl.
localVariable(String name) {

for(BodyDecl b : getBodyDecls())
if(b.isVariable(name))
return (Variable)b;

return null;
}

eq FieldDecl.isVariable(String name)
= name.equals(getID());

eq ClassDecl.getBodyDecl(int i).
lookupVariable(String name) {

/ / s e a r c h f o r member f i e l d s
Variable v = memberField(name);
if(v != null) return v;
/ / o t h e r w i s e d e l e g a t e t o e n c l o s i n g c o n t e x t
return lookupVariable(name);

}

syn Variable ClassDecl.
memberField(String name){

/ / s e a r c h l o c a l d e c l a r a t i o n s
Variable v = localVariable(name);
if(v != null) return v;
/ / s e a r c h i n h e r i t e d m e m b e r s
return hasSuper() ?

getSuper().type().memberField(name)
: null;

}

Figure 12. Inheritance variable lookup implementation.

class X {
int a;

}
class Y {
int b;
class Z extend X {

int c;
Z z = new Z();
/ / OK : l o c a l member ’ c ’ i n Z
int i1 = z.c;
/ / OK : member ’ a ’ i n h e r i t e d f r o m X
int i2 = z.a;
/ / ERROR : q u a l i f i e d a c c e s s d o e s n o t
/ / s e a r c h e n c l o s i n g c l a s s e s
int i3 = z.b;

}
}

Figure 13. Qualified field access

Access ASTNode.accessVariable(Variable v);
Access ASTNode.accessMethod(MethodDecl m);
Access ASTNode.accessType(TypeDecl t);

Figure 14. The API for access construction

We can then simply take the type of the left hand side of a
qualified name, and search its member fields for a matching
name.

eq Dot.getRight().lookupVariable(String name)
= getLeft().type().memberField(name);

The same technique is used for memberTypes when ac-
cessing a type by its fully qualified name, i.e., including its
package name and possibly enclosing type names.

Finally, we can now outline the implementation of the
lookup function itself: In an invocation of the form
p.lookup(acc), the node p indicates the context (i.e.,
the position in the syntax tree) from where the lookup of
access acc is performed. If the access is qualified, we
recursively look up the access to the right of the Dot.
Otherwise it is either a VarAccess, a MethodAccess,
a TypeAccess. All of these are just wrappers for simple
names that tell us which lookup function to delegate to. In
particular, if acc is a VarAccess with name n, we delegate
to p.lookupVariable(n).

4. Specifying Renaming
We will now give an executable specification of access com-
putation as a right inverse of lookup: each lookup equation
from the previous section is inverted, yielding a correspond-
ing equation for access computation.

As a first step, we outline a very simple access compu-
tation that never produces qualified accesses. It can be used
as the basis of a non-intrusive renaming implementation that
will never add extra qualifications; in particular, this imple-
mentation cannot perform the refactoring from Figure 3. We
then show how it can be extended to produce a possibly qual-
ified access as its result.

Similar inverses are required for type lookup and method
lookup, and can be constructed using the same approach.
Together, they form the external API given in Figure 14,
which is closely related to the lookup API in Figure 10.
Our informal statement that access computation should be
a partial right inverse of lookup can now be cast into a more
concrete form: For every variable v and AST node p, if
p.accessVariable(v) is not null, then we should have

p.lookup(p.accessVariable(v)) == v

and likewise for the other two access computation func-
tions. It is worth noting that renaming should never affect
visibility, and need therefore not deal with access control
modifiers such as public and private.
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syn Access Block.accessLocal(Variable v)
{

/ / i t e r a t e o v e r c o n t a i n e d s t a t e m e n t s
for(Stmt s : getStmts())

if(s == v)
/ / a n d s e a r c h f o r a p a r t i c u l a r v a r i a b l e
return new VarAccess(v.getID());

return null;
}

syn Access ClassDecl.accessLocal(Variable v)
{
for(BodyDecl b : getBodyDecls())

if(b == v)
return new VarAccess(v.getID());

return null;
}

Figure 15. Inverting local lookup in blocks and classes

eq Block.getStmt(int i).
accessVariable(Variable v) {

Access acc = accessLocal(v);
if(acc != null) return acc;
return accessVariable(v);

}

Figure 16. First attempt at inverting a lookup rule

4.1 Non-Intrusive Renaming
The simple access computation we introduce here will only
tell us whether a variable can be accessed through its sim-
ple name. Given a variable v, it will thus either return a
VarAccess containing v.getID() if the variable is visi-
ble, or null if it is inaccessible.

The equations implementing the lookupVariable at-
tribute in Figures 11 and 12 all follow a very simple pattern:
First, we try perform a local lookup on the current node, and
if that does not yield any result we recursively invoke our-
selves on another node.

In the equation specifying lookup at a statement inside a
block, for example, we first invoke localVariable; if that
fails, lookupVariable is recursively invoked on the parent
node, i.e. the block itself.

First we invert the attribute Block.localVariable,
which is easily done. Since the code is very similar, we
also invert the corresponding equation for Classes; both
are given in Figure 15. Note that in a valid Java program
there can be only one declaration with a given name in ev-
ery block or class, hence the given code snippets really are
inverses to the local lookup attributes given in the previous
section.

Encouraged by our success we now would like to invert
the equation for lookupVariable on a block statement.
Our first attempt might look like the code in Figure 16.

eq Block.getStmt(int i).
accessVariable(Variable v) {

Access acc = accessLocal(v);
if(acc != null) return acc;
acc = accessVariable(v);
/ / c h e c k f o r s h a d o w i n g i n b l o c k
if(localVariable(acc) != null)
return null;

return acc;
}

Figure 17. Right inverse of a lookup rule

This, however, is not quite right. Consider, for example,
the following program fragment:

class A {
int x;
void m() {

int x;
•

}
}

Assume we want to construct an access to the field x in A

from the position marked •. Since that position is the second
statement within a block, the equation will be evaluated with
parameter i set to 1 (indexing is zero-based).

The auxiliary method accessLocal will not find the
declaration we are looking for: although there is a declara-
tion for a local variable x, this declaration is not equal to the
declaration we are trying to access. Hence we will invoke
accessVariable again, one node higher up in the syntax
tree. Eventually it will return the access x, which does in fact
refer to the field if seen outside the body of method m. Inside
that body, however, it does not, but will instead refer to the
like named local variable of m.

Generally speaking, we can not always directly return the
access computed recursively at a higher node in the syntax
tree, but we might need to adjust it to make sure it is still
valid. However, we are not dealing with qualifiers just yet,
so for the moment all we do is to check for shadowing, and
fail (i.e., return null) if that occurs. The resulting code is in
Figure 17.

Tracing all possible execution paths of this equation, one
sees that this equation is indeed inverse to the one in Fig-
ure 11, under the assumption that local access and local
lookup are inverses (which is easily seen) and that the re-
cursive invocation of accessVariable on the parent node
is inverse to the recursive invocation of lookupVariable
(which acts as a sort of induction hypothesis).

The process of inverting is not entirely straightforward
to automate, mainly owing to the fact that the equations
can contain arbitrary Java code (without side effects). It is
certainly systematic, though, and can be performed manually
for every lookup rule without much difficulty.
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class A {
int x6;

}
class B extends A {

int x5;
}
class C extends B {

int x4;
class D extends F {

int x1;
•

}
}
class E {

int x3;
}
class F extends E {
int x2;

}

Figure 18. Qualified accesses in Java

Field name Source Bend Safely qualified access
x1 D D this.x1
x2 F D super.x2
x3 E D ((E)this).x3
x4 C C C.this.x4
x5 B C C.super.x5
x6 A C ((A)C.this).x6

Table 1. Safely qualified accesses (cf. Figure 18)

4.2 Adding Qualifiers
Now we will show how to extend the above approach to
add qualifications. Remember that field lookup in Java pro-
ceeds in an “outwards and upwards” motion: We first look
among the member fields of the lexically enclosing class,
then among all its supertypes, then among the next lexically
nested class, then among that class’ supertypes, and so on.
When the field is finally found, it will be located in an an-
cestor class A of some class B lexically surrounding the point
of lookup. We call the class A the source and the class B the
bend. To illustrate all possible cases, Table 1 indicates for
every field in the program in Figure 18 what its source and
bend are when looked up from the position •. The table also
gives a safely qualified access for each field, i.e. an access
that would refer to the field even if it were shadowed in some
way.

We can see, for example, that a field can always be safely
accessed by qualifying with this if its source and bend class
are both equal to the class lexically surrounding the point of
lookup. Similar rules exist for the other qualifications, so in
order to determine how a field can be accessed it is enough
to compute its source and bend.

eq ClassDecl.getBodyDecl(int i).
accessVariable(Variable v) {

VarAccessInfo acc = accessMember(v);
if(acc != null) return acc;
acc = accessVariable(v);
if(acc != null)
return acc.moveInto(this);

return null;
}

syn VarAccessInfo ClassDecl.
accessMember(Variable v) {

VarAccessInfo acc = accessLocal(v);
if(acc != null) return v;
if(hasSuper()) {
acc = getSuper().type().accessMember(v);
if(acc != null)

return acc.moveDownTo(this);
}
return null;

}

Figure 19. Right inverse of lookup rule with re-
qualification

Our improved version of accessVariable does no
longer simply return a String, but a VarAccessInfo,
which stores the source and bend of the field to be accessed
(the target) as well as a flag indicating whether the field is
shadowed or hidden (by a local variable or another field).
In a second step, this information will be used to create an
actual Access. We will at first omit this step for simplicity.

Corresponding to the two directions of movement dur-
ing lookup, there are two basic situations where the access
information has to be updated: Whenever we return from
a lookup at a parent node we need to move the informa-
tion into the inner scope (e.g., a class or a block), noting
whether any shadowing could take place; upon returning
from a lookup in a parent type we need to move the infor-
mation down to the child type, again noting possible hiding.
These two movements are achieved by methods moveInto
and moveDownTo in VarAccessInfo.

For example, let us look at the inverses of memberField
and lookupVariable when invoked on a body declaration
inside a class, which are given in Figure 19. In the first case,
after having computed an access to variable v from outside
the class (for example, from its enclosing class), we need to
move this access “into” the class: We check whether there
is a member field of the same name that would shadow v

(which is the target of our access computation), and if so
set a flag to indicate that a qualifier will have to be added
when we create an Access to v (see Figure 20).

Similarly, after having computed an access to a variable
in the super class, we need to move this access “down to”
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public VarAccessInfo moveInto(ClassDecl td)
{
if(td.memberField(target.getID())!=null)

needsQualifier = true;
return this;

}

public VarAccessInfo moveDownTo(ClassDecl td)
{
if(td.localVariable(target.getID())!=null)
needsQualifier = true;

return this;
}

Figure 20. Moving an access into and down to a type dec-
laration

Access toAccess() {
VarAccess va=new VarAccess(target.getID());
if(needsQualifier) {

if(bend == enclosingType()) {
if(source==bend)
return new Dot(new ThisAccess(), va);

else if(source==bend.getSuper().type())
return new Dot(new SuperAccess(), va);

}
return null;

} else {
return va;

}
}

Figure 21. Generating accesses

the current class, checking whether there are any local fields
that could hide the variable being accessed.

Having the moving methods return a VarAccessInfo

leaves open the possibility that such a movement may fail
and return null. This allows us to handle local variable
accesses in the same way as field accesses: They are rep-
resented by objects of type LocalVarAccessInfo which
extends VarAccessInfo. However, since local variable ac-
cesses can not be qualified, its moveDownTo and moveInto

methods will always return null if any shadowing is de-
tected.

Once all the required information is collected, we need
to produce a Java expression to actually access the tar-
get field. This is handled by a method toAccess in class
VarAccessInfo. Figure 21 shows a simplified implemen-
tation of the access generation, which can generate this- or
super-qualified accesses:

The actual implementation goes further and can, in fact,
generate all of the access forms in Table 1 including casts.

class A {
int x;

}
class B extends A {

int y;
}
class C {
int m(B b) {
return b.x;

}
}

Figure 22. The need for merging accesses

In addition, it also checks a number of additional conditions
to ensure that only correct accesses are generated2.

It is certainly debatable if a refactoring engine should in-
troduce complex qualifications like ((A)B.this).x into a
program, but we found it hard to draw an a priori bound-
ary between “reasonable” and “unreasonable” qualifications.
The degree of intrusiveness can be adjusted by changing the
implementation of the toAccessmethods, and it is certainly
conceivable to make this configurable by the user. If no qual-
ifications are ever added, we again obtain an Eclipse-style
maximally unobtrusive refactoring.

Correctness of this enhanced implementation is no longer
as easy to see as for the simple implementation, but it still
follows the implementation of lookup equation by equation.

4.3 Access Merging
One final subtlety which we have ignored so far has to
do with qualifications. Consider the example program in
Figure 22.

In method C.m, we access the field x of an object of type
B. Now assume we want to rename that field to y. Obvi-
ously, we also need to adjust its (only) reference and com-
pute a new access to put in its place. Our access computa-
tion suggests super.y, which is indeed a correct way of
accessing the field from inside B. We cannot, however, sim-
ply insert this access in place of the reference, as that would
result b.super.y, which is not valid Java. Instead we want
to merge the access super.y with its qualifier b, yielding
the access ((A)b).y.

Intuitively, this merging step can be understood as sub-
stituting the qualifier for this: Since super.y in the above
example is actually just a shorthand for ((A)this).y, re-
placing this by b yields the desired result. For our pur-
poses, the merging of a qualifier q and a field access a can

2 For example, an access such as this.x is invalid inside a static method
or a static initialiser, and hence should not be generated.
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be described by three rewrite rules:

q ⊕ n → q.n for any name n
q ⊕ this.n → q.n
q ⊕ super.n → ((A)q).n where A is the superclass

of q’s type

In the last case, we will need to construct a type access
referring to type A. This is done by an attribute accessType,
whose implementation is modelled after lookupType. Com-
puting an access to a type has to handle very similar prob-
lems like computing a variable access: in particular, types
can also be shadowed or hidden by other types, and some-
times even be obscured by fields of the same name. Overall,
its implementation is very similar to accessVariable.

4.4 Determining Endangered Declarations
We have seen above how to adjust accesses to make sure
that they refer to a given declaration. But how do we decide
which accesses need adjustment?

In general, it is clear that when renaming an entity x to
y, the only declarations that can possible be endangered are
those which themselves declare entities called either x and
y. So a very straightforward approach would be to sweep the
entire program for all simple names x and y and treat all of
them as potentially endangered accesses.

This sounds somewhat expensive, however, so a more
refined approach could try to make use of the language’s
lookup rules to narrow down the set of endangered accesses.
Surprisingly, it turns out that this is not needed. As our
evaluation in Section 6 shows, the naïve approach works
quite well in practice, and has the additional advantage of
being largely language independent.

5. Extending Renaming
One of the major features of JastAddJ is its extensibility
which allows modular specification of language features.
The name lookup presented in Section 3 can be modularly
extended to handle new language features, such as the en-
hanced for statement and static imports in Java 5. Since
our implementation of access computation has a direct cor-
respondence to the name lookup implementation (and the
computation of endangered accesses is language indepen-
dent) we enjoy the same kind of modularity.

JastAddJ is actually implemented as a Java 1.4 compiler
with Java 5 and AspectJ-like inter-type declarations imple-
mented as modular extensions. In the same way, we have ex-
tended our Java 1.4 refactoring engine with support for Java
5 and inter-type declarations.

5.1 Java 5
There are quite a few language features in Java 5 that af-
fect name binding. For instance, static imports of fields and
methods make imported entities visible in the current compi-
lation unit with their simple names, and generic types intro-

eq CompilationUnit.getTypeDecl(int i)
.lookupVariable(String name) {

for(ImportDecl i : getImportDecl())
if(i.importsField(name) != null)

return i.importsField(name);
for(ImportDecl i : getImportDecl())
if(i.importsFieldOnDemand(name) != null)

return i.importsFieldOnDemand(name);
return lookupVariable(name);

}
/ / m a t c h name t h e n r e t u r n member
eq StaticImportDecl.importsField(String name)
= name().equals(name) ?
type().memberField(name) : null;

/ / on d e m a n d m a t c h e s a l l m e m b e r s
eq StaticImportDeclOnDemand

.importsFieldOnDemand(String name)
= type().memberField(name);

Figure 23. Import static fields lookup implementation

eq CompilationUnit.getTypeDecl()
.accessVariable(Variable decl) {

for(ImportDecl i : getImportDecls())
if(i.importsField(decl.name()) == decl)

return new VarAccessInfo(decl);
for(ImportDecl i : getImportDecls())
if(i.importsFieldsOnDemand(decl.name())

== decl)
return new VarAccessInfo(decl);

return accessVariable(decl);
}

Figure 24. Access computation for static import fields

duce named type variables. Specifying renaming for most of
these features is fortunately quite simple in our framework.

Consider the task of supporting renaming for static im-
ports. Import clauses may import static member fields and
static member methods which are then made visible using
their simple names in the current compilation unit. Like nor-
mal imports, static import clauses are either named, i.e. they
only import a single field or method, or on-demand, which
means that they import all static fields and methods of a
given class.

The Java 5 extension adds attributes and equations related
to variable lookup as shown in Figure 23. We first search
named static imports, and then proceed to on-demand static
imports if no match is found. Finally we delegate to the
enclosing context if neither kind of import match. The code
is slightly abbreviated in that a check that the imported field
is accessible from the current compilation unit is left out.

These rules follow the well-known “try local lookup, then
delegate” pattern, and hence are easily inverted (see Fig-
ure 24). Providing inverted rules is equally straight forward
for most extensions. New type lookup rules are for instance
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aspect X {
static int x;
int B.m() {
return x+y;

}
}

class B {
int y;

}

Figure 25. A simple program using inter-type declarations

eq IntertypeMethodDecl.getBody().
lookupVariable(String name) {

Variable v = parameterDeclaration(name);
if(v != null) return v;
v = introducedType().memberFields(name);
if(v != null) return v;
return lookupVariable(name);

}

Figure 26. Variable lookup on inter-type methods

needed to account for type variables, but again they are eas-
ily inverted, with corresponding changes to the moveInto

method to make sure that shadowing by type variables does
not go unnoticed.

5.2 Inter-Type Declarations
Inter-type declarations are a powerful concept to separate
concerns that cross-cut the static class hierarchy. They are
part of the AspectJ language, enabling addition of new mem-
bers to an already declared class [Tea].

Take for example the program in Figure 25. It contains
both an aspect X and a class B with the aspect declaring an
inter-type method m on B; to differentiate, we refer to X as
m’s host aspect, while B is its introduced type. The method m

behaves like a regular member method of B but the lookup
rules for inter-type methods are slightly augmented. This
allows them to access members of both the introduced type
and the host aspect using simple names. The method m can
thus access both members of B, like y in the example, and
static members of X, like x.

The implementation of inter-type declarations introduces
new node types to represent aspects, inter-type methods, and
inter-type fields. The introduced members are similar to their
non inter-type counterparts but have an additional attribute
introducedType() that refers to the declaration they are
introduced into. This allows variable lookup for inter-type
methods to be easily implemented as shown in Figure 26:
Parameters are looked up first, followed by members of the
introduced type; then we delegate to the parent node, which
is the host aspect.

eq IntertypeMethodDecl.getBody().
accessVariable(Variable decl) {

VarAccessInfo acc
= accessParameterDeclaration(decl);

if(acc != null) return acc;
acc = introducedType().
accessMemberField(decl);

if(acc != null)
return acc.moveInto((MethodDecl)this);

acc = accessVariable(decl);
if(acc != null)
return acc.moveInto(this);

return null;
}

Figure 27. Access computation on inter-type methods

Again, this lookup rule follows our basic pattern, so we
can invert it to obtain the code in Figure 27. Observe that
for the first moveInto we reuse already existing code that
checks whether a type access would be shadowed by param-
eters; the second moveInto also needs to take member fields
of the introduced type into account, which is done by a new
method moveInto(IntertypeMethodDecl).

Since the inter-type declarations extension is mostly con-
cerned with names and follows the name lookup strategy
from Section 3, no further extensions beyond implementing
the new access rules are necessary.

6. Evaluation
6.1 Correctness
Along with our implementation we have developed a suite of
several hundred test cases, about fifty of which come from
Eclipse’s refactoring test suite. These tests systematically
explore both common and exotic cases for all the refactor-
ings we have implemented and have been very helpful not
only for validating our own implementation, but also for
finding bugs in other IDEs. A commented list of examples
that we found to be refactored incorrectly by the most recent
version of Eclipse’s refactoring engine can be found online
[EESV08].

Of the around three hundred test cases, 10% require ad-
ditional qualification to avoid shadowing and hence cannot
be refactored by Eclipse. Some of these cases can be han-
dled by IntelliJ, which can automatically add this qual-
ifiers, but others, which would require more sophisticated
qualification, cannot. The part of the test suite that deals with
inter-type declarations can not directly be compared against
other tools: Although AspectJ plugins are available for some
of the major IDEs (notably AJDT for Eclipse [AJD]), none
of them offers any refactoring support.

In order to convince ourselves that our refactorings work
as expected on simple inputs, we have used the ASTGen syn-
tax tree generator library [DDGM07], which has been used
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Refactoring Generator TGI CI Succ: Ecl Succ: JA Diff
Rename Class AllRelationships 108 88 88 88 0

Rename Method SingleClassMethodReference 9450 9450 9450 9450 0
Rename Field SingleClassFieldReference 5280 2824 2824 2824 0

DualClassFieldReference 23760 7947 7947 7947 0

Table 2. Results of the automatically generated tests; Ecl = Eclipse, JA = our implementation; TGI = Total Generated Inputs;
CI = Compilable Inputs; Succ = successfully refactored inputs, Diff = different outputs

before to detect bugs in refactoring software. This library
provides a number of generators that can be used to gener-
ate a large number of input programs and it provides sup-
port for automatically performing refactorings on them us-
ing the Eclipse refactoring engine. We have written a simple
driver program that in addition performs the same refactor-
ings using our own implementation, and compares the output
to Eclipse’s.

Table 2 summarises the results of this experiment: The
first column gives the name of the refactoring tested, the sec-
ond column lists the test generator used (for details about
the individual generators please refer to [DDGM07]); the
following columns give information about the total number
of generated test cases, the number of compilable test cases
(refactoring uncompilable programs is possible, but the re-
sults would be hard to assess), and the number of inputs suc-
cessfully refactored by Eclipse resp. our implementation.

The generated test programs are generally of a very sim-
ple structure (and the original paper did, indeed, not find any
bugs in Eclipse’s renaming support), so it is not surprising
that both Eclipse and our own implementation are able to
refactor all compilable inputs. Our implementation gives the
exact same results on all programs (as seen in the last col-
umn), in particular it never produces uncompilable output
programs.

6.2 Code Size
Next, we want to assess the code complexity of our imple-
mentation, both in absolute terms and in comparison to the
JastAddJ compiler frontend.

Table 3 shows the code size of the JastAddJ frontend3. Its
basic module, which implements the full Java 1.4 language,
comprises about ten thousand lines of code. Both the exten-
sion module for Java 5 and the extension to handle inter-type
declarations are significantly smaller. Either of them can sep-
arately be used together with the Java 1.4 frontend, or all
three can be combined to yield a compiler for Java 5 with
inter-type declarations (for this, an extra 76 lines of code are
needed).

Our refactoring engine is partitioned in the same way as
the frontend and also consists of three modules that can be

3 These and all the following source code line counts were obtained using
David A. Wheeler’s SLOCCount utility [Whe06].

Module Total
Java 1.4 Frontend 9990
Java 1.5 Frontend 6234
Inter-type Declarations 1824
ITD + Java 1.5 Integration 76

Table 3. Code size of the JastAddJ frontend

Module Total Access Framework
Java 1.4 Refactoring 1902 1014 888
Java 1.5 Refactoring 538 284 254
Inter-type Declarations 211 211 0

Table 4. Code size of the refactoring engine

combined with the corresponding modules from the fron-
tend. Their code sizes are summarised in Table 4.

For every module, we indicate its total code size, how
much code is devoted to access computation, and how much
of “framework” code we need. For the Java 1.4 component,
we notice that the size of the access computation code tal-
lies well with the lookup code from the frontend, which is
implemented in about 1100 lines. Framework code for this
module includes driver programs, the computation of endan-
gered accesses, and undo functionality.

For the Java 1.5 refactoring module, we see that only
very little code needs to be added to the access computation.
It also includes a modest amount of framework code that
handles JastAddJ’s internal representation of generic types
and their instantiations and harmonises it with the rest of the
refactoring code.

Perhaps surprisingly, the module implementing refactor-
ing for inter-type declarations is even smaller than the Java
1.5 one. This is because inter-type declarations mainly af-
fect lookup and so are handled very neatly by our approach
without requiring any additional framework code.

Overall, these numbers show that by integrating the refac-
toring code tightly with the compiler and exploiting Jast-
Add’s modularity and extensibility we are able to obtain a
very concise implementation. The implementation of renam-
ing refactorings in Eclipse, for instance, is at least three times
as big.
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6.3 Performance
Another important question to evaluate, of course, is if our
implementation is practical on large input programs. To ad-
dress this, we performed a number of renamings on the
source code of the Jigsaw webserver [w3c06], which con-
sists of about 100K lines of Java 1.4 code

The results of our experiments (as measured on an AMD
Athlon 64 X2 machine running Linux 2.6.22) are put to-
gether in Table 5. We will briefly explain the data relating
to type renaming. Interesting types to rename for evaluation
purposes are on the one hand those which are referenced a
lot, and on the other hand those which are rarely referenced.
Hence we chose three of the most heavily used types (the
classes Attribute and Request as well as the interface
HTTP) and some rarely used classes to rename; the number
of types referencing each of them is given in the third col-
umn4.

For every refactoring to be performed, there is quite a
significant startup time during which the program is loaded
into memory and checked for errors (around 18 seconds for
Jigsaw). In an IDE this step would normally already have
been performed before the user initiates a refactoring, so we
have not included it in our evaluation.

Once the program is loaded, the refactoring needs to de-
termine the set of potentially endangered accesses, and then
proceeds to rename the type and perform any other adjust-
ments. The third column of the table gives the total number
of endangered accesses, the fourth the time needed to find
these accesses, and the last the total time for performing the
refactoring. The time for adjusting accesses was well below
0.1s in every case. The bulk of the time was spent flushing
internal attribute caches which the renaming invalidates, in
turn triggering the garbage collector.

Nevertheless, we can observe that the overall time it takes
to rename a type is around two seconds (regardless of their
frequency of use), which is comparable to Eclipse’s per-
formance on the same tasks. Determining endangered ac-
cesses is quite fast, and although our approach is very coarse
grained we still end up with manageable numbers of ac-
cesses to adjust.

An earlier version of our implementation had a more so-
phisticated algorithm that tried to avoid too many false pos-
itives, and indeed managed to give about 20% less endan-
gered accesses than the current one. However, the extra ef-
fort needed more than outweighed the gain in precision, and
lead to much slower refactorings.

The situation for field and local variable renaming is not
much different. For the latter, we have chosen a variable with
perhaps the most common name of all. Here, the discrep-
ancy between actual references and endangered accesses as
determined by our algorithm is very marked, but still not big
enough to cause a substantial decrease in performance.

4 These numbers were obtained using SemmleCode [Sem08].

In conclusion, the numbers show that our implementation
compares very favourably to an industrial strength refactor-
ing engine like Eclipse’s. It can perform more sophisticated
renamings, and handles corner cases on which Eclipse fails.

7. Related Work
7.1 Correctness of Refactorings
Correctness of refactorings has long been a primary con-
cern in the literature. Opdyke [Opd92] and Roberts [Rob99]
champion a precondition based approach. They specify
global conditions which a program has to meet for the refac-
toring to be correct. The scope nesting rules of the languages
treated in these theses (a subset of C++ and Smalltalk,
respectively) are fairly simple. In particular, there are no
nested classes, so the preconditions for renamings are very
lightweight and not much attention is paid to them.

Later work [Cor04, Ett07] has focused on giving a se-
mantics of the underlying language in order to rigorously
prove that the given preconditions are sufficient to preserve
program semantics. To keep the formal development man-
ageable, however, the language has to be quite simple.

One possible way to overcome this limitation may be to
formalise both the underlying language and the refactorings
to be performed in an interactive theorem prover, which will
keep track of all the details to be proved. This approach,
taken, for example, by Sultana and Thompson [ST08], suf-
fers from a lack of automation; even seemingly trivial state-
ments have to be proven in excruciating detail, again restrict-
ing the scope of the work.

Much work has also gone into the precise definition of
type-based refactorings, i.e. refactorings that change the type
structure of a program [Tip03, BTF05, vDD04, DKTE04].
Such refactorings, however, have to deal with quite differ-
ent issues, mostly type constraints which are orthogonal to
renaming.

7.2 Specification of Refactoring
The high-level declarative specification of refactorings has
seen quite some interest in the research community. Mens
et al. [MDJ02] specify refactorings as transformations on a
largely language-independent graph representation of pro-
grams that concentrates on those aspects of the source code
to be preserved by the refactoring. Their definition of preser-
vation properties is very close to the access preservation
invariant we use here. However, their graph representation
does not seem suitable for specifying renamings, since name
lookup is not explicitly represented in the program graph.

Another approach is introduced in [GM06]. Based on a
formalisation of Java in rewriting logic, they give executable
specifications of several refactorings in Maude. While their
implementations are quite concise, it seems that this ap-
proach mainly excels at local refactorings (such as the Re-
name Temporary example they give) and would perhaps
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Renamed Entity Name References Number of EA Time to find EA Total Time
Toplevel Type Attribute 177 1464 0.4s 2.2s

Request 132 887 0.3s 2.0s
HTTP 106 1100 0.3s 2.2s
FileEditor 1 0 0.3s 1.4s
Main 0 2 0.2s 1.9s

Nested Type Alert 1 0 0.1s 1.8s
Openner 1 2 0.2s 1.9s

Field EDITABLE 86 538 0.3s 3.3s
OK 74 185 0.3s 3.3s
INTERNAL_SERVER_ERROR 46 142 0.2s 2.6s
DEFAULT_SSL_ENABLED 1 0 0.1s 3.1s
img 0 17 0.1s 3.2s

Local Variable i 4 3055 0.2s 1.5s

Table 5. Refactoring Jigsaw: Some Performance Measurements (averaged over 20 runs); EA = endangered accesses

be more cumbersome to use for refactorings that affect the
whole program.

A quite different and more flexible approach is taken by
the JunGL language [VEdM06], which is a domain specific
language especially suited for implementing refactorings.
The refactorings can manipulate an extensible graph repre-
sentation of the program with user-definable edges to capture
program properties of interest. An important feature is path
queries, which can be used to express, for example, name
lookup in an elegant short form. So far, however, JunGL has
only been used to implement refactorings on subsets of lan-
guages while we support full Java 5.

7.3 Aspect-Oriented Refactoring
Our implementation supports refactoring in the presence of
inter-type declarations, one of the major features of aspect
oriented programming. The interplay between aspect ori-
ented programming and refactoring has been explored by
others.

For example, Cole and Borba [CB05] give some precon-
ditions for refactoring AspectJ code, while Hanenberg et
al. [HOU03] show how to make well-known refactorings
such as Rename Method aspect-aware. Both papers, how-
ever, concentrate almost exclusively on how to handle point-
cuts and advice and do not consider inter-type declarations.
It would be interesting to see how our approach can be ex-
tended to take these more dynamic features into account.

8. Conclusions
In this paper we have investigated two problems related to
preconditions for renaming refactorings. Too weak precon-
ditions results in unsound renamings where symbolic names
refer to different declared entities before and after the refac-
toring, and too strong preconditions prevent certain renam-
ings from being carried out.

We have presented an approach to specifying renaming
refactorings that is closely coupled to the way name lookup

is implemented in a compiler. Inverted lookup rules are used
to create accesses that are guaranteed to bind a symbolic
name to a specific declared entity. By applying this operation
to each name possibly affected by the refactoring, we guar-
antee that the binding structure is preserved and avoid too
weak preconditions. The accesses created during inverted
lookup can be tailored to introduce qualifications which en-
ables renamings that would otherwise be prohibited by too
strong preconditions.

Another challenge is to update refactorings as the lan-
guage evolves. In our experiments we have not found a sin-
gle refactoring engine for Java that handles static imports
properly. The direct correspondence between lookup rules
and access rules help us avoid many pitfalls that went unno-
ticed in other refactoring engines. The presented approach
effectively improves on state-of-the-art, both in correctness
and flexibility in allowed renamings.

We have implemented renaming, including pluggable ex-
tensions for Java 5 and AspectJ like inter-type declarations,
as modular extensions to the JastAdd Extensible Java Com-
piler. The tool is available as a plugin for Eclipse, with an
implementation size of less than 3000 lines of code, and it
achieves similar performance to mature refactoring engines.
We have created a renaming test suite that our implemen-
tation passes but which exposes numerous bugs and limita-
tions in industrial strength refactoring tools.

We believe that this renaming approach is general and
can benefit both other refactorings and other languages be-
side Java. High-level refactorings can use it as a building
block to preserve bindings when rearranging code, a com-
mon source of bugs in current tools. We have previously
shown that name lookup for the Modelica language can be
implemented in the same way as shown here [ÅEH08], and
it would be interesting to apply the renaming approach to
that implementation as well.

In order to give a formal justification of the soundness of
our approach, it is of central importance to prove the inver-
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sion property of access computation and name lookup. We
have developed a general framework for formalising refer-
ence attribute grammars in the theorem prover Coq, and are
now working on a mechanised proof of the inversion prop-
erty. The goal of that work is to provide a theoretical foun-
dation for the practical implementation techniques presented
in this paper.

It has been argued that a refactoring engine cannot be
both thorough and fast. For example, the authors of the
Refactoring Browser [BR99] write in [Fow00]: “Computer
scientists tend to focus on all of the boundary cases that a
particular approach will not handle. The fact is that most
programs are not boundary cases (. . . )” We believe that our
approach shows that at least for a statically typed language
it is possible to achieve reasonable speed and also handle
boundary cases.
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