
1

The Broker Architectural

Framework

Michael Stal

Siemens AG, Corporate Research and Development

Otto-Hahn-Ring 6

D-81730 München

phone: +49 89 636 49380

fax: +49 89 636 40757

e-mail: Michael.Stal@zfe.siemens.de

Abstract

According to Andrew S. Tanenbaum distributed systems have a significant drawback:

“Distributed systems need radically different software than do centralized systems”. This is the

major technical reason for consortias such as the Object Management Group (OMG) or the

Open Software Foundation (OSF) and companies such as Microsoft developing their own

technologies for distributed computing.

Platforms such as Microsoft OLE 2.x (OLE = Object Linking and Embedding), OSF DCE

(Distributed Computing environment) and OMG CORBA (Common Object Request Broker

Architecture) share the use of a common software architecture from which we have abstracted

the Broker architectural framework. There are three groups of developers who will benefit from

our description of the Broker pattern:

• Developers working with an existing Broker system who are interested in understanding the

architecture of such systems,

• Developers who want to implement lean versions of a Broker system, without all the bells

and whistles of a full-blown OLE or CORBA,

• Developers who plan to implement a full-fledged Broker system and need an in-depth

description of the Broker architecture.



2



Broker 3

Broker

The Broker architectural framework may be applied to structure distributed

software systems with decoupled components that interact by remote

service invocations. A broker component is responsible for coordinating

communication (such as forwarding requests), as well as transmitting

results and exceptions.

Example Suppose, you are developing a city information system designed using a wide area network.

Some computers in the network host one or more services that maintain information on events,

restaurants, hotels, historical monuments, or public transportation. Computer-terminals are

connected to the network. Throughout the city tourists can retrieve all the information they are

interested in from these terminals using a WWW (World Wide Web) browser (such as Mosaic or

Netscape). The data is not all maintained in the terminals but distributed across the network.

Users interact with front-end software running on each terminal. This software supports on-

line retrieve of requested information from the appropriate servers and the display of the data

on the screen.

Since we expect the system to change and grow continuously, services should be decoupled

from each other. In addition, the terminal software should be able to access services without

knowing their location. This allows us to move, replicate, or migrate services. ❏

Context Your environment is a possibly heterogeneous, distributed sytem with independent

cooperating components.

Problem Composing a complex software system as a set of decoupled and interoperating

components rather than as a monolithic application results in better flexibility,

maintainability and changeability. By partitioning functionality into independent

components the system becomes potentially distributable and scalable. However,

when distributed components must communicate with other components, some

means of interprocess communication is required. Services for adding, removing,

exchanging, activating, or locating components are also needed. When applications

use these services they should not depend on system-specific details to guarantee

City Map Server

Seattle Tourist Information
Town Hall

Broker

CityMap.getCompleteMap()

getCompleteMap()

currentPosition(...)

BMRSS International

3/4/95

Hotels

Restaurants

Public Transport

Sightseeing

Events

City Map

Choose the information

COMPUTER-TERMINAL Pike Market Place

showConnection(...)
showPosition(...)
locateBogHog()

City Map



4 Broker

portability and distribution even within a heterogeneous network. Hence, use the

Broker architecture when you need to balance the following forces:

• Components should be able to access services of other components through

remote, location-transparent, service invocations.

• It must be possible to exchange, add, or remove components at runtime.

Solution When two independent components - a client and a server - need to interoperate, they

have to communicate with each other. If they handle communication themselves, the

resulting software system faces several dependencies and limitations. For instance,

the system becomes dependent on the communication mechanism used, clients need

to know the location of servers, and in many cases the solution is limited to only one

programming language. To achieve a better decoupling of clients and servers, a

broker component is introduced as an additional layer. Servers register themselves

with the broker and make their services available to clients through method

interfaces. Clients access the functionality of servers by sending requests via the

broker component. The tasks of a broker include locating the appropriate server,

forwarding the request to the server and transmitting results and exceptions back to

the client.

Using the Broker pattern an application can access distributed services simply by

sending message calls to the appropriate object instead of focussing on low-level

interprocess communication. All system specific tasks such as forwarding messages

or locating objects are handled by a broker. From a developer’s view, there is

essentially no difference between developing software for centralized systems and

developing for distributed ones. The user of an object only sees the interface the

object offers. He does not need to know anything about implementation details of an

object or its physical location. In addition, the Broker architecture is flexible in that

it allows dynamic change, addition, deletion, and relocation of objects.

The Broker pattern reduces the complexity of developing distributed applications,

because it makes distribution transparent to the developer. It achieves this goal by

introducing an object model where distributed services are encapsulated within

objects. Thus, Broker systems offer the integration of two core technologies:

distribution and object technology. Moreover, they extend object models from single

applications to distributed applications consisting of decoupled components that can

run on heterogeneous machines and may be written in different programming

languages.

Structure The Broker architectural framework defines six kinds of participating components:

clients, servers, brokers, bridges, client-side proxies and server-side proxies.

• A server1 implements objects that expose their functionality through interfaces

consisting of operations and attributes. These interfaces are either made available

through an interface definition language or a binary standard (see the

implementation section for a comparison of these approaches). Interfaces typically

group semantically related functionality. There are two kinds of servers: servers

1. In this pattern description servers are responsible for implementing services. In an object-

oriented approach every service is realized by one or more objects. Whenever the term

server object is used, we want to emphasize the fact that this server appears to other

components as an object in the object-oriented sense.



Broker 5

that implement services for use by many application domains and servers offering

functionality for a single specific application domain or task.

• By clients we mean applications that access the services of at least one server. To

call remote services, clients forward requests to the local broker. After execution of

an operation they receive responses or exceptions from their broker.

In the Broker architectural framework the interaction between clients and servers is

based upon a dynamic model, which means that servers may also act as clients. This

dynamic interaction model differs from the traditional notion of Client-Server

Computing in that the roles of clients and servers are not statically defined. From the

viewpoint of an implementation, clients could be considered as applications and

servers as libraries. Note, that clients do not need to know the location of the servers

they access. This is important, because it allows the addition of new services and the

movement of existing services to other locations, even at runtime.

• A broker is a messenger responsible for the transmission of requests from clients

to servers, as well as the transmission of responses and exceptions back to the

client.

A broker must have some means of locating the receiver of a request from its

system-unique identifier.

Furthermore, the APIs (Application Programming Interface) a broker offers to

clients and servers include operations for registering servers and invoking

requests.

When a request arrives for a server that is maintained by the local broker, the

broker passes the request directly to the server. If the server is currently inactive,

the broker has to activate the server. All responses and exceptions from a service

execution are forwarded by the broker to the client that sent the request. If the

specified server is hosted by another broker, the local broker must find a route to

this broker and must forward the request along this route. Hence, there is a need

for brokers to interoperate with each other.

Class

Client

Responsibility

• Implements user
functionality

• Sends requests to
servers through a
client-side proxy

Collaborators

Client-side

Proxy, Broker

Class

Server

Responsibility

• Implements servic-
es

• Registers itself with
the local broker

• Sends responses
and exceptions
back to the client
through a server-
side proxy

Collaborators

Server-side

Proxy, Broker



6 Broker

Depending on the requirements of the whole software system, additional services -

such as name services2 or marshalling support3 - may be integrated into the

broker.

• Client-side proxies represent a layer between clients and the broker component.

This additional layer provides transparency in that a non-local object appears to

the client as a local one. In detail, the proxies allow the hiding of implementation

details from the clients. For example: the interprocess communication mechanism

used for message transfers between clients and brokers, the creation and deletion

of memory blocks, and the marshallling of parameters and results. In many cases,

client-side proxies translate the object model specified as part of the Broker

architectural framework to the object model of the programming language used to

implement the client.

• Server-side proxies are generally analogous to Client-side proxies. The difference is

that they are responsible for receiving requests, unpacking incoming messages,

unmarshalling the parameters, and calling the appropriate service.

2. Name services provide associations between names and objects. To resolve a name, a name

service determines a server associated with the given name. In the context of Broker

systems, names are only meaningful relative to a name space.

3. Marshalling is the semantic-invariant conversion of data into a machine-independent

format such as ASN.1 (Abstract Syntax Notation) or ONC XDR (eXternal Data

Representation). Unmarshalling performs the opposite transformation.

Class

Broker

Responsibility

• (Un-)registers serv-
ers

• Offers APIs

• Transfers messages

• Error recovery

• Interoperates with
other brokers
through bridges

Collaborators

Client, Server,

Client-side

Proxy, Server-

side Proxy,

Bridge

Class

Client-side Proxy

Responsibility

• Interoperates with
the local broker

• Encapsulates sys-
tem-specific func-
tionality

• Mediates between
the client and the
broker

Collaborators

Client, Broker

Class

Server-side Proxy

Responsibility

• Interoperates with
the local broker

• Calls services with-
in the server

• Encapsulates sys-
tem-specific func-
tionality

• Mediates between
the server and the
broker

Collaborators

Server, Broker



Broker 7

• Bridges4 are optional components for hiding implementation details when two

different brokers interoperate. Suppose, a broker system executes on a

heterogeneous network system. If requests must be transmitted over the network,

different brokers have to communicate independent of the different network and

operating systems in use. A bridge builds a layer that encapsulates all these

system-specific details.

There are two different kinds of Broker systems: Broker systems using direct

communication and those using indirect communication. For better performance

some broker implementations only establish the initial communication link between

a client and a server, while the rest of the communication is done directly between the

participating components - messages, exceptions and responses are transferred

between client-side proxies and server-side proxies without using the broker as an

intermediate layer. This direct communication approach requires servers and clients

to use and understand the same protocol. In this pattern description we are focussing

on the indirect broker variant, where all messages are passed through the broker.

However, we will include a description of the direct communication variant

additionally whenever appropriate.

4. We call these components Bridges following the terminology of the OMG in the CORBA2-

specification.

Class

Bridge

Responsibility

• Interoperates with
remote brokers

• Encapsulates net-
work-specific func-
tionality

• Mediates between
the local broker
and the bridge of a
remote broker

Collaborators

Broker, Bridge



8 Broker

The following OMT-diagram presents the objects involved in a Broker system::

Client

attributes

call_server

Broker

attributes

main_event_loop

Server

attributes

initializeBridge

attributes

pack_data

Client-side Proxy

attributes

pack_data

Server-side Proxy

attributes

unpack_data

register_services
enter_main_loop
run_service

update_repository
acknowledgement
find_server
find_client
forward_request
forward_response

start_task

send_request
return

call_service
send_response

msg_transfer msg_transfer

callscalls

calls

unpack_data pack_data

unpack_data
forward_message



Broker 9

Dynamics Part I:

The first scenario illustrates the behaviour of a Broker architecture when a server

registers itself with the local broker component:

• Something starts the broker component. The broker enters its event loop and waits

for incoming messages.

• The user starts the server application. First, the server executes some initialization

code. After initialization is complete, it registers with the broker.

• The broker receives the incoming registration request from the server. It extracts

all necessary information from the message and stores it into one or more

repositories. These repositories are used to locate and activate servers. Then, the

broker sends an acknowledgement to the server.

• After receiving the acknowledgement from the broker, the server enters its main

loop waiting for incoming client requests.

.

Server Broker

start

initialize

main
event
loop

register_service

update_repository

process
boundary

acknowledement

enter_main_loop

Server



10 Broker

Part II:

A second scenario illustrates the behaviour of a Broker architecture when a client

sends a request to a local server:

• The client application is started. During program execution the client invokes a

method on a remote service/object.

• The client-side proxy packages all parameters and other relevant information into

a message and forwards this message to the local broker component.

• The broker looks up the location of the server in its repositories. Since the server

is available locally (for the remote case see the following scenario), the broker

forwards the message to the corresponding server-side proxy.

• The server-side proxy unpacks all parameters and other information such as the

method it is expected to call. Then, it calls the appropriate service.

• After the service execution is complete, the result is returned to the server-side

proxy, which packages the result and other relevant information into a message

and passes it to the broker.

• The broker forwards the response to the client-side proxy.



Broker 11

• When the client-side proxy receives the response, it unpacks the result and

returns. Finally, the client process continues with its computation.

Client BrokerClient-side
Proxy

Server-side
Proxy

Server

start

call_server

send_req

task

pack_
data

unpack_
data

call_service

pack_
data

send_

unpack_
data

return

process
boundary

process
boundary

send_request

forward_resp

find_server

forward_request

send_response

find_client

run_service

response



12 Broker

Part III:

The third scenario presents the interaction of different brokers with the help of bridge

components:

• Broker A receives an incoming request. First, it locates the server responsible for

executing the specified service by looking it up in its repositories. Since the

corresponding server is available on another network node, the broker has to

forward the request to a remote broker.

• The message is passed from Broker A to Bridge A, which is responsible for

converting the message from the protocol defined by Broker A to a network specific

but common protocol that the two participating bridges understand. After message

conversion, Bridge A transmits the message to Bridge B.

• Bridge B maps the incoming request from the network specific format to a Broker

B specific format.

• Broker B performs all the actions necessary when a request arrives (see the first

step in this scenario).

Implementation The following steps are necessary to create a Broker architectural framework:

1 First, define an object model or use an existing one. The selection of an object model

has a major impact on all other parts of the system under development. Each object

model must specify entities such as object names, objects, requests, values,

exceptions, supported types, type extensions, interfaces, operations. In this first step

you should only consider semantic issues. If the object model has to be extensible,

prepare the system for future enhancements. For instance, specify a basic object

model and how it can be refined systematically using extensions.

Another key issue in designing an object model is to describe the underlying

computational model. This model must provide mechanisms for executing requests.

That is, definitions of the state of server objects, definitions of methods, how methods

Broker A Bridge A Bridge B Broker B

request

request

forward_req

forward_

find_
server

pack_
data

unpack_
data

find_
server

process
boundary

message



Broker 13

are selected for execution, how server objects are generated and destroyed, etc. Keep

in mind that neither the state of server objects nor their method implementations

should be directly accessible to clients. Clients may only change or read the server’s

state indirectly by passing requests to the local broker. With this separation of

interfaces and server implementations the so-called remoting of interfaces becomes

possible: clients use proxy server interfaces that are completely decoupled from the

server implementations, as well as from the concrete implementations of the server

interfaces.

2 In the next step, decide which kind of component-interoperability the system should

offer. You can design for interoperability either by specifying a binary standard or by

introducing a high-level interface definition language (IDL). An IDL-file contains a

description of the interfaces a server offers to its clients. The binary approach needs

support for the binary representations from your programming language system. For

instance, binary method tables are available in Microsoft OLE. These tables consist

of pointers to method implementations and enable clients to call methods indirectly

by using pointers. The access to OLE-objects is only supported by compilers or

interpreters that know the physical structure of these tables. In contrast to the binary

approach, the IDL-approach is more flexible in that an IDL-mapping may be

implemented for any programming language of your choice. Sometimes, both

approaches are used in combination as in IBM SOM (System Object Model).

An IDL-compiler uses an IDL-file as input and generates programming language code

or binary code as output. One part of this generated code is required by the server for

communicating with its local broker, another part of the output is used by the client

for communicating with its local broker. Moreover, the broker may use the IDL-

specification to maintain type information about existing server implementations.

Whenever interoperability is provided as a binary standard, every semantic concept

of the object model must be associated with a binary representation. However, if you

supply an interface definition language for interoperability, you must map the

semantic concepts to programming language representations. In either case all data

types that services may use must be mapped to appropriate representations.

One question remains: When should a Broker system expose interfaces with an

interface definition language and when by a binary standard instead? The reason for

the first approach is to gain more flexibility with respect to the broker

implementation: every implementation of the Broker archictecture may define its own

protocol for the interaction between the broker and other components. Here, it is the

task of the interface definition language to provide a mapping onto the local broker

protocol. When following a binary approach, you need to define binary

representations such as method tables for invoking remote services. This often leads

to greater efficiency, but requires all brokers to implement the same kind of protocol

for communicating with clients and servers.

3 Specify the application programming interfaces (APIs) the broker component provides

for clients and servers. On the client-side, functionality must be available for

constructing requests, passing them to the broker and receiving responses. In this

context, decide whether clients should be only able to invoke server operations

statically, thus allowing clients to bind the invocations at compile-time. If you want

to allow dynamic invocations of servers, this decision leads to a direct impact on the

size or number of APIs. For instance, you need some functionality for asking the



14 Broker

broker about existing server objects. This may be implemented with the help of a

meta-level schema.

You will have to offer some operations to clients, so that they are capable of

constructing requests at run-time. The server implementations use API-functions

primarily for registering with the broker. Brokers use repositories to maintain the

information. These repositories may be available as external files, so that servers can

register themselves even before system start-up. Another approach is to implement

the repository as an internal part of the broker component, e.g., using the Repository

variant of the Blackboard architectural framework. Using this approach, the broker

must offer an API allowing servers to register at run-time. Here, the broker

component is responsible for associating server object identifiers with server object

implementations. Thus, the server-side API of the broker must generate system-

unique identifiers. If clients, servers and the broker are running as distinct processes,

the API functions need to be based upon an efficient mechanism for interprocess

communication between clients, servers and their local broker.

4 Use proxy objects to hide implementation details from clients and servers. On the

client side, a local proxy object represents the remote server object called by the

client. The same holds for the server-side, where a proxy is used for playing the role

of the client. Proxy objects have the following responsibilities:

• Client-side proxies package procedure calls into messages and forward these

messages to the local broker component. In addition, they receive responses and

exceptions from the local broker and pass them to the calling client. For this

purpose, you must specify an internal message protocol for the communication

between proxy and broker.

• Server-side proxies receive requests from the local broker and call the methods in

the interface implementation of the corresponding server. Moreover, they forward

server responses and exceptions to the local broker after packaging them according

to an internal message protocol.

Note, that proxies are always part of the client or server process.

Proxies hide implementation details by using an internal interprocess

communication mechanism for communicating with the broker component. They

may also implement the marshalling and unmarshalling of parameters and results

into/from a system-independent format.

If you are following the IDL-approach for interoperability, proxy objects are

automatically available, because they can be generated by an IDL-compiler. On the

other hand, if you are using a binary approach, the creation and deletion of proxy

objects may happen dynamically.

5 Design the broker component intertwined with the preceeding implementation steps

3 and 4. In the following we describe how to develop a broker component that acts as

a messenger for every message passed from a client to a server, and vice versa. Some

implementations do not transmit messages via the broker so as to increase the

performance of the whole system. In these systems most of the work is done by the

proxies, while the broker is still responsible for establishing the initial

communication link between clients and servers. A direct communication between

client and server is only possible when both of them can use the same protocol. We

denote such systems as Direct Communication Broker systems (see Variants section).



Broker 15

In specifying the broker, you should systematically iterate through the following

steps:

• Specify a detailed on-the-wire protocol for interacting with client-side proxies and

server-side proxies. Plan the mapping of requests, responses, and exceptions to

your internal message protocol. The internal message protocol handles the

mapping of higher-level structures such as parameter values, method names,

return values to corresponding structures specified by the underlying interprocess

communication mechanism.

• A local broker must be available for every machine in the network where there are

clients or servers. If requests, responses or exceptions are transferred from one

network node to another, the corresponding local brokers have to communicate

with each other using an on-the-wire protocol. Bridges are used to hide details

such as network protocols and operating system specifics from the broker. A bridge

is a special component that encapsulates the mechanisms for (network)

communication between brokers. That is, the message transfer between brokers is

based upon the communication between the corresponding bridges. The broker

must also maintain a repository to locate the remote brokers or gateways to which

it forwards messages. You may encode the routing information for finding remote

brokers as a part of the server or client identifier. Broadcast communication is

another (potentially inefficient) way to locate the network node where a server or

client resides. If the proxies (see step 4) do not provide mechanisms for marshalling

and unmarshalling parameters and results, the broker component must include

that functionality.

• In the case your system supports asynchronous communication between clients

and servers, you will need to provide message buffers within the broker or within

the proxies for the temporary storage of messages.

• The broker must contain a directory service for associating local server identifiers

with the physical location of the corresponding servers. For instance, if the

underlying interprocess communication protocol is based upon TCP/IP, an

Internet port number could be used as the physical server location.

• When your architecture requires system-unique identifiers to be dynamically

generated during server registration, the broker must offer a name service for

instantiating such names.

• If your system supports dynamic method invocation (see step 3), the broker needs

some means for maintaining type information about existing servers. A client may

access this information using the broker APIs in order to construct a request

dynamically.

• Consider the case when something fails. In a distributed system two levels of errors

may occur. First, a component such as a server may run into an error condition.

This is the same kind of synchronous error you encounter when executing

conventional non-distributed applications. Second, the intercommunication

between two independent processes may fail. Here the situation is more

complicated since the communicating components are running asynchronously.

Hence, plan the broker’s actions when the communication with clients, other

brokers or servers breaks. For instance, some brokers resend a request or response

several times until they succeed. If an at-most-once semantic5 is used, you have to



16 Broker

make sure that a request is only executed once even if it is resent. Do not forget

the case where a client tries to access a server which either does not exist or which

the client is not allowed to access. Error handling is an important topic when

implementing a distributed system. If you forget to handle errors in a systematic

way, testing and debugging of client-applications and servers will become an

extremely tedious job.

6 Whenever you are implementing interoperability by providing an interface definition

language, you need to build an IDL-compiler for every programming language you

support. An IDL-compiler translates the server interface definitions to programming

language code. When many programming languages are in use, it is recommended

that the compiler is developed as a framework allowing the developer to add his own

code generators.

Example The following applies the Broker architectural framework to implementing the information

system we introduced in the motivating example:

• The software consists of WWW-services that are distributed over the network, as well as

applications, i.e., clients, running on graphics terminals. Users interacts with these

applications to retrieve the information they need, a complete list of available hotels, for

example.

• On every network node a broker component is responsible for forwarding requests from

clients to the appropriate server and results from the server back to the client. All servers

are identified by system-unique names such as “ftp://munich/Hotel_Information_Service”.

Clients do not need to know anything about the location of the services they access. It is the

task of the brokers to locate servers using location-databases and forward requests to these

servers. The database in our example comprises a mapping between service names and the

physical network address where the appropriate server resides. In the system, a service may

be provided by more than one server in order to improve its availability. If one service in the

network is not accessible, the broker may forward the request to another machine providing

the same kind of service (see the Trader System variant). For this purpose, a Trading service

is available in the broker system.

• Bridges are used as layers between the participating brokers. This is why the whole system

is capable of running on a heterogeneous network consisting of PCs and workstations using

different broker implementations. We use cheap PCs running under MS Windows 95 for

visualizing the information and fast Unix-workstations for providing the database services.

❏

Variants There are several possible variants of the Broker architectural framework. The

following variants can be combined:

• Direct Communication Broker System: For efficiency reasons you may sometimes

choose to relax the restriction that clients can only forward requests through the

local broker. Instead, clients send their requests directly to the remote broker

where the server resides. Another possibility is allowing clients communicate with

5. When supporting at-most-once semantics your system has to guarantee that any request

either fails or is executed only once. If you implement other semantics instead such as “at

least once” or “exactly once”, the same request may be resent and executed several times.

This strategy is only applicable to idempotent services, where overall consistency is not

damaged by executing a service more than once. A typical example for an idempotent

service is a function that assigns an initial value to a variable.



Broker 17

servers directly. Here, the broker tells the clients which communication channel

the server provides. Then, the client can establish a direct link to the requested

server. In these systems, the proxies and not the broker are responsible for

handling most of the communication activities.

• Message Passing Broker System: This variant is suitable for systems that focus on

the transmission of data instead of implementing a Remote Procedure Call

abstraction6. Using this variant, servers do not offer services that clients can

invoke, but use the type of message to determine what they must do. In this

context, a message is a sequence of raw data together with additional information

that specifies the type of a message, its structure and other relevant attributes.

• Trader System: Usually, a client request is forwarded to exactly one uniquely-

identified server. In some circumstances, the broker should can which server(s)

can provide the service and forward the request to an appropriate server. When you

implement this variant, services and not servers are the targets to which clients

send their requests. Hence, client-side proxies use service identifiers instead of

server identifiers to access server functionality. Moreover, the same request might

be forwarded to more than one server implementing the same service.

• Adapter Broker System: To enhance flexibility, the interface of the broker

component to the servers can be hidden by using an additional layer. This adapter

layer is a part of the broker and is responsible for registering servers and

interacting with servers. By supplying more than one adapter, you can support

different server implementation strategies with respect to server granularity and

server location. For instance, if all objects that an application accesses are located

on the same machine and are implemented as library objects, a special adapter

could be used to link the objects directly to the application. Another example is the

use of an object-oriented database for maintaining objects. Since the database is

responsible for providing methods and storing objects, there may be no need for

registering objects explicitly. In such a scenario, we could provide a special

database adapter.

• Callback Broker System: Instead of implementing an active communication model

where clients are the producers of requests and servers are the consumers of

requests, you may also use a reactive model - the reactive model is event driven,

and there is no distinction between clients and servers. Whenever an event arrives,

the broker invokes a callback method of the corresponding component. As a result,

events may happen that the broker transmits to other components that are

interested in them.

Selected known

uses

• The Broker architectural framework was used to specify the Common Object

Request Broker Architecture defined by the Object Management Group. CORBA is

an object-oriented technology for distributing objects on heterogeneous systems.

An interface definition language IDL is available to support the interoperability of

clients and server objects [OMG92]. Many CORBA implementations realize the

Direct Communication Broker System variant.

6. Brokers offering RPC (Remote Procedure Call) interfaces are typically built using message

passing interfaces.



18 Broker

• IBM SOM/DSOM (System Object Model, Distributed System Object Model)

represents a CORBA-compliant Broker system. In contrast to many other CORBA-

implementations, it implements interoperability by combining CORBA-IDL with a

binary protocol. SOM’s binary approach supports of subclasses from existing

binary parent classes.

• Microsoft’s OLE 2.x technology (OLE stands for Object Linking & Embedding)

provides another example for the use of the Broker architectural framework. While

CORBA guarantees interoperability using an interface definition language, OLE 2.x

defines a binary standard for exposing and accessing server interfaces

[Brockschmidt94].

• In a Siemens in-house project for building a telecommunication switching system

based upon ATM (Asynchronous Transfer Mode), the Broker architectural

framework has been successfully applied [ATM93]. This system uses the Message

Passing Broker System variant.

Consequences The Broker architectural framework has some important benefits:

Changeability and extensibility of components: The Broker architectural

framework offers a high degree of changeability and extensibility. When servers

change but their interfaces remain the same, this will have no functional impact on

clients. Modifying the internal implementation of the broker but not the APIs it

provides, has no effects on clients and servers except for performance changes.

Changes in the communication mechanisms used for the interaction between servers

and the broker, between clients and the broker, and between brokers will eventually

require you to recompile clients, servers or brokers. However, you will not need to

touch the source code. The use of proxies and bridges is an important reason for this

ease of implementing changeability.

Portability of a Broker system: The Broker system hides operating system and

network system details from clients and servers by the use of indirection layers such

as APIs, proxies and bridges.

Therefore, in most cases it is sufficient to port the broker component and its APIs to

a new platform and to recompile clients and servers. Structuring the broker

component into layers is recommended, e.g., according to the Layered architectural

framework. If the lowermost layers hide system specific details from the rest of the

broker. you will only need to port these lowermost layers instead of completely porting

the broker component.

Interoperability between different broker systems: Different broker systems may

interoperate if they understand a common protocol for exchanging messages. This

protocol is implemented and handled by bridges, which are responsible for

translating the broker specific protocol into the common protocol, and vice versa.

Reusability: In a Broker architecture software-reuse is supported. Whenever you

build new client applications you can base the functionality of your application upon

existing services. Thus, you may reduce the code of the new client application by

reusing services that are already available. For example, suppose you are going to

develop a new business application. When components that offer services such as

text editing, visualization, printing, database access, or spreadsheets are already

available, you will not need to implement these services yourself. Instead, it may be

enough to integrate these existing services into your software.



Broker 19

Location Transparency: Since the broker is responsible for locating servers by an

unique identifier, clients do not need to know where the servers are located. On the

other hand, servers do not care about the location of calling clients, since they receive

all requests from the local broker component. Hence, the Broker architectural

framework provides location transparency.

The Broker architectural framework has the following drawbacks:

Restricted efficiency: Applications using the Broker architectural framework are

usually slower than applications whose component-distribution is statically known.

Moreover, systems that directly depend on a concrete mechanism for interprocess

communication gain better performance than a Broker architecture that introduces

indirection layers in order to be portable, flexible and changeable.

Less fault tolerance: Compared with a non-distributed software system, a Broker

system may offer less fault tolerance. Suppose, that during program execution either

a server or a broker fails. In this case, all applications that depend on the server or

broker will be unable to continue successfully. However, replication can be used to

increase reliability.

The following is another aspect that should be considered:

Testing and Debugging: A client application developed using tested services is more

robust and easier to test. On the other hand, debugging and testing a broker system

is a tedious job because of the many components involved. For instance, if the

cooperation between a client and a server fails, there are two possible reasons for the

failure: Either the server itself has entered an error state or there is a problem

somewhere on the communication path between client and server.

See also Forwarder-Receiver design pattern: This pattern provides transparent interprocess

communication for software systems with a peer-to-peer interaction model between

components.

References [GOF95]: Gamma, Helm, Johnson, Vlissides: Design Patterns, Addison-Wesley, 1995

[OMG92]: The Object Management Group: The Common Object Request Broker:

Architecture and Specification, OMG Document Number 91.12.1, 1992

[Brockschmidt95]: Brockschmidt, Inside OLE 2, 2nd Edition, Microsoft Press 1995

[Rymer94]: J. Rymer: OMG’s UNO Object System Interoperability - at Last,

Distributed Computing Monitor, Vol. 9, No. 12

[Tanenbaum92]: Andrew Tanenbaum: Modern Operating Systems, Prentice-Hall,

1992

[JS95]: Jell, Stal: Comparing Microsoft OLE 2 and OMG CORBA, Conferencez OOP,

Munich, and Object Expo, London, SIGS Conferences, 1995

[BMRSS96]: Buschmann, Meunier, Rohnert, Sommerlad, Stal: Pattern-Oriented

Software Architecture, Wiley and Sons, to be published in 2/1996

[C94]: F.R. Campagnoni: IBM’s System Object Model, Dr. Dobbs Journal, pp.24,

Special Report, Winter 1994/95

Douglas C. Schmidt: personal mail.


