
Putting Fixed Priority Scheduling Theory into Engineering Practicefor Safety Critical ApplicationsN. C. Audsley, I. J. Bate and A. BurnsDepartment of Computer Science,University of York,York, Y01 5DD, UK.AbstractThis paper describes the approach proposed by theYork University Technology Centre (YUTC) for intro-ducing �xed priority scheduling into industrial safetycritical hard real-time systems. The work has been per-formed within the context of a class A (safety-critical)system as de�ned by civil aircraft software standardDO178B [1]. Traditionally, class A systems have beenscheduled by a cyclic executive. However, many suchsystems can be re-designed using a �xed priority sched-uler. This saves time and money, with no signi�cantincrease in risk. Also, signi�cant technical bene�tsare apparent. This paper describes the timing require-ments of the system, provides a potential schedulingapproach (including appropriate timing analysis), andoutlines an approach for gathering the necessary evi-dence for presentation to certi�cation authorities.1 IntroductionRecent years have seen an increasing demand forgreater complexity / capability (more functionality)while increasing e�ciency / e�ectiveness (better func-tionality and lower weight) in the aircraft industry.This has lead to avionics software systems of increasedcomplexity and size, requiring more powerful comput-ing platforms. Given that many of the software engi-neering techniques that have been used in the designprocess are immature (compared to other related dis-ciplines, e.g. civil engineering), much e�ort has to beput into veri�cation of the software prior to use withinan airbourne system. Indeed, over 50% of the softwaree�ort for the Boeing 777 has been in the area of anal-ysis and test for the purpose of veri�cation [2].Currently, safety-critical systems tend to be pro-duced using cyclic executives. One reason for thisis the stringent safety and integrity requirementsplaced upon software by avionics standards, such asDO178B [1]. Alternative implementation strategies

have been proposed, including �xed priority schedul-ing. The latter has many advantages over the tradi-tionally used cyclic executive scheduling approach [3]:1. Provides a scheduler mechanism with greater
exibility so that the design process is cheaperand quicker. Indeed, Sha [4] states that:\Under the cyclic approach, meeting the re-sponsiveness, schedulability and stability require-ments has become such a di�cult job that prac-titioners often sacri�ce program structure to �tthe code into the right time slots."2. Provides a more e�cient scheduling mechanism.A commonly faced problem with many avionicsprojects is that of limited resources caused bythe cost and availability of military speci�cationcomponents (the operating environment of air-craft require the use of such components) andincorrect system requirements (initial resourcebudgets are too optimistic).3. Provides a su�cient and necessary analysis tech-nique to reduce the burden of testing and main-tenance.There are some disadvantages in the adoption of�xed priority scheduling. One that is of interest tocontrol engineers is that of jitter. Potentially, therelease jitter of tasks scheduled with a �xed priorityscheduler may be worse (than under cyclic scheduling)due to the dynamic nature of the run-time schedule.Research performed at the University of York Real-Time Systems group into �xed priority schedulinghas reached a stage where it was considered matureenough for use in safety critical systems. This paperwill justify this claim, showing how the theory can beimplemented in practice.



Control Requirement Timing Constraints Timing Requirement NotationRegular action Periodic Iteration rate TEvent-driven action Sporadic Min. inter-arrival time TAction within bounded time Responsiveness Deadline DVariation from periodicity Output jitter Output jitter JTime of release after action O�set from action Task release o�set OFunction Y follows function X Task Y executes after X Precedence constraint P = fX,YgFunction Y follows function Xwithin bounded time Task Y executes after Xwithin D Precedence constraintwith end-to-end deadline P = fX,Ygwithin DActive modes of function Task executed in modesX, Y, Z Task active/inactive ineach mode Mode listTable 1: Relationship between Timing Constraints and Timing Requirements.The remainder of this section provides backgroundto DO178B. Section 2 of this paper will provide abrief description of the current method that is usedby Rolls-Royce. Section 3 will present the YUTC ap-proach to the design of a kernel, with section 4 givingtiming analysis. Section 5 discusses an approach tocerti�cation. Section 6 presents the conclusions of thepaper.1.1 BackgroundUnderstandably, the regulatory authorities (theFederal Aviation Authority, the Civil Aviation Au-thority and the Joint Airworthiness Authority) imposemany constraints on system designers of class A sys-tems. Within DO178B [1], class A software is de�nedas:\software whose anomalous behaviour, as shown by thesystem safety assessment process, would cause or con-tribute to a failure of system function resulting in acatastrophic failure condition for the aircraft."Catastrophic failure consists of failure conditionswhich could prevent continued safe 
ight and landing.As stated earlier, class A systems have traditionallybeen implemented by cyclic executives. One of themotivations for this is that non-determinism is min-imised { the regulatory authorities are able to verifyvia the scheduling table that appropriate timing re-quirements will be met. DO178B is supportive of thisapproach, stating that (section 5.2.2 in [1]):\The software design process should avoid introducingcomplexity because as the complexity of software in-crease, it becomes more di�cult to verify the designand to show that the safety objectives of the softwareare satis�ed."To introduce �xed priority scheduling into class Asystems we must ensure that the approach:� is conservative, and hence understandable;

� is veri�able so that it can be shown the systemrequirements (including timing) are met;� allows the gathering of evidence for the safetycase. Four properties should be examined for thesafety case: functionality (are the requirementsmet?); resource (does the system have su�cientresources?); timing (does the system meet itstiming constraints?); and failure behaviour (howdoes the system behave in the event of failures?).2 The Existing MethodThis section examines how current systems that arecontrolled by a cyclic executives are produced. Thiswill provide a benchmark to compare the �xed priorityscheduling against. There are four particular issues tobe discussed:� the type of system to be scheduled;� implementation of the cyclic executive scheduler;� fault identi�cation and recovery for the existingmethod;� identi�cation of the opportunities for improvingthe existing method.2.1 The Types of System to be ControlledThe type of system to be controlled is a Full Au-thority Digital Engine Controller (FADEC), where:� software is used to control the operation of thehardware to achieve a safe and an e�cient re-sponse.� critical functionality is policed by a device thatprovides fail safe protection. For example, hard-ware devices may be provided to protect againstloss of control of fuel 
ow.



The data within the system is a mixture of contin-uous and discrete types that are updated either pe-riodically or sporadically. The processing within thesystem is asynchronous in nature, however both hardand soft functionality exists. Table 1 explains the re-lationship between the system that is to be controlledand the requirements that a�ect the scheduler.The key requirements that the system imposes onthe kernel (scheduler) are:� the provision of task o�sets shall be enforced bythe kernel;� the dispatch of certain tasks must be performedin a particular order, i.e. precedence constraint;� precedence constrained tasks may have an end-to-end deadline;� some tasks have jitter constraints (particularlythose dealing with input and output devices) re-quiring the use of an o�set to ensure the taskis executed when all preceding tasks have com-pleted execution.2.2 How the Currently Used Cyclic Exec-utive Scheduler is ImplementedThe cyclic executive currently used by Rolls-Roycetypically consists of a minor cycle with a period of25ms and a major cycle with a period of 200ms. Vari-ous forms of secondary scheduling (round robin, cyclicexecutive) are used to achieve the other iteration ratesthat may be required.The scheduler is synthesised automatically on the�rst build of the software and then modi�ed manuallyfor subsequent builds. The reason for this approach isthat the e�ect of modi�cations on the control 
ow canbe determined more easily during regression testing.Memory protection is not used between tasks ornatural software partitions. Instead, a pull data model(i.e. only the tasks that owns the data item can writebut all tasks may read the data) combined with goodprogramming practice is used to prevent data corrup-tion.The Spark Ada subset [5] is used for the purpose ofthe implementation.2.3 Fault Detection and RecoveryThe fault tolerant properties of the current sys-tem can be separated into three distinct parts: re-dundancy, identi�cation, and recovery. Redundancyis provided by the system consisting of two identicallanes that are connected by a communications channelwhich is used for data validation. There are two formsof fault identi�cation in the system:

1. Timing Watchdogs { a timing watchdog is pro-vided to identify whether cycle overruns occurand then raise a fault 
ag. The mechanism isdiscussed in more detail in section 3.3.2. Health Levels { each lane maintains a healthlevel value which is calculated by comparing anumber of actual data values with expected datavalues (obtained by calculating data values us-ing other sources or from the other lane). If thehealth level falls below an acceptable level thenfault recovery is performed.Fault recovery is, typically, achieved using the fail stopmethod where if the lane controls the engine then alane change is performed, and the lane is reset.2.4 Opportunities for ImprovementThe opportunities for improvement with the cur-rent approach are believed to be:� Use of Analysis TechniquesAnalysis rather than testing should be used toverify the timing requirements are met. Harter[HARTER87] states that analysis is preferablefor veri�cation rather than test since it is moree�cient and more likely to detect problems.Analysis also provides a quicker and cheapermethod of determining the e�ect of changes inthe system requirements. The current approachprovides little evidence of whether the systemwill meet the timing requirements until the �rstbuild has been produced. By the time of the�rst system build, signi�cant commitments havebeen made to the hardware and software archi-tectures are costly to change. A veri�cationstrategy is required that will allow both staticand dynamic testing of the system to ensure thatthe scheduling requirements are met.� Implementation RequirementsAn implementation that better re
ects the re-quirements of the system. The cyclic executivescheduler has provision for a limited selectionof iteration rates and no provision for sporadicswhich results in an ine�cient (in terms of proces-sor utilisation) implementation. However, thiswill require a more stringent requirements spec-i�cation.� MaintenanceThe maintenance of a heavily loaded (in termsof processor utilisation) cyclic executive sched-uler is notoriously di�cult resulting in frequentand time consuming reworks being necessary.



� Better Management of Task O�setsThe cyclic executive scheduler does not providean elegant mechanism for implementing tasksthat have o�sets. The approach taken with thecyclic executive scheduler is normally to placesu�cient functionality between the tasks thathave an o�set.3 Kernel ArchitectureThis section discusses the architectural choicesmade during the implemention of the �xed prioritykernel. Issues and trade-o�s related to the implemen-tation are discussed.There are three principle areas in which the �xedpriority scheduler may require a di�erent kernel ar-chitecture to the cyclic executive: scheduling policy,handling of sporadics, and handling of timing over-runs. These are now discussed.3.1 Scheduling PolicyTraditional �xed priority scheduling policy is im-plemented using a preemptive 
ow of control wherethe highest priority task is always executed. Often,�xed priority scheduling is accompanied by a mecha-nism for protecting shared data, e.g. priority ceilingprotocol [6]. However, this is not required within thecontext of the system under consideration due to thedata pull model, together with the timing character-istics of the system.Fixed priority scheduling can lead to non-determinism { it is not clear where in their executiontasks will be preempted by the release of higher pri-ority tasks, leading to an greatly increased number ofpossible execution scenarios. Also, data 
ows and up-dates can be interrupted { a task may be preemptedwhen a data calculation is only partly �nished. Bothissues could be solved under a pre-emptive scheme,however, both application and kernel software wouldbecome more complex.Alternatively, a non-preemptive 
ow of control canbe used. The choice of non-preemptive is supported byDO178B which requires an implementation wherebythe e�ects of interrupts can easily determined.For non-preemptive �xed priority scheduling twoprinciple variants can be identi�ed:1. tick-drivenThe tick driven approach uses a clock tick whichinterrupts task execution to release tasks. Toachieve a non- preemptive 
ow of control whenthe task execution is interrupted by the clocktick, the task is immediately resumed when thescheduler has updated the run queue. This oc-curs even if a higher priority task has been re-

leased. The problem with this approach is thattasks which are not released at a rate which is amultiple of the clock tick will su�er from releasejitter. If the release jitter becomes too greatthen task iteration rates or the release mecha-nism may have to be altered so that task dead-lines can be met.2. co-operativeThe co-operative scheduler uses a non-preemptive model with task releases dependenton a real-time clock rather than an interruptsource. When a task completes execution, theclock is read, the run queue is updated if a taskshould be released and the highest priority taskis dispatched.The exact variant of non-preemptive �xed priorityscheduling chosen has three major impacts on the sys-tem:1. Hardware ArchitectureThe infrastructure of the system will be a�ectedby the scheduling policy. The tick driven sched-uler requires a hardware clock tick that period-ically generates an interrupt. The co-operativescheduler requires a real-time clock that allowsthe decision of whether to release a task to bemade. Therefore, the tick driven approach pro-vides the more reusable approach since it canuse the same hardware as the cyclic executivescheduler.2. Kernel OverheadsWhichever scheduling policy makes the most at-tempts to update the run queue will have theworst kernel overheads (assuming that the worstcase search and release of runnable tasks takesan equivalent time for both schedulers) since anoverhead is incurred independent of whether atask is released. A simple test can be derivedfor determining whether tasks may be ready forrelease in an attempt to reduce the overhead, i.e.� Co-operative Scheduler Test: store a valuethat is the time at which any task willnext become runnable so that at the end ofeach task execution this value can be sim-ply checked against the real-time clock.� Tick Driven Test: store a value which is thenumber of clock ticks before any task willbecome runnable so that when a clock tickarrives this value can be simply checked andrecalculated.



3. ResponsivenessThe responsiveness (i.e. ability to meet shortdeadlines) is related to the maximum release jit-ter and the length of time tasks are blocked bythe executions of lower priority tasks (and thelength of time consumed by execution of thescheduling policy, which we will assume is thesame for tick driven and co-operative). In gen-eral, the co-operative scheduler will be more re-sponsive since the release jitter of the tick drivenapproach can be as large as the blocking time(due to lower priority tasks having to completetheir execution), plus the clock tick rate (fortasks with iteration rates that are not multiplesof the clock rate). However, the release jitter ofthe co-operative approach is simply the blockingtime.Hybrid PolicyAn alternative approach that has been developed dur-ing discussion with software and hardware engineers isthe hybrid of the tick driven and co-operative sched-uler approach.The hybrid approach releases the majority of tasksbased on a clock tick with a few short period tasks re-leased co-operatively. The bene�t of this approach isthat it allows a compromise between kernel overheadsand task responsiveness. The reason is that betweenclock ticks, only those tasks that require a quick re-sponse need to be checked for release. Therefore, thekernel overheads each time a task �nishes executionare reduced when compared with the co-operative ap-proach. Also, the release jitter on the short periodtasks bene�ts from the co-operative approach.We note that jitter could also be reduced by a morefrequent clock tick. However, this would increase theresultant overheads, implying a detrimental a�ect onthe ability to schedule the task set. Also, the clocktick is �xed within the system once hardware plat-forms have been determined.3.2 Sporadic TasksThe scheduling policy will be dependent on thedeadline of the sporadic task since the arrival of asporadic cannot be determined, unlike a periodic, andtherefore the worst case must be assumed. Withoutthe use of sporadics the functionality must be mod-elled as a periodic (typically with an iteration rateless than the minimum inter-arrival time) to achievethe necessary deadline. This will lead to an increasedworst case processor utilisation and a task set that ismore di�cult to schedule.

For certi�cation reasons related to the determinismof control 
ow, the sporadic tasks shall not be imple-mented using the usual interrupt scheme. Instead, anevent 
ag shall be raised when the sporadic should bereleased with the actual task being released when thescheduler next updates the run queue. The event 
agswould be set by the appropriate hardware devices andmemory mapped so that the scheduler may read thevalue.To protect against hardware failures causing theevent 
ags to become stuck, a minimum inter-arrivaltime would be speci�ed to prevent the sporadic beingtriggered at too fast a rate. The kernel will be re-sponsible for policing that a sporadic is not triggeredtoo fast, without this protection other tasks may misstheir deadlines. In some cases which are chosen care-fully, a maximum inter-arrival time may also be spec-i�ed so that the task is called irrespective of the event
ag condition. Obviously, the application of the maxi-mum inter-arrival time must be carefully selected andcontrolled, i.e. an additional check may be requiredbefore any functionality is performed.3.3 Timing OverrunsThere are two principle approaches for providingprotection against timing overruns which are the tickdriven approach, and the task countdown timer ap-proach.The tick driven timing watchdog approach is whereat a regular rate (normally triggered as a multiple ofthe clock tick rate) a check is performed to ensurethat the software is not looping. This check would bebased on ensuring that a su�cient number of taskshave been executed between checks (e.g. the sum ofthe worst case execution time of the tasks that havebeen executed is greater than the period of the timingwatchdog). The response time of the tick driven tim-ing watchdog to detectable faults is twice the periodof the timing watchdog.The task countdown timer approach is where eachtime a task execution commences a countdown timeris started. The duration of the countdown timer isgreater than the Worst Case Execution Time (WCET)of any task in the task set. When the task executionis complete the countdown timer is restarted. If thecountdown timer reaches zero then fault recovery isperformed. Therefore, the response time to a fault isequal to the duration of the countdown timer.3.4 SummaryFrom a technical perspective, the co-operativescheduling technique with countdown timer has theadvantage that better responsiveness should be ob-tained and the lack of interrupts in the system makes



safety analysis simpler. However, cost and risk aredetermining factors so the tick driven scheduling ap-proach with periodic timing watchdog a�ords greaterreuse of the existing architecture. Therefore, to pro-vide a 
exible system with maximum reuse the hybridapproach with a tick driven watchdog is assumed4 Timing AnalysisThis section will show how existing analysis for fullypreemptive scheduling can be adapted for the hybridscheduling approach. A major part of this work is thetrade-o� of ability to understand the analysis and thepessimism that the analysis introduces. The reasonfor this approach is that the analysis technique whichis used should be intuitively correct to the engineersresponsible for the system and the certi�cation author-ities rather than an approach which requires complexproofs. The timing analysis is derived from the workof Burns [7] with a starting point of:Ri = Ci +Bi + Xj2hp(i) �RiTj �Cj (1)where for task �i, Ri represents the worst case re-sponse time, Ci the worst case execution time, andBi the longest time �i can be blocked by a lower pri-ority task. The function hp(i) returns the set of taskswith higher priorities than �i. Hence, the summationterm represents the time �i can be interfered with byhigher priority tasks. We assume that sporadics can betreated as periodics with period equal to their worst-case inter-arrival time.It is assumed that, for all �i, we have Ci � Di � Ti.The principal di�erence between the preemptivescheduling model and the non-preemptive schedulingmodel is the blocking time related to lower prioritytasks. In a fully preemptive system the blocking timemay be zero. However, in a non-preemptive systemthe blocking time is equal to the longest duration ex-ecution that can occur of lower priority tasks betweentask dispatches. Bi = maxk2lp(i)(Ck) (2)where lp(i) represents the set of tasks of lower prioritythan �i.To solve equation 1 a recurrence relation isformed [7]:Rn+1i = Ci +Bi + Xj2hp(i) �RniTj �Cj (3)The recurrence can be initiated with R0i = Ci, andterminates if either Rn+1i > Di or Rn+1i = Rni .

This relation has been adapted by Audsley to ac-count for the extra interference that may be causedby release jitter which may allow extra instances ofhigher priority tasks to be executed [AUDSLEY93]:Rn+1i = Ci +Bi + Xj2hp(i) �Rni + JjTj �Cj (4)For a periodic task the jitter, Jj , is given by:Jj = Tclk �GCD(Tclk; Tj) (5)where Tclk is the period of the clock and GCD is thegreatest common denominator. For a sporadic taskthe jitter is given by: Jj = Tclk (6)Now, when the analysis converges (i.e. Rn+1i =Rni ), the worst case response time is calculated as:Ri = Rn+1i + Ji (7)Now we turn to kernel overheads, namely contextswitches and implications of the scheduling scheme.The e�ect of context switches may be modelled usingthe knowledge that at most two context switches mayoccur per task. The analysis accommodates this bymodifying the WCET of the tasks, i.e.Ci := Ci + Cs1 + Cs2 (8)where Cs1 is the time taken to perform a contextswitch into the task, Cs2 is the time taken to performa context switch from the task.The secondary category of kernel overhead to beanalysed is the clock model which has two facets forthe hybrid scheduler. Those related to the periodicand co-operative updating of the run queue. The co-operative clock model is modelled by modifying thecontext switch from the task, Cs2, to incorporate thetime taken to update the run queue, i.e.Cs2 := Cs2 + Ccoop (9)where Ccoop can be founded with a WCET analyser.The periodic clock for tick driven scheduling can bemodelled in two ways [7]:1. Single TaskHere a single task, �clock, is used to model theupdating of the run queue. Task �clock has thehighest priority and the following timing con-straints:



Task T (�s) C (�s) D (�s)A 6250 250 6250J 11000 1000 11000B 25000 4000 25000C 50000 2000 50000D 100000 1000 100000E 200000 1000 200000F 1000000 3000 1000000Table 2 : Basic Task Set.ID P B (�s) J (�s) R(�s) Met?clock 1 4000 0 6000 YesA 2 4000 0 6250 YesJ 3 4000 6000 15500 NoB 4 3000 0 15750 YesC 5 3000 0 18750 YesD 6 3000 0 22000 YesE 7 3000 0 23000 YesF 8 0 0 23000 YesTable 3: Analysis for 6.25ms Clock andSingle Task Model of Overheads.Tclock = TclkCclock =MCfixed +MCfirst + (N �M)Csubwhere N represents the number of actual tasksin the system, Tmin is the shortest period of alltasks, Cfirst is the cost in transferring the �rsttask from the delay queue to the run queue, Csubis the cost in transferring the subsequent tasksfrom the delay queue to the run queue, andM = �TminTclk �2. Multiple TaskHere, an extra task for each actual task modelsthe updating of the run queue. Each additionaltask has the same iteration rate as the actualtask, and a WCET obtained via analysis.Clearly there is a trade-o� between understandabilityand pessimism of the two approaches. The multipletask approach o�ers greater accuracy with respect toresponse times, but is more complex.

ID P B (�s) J (�s) R(�s) Met?clockA 1 0 0 500 YesclockJ 2 0 6000 6750 YesclockB 3 0 0 1000 YesclockC 4 0 0 1250 YesclockD 5 0 0 1500 YesclockE 6 0 0 1750 YesclockF 7 0 0 2000 YesA 8 4000 0 7000 NoJ 9 4000 6000 14250 NoB 10 3000 0 12250 YesC 11 3000 0 15000 YesD 12 3000 0 16000 YesE 13 3000 0 18250 YesF 14 0 0 18250 YesTable 4 : Analysis for 6.25ms Clock andMultiple Task Model of Overheads.4.1 Example of the AnalysisThis example shows the analysis given in the previ-ous section, illustrating the e�ect of release jitter andimplementation strategy on the ability to schedule atask set. Table 2 describes the task set that is to bescheduled. Note that the computation times given foreach task include basic context switch overheads, asde�ned by equation (8).Initially, we analyse the system assuming conven-tional tick driven �xed priority scheduling, using thesingle task clock model of overheads. Now, the taskset of Table 2 is extended to include a high prioritytask �clock which includes all overheads due to the pe-riodic clock. According to the single task model, �clockhas the characteristics of:� Tclock = Dclock = 6250�s� Cclock = 2000�sThe computation time of the task is calculated assum-ing:� Cfixed + Cfirst = 500�s� Csub = 250�sThe results of the analysis are given in Table 3. Wenote that �J will miss its deadline.Now, we analyse the system assuming conventionaltick driven �xed priority scheduling, using the multi-ple task clock model of overheads. Now, the task setof Table 2 is extended into Table 4 including, for eachtask, a corresponding task modelling its clock over-heads (e.g. �A has associated task �clockA).



ID P C (�s) B (�s) R (�s) Met?A 1 750 4500 5250 YesJ 2 1500 4500 7500 YesB 3 4500 3500 11000 YesC 4 2500 3500 15750 YesD 5 1500 3500 17250 YesE 6 1500 3500 18750 YesF 7 3500 0 18750 YesTable 5: Analysis for a Co-operativeScheduler.The computation time of �clockA is given by:Cfixed + Cfirst = 500�s. All other extra tasks canonly be released during the same context switch thatreleases �clockA (since they have periods that are mul-tiples of TclockA). Hence, they all have computationtimes equal to Csub = 250�s. The results of the anal-ysis are given in Table 4. We note that both �A and�J will miss their deadlines.Now we consider scheduling the task set using thepure co-operative approach. Initially, we must amendthe computation times of the tasks (as given in Ta-ble2) to account for the cost of updating the runqueue. This is given by equation (9). We assumethat Ccoop = 500�s. Note that there will be no jitter,due to the co-operative scheduling and that all block-ing times are also increased by Ccoop. Table 5 showsthe results of the analysis, with all tasks meeting theirdeadlines.Now we consider the hybrid scheduling approach.To eliminate jitter, we assume that �A and �J arescheduled co-operatively, and the remainder of thetasks are tick-driven. The clock has period of 25ms,su�cient to schedule tasks with no jitter. A singletask, �clock, with the highest priority is used to ac-count for all tick-driven overheads. It has parameters:� Tclock = Dclock = 25000�s� Cclock = 1500�sThe computation times of �A and �J are increased(over their values in Table 2) to include Ccoop. Notethat their blocking times do not change. However,since �clock is the highest priority task, it interfereswith �A and �J . The results of the analysis are givenin Table 6 { all tasks are schedulable.Out of the tick-driven approaches, task �J is onlyschedulable using the hybrid approach. In particular,the worst case response time of �J is considerably bet-ter using the hybrid approach. Experimentation hasbeen performed to examine the e�ect of changing theclock tick rate and/or raising the iteration rate of �J .

The purpose of the experimentation is to determinewhether a purely tick driven scheduling approach mayresult is a schedulable task set. To date, a schedula-ble solution has not been found with the tick drivenapproach.ID P C (�s) B (�s) R (�s) Met?clock 1 1500 0 1500 YesA 2 750 4000 6250 YesJ 3 1500 4000 8500 YesB 4 4000 3000 13750 YesC 5 2000 3000 15750 YesD 6 1000 3000 16750 YesE 7 1000 3000 17750 YesF 8 3000 0 17750 YesTable 6: Analysis of Hybrid 25ms Schedulerwith Single Clock Model of Overheads.SummaryThe examples of the analysis show that the hybridapproach provides better responsiveness over the tickdriven approach for systems where 
exibility (i.e. abil-ity to have a wide range of iteration rates) is required.Similarly, the response time of sporadics with thisscheme would be better since they would su�er norelease jitter only blocking. Further work is requiredto generalise and optimise the hybrid scheduling ap-proach.5 Certi�cationThe purpose of this section is to discuss how theYUTC may satisfy the certi�cation authorities thatthe �xed priority scheduler provides a scheduler withat least the same integrity as the cyclic executive. Thetable in Table 7 summarises a safety analysis thathas been performed using a technique described byBurns [2]. The principle behind the technique is thatthe four principle properties (functionality, resource,timing, safety) are examined and recorded for whetherthe property is met, the nature of the evidence and theassumptions that are made.Table 7 shows that both static analysis and dy-namic testing has been performed to show the cor-rect operation of the system, and to bound memoryand processing resource usage. This assumes fault-free conditions. Failure analysis has been performedthat shows detectable timing faults are recovered as-suming the timing watchdogs do not also fail. For thesystems in question, hazards caused by dual randomfailures are normally accepted as being su�ciently re-mote, assuming there is no possible common cause andindividual failures have a su�ciently low probability.



Property Nature of Property Nature of Evidence AssumptionsFunctionality Dispatcher Correctness (tasksare scheduled at the correctrate and the correct order) Tests using the actual hard-ware and software showed thatthe dispatcher met the require-ments, The kernel infras-tructure operatesin fault-free condi-tions.Operational Correctness (sys-tem invariants are not a�ected) The scheduler is produced us-ing statically stored variables{ invariants should not be af-fected. The scheduler isproduced to an ap-propriate standard.Timing In all cases the performance ofthe system is deterministic andschedulable. Schedulability analysis hasbeen performed that shows thesystem is schedulable (section4). The kernel infras-tructure operatesin fault-free condi-tions.Resource Memory usage is deterministicand within the allowable limits. The scheduler is produced us-ing statically stored variables {resource usage proportional tothe (static) number of tasks. The kernel infras-tructure operatesin fault-free condi-tions.FailureBehaviour In the event of a timing overrunwithin the system, the fault willbe identi�ed within the appro-priate time. The tick driven timing watch-dog is the same as that usedfor the cyclic executive sched-uler which has previously beentested. Appropriate hazardanalysis of the timing watchdogalso exists.
The timing watch-dog does not alsofail.

Table 7 : Summary of the Kernel Safety Analysis.6 ConclusionsThis paper has shown how a �xed priority kernelcan be produced with the minimum rework of an ex-isting system that will meet the certi�cation require-ment of class A systems providing a cost e�ective andtechnically better scheduling method. Hazard analysishas been used to show that no additional hazards areintroduced than exist with the cyclic executive sched-uler. A safety analysis technique has been used togather evidence that can be used as part of the certi-�cation case.A number of kernel design approaches have been ex-amined which have trade-o�s between responsivenessand system reuse. The approach chosen will dependon the commercial and technical constraints of the sys-tem that is being developed. However, an interestingcompromise of tick driven and co-operative schedulingapproaches has been identi�ed that provides bene�tsover the purely tick driven and co-operative schedulingapproaches. Further work is required to generalise andoptimise the hybrid scheduling approach. The YUTCexpect that 1996/7 will see the �rst \real" practicalapplication of the techniques described in this paperto control an aircraft engine.

References[1] RTCA Inc., \Software considerations in air-borne systems and equipment certi�cation," DO-178B/ED-12B, December 1992.[2] A. Burns and J. A. McDermid, \Real-time safety-critical systems: Analysis and synthesis," SoftwareEngineering Journal, pp. 267{281, November 1994.[3] C. D. Locke, \Software architecture for hard real-time applications: cyclic executives vs. �xed prior-ity executives," Real-Time Systems, vol. 4, no. 1,pp. 37{53, March 1992.[4] L. Sha and J. B. Goodenough, \Real-time schedul-ing theory and Ada," IEEE Computer, April 1990.[5] B. A. Carre, SPARK: The SPADE Ada Kernel(v3.1). Program Validation Ltd., 1992.[6] L. Sha, R. Rajkumar, and J. P. Lehoczky, \Priorityinheritance protocols: An approach to real-timesynchronisation," IEEE Trans. on Comp., vol. 39,no. 9, pp. 1175{1185, Sept. 1990.[7] A. Burns, \Preemptive priority based schedul-ing: An appropriate engineering approach," in Ad-vances in Real-Time Systems (S. Son, ed.), 1993.


