Putting Fixed Priority Scheduling Theory into Engineering Practice
for Safety Critical Applications

N. C. Audsley, I. J. Bate and A. Burns

Department of Computer Science,
University of York,
York, YO1 5DD, UK.

Abstract

This paper describes the approach proposed by the
York University Technology Centre (YUTC) for intro-
ducing fized priority scheduling into industrial safety
critical hard real-time systems. The work has been per-
formed within the context of a class A (safety-critical)
system as defined by civil aircraft software standard
DO178B [1]. Traditionally, class A systems have been
scheduled by a cyclic executive. However, many such
systems can be re-designed using a fized priority sched-
uler. This saves time and money, with no significant
increase in risk. Also, significant technical benefits
are apparent. This paper describes the timing require-
ments of the system, provides a potential scheduling
approach (including appropriate timing analysis), and
outlines an approach for gathering the necessary evi-
dence for presentation to certification authorities.

1 Introduction

Recent years have seen an increasing demand for
greater complexity / capability (more functionality)
while increasing efficiency / effectiveness (better func-
tionality and lower weight) in the aircraft industry.
This has lead to avionics software systems of increased
complexity and size, requiring more powerful comput-
ing platforms. Given that many of the software engi-
neering techniques that have been used in the design
process are immature (compared to other related dis-
ciplines, e.g. civil engineering), much effort has to be
put into verification of the software prior to use within
an airbourne system. Indeed, over 50% of the software
effort for the Boeing 777 has been in the area of anal-
ysis and test for the purpose of verification [2].

Currently, safety-critical systems tend to be pro-
duced using cyclic executives. One reason for this
is the stringent safety and integrity requirements
placed upon software by avionics standards, such as
DO178B [1]. Alternative implementation strategies

have been proposed, including fixed priority schedul-
ing. The latter has many advantages over the tradi-
tionally used cyclic executive scheduling approach [3]:

1. Provides a scheduler mechanism with greater
flexibility so that the design process is cheaper
and quicker. Indeed, Sha [4] states that:
“Under the cyclic approach, meeting the re-
sponsiveness, schedulability and stability require-
ments has become such a difficult job that prac-
titioners often sacrifice program structure to fit
the code into the right time slots.”

2. Provides a more efficient scheduling mechanism.
A commonly faced problem with many avionics
projects is that of limited resources caused by
the cost and availability of military specification
components (the operating environment, of air-
craft require the use of such components) and
incorrect system requirements (initial resource
budgets are too optimistic).

3. Provides a sufficient and necessary analysis tech-
nique to reduce the burden of testing and main-
tenance.

There are some disadvantages in the adoption of
fixed priority scheduling. One that is of interest to
control engineers is that of jitter. Potentially, the
release jitter of tasks scheduled with a fixed priority
scheduler may be worse (than under cyclic scheduling)
due to the dynamic nature of the run-time schedule.

Research performed at the University of York Real-
Time Systems group into fixed priority scheduling
has reached a stage where it was considered mature
enough for use in safety critical systems. This paper
will justify this claim, showing how the theory can be
implemented in practice.

|| Control Requirement | Timing Constraints | Timing Requirement | Notation ||

Regular action Periodic Iteration rate T
Event-driven action Sporadic Min. inter-arrival time T

Action within bounded time Responsiveness Deadline D
Variation from periodicity Output jitter Output jitter J

Time of release after action Offset from action Task release offset O
Function Y follows function X Task Y executes after X Precedence constraint P={X)Y}
Function Y follows function X | Task Y executes after X | Precedence constraint | P = {X)Y}
within bounded time within D with end-to-end deadline | within D
Active modes of function Task executed in modes | Task active/inactive in | Mode list

X, Y, Z each mode

Table 1: Relationship between Timing Constraints and Timing Requirements.

The remainder of this section provides background
to DO178B. Section 2 of this paper will provide a
brief description of the current method that is used
by Rolls-Royce. Section 3 will present the YUTC ap-
proach to the design of a kernel, with section 4 giving
timing analysis. Section 5 discusses an approach to
certification. Section 6 presents the conclusions of the

paper.
1.1 Background

Understandably, the regulatory authorities (the
Federal Aviation Authority, the Civil Aviation Au-
thority and the Joint Airworthiness Authority) impose
many constraints on system designers of class A sys-
tems. Within DO178B [1], class A software is defined
as:

“software whose anomalous behaviour, as shown by the
system safety assessment process, would cause or con-
tribute to a failure of system function resulting in a
catastrophic failure condition for the aircraft.”

Catastrophic failure consists of failure conditions
which could prevent continued safe flight and landing.

As stated earlier, class A systems have traditionally

been implemented by cyclic executives. One of the
motivations for this is that non-determinism is min-
imised the regulatory authorities are able to verify
via the scheduling table that appropriate timing re-
quirements will be met. DO178B is supportive of this
approach, stating that (section 5.2.2 in [1]):
“The software design process should avoid introducing
complexity because as the complexity of software in-
crease, it becomes more difficult to verify the design
and to show that the safety objectives of the software
are satisfied.”

To introduce fixed priority scheduling into class A
systems we must ensure that the approach:

e is conservative, and hence understandable;

e is verifiable so that it can be shown the system
requirements (including timing) are met;

e allows the gathering of evidence for the safety
case. Four properties should be examined for the
safety case: functionality (are the requirements
met?); resource (does the system have sufficient
resources?); timing (does the system meet its
timing constraints?); and failure behaviour (how
does the system behave in the event of failures?).

2 The Existing Method

This section examines how current systems that are
controlled by a cyclic executives are produced. This
will provide a benchmark to compare the fixed priority
scheduling against. There are four particular issues to
be discussed:

e the type of system to be scheduled;
e implementation of the cyclic executive scheduler;

e fault identification and recovery for the existing
method;

e identification of the opportunities for improving
the existing method.

2.1 The Types of System to be Controlled
The type of system to be controlled is a Full Au-
thority Digital Engine Controller (FADEC), where:

e software is used to control the operation of the
hardware to achieve a safe and an efficient re-
sponse.

e critical functionality is policed by a device that
provides fail safe protection. For example, hard-
ware devices may be provided to protect against
loss of control of fuel flow.

The data within the system is a mixture of contin-
uous and discrete types that are updated either pe-
riodically or sporadically. The processing within the
system is asynchronous in nature, however both hard
and soft, functionality exists. Table 1 explains the re-
lationship between the system that is to be controlled
and the requirements that affect the scheduler.

The key requirements that the system imposes on
the kernel (scheduler) are:

e the provision of task offsets shall be enforced by
the kernel;

e the dispatch of certain tasks must be performed
in a particular order, i.e. precedence constraint;

e precedence constrained tasks may have an end-
to-end deadline;

e some tasks have jitter constraints (particularly
those dealing with input and output devices) re-
quiring the use of an offset to ensure the task
is executed when all preceding tasks have com-
pleted execution.

2.2 How the Currently Used Cyclic Exec-
utive Scheduler is Implemented

The cyclic executive currently used by Rolls-Royce
typically consists of a minor cycle with a period of
25ms and a major cycle with a period of 200ms. Vari-
ous forms of secondary scheduling (round robin, cyclic
executive) are used to achieve the other iteration rates
that may be required.

The scheduler is synthesised automatically on the
first build of the software and then modified manually
for subsequent builds. The reason for this approach is
that the effect of modifications on the control flow can
be determined more easily during regression testing.

Memory protection is not used between tasks or
natural software partitions. Instead, a pull data model
(i.e. only the tasks that owns the data item can write
but all tasks may read the data) combined with good
programming practice is used to prevent data corrup-
tion.

The Spark Ada subset [5] is used for the purpose of
the implementation.

2.3 Fault Detection and Recovery

The fault tolerant properties of the current sys-
tem can be separated into three distinct parts: re-
dundancy, identification, and recovery. Redundancy
is provided by the system consisting of two identical
lanes that are connected by a communications channel
which is used for data validation. There are two forms
of fault identification in the system:

1. Timing Watchdogs — a timing watchdog is pro-
vided to identify whether cycle overruns occur
and then raise a fault flag. The mechanism is
discussed in more detail in section 3.3.

2. Health Levels each lane maintains a health
level value which is calculated by comparing a
number of actual data values with expected data
values (obtained by calculating data values us-
ing other sources or from the other lane). If the
health level falls below an acceptable level then
fault recovery is performed.

Fault recovery is, typically, achieved using the fail stop
method where if the lane controls the engine then a
lane change is performed, and the lane is reset.
2.4 Opportunities for Improvement

The opportunities for improvement with the cur-
rent approach are believed to be:

e Use of Analysis Techniques

Analysis rather than testing should be used to
verify the timing requirements are met. Harter
[HARTERR8T7] states that analysis is preferable
for verification rather than test since it is more
efficient and more likely to detect problems.
Analysis also provides a quicker and cheaper
method of determining the effect of changes in
the system requirements. The current approach
provides little evidence of whether the system
will meet the timing requirements until the first
build has been produced. By the time of the
first system build, significant commitments have
been made to the hardware and software archi-
tectures are costly to change. A verification
strategy is required that will allow both static
and dynamic testing of the system to ensure that
the scheduling requirements are met.

e Implementation Requirements

An implementation that better reflects the re-
quirements of the system. The cyclic executive
scheduler has provision for a limited selection
of iteration rates and no provision for sporadics
which results in an inefficient (in terms of proces-
sor utilisation) implementation. However, this
will require a more stringent requirements spec-
ification.

e Maintenance
The maintenance of a heavily loaded (in terms
of processor utilisation) cyclic executive sched-
uler is notoriously difficult resulting in frequent
and time consuming reworks being necessary.

e Better Management of Task Offsets
The cyclic executive scheduler does not provide
an elegant mechanism for implementing tasks
that have offsets. The approach taken with the
cyclic executive scheduler is normally to place
sufficient functionality between the tasks that
have an offset.

3 Kernel Architecture

This section discusses the architectural choices
made during the implemention of the fixed priority
kernel. Issues and trade-offs related to the implemen-
tation are discussed.

There are three principle areas in which the fixed
priority scheduler may require a different kernel ar-
chitecture to the cyclic executive: scheduling policy,
handling of sporadics, and handling of timing over-
runs. These are now discussed.

3.1 Scheduling Policy

Traditional fixed priority scheduling policy is im-
plemented using a preemptive flow of control where
the highest priority task is always executed. Often,
fixed priority scheduling is accompanied by a mecha-
nism for protecting shared data, e.g. priority ceiling
protocol [6]. However, this is not required within the
context of the system under consideration due to the
data pull model, together with the timing character-
istics of the system.

Fixed priority scheduling can lead to non-
determinism it is not clear where in their execution
tasks will be preempted by the release of higher pri-
ority tasks, leading to an greatly increased number of
possible execution scenarios. Also, data flows and up-
dates can be interrupted a task may be preempted
when a data calculation is only partly finished. Both
issues could be solved under a pre-emptive scheme,
however, both application and kernel software would
become more complex.

Alternatively, a non-preemptive flow of control can
be used. The choice of non-preemptive is supported by
DO178B which requires an implementation whereby
the effects of interrupts can easily determined.

For non-preemptive fixed priority scheduling two
principle variants can be identified:

1. tick-driven
The tick driven approach uses a clock tick which
interrupts task execution to release tasks. To
achieve a non- preemptive flow of control when
the task execution is interrupted by the clock
tick, the task is immediately resumed when the
scheduler has updated the run queue. This oc-
curs even if a higher priority task has been re-

leased. The problem with this approach is that
tasks which are not released at a rate which is a
multiple of the clock tick will suffer from release
jitter. If the release jitter becomes too great
then task iteration rates or the release mecha-
nism may have to be altered so that task dead-
lines can be met.

2. co-operative

The co-operative scheduler uses a non-
preemptive model with task releases dependent
on a real-time clock rather than an interrupt
source. When a task completes execution, the
clock is read, the run queue is updated if a task
should be released and the highest priority task
is dispatched.

The exact variant of non-preemptive fixed priority
scheduling chosen has three major impacts on the sys-
tem:

1. Hardware Architecture

The infrastructure of the system will be affected
by the scheduling policy. The tick driven sched-
uler requires a hardware clock tick that period-
ically generates an interrupt. The co-operative
scheduler requires a real-time clock that allows
the decision of whether to release a task to be
made. Therefore, the tick driven approach pro-
vides the more reusable approach since it can
use the same hardware as the cyclic executive
scheduler.

2. Kernel Overheads
Whichever scheduling policy makes the most at-
tempts to update the run queue will have the
worst kernel overheads (assuming that the worst
case search and release of runnable tasks takes
an equivalent time for both schedulers) since an
overhead is incurred independent of whether a
task is released. A simple test can be derived
for determining whether tasks may be ready for
release in an attempt to reduce the overhead, i.e.

e Co-operative Scheduler Test: store a value
that is the time at which any task will
next become runnable so that at the end of
each task execution this value can be sim-
ply checked against the real-time clock.

e Tick Driven Test: store a value which is the
number of clock ticks before any task will
become runnable so that when a clock tick
arrives this value can be simply checked and
recalculated.

3. Responsiveness

The responsiveness (i.e. ability to meet short
deadlines) is related to the maximum release jit-
ter and the length of time tasks are blocked by
the executions of lower priority tasks (and the
length of time consumed by execution of the
scheduling policy, which we will assume is the
same for tick driven and co-operative). In gen-
eral, the co-operative scheduler will be more re-
sponsive since the release jitter of the tick driven
approach can be as large as the blocking time
(due to lower priority tasks having to complete
their execution), plus the clock tick rate (for
tasks with iteration rates that are not multiples
of the clock rate). However, the release jitter of
the co-operative approach is simply the blocking
time.

Hybrid Policy

An alternative approach that has been developed dur-
ing discussion with software and hardware engineers is
the hybrid of the tick driven and co-operative sched-
uler approach.

The hybrid approach releases the majority of tasks
based on a clock tick with a few short period tasks re-
leased co-operatively. The benefit of this approach is
that it allows a compromise between kernel overheads
and task responsiveness. The reason is that between
clock ticks, only those tasks that require a quick re-
sponse need to be checked for release. Therefore, the
kernel overheads each time a task finishes execution
are reduced when compared with the co-operative ap-
proach. Also, the release jitter on the short period
tasks benefits from the co-operative approach.

We note that jitter could also be reduced by a more
frequent clock tick. However, this would increase the
resultant overheads, implying a detrimental affect on
the ability to schedule the task set. Also, the clock
tick is fixed within the system once hardware plat-
forms have been determined.

3.2 Sporadic Tasks

The scheduling policy will be dependent on the
deadline of the sporadic task since the arrival of a
sporadic cannot be determined, unlike a periodic, and
therefore the worst case must be assumed. Without
the use of sporadics the functionality must be mod-
elled as a periodic (typically with an iteration rate
less than the minimum inter-arrival time) to achieve
the necessary deadline. This will lead to an increased
worst case processor utilisation and a task set that is
more difficult to schedule.

For certification reasons related to the determinism
of control flow, the sporadic tasks shall not be imple-
mented using the usual interrupt scheme. Instead, an
event flag shall be raised when the sporadic should be
released with the actual task being released when the
scheduler next updates the run queue. The event flags
would be set by the appropriate hardware devices and
memory mapped so that the scheduler may read the
value.

To protect against hardware failures causing the
event flags to become stuck, a minimum inter-arrival
time would be specified to prevent the sporadic being
triggered at too fast a rate. The kernel will be re-
sponsible for policing that a sporadic is not triggered
too fast, without this protection other tasks may miss
their deadlines. In some cases which are chosen care-
fully, a maximum inter-arrival time may also be spec-
ified so that the task is called irrespective of the event
flag condition. Obviously, the application of the maxi-
mum inter-arrival time must be carefully selected and
controlled, i.e. an additional check may be required
before any functionality is performed.

3.3 Timing Overruns

There are two principle approaches for providing
protection against timing overruns which are the tick
driven approach, and the task countdown timer ap-
proach.

The tick driven timing watchdog approach is where
at a regular rate (normally triggered as a multiple of
the clock tick rate) a check is performed to ensure
that the software is not looping. This check would be
based on ensuring that a sufficient number of tasks
have been executed between checks (e.g. the sum of
the worst case execution time of the tasks that have
been executed is greater than the period of the timing
watchdog). The response time of the tick driven tim-
ing watchdog to detectable faults is twice the period
of the timing watchdog.

The task countdown timer approach is where each
time a task execution commences a countdown timer
is started. The duration of the countdown timer is
greater than the Worst Case Execution Time (WCET)
of any task in the task set. When the task execution
is complete the countdown timer is restarted. If the
countdown timer reaches zero then fault recovery is
performed. Therefore, the response time to a fault is
equal to the duration of the countdown timer.

3.4 Summary

From a technical perspective, the co-operative
scheduling technique with countdown timer has the
advantage that better responsiveness should be ob-
tained and the lack of interrupts in the system makes

safety analysis simpler. However, cost and risk are
determining factors so the tick driven scheduling ap-
proach with periodic timing watchdog affords greater
reuse of the existing architecture. Therefore, to pro-
vide a flexible system with maximum reuse the hybrid
approach with a tick driven watchdog is assumed

4 Timing Analysis

This section will show how existing analysis for fully
preemptive scheduling can be adapted for the hybrid
scheduling approach. A major part of this work is the
trade-off of ability to understand the analysis and the
pessimism that the analysis introduces. The reason
for this approach is that the analysis technique which
is used should be intuitively correct to the engineers
responsible for the system and the certification author-
ities rather than an approach which requires complex
proofs. The timing analysis is derived from the work
of Burns [7] with a starting point of:

Ri=Ci+Bi+ Y [&w C; (1)

jehp(i) ' 7

where for task 7;, R; represents the worst case re-
sponse time, C; the worst case execution time, and
B; the longest time 7; can be blocked by a lower pri-
ority task. The function hp(i) returns the set of tasks
with higher priorities than 7;. Hence, the summation
term represents the time 7; can be interfered with by
higher priority tasks. We assume that sporadics can be
treated as periodics with period equal to their worst-
case inter-arrival time.

It is assumed that, for all 7;, we have C; < D; < Tj.

The principal difference between the preemptive
scheduling model and the non-preemptive scheduling
model is the blocking time related to lower priority
tasks. In a fully preemptive system the blocking time
may be zero. However, in a non-preemptive system
the blocking time is equal to the longest duration ex-
ecution that can occur of lower priority tasks between
task dispatches.

B; = k@z%(()k) (2)
where [p(i) represents the set of tasks of lower priority
than Ti-

To solve equation 1 a recurrence relation is

formed [7]:
EC

R =Ci+ Bi +
JEhD(i)

The recurrence can be initiated with R} = C;, and
terminates if either R'™' > D, or R'*' = RP.

This relation has been adapted by Audsley to ac-
count for the extra interference that may be caused
by release jitter which may allow extra instances of
higher priority tasks to be executed [AUDSLEY93]:

RiY' =Ci+Bi+ Y
j€Ehp(i

e @

{RHJJ-
oo

For a periodic task the jitter, J;, is given by:
Jj = Ter — GOD(Te, Tj) (5)

where Ty is the period of the clock and GCD is the
greatest common denominator. For a sporadic task
the jitter is given by:

Jj = To, (6)

Now, when the analysis converges (ie. RI'T' =
R!"), the worst case response time is calculated as:

Ri=RM' + J; (7)

Now we turn to kernel overheads, namely context
switches and implications of the scheduling scheme.
The effect of context switches may be modelled using
the knowledge that at most two context switches may
occur per task. The analysis accommodates this by
modifying the WCET of the tasks, i.e.

Ci:=Ci+Cs + Cyo (8)

where C,; is the time taken to perform a context
switch into the task, Cys is the time taken to perform
a context switch from the task.

The secondary category of kernel overhead to be
analysed is the clock model which has two facets for
the hybrid scheduler. Those related to the periodic
and co-operative updating of the run queue. The co-
operative clock model is modelled by modifying the
context switch from the task, Css, to incorporate the
time taken to update the run queue, i.e.

082 = 052 + C’coop (9)

where C,op can be founded with a WCET analyser.
The periodic clock for tick driven scheduling can be
modelled in two ways [7]:

1. Single Task
Here a single task, 7.0k, is used to model the
updating of the run queue. Task 7.x has the
highest priority and the following timing con-
straints:

Task | T (us) | C (us) | D (us)
A 6250 250 6250
J 11000 1000 11000
B 25000 4000 25000
C 50000 2000 50000
D 100000 1000 100000
E 200000 1000 200000
F 1000000 | 3000 | 1000000
Table 2 : Basic Task Set.
ID | P | B (us) | J(us) | R(us) | Met?
clock | 1 4000 0 6000 Yes
A 2 4000 0 6250 Yes
J 3 4000 6000 | 15500 | No
B 4 3000 0 15750 Yes
C) 3000 0 18750 Yes
D 6 3000 0 22000 | Yes
E 7 3000 0 23000 Yes
F 8 0 0 23000 | Yes

Table 3: Analysis for 6.25ms Clock and
Single Task Model of Overheads.

Tclock = Tclk

Cclock = Mcfized + Mcfirst + (N - M)Csub

where N represents the number of actual tasks
in the system, T},;, is the shortest period of all
tasks, Crirs is the cost in transferring the first
task from the delay queue to the run queue, Cgyp
is the cost in transferring the subsequent tasks
from the delay queue to the run queue, and

Tmin
M = —
[Ter -‘

2. Multiple Task
Here, an extra task for each actual task models
the updating of the run queue. Each additional
task has the same iteration rate as the actual
task, and a WCET obtained via analysis.

Clearly there is a trade-off between understandability
and pessimism of the two approaches. The multiple
task approach offers greater accuracy with respect to
response times, but is more complex.

D P | B (us) | J(us) | R(us) | Met?
clockA | 1 0 0 500 Yes
clockJ 2 0 6000 6750 Yes
clockB | 3 0 0 1000 Yes
clockC | 4 0 0 1250 Yes
clockD | 5 0 0 1500 Yes
clockE | 6 0 0 1750 Yes
clockF | 7 0 0 2000 Yes

A 8 4000 0 7000 No

J 9 4000 6000 | 14250 No
B 10 | 3000 0 12250 | Yes
C 11 3000 0 15000 | Yes
D 12 | 3000 0 16000 | Yes
E 13 | 3000 0 18250 | Yes
F 14 0 0 18250 | Yes

Table 4 : Analysis for 6.25ms Clock and
Multiple Task Model of Overheads.

4.1 Example of the Analysis

This example shows the analysis given in the previ-
ous section, illustrating the effect of release jitter and
implementation strategy on the ability to schedule a
task set. Table 2 describes the task set that is to be
scheduled. Note that the computation times given for
each task include basic context switch overheads, as
defined by equation (8).

Initially, we analyse the system assuming conven-
tional tick driven fixed priority scheduling, using the
single task clock model of overheads. Now, the task
set of Table 2 is extended to include a high priority
task T.0cx Which includes all overheads due to the pe-
riodic clock. According to the single task model, 7oc
has the characteristics of:

L4 Tclock - Dclock = 6250#8
b c{?lock = 2000/,&9

The computation time of the task is calculated assum-
ing:

b cfimed + Cfi,rst = 500/19
o Cyup = 250us

The results of the analysis are given in Table 3. We
note that 75 will miss its deadline.

Now, we analyse the system assuming conventional
tick driven fixed priority scheduling, using the multi-
ple task clock model of overheads. Now, the task set
of Table 2 is extended into Table 4 including, for each
task, a corresponding task modelling its clock over-
heads (e.g. 74 has associated task Teiock4).

C (us) | B (us) | R (us) | Met?
750 4500 5250 Yes
1500 4500 7500 Yes
4500 3500 | 11000 | Yes
2500 3500 15750 Yes
1500 3500 | 17250 | Yes
1500 3500 18750 Yes
3500 0 18750 | Yes

| m| ol 0| | —| = S
| O] o x| w| N =] T

Table 5: Analysis for a Co-operative
Scheduler.

The computation time of 7. ocka is given by:
Ctizeda + Crirst = 500us. All other extra tasks can
only be released during the same context switch that
releases T o014 (since they have periods that are mul-
tiples of Teiocra). Hence, they all have computation
times equal to Cyyp = 250us. The results of the anal-
ysis are given in Table 4. We note that both 74 and
77 will miss their deadlines.

Now we consider scheduling the task set using the
pure co-operative approach. Initially, we must amend
the computation times of the tasks (as given in Ta-
ble2) to account for the cost of updating the run
queue. This is given by equation (9). We assume
that Ccp0p = 500us. Note that there will be no jitter,
due to the co-operative scheduling and that all block-
ing times are also increased by Cl,op. Table 5 shows
the results of the analysis, with all tasks meeting their
deadlines.

Now we consider the hybrid scheduling approach.
To eliminate jitter, we assume that 74 and 7; are
scheduled co-operatively, and the remainder of the
tasks are tick-driven. The clock has period of 25ms,
sufficient to schedule tasks with no jitter. A single
task, 7Teock, With the highest priority is used to ac-
count for all tick-driven overheads. It has parameters:

® Tiock = Deiock = 25000/119
° Cr:lock = 1500p€

The computation times of 74 and 7; are increased
(over their values in Table 2) to include C,pop. Note
that their blocking times do not change. However,
since Teock 18 the highest priority task, it interferes
with 74 and 77. The results of the analysis are given
in Table 6 all tasks are schedulable.

Out of the tick-driven approaches, task 77 is only
schedulable using the hybrid approach. In particular,
the worst case response time of 7 is considerably bet-
ter using the hybrid approach. Experimentation has
been performed to examine the effect of changing the
clock tick rate and/or raising the iteration rate of 7;.

The purpose of the experimentation is to determine
whether a purely tick driven scheduling approach may
result is a schedulable task set. To date, a schedula-
ble solution has not been found with the tick driven

approach.
ID | P | C(us) | B (us) | R (us) | Met?
clock | 1 1500 0 1500 Yes
A 2 750 4000 6250 Yes
J 3| 1500 4000 8500 Yes
B 4 4000 3000 13750 Yes
C 5 | 2000 3000 15750 | Yes
D 6 1000 3000 16750 Yes
E 7 | 1000 3000 17750 | Yes
F 8 3000 0 17750 Yes

Table 6: Analysis of Hybrid 25ms Scheduler
with Single Clock Model of Overheads.

Summary

The examples of the analysis show that the hybrid
approach provides better responsiveness over the tick
driven approach for systems where flexibility (i.e. abil-
ity to have a wide range of iteration rates) is required.
Similarly, the response time of sporadics with this
scheme would be better since they would suffer no
release jitter only blocking. Further work is required
to generalise and optimise the hybrid scheduling ap-
proach.

5 Certification

The purpose of this section is to discuss how the
YUTC may satisfy the certification authorities that
the fixed priority scheduler provides a scheduler with
at least the same integrity as the cyclic executive. The
table in Table 7 summarises a safety analysis that
has been performed using a technique described by
Burns [2]. The principle behind the technique is that
the four principle properties (functionality, resource,
timing, safety) are examined and recorded for whether
the property is met, the nature of the evidence and the
assumptions that are made.

Table 7 shows that both static analysis and dy-
namic testing has been performed to show the cor-
rect operation of the system, and to bound memory
and processing resource usage. This assumes fault-
free conditions. Failure analysis has been performed
that shows detectable timing faults are recovered as-
suming the timing watchdogs do not also fail. For the
systems in question, hazards caused by dual random
failures are normally accepted as being sufficiently re-
mote, assuming there is no possible common cause and
individual failures have a sufficiently low probability.

|| Property | Nature of Property | Nature of Evidence | Assumptions ||

Functionality | Dispatcher Correctness (tasks | Tests using the actual hard- | The kernel infras-
are scheduled at the correct | ware and software showed that | tructure operates
rate and the correct order) the dispatcher met the require- | in fault-free condi-

ments, tions.
Operational Correctness (sys- | The scheduler is produced us- | The scheduler is
tem invariants are not affected) | ing statically stored variables | produced to an ap-
invariants should not be af- | propriate standard.
fected.

Timing In all cases the performance of | Schedulability —analysis has | The kernel infras-
the system is deterministic and | been performed that shows the | tructure operates
schedulable. system is schedulable (section | in fault-free condi-

4). tions.

Resource Memory usage is deterministic | The scheduler is produced us- | The kernel infras-

and within the allowable limits. | ing statically stored variables tructure operates
resource usage proportional to | in fault-free condi-
the (static) number of tasks. tions.

Failure In the event of a timing overrun | The tick driven timing watch- | The timing watch-
Behaviour within the system, the fault will | dog is the same as that used | dog does not also
be identified within the appro- | for the cyclic executive sched- | fail.
priate time. uler which has previously been

tested. Appropriate hazard
analysis of the timing watchdog
also exists.

Table 7 : Summary of the Kernel Safety Analysis.

6 Conclusions

This paper has shown how a fixed priority kernel
can be produced with the minimum rework of an ex-
isting system that will meet the certification require-
ment of class A systems providing a cost effective and
technically better scheduling method. Hazard analysis
has been used to show that no additional hazards are
introduced than exist with the cyclic executive sched-
uler. A safety analysis technique has been used to
gather evidence that can be used as part of the certi-
fication case.

A number of kernel design approaches have been ex-
amined which have trade-offs between responsiveness
and system reuse. The approach chosen will depend
on the commercial and technical constraints of the sys-
tem that is being developed. However, an interesting
compromise of tick driven and co-operative scheduling
approaches has been identified that provides benefits
over the purely tick driven and co-operative scheduling
approaches. Further work is required to generalise and
optimise the hybrid scheduling approach. The YUTC
expect that 1996/7 will see the first “real” practical
application of the techniques described in this paper
to control an aircraft engine.

References
[1] RTCA Inc.,

“Software considerations

in air-

borne systems and equipment certification,” DO-
178B/ED-12B, December 1992.

[2] A. Burns and J. A. McDermid, “Real-time safety-
critical systems: Analysis and synthesis,” Software
Engineering Journal, pp. 267-281, November 1994.

[3] C. D. Locke, “Software architecture for hard real-
time applications: cyclic executives vs. fixed prior-
ity executives,” Real-Time Systems, vol. 4, no. 1,
pp. 37 53, March 1992.

[4] L. Sha and J. B. Goodenough, “Real-time schedul-
ing theory and Ada,” IEEE Computer, April 1990.

[5] B. A. Carre, SPARK: The SPADE Ada Kernel
(v3.1). Program Validation Ltd., 1992.

[6] L.Sha, R. Rajkumar, and J. P. Lehoczky, “Priority
inheritance protocols: An approach to real-time
synchronisation,” IEEE Trans. on Comp., vol. 39,
no. 9, pp. 1175 1185, Sept. 1990.

[7] A. Burns, “Preemptive priority based schedul-
ing: An appropriate engineering approach,” in Ad-
vances in Real-Time Systems (S. Son, ed.), 1993.

