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ABSTRACT

MOVE: Mobility with Persistent Network Connections

Gong Su

The combined force behind ubiquitous mobile computing and storage devices and 

universal network access has created a unique era of mobile network computing, 

in which computation units ranging from a single process to an entire host can 

move while communicating with each other across the network. A key problem 

therefore is how to preserve the ongoing network communication between two 

computation units when they move from one place to another; because current 

network infrastructure and protocols are designed to support stationary commu-

nication endpoints only.

We have developed MOVE, a fine-grain end-to-end connection migration architec-

ture, to address the problem. The most distinguishing characteristic of MOVE is 

that MOVE achieves, in a single system, several essential goals of a mobile commu-

nication architecture including: (1) entirely end system only without any infra-

structure demand, transport protocol independence, and backward compatibility; 

(2) fine-grain connection migration and unlimited mobility scope; (3) secure 

migration with both handoff and suspension/resumption support; and (4) very 

low performance overhead both before and after migration.

We first analyze the key technical problems of end-to-end network communica-

tion caused by mobility: state inconsistency, conflict, and synchronization; and we 



develop a simple and elegant namespace abstraction called CELL to resolve these 

problems. CELL provides a virtual, private, and labeled namespace for individual 

connection states so that they can be transparently migrated anywhere free of the 

problems mentioned above. We then develop a unique handoff signaling protocol 

called H2O, which can handoff a connection securely in a single one-way end-to-

end trip with minimal impact on the connection characteristics perceived by the 

transport protocols. H2O achieves this by combining the simple connection redi-

rection mechanism afforded by the CELL abstraction with a low-overhead security 

mechanism, which is based on Diffie-Hellman protocol but computes session keys 

only at migration time. We finally integrate MOVE seamlessly with a process 

migration mechanism to fully exploit MOVE’s fine-grain connection migration 

capability and enable support for new application scenarios. For example, we 

show how the integration can provide high service availability in proxy-based 

server clusters by allowing server applications and their persistent connections to 

be migrated during a server maintenance to avoid service disruption.

We have implemented MOVE on a commodity OS without requiring any change 

to the OS and applications and conducted various performance measurements, 

such as handoff performance, scalability, and virtualization and virtual-physical 

mapping overhead, etc. Our results show that MOVE handoff incurs minimal per-

formance impact on the migrating connection, MOVE does not adversely affect 

system scalability, and MOVE virtualization and mapping overhead is very low. 

We also test MOVE with a suite of popular off-the-shelf network applications, all 

of which work out of the box.
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1 Introduction

1.1 Background and Motivation

The combined force behind ubiquitous mobility and universal connectivity has cre-

ated a phenomenal era of distributed and networked computing in which applica-

tion mobility with persistent connectivity is becoming a growing and pressing 

necessity.

Ubiquitous mobile computing is a coming reality, fueled by the proliferation of 

portable computing devices such as laptops, PDAs, and mobile phones, etc., and 

portable storage devices such as memory stick, CompactFlash, and USB pen drive, 

etc.; and on-demand computing and high service availability call for ways to move 

applications among physical resources for better resource utilization and fault tol-

erance. At the same time, universal network access has also become an integral 

part of our everyday life, driven by the immense success of World Wide Web 

(WWW), and advances in wireless networking technologies such as 802.11 WLAN 

[25], 3G/UMTS cellular [10], and Bluetooth [17], etc.

The demand for application mobility with persistent connectivity not only pre-

sents at the user frontend, but also at the server backend as well, as evidenced by 

the following examples:

• At the user frontend, laptop, PDA, and mobile phone users rely on net-
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work applications such as email, enews, file transfer, streaming media, etc., 

for their daily life and business. As the users move from one network loca-

tion to another, their ongoing network activities should not be interrupted. 

Alternatively, the users may suspend their computing devices at one net-

work location and later resume them at another; their ongoing network 

sessions should also be maintained.

• Also at the user frontend, cheap, portable storage devices with capacity 

ranging from tens of megabyte to tens of gigabytes are readily available 

today. They provide new user mobility opportunities even without the 

mobile computing devices such as laptops or PDAs. Instead, a user com-

puting session or even an entire virtual machine running on a desktop 

computer can be checkpointed, saved on the portable storage, and later 

restarted on another desktop computer. As with the previous case, active 

network connections of the user computing session or the virtual machine 

must be preserved.

• At the server backend, online services and businesses require five nine 

availability as they become an integral part of our daily life. For example, 

web, email, enews, messenger are now essentially commodity services; 

while critical business functions, such as order processing and tracking, 

inventory control, transaction processing, customer support, and electronic 

commerce, are also increasingly being conducted online. These services 

and businesses are supported by computing and networking facilities that 

must be up and running 24-7. A few minutes of downtime, scheduled or 
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unscheduled, translates into millions of lost dollars. Periodic maintenance 

of these facilities today, however, requires careful planning and usually 

causes lengthy service disruption. Technologies that allow maintenance 

without service disruption, such as by moving services off to other servers, 

are therefore being actively pursued.

• Also at the server backend, many commercially used network intensive 

and long running scientific and engineering applications, such as massive 

parallel graphics rendering, typically have a running time that is similar to 

or longer than the MTBF (mean time between failures) of their supporting 

hardware [119]. Therefore, there is high demand for the ability to check-

point and restart these applications in order to: (1) provide better resilience 

to hardware failure; (2) enable dynamic load-balancing of the applications, 

either to make way for interactive jobs or to reshuffle the work load to bet-

ter accommodate the cooling infrastructure in the computing center.

From these examples, which are by no means exhaustive, we can summarize the 

functional requirements necessary for a mobile communication architecture to 

adequately support the needs of these applications:

Easy deployment: The architecture must be easily deployable at the 

Internet scale, which in turn means that several sub-requirements 

must be met: (1) minimal infrastructure requirement. The architecture 

should avoid mandating introduction of new network infrastruc-

ture, which history has shown to be extremely hard to deploy; (2) 

transport protocol independency. The architecture should make mini-

mal assumptions about the operational semantics of the transport 
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protocols; and (3) backward compatibility. The architecture should 

interoperate with and require no modification to existing network-

ing protocols, commodity OSes, and legacy applications.

Fine-grain and unlimited mobility: The architecture must enable 

fine-grain mobility at the level of individual connections as well as 

an entire host. In addition, the architecture should not restrict the 

scope within which mobile endpoints can move; nor should it 

restrict which endpoint of the connection can move.

Secure and flexible migration: The architecture must prevent a 

malicious user from hijacking a connection by exploiting migration 

functions, such as claiming that a connection has migrated from one 

machine (the victim) to another (the attacker). In addition, the archi-

tecture should support both fast online-natured handoff with mini-

mal impact on connectivity and slow offline-natured suspension/

resumption where migrating connections must be kept alive for an 

extended period of time.

Low performance overhead: The architecture should incur low net-

working performance overhead and retain good scalability during 

normal communication, especially for those applications that do not 

yet utilize the benefit of mobility. The architecture should also sup-

port fast handoff with minimal impact on transport protocol and/or 

application perceived end-to-end network connectivity.

Although many approaches have been considered [34][38][58][70][89][98][103] 

[109][122][128][132][136][139][141], achieving mobile communication functional-

ity has been difficult in practice, especially in the realm of end-to-end connection 

mobility. To date, no single architecture has met all the requirements. More specifically, 

network layer solutions such as [38][70][103][132][136] require infrastructure sup-
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port; transport layer solutions such as [58][122][128] require modifying existing 

transport protocol (TCP); application layer solutions such as [98][109][139][141] 

are transport protocol dependant and have high performance overhead; and split 

connection solutions such as [34][89] require special proxy support and limit 

mobility scope to client only. The lack of system support for mobile communica-

tion today is primarily due to the fact that the current de facto worldwide data net-

work protocol standards suite, the network layer Internet Protocol (IP), the 

transport layer Transmission Control Protocol (TCP)/User Datagram Protocol 

(UDP), etc., were all designed with the assumption that devices attached to the net-

work are stationary. For example, IP addresses are assigned to fixed network 

attachment points with implicit geographical association; TCP/UDP uses IP 

address and port number to identify its connection endpoints and assumes these 

values never change for the lifetime of a connection. As a result, one cannot move 

either (or both) endpoint(s) of a connection without severing the connection.

The motivation behind this thesis, therefore, is to design and implement such a 

mobile communication architecture that supports mobile applications with persis-

tent network connections, an architecture that meets all the requirements in order to 

facilitate the wider deployment of mobility functions in both current and future 

data networks.

1.2 Thesis Contribution

At a high level, the contribution of this thesis is the design and implementation of 

a novel end-to-end mobile communication architecture called MOVE that, in a 
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single system, meets all the requirements outlined in the previous section, namely 

easy deployment, fine-grain and unlimited mobility, secure and flexible migration, 

and low performance overhead. More specifically, the requirements are met 

through the research and development of a collection of novel concepts and mech-

anisms, along with their design, implementation, and real world application:

• A novel namespace abstraction, called CELL (ConnEction virtuaLization 

and encapsuLation), that provides a virtual, private, and labeled 

namespace for individual connections so that they can be transparently 

migrated anywhere, even across address space boundaries separated by 

NAT (Network Address Translation)/NAPT (Network Address Port 

Translation) devices. CELL supporting mechanisms are independent of the 

transport protocol and function entirely within the two communicating 

endpoints without the need for a third-party entity such as a proxy or any 

other new network infrastructure. CELL supporting mechanisms are also 

compatible with and require no modification to current networking proto-

cols, OSes, and applications.

• A unique in-band layer 3 handoff signaling protocol called H2O (Host-

only HandOff) and a low-overhead security mechanism, that can migrate 

connections securely with a single packet in a single one-way trip from the 

mobile endpoint to the stationary endpoint, achieving handoff perfor-

mance perceived by the transport protocol similar to (and in certain case 

better than) existing approaches that require very complex network infra-

structure support. With a connection migration helper mechanism, H2O 
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supports secure connection migration through suspension/resumption 

where migrating connections can be kept alive for an extended period of 

time. Similar to CELL supporting mechanisms, H2O is also independent of 

the transport protocol and functions entirely within the two communicat-

ing endpoints without the need for a third-party entity such as a proxy or 

any other new network infrastructure. H2O is also compatible with and 

requires no modification to current networking protocols, OSes, and appli-

cations.

• Seamless integration with a new process migration mechanism, that is 

built on the same virtual private namespace concept of CELL abstraction 

extended to other OS resources such as PID (process ID)/GID (group ID), 

IPC (inter-process communication) key, memory, file system, and device, 

etc. We show how the integration allows MOVE’s fine-grain connection 

migration capability to be fully exploited and enable support for new 

application scenarios. For example, we show how the integration can pro-

vide high service availability in proxy-based server clusters by allowing 

server applications and their persistent connections to be migrated during 

a server maintenance to avoid service disruption.

• A design and implementation of the MOVE architecture on a generic OS 

platform, i.e., LINUX, that requires no networking protocol, OS kernel, or 

application modification; and an evaluation of our MOVE implementation. 

We present our MOVE prototype’s handoff performance in a variety of net-

work configurations, both used standalone for moving a client host and 
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integrated with process migration for moving a server process; and we 

show that MOVE has minimal impact on the connection characteristics 

perceived by the transport protocols and applications. We show that our 

MOVE prototype does not have negative effect on the scalability of existing 

systems; and we also show that the virtualization overhead in terms of net-

working I/O such as bandwidth, delay, and CPU utilization of our unopti-

mized MOVE prototype is very low, which means that connections that do 

not migrate suffer little overhead. Once a connection is migrated and vir-

tual-physical mapping is performed, our results show that the mapping 

overhead introduced by our MOVE prototype stays very low. We test our 

MOVE prototype with a suite of popular off-the-shelf network applica-

tions, all of which work out of the box.

1.3 Thesis Focus Area

Mobile communication is a broad area that comprises issues of many aspects. This 

thesis does not claim to solve all issues of mobile communication but rather focus 

on a few specific ones. In this section, we clarify the focus of the issues addressed 

by this thesis.

First, this thesis focuses on mobility of end-to-end transport connections, which is 

defined as the logical association of two communication endpoints by the trans-

port protocols, rather than mobility of the endpoints themselves. Mobility of end-

points has been studied under different contexts, such as host mobility, user 

mobility, and session mobility, etc. Host mobility is concerned about tracking the 
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movement of an entire host such as a laptop, a PDA, or a mobile phone. User 

mobility attempts to track the movement of a person by maintaining a list of 

devices or applications through which the person is currently accessible. Session 

mobility tracks the movement of a computation session, which is usually defined 

as a group of related processes such as a capsule [118] or a Pod [100]. Regardless 

of these different types of endpoints, the common problem that must be resolved 

by a mobile communication architecture is to track the movement of the end-to-

end connection states maintained by the transport protocol on behave of the end-

points, which is the focus of this thesis. We assume that the states of the endpoints 

themselves are saved and restored by appropriate migration mechanisms external 

to our proposed MOVE architecture. In fact, we have designed our system to be 

independent of and can interoperate with these different migration mechanisms. 

For example, when an entire host is moved, the hardware BIOS suspension/

resumption functions are responsible for saving and restoring the endpoint states; 

when a session is moved, the particular migration mechanism such as Zap [100] is 

responsible for saving and restoring the endpoint states. And we have integrated 

MOVE with Zap to fully exploit its fine-grain connection migration capability.

Second, this thesis focuses on the issue of tracking a connection between mobile 

endpoints after it has been established, rather than the issue of locating a mobile 

endpoint before a connection can be established. It is our belief that these are two 

orthogonal and fundamentally different problems. Generally speaking, the former 

is a routing problem, while the latter is a directory problem. The requirements for 

systems addressing these two problems are therefore fundamentally different and 
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should not be mixed. For example, global directory service for locating a mobile 

endpoint usually implies the need for infrastructure support; but as we will show 

in our proposed MOVE architecture, tracking established connections can be done 

completely within endpoints themselves without any infrastructure requirement. 

Therefore, this thesis separates the tracking and locating aspects of communication 

mobility and focuses on the former. We leverage existing locating systems, 

Dynamic DNS (DDNS) [133] in particular, that are designed specifically for that 

purpose and conduct empirical studies on their suitability for locating mobile 

hosts and services in practice.

1.4 Thesis Overview

This thesis presents the design, implementation, and evaluation of the MOVE 

mobile communication architecture. It is organized as follows: Chapter 2 intro-

duces the CELL namespace abstraction which is the foundation of the MOVE 

architecture for resolving key technical problems of transparent connection migra-

tion; Chapter 3 presents the H2O handoff signaling protocol and its security mech-

anism for fast and secure handoff, as well as the connection migration helper 

mechanism for migration through suspension/resumption; Chapter 4 describes 

the integration of MOVE with a new process migration mechanism to fully exploit 

its fine-grain connection migration capability and to provide high service avail-

ability support in a proxy-based server cluster environment; Chapter 5 presents 

the design and implementation of a MOVE prototype on the LINUX x86 platform; 

Chapter 6 evaluates our MOVE prototype performance and discuss the measure-

ment results; Chapter 7 surveys related work in mobile communication architec-
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ture, layer 3 handoff approaches, high service availability mechanisms, and 

process migration systems; finally, Chapter 8 concludes the thesis and discusses 

directions for future work.
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2CELL Namespace Abstraction

MOVE is a transparent connection migration system, which means that it preserves 

the transport connection states across migration; since having persistent connec-

tion states throughout the lifetime of a connection is the fundamental assumption 

made by existing transport protocols. Of course, connection migration can also be 

achieved without preserving the transport connection states, as we will see exam-

ples of such solutions shortly; and we call such solutions non-transparent connec-

tion migration systems. In this chapter, we will first argue why we believe a 

transparent migration system that preserves the transport connection states is a 

more viable solution than a non-transparent one that does not. We will then intro-

duce the CELL namespace abstraction that is designed to solve key technical prob-

lems of transparent migration systems. We also consider a few other architectural 

issues such as host and service location, connection-less transport protocol sup-

port, application location-awareness, and compatibility with IPsec.

2.1 Non-transparent vs Transparent Migration

While mobility solutions have traditionally been categorized based on the layer at 

which they provide the mobile functionality, such as network, transport, or appli-

cation layer, we look at these solutions from another angle, which focuses on the 

connection states rather than the layers, that has given us more insight on the fun-
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damental problems of connection migration. We have defined an end-to-end con-

nection as the logical association of two communication endpoints by the transport 

protocols. Therefore, the connection states we refer to throughout the chapter are 

the states maintained by the transport protocols. Note that some applications may 

have their own notion of a “connection”; but as we pointed out in Section 1.3 in 

Chapter 1, migration of application states is part of endpoint mobility mechanism 

orthogonal to transport connection mobility mechanism. Depending on whether 

or not a connection migration system preserves transport protocol connection 

states, it generally falls into one of the two categories: non-transparent or transpar-

ent.

Non-transparent connection migration systems do not maintain the connection 

states at the transport layer across migration. Connection migration is achieved 

either by modification to the transport protocol itself, TCP in particular, to handle 

the change of IP address and port number - an approach taken by traditional trans-

port layer solutions, or by emulation above the transport layer through closing the 

old connection and opening a new one - an approach taken by traditional applica-

tion layer solutions. These solutions, however, have a few serious drawbacks. 

Modifying TCP results in transport protocol dependency not only on TCP’s oper-

ational semantics therefore making it incompatible with other transport protocols 

such as UDP and SCTP, etc., but also on the particular TCP implementation and 

therefore making it very hard if not impossible to deploy. Emulation at the appli-

cation layer requires duplicating many of the transport protocol functions, such as 

double-buffering (in addition to transport protocol buffering) and go-back-N (or 
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similar), to account for potential packet loss due to closing the old connection. As 

a result, while avoiding changing the transport protocol itself, emulation at the 

application layer is still highly dependent upon the transport protocol operational 

semantics. In addition, the double-buffering must be done on the critical data path 

of the connections at all times, therefore creating substantial performance over-

head, not only for migrated connections, but also for regular stationary ones as 

well. Furthermore, the go-back-N adds additional delay to the handoff process.

Because of these fundamental difficulties facing the non-transparent connection 

migration systems, we have chosen to build MOVE as a transparent connection 

migration system, which of course has its own set of problems that must be 

resolved in order to meet all the requirements of a mobile communication system 

we outlined in the introduction. In fact, many other transparent mobile communi-

cation systems have been proposed, such as [70][71][103][132][136], which are also 

commonly known as the network layer solutions. However, as we will see in the 

related work chapter, none of these solutions meets all the requirements. So we 

will now take a closer look at the key technical problems associated with transpar-

ent connection migration. For the rest of the thesis, we will use the word “migra-

tion” to always refer to transparent migration unless noted otherwise.

2.2 Key Problems of Connection Migration

Despite the seemingly large variation of mechanisms employed by existing sys-

tems, the problems of connection migration can be traced to three fundamental 

ones: state inconsistency, state conflict, and state synchronization, which we describe 



15
in turn.

2.2.1 Inconsistency between network layer and transport layer

Preserving connection states at transport layer in a mobile environment is difficult 

because existing transport protocols are not designed with mobility in mind. Spe-

cifically, transport layer connection states consist of two types of names: address 

and port. A tuple, which consists of a pair of addresses and ports that correspond 

to the two communication endpoints, is used by the transport protocol to uniquely 

identify a connection. Transport protocols require that the tuple stay constant for 

the lifetime of the connection. This requirement, however, is violated when a con-

nection endpoint is migrated from one host to another, or a host with open connec-

tions moves from one network to another; since the address of the endpoint has 

changed. Mobility therefore creates inconsistency between the transport layer 

tuple and the network layer address, as shown with an example in Figure 2-1. 

Figure 2-1a shows that when a host with an open connection [IP2:p2, IP1:p1]

moves from IP2 to IP3, the transport layer tuple [IP2:p2, IP1:p1] is no longer 

consistent with the new network layer address IP3. Figure 2-1b depicts the same 

problem in the case when an endpoint of a connection [IP2:p2, IP1:p1] is trans-

parently migrated from host IP2 to host IP3.

2.2.2 Conflict in transport layer

In addition to inconsistency between network layer and transport layer, other 

problems may arise due to mobility as well. One of these problems is that mobility 

creates situations where names such as address and port may be reused therefore 
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causing naming conflict in the transport layer, as illustrated in Figure 2-2. Figure 2-

2a shows that a host with an open connection [IP2:p2, IP1:p1] moves from IP2 to 

IP3. Later, another host may reuse IP2 at the original network and a process on it 

may open another connection [IP2:p2, IP1:p1] to IP1:p1 using port p2. As a result, 

host IP1 sees two identical connections [IP1:p1, IP2:p2], which is prohibited by the 

transport protocols. Figure 2-2b shows the similar conflict in the case when an end-

point of a connection [IP2:p2, IP1:p1] migrates from host IP2 to host IP3 and 

another process on IP2 reuses port p2 to open another connection [IP2:p2, IP1:p1] 

to the same server IP1:p1.

Figure 2-1. Inconsistency between network layer and transport layer
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2.2.3 Cross address space synchronization in transport layer

Finally, we look at the third problem that can be caused by mobility. Transport 

protocol semantics requires that the connection states on the two communication 

endpoints must remain synchronized, i.e., each endpoint must have proper states 

to identify the same connection and the one-to-one correspondence of the states on 

both endpoints must be maintained for the lifetime of the connection. In traditional 

IP network, the entire Internet is assumed to be a single address space and host IP 

addresses are globally unique; therefore the synchronization can be achieved by 

associating with a connection the same address:port pair, i.e., tuple, on both end-

Figure 2-2. Conflict in transport layer
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points.

With the introduction of NAT (Network Address Translation)/NAPT (Network 

Address Port Translation) devices [125] (simply referred to as NAT hereafter), 

however, the assumption above no longer holds. NAT separates the Internet into 

different address spaces and allows overlapping address spaces to coexist. As a 

result, a connection passing through a NAT device can no longer be identified by 

the same tuple on both endpoints; in addition, the one-to-one correspondence of 

the (different) tuples on each endpoint can only be maintained with the presence 

of the NAT mapping. Since NAT mapping is performed inside the network trans-

parent to both endpoints, mobility of either endpoint can result in the loss of NAT 

mapping, and consequently the loss of connection state synchronization.

We illustrate the problem using the following examples covering all the possible 

scenarios: from no NAT to NAT, from NAT to no NAT, and from NAT to another 

NAT. For simplicity and without loss of generality, we assume that the stationary 

end is not behind a NAT. Also note that in all the scenarios we assume the case 

when an entire host moves from one network to another; but they apply equally to 

the case when an endpoint of a connection migrates from one host to another.

Figure 2-3 shows that a host with an open connection [IP2:p2, IP1:p1] moves from 

a public network without a NAT to a private network behind a NAT. At the new 

location, the mobile endpoint obtains a new address IP3. Since the transport 

invariant [IP2:p2, IP1:p1] must persist across the migration, a transparent migra-

tion system usually maintains a mapping between the transport invariant and a 
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network variant [IP3:p2, IP1:p1] that changes when the mobile endpoint moves, as 

shown in the figure. This mapping, {IP3:p2↔IP2:p2}, must also be conveyed to the 

stationary endpoint so that both endpoints can remain synchronized. However, 

since now the connection goes through a NAT, which applies another mapping 

{IP3:p2↔IP4:p4}, the correct mapping for the stationary endpoint is not 

{IP3:p2↔IP2:p2}, but rather {IP4:p4↔IP2:p2}. In other words, due to the NAT map-

ping, the mobile and the stationary endpoints do not have an agreement on the 

network variant to identify the connection and therefore cannot synchronize their 

mappings for the connection.

Figure 2-4 shows the opposite scenario when a host with an open connection 

[IP2:p2, IP1:p1] moves from a private network behind a NAT to a public network 

without a NAT. We can see that the mapping for the mobile endpoint, 

Figure 2-3. Synchronization: from no NAT to NAT
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{IP3:p2↔IP2:p2}, is again wrong for the stationary endpoint, which should be 

{IP3:p2↔IP4:p4}. This time, however, the problem lies with the transport invariant 

instead of the network variant. Due to the NAT mapping {IP2:p2↔IP4:p4}, the 

mobile and the stationary endpoints never had an agreement on the transport 

invariant to uniquely identify the connection. The mobile endpoint saw the con-

nection as [IP2:p2, IP1:p1], while the stationary endpoint saw the connection as 

[IP1:p1, IP4:p4]. The one-to-one correspondence between [IP2:p2, IP1:p1] and 

[IP1:p1, IP4:p4] for identifying the same connection can only be maintained with 

the presence of the NAT mapping {IP2:p2↔IP4:p4}, which is now lost.

Finally in Figure 2-5, a host with an open connection [IP2:p2, IP1:p1] moves from 

a private network behind a NAT to another private network behind a NAT. It’s 

obvious that in this case the mobile and the stationary endpoints do not have an 

agreement on either the transport invariant or the network variant; and the correct 

Figure 2-4. Synchronization: from NAT to no NAT
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mapping needed on both endpoints are completely unrelated.

To summarize the main points of this section, we have described three fundamen-

tal problems of transparent connection migration:

• state inconsistency, because existing transport protocols are designed 

based on the assumption that connection endpoints are stationary and 

mobility breaks this assumption

• state conflict, because mobility creates situations where names used for 

identifying connections may be reused and therefore losing their global 

uniqueness

• state synchronization, because NAT breaks the end-to-end semantics and 

the network is no longer a globally addressable space and the one-to-one 

correspondence of connection states on each endpoint can no longer be 

Figure 2-5. Synchronization: from NAT to another NAT
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maintained without the NAT mapping, which may be lost due to mobility.

We will see in the next section how MOVE solves these problems.

2.3 The CELL Namespace Abstraction

To effectively address the key problems of fine-grain connection migration, as well 

as achieve the essential goals of a migration system and avoid drawbacks of exist-

ing migration systems, MOVE introduces a novel namespace abstraction, called 

CELL (ConnEction virtuaLization and encapsuLation). The purpose of CELL is to 

provide a virtual, private, and labeled namespace for connections of individual pro-

cesses so that they can be transparently migrated anywhere free of state inconsis-

tency, conflict, and cross address space synchronization problems.

2.3.1 Virtualize network addresses

In order to allow transport layer connection identification, i.e., the tuple, to persist 

across migration between different networks, CELL uses virtual addresses, which 

have no semantic association with any particular network locations, to provide 

individual connections with a constant virtual transport layer identification, 

regardless of where a connection is migrated. The main challenges lie in the assign-

ment and management of the virtual address space; because virtual tuples, like 

their physical counterparts, must satisfy a few constraints:

• Global identification. A virtual tuple must uniquely identify a connection 

no matter where the connection migrates. One simple solution is to employ 
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a centralized system that manages a global pool of virtual addresses to 

guarantee that each individual virtual tuple is globally unique. This solu-

tion, however, cannot scale to Internet size. An alternative is to employ a 

distributed system such as DNS to manage the global pool of virtual 

addresses. This solution, however, requires global infrastructure support 

which is also undesirable.

• One-to-one correspondence. As we described in Section 2.2.3, two commu-

nication endpoints must maintain a one-to-one correspondence of the vir-

tual tuple they have chosen to identify a connection. This implies that the 

two endpoints must negotiate their virtual tuples for each connection if the 

virtual addresses chosen by both endpoints are not mutually known 

beforehand. The negotiation therefore imposes extra round trip delay for 

connection setup. In addition, virtual tuples must be translated into physi-

cal tuples and vice versa even when connections are stationary, therefore 

creates unnecessary network I/O overhead.

CELL employs a unique virtual address assignment mechanism to answer these 

challenges. The mechanism, which we call lazy assignment, is surprisingly simple. 

By default, CELL selects the virtual addresses to be the current physical addresses 

associated with a connection. Essentially, CELL treats all physical connections as 

initially “implicitly” virtualized. As a host moves from one network to another or 

a connection migrates from one host to another, CELL maintains the virtual 

addresses unchanged for the migrated connection(s) and translates them into the 

host’s current physical address to resolve inconsistency, as illustrated in Figure 2-
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6. But for new connections created at the new network location, their virtual 

(source) addresses will be the new current physical address of the host. Therefore 

at any given point of time, a host/process can have multiple connections, each 

with a different virtual tuple that corresponds to the physical tuple of a connection 

created at each of the network location it has visited, as also illustrated in Figure 2-

6.

Since physical tuples are guaranteed to be globally unique (either by themselves or 

with proper NAT mappings), the resulting virtual tuples are also globally unique. 

Therefore, in the absence of migration, CELL does not need any additional mech-

anism to manage the virtual address space, which is simply an exact mirror of the 

physical address space. There is also no additional round trip delays to connection 

setup for exchanging the virtual addresses since they are already known. And 

finally, CELL does not need to perform any virtual-physical translation in the 

absence of migration since the virtual and physical addresses are by default the 

Figure 2-6. CELL abstraction: virtual network addresses
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same.

The benefits of CELL’s lazy assignment, which is essentially a unmanaged 

approach, does come at the cost of losing one advantage that a managed approach 

provides: global identification of the virtual tuples in the presence of migration. 

Since CELL’s virtual address space is a mirror of the physical address space, reus-

ing a physical address due to mobility (recall Section 2.2.2) also results in reusing 

a virtual address and potential conflict in the transport layer. In the next section, 

we describe how CELL resolves the problem without resorting to a centralized 

scheme.

2.3.2 Privatize transport identifications

To resolve the conflict in the transport layer caused by reusing a physical address 

(and therefore reusing a virtual address) illustrated in Figure 2-2, CELL provides 

a private per-connection virtual address space for each individual connections. In 

existing transport protocols, all connection identification tuples share a single 

transport layer namespace, which means no two connections can have the same 

identification tuple. CELL, however, provides individual connections with their 

own private virtual tuples that are isolated and independent of each other. One can 

also think of this as if every connection in CELL had its own dedicated protocol 

stack. As a result, two identical virtual tuples can coexist side-by-side on the same 

host free of conflict. For example, Figure 2-7 shows the same conflict cases as those 

shown in Figure 2-2; but the conflicts are now resolved since the two identical vir-

tual tuples are private to their respective connections and are independent to each 
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other.

Readers may note that, in the previous section, we did not provide a description of 

how exactly CELL virtualizes network addresses (and how exactly lazy assign-

ment is performed). We defer it until now, along with the description of how CELL 

privatizes transport tuples, because CELL supports both virtualizing network 

addresses and privatizing transport tuples with the Virtual Network Interface 

Card (VNIC) mechanism. A VNIC is a software emulation of a NIC at the link layer 

and appears exactly the same as a NIC to network-and-above layers. Essentially, 

Figure 2-7. CELL abstraction: private transport identifications
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CELL virtualizes network addresses of a connection by simply creating a VNIC 

with a virtual address on both endpoints and binding the connection to the VNICs. 

Lazy assignment simply takes the NICs and their physical addresses as the VNICs 

and their virtual addresses on both endpoints. To privatize transport tuples, CELL 

provides each connection with its own private VNIC that is not shared with and 

cannot be accessed by other connections. As a result, two VNICs with identical vir-

tual address, along with two identical virtual tuples bound to the two VNICs, can 

coexist on the same host. The ambiguity can be resolved because the two VNICs 

are different (e.g., with different device index), even though they have identical vir-

tual address.

Because lazy assignment uses the initial physical address of a NIC as the virtual 

address of a VNIC, the VNIC mechanism itself may introduce additional problem 

as illustrated in Figure 2-8. The figure shows the conflict in transport layer in the 

case when a host moves from one network to another is being resolved by CELL’s 

Figure 2-8. Conflict between VNIC and NIC
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private virtual tuple abstraction, which is supported by the VNIC mechanism. We 

can see that per-connection VNICs are created and their virtual addresses are 

assigned with lazy assignment to properly resolve inconsistency and conflict. 

However, network layer protocol semantics requires that, within a single address 

space, an address must uniquely identify one network interface, which is clearly 

violated by the VNICs in Figure 2-8. For example, the address IP1 is now associ-

ated with three network interfaces on host IP1, while the address IP2 is also asso-

ciated with three network interfaces, one on host IP3 and the other two on host IP2.

To remedy the problem, CELL imposes visibility constraints on the VNICs so that 

they are invisible in the physical network. CELL prevents a VNIC from performing 

any function on the physical network, such as sending and receiving packets, 

influencing routing decisions, participating in network layer routing protocols 

such as RIP, OSPF, or BGP, or participating in link layer protocols such as ARP, etc. 

In other words, a VNIC is only visible to the transport protocols and the connection 

bound to it. Therefore, network layer protocols can function unaffected. For exam-

ple, the addresses IP1 and IP2 now uniquely identify their respective interfaces, 

the NIC on host IP1 and the NIC on host IP2; because all the VNICs are invisible 

in the physical network.

Finally, in order to identify the VNIC of a connection and properly demultiplex 

incoming packets with identical tuple, CELL augments traditional tuple with a 

label to identify a connection. Since labels are location-independent, they also 

allow connections to be identified even in the presence of NAT devices. We 
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describe the details of CELL’s connection label in the next section.

2.3.3 Label end-to-end connections

From previous sections we know that traditional tuple alone is no longer enough 

to uniquely identify a connection because of two reasons:

• Due to the conflict caused by virtual address reuse in a mobile environ-

ment, as we saw in Section 2.2.2, virtual tuples are not globally unique. 

While CELL uses VNIC to resolve the conflict within an endpoint, packets 

belonging to a connection, however, must also carry additional informa-

tion beyond the traditional tuple in order for them to be properly demulti-

plexed to the right VNIC. We note that this is a CELL-specific requirement 

necessitated by lazy assignment.

• Due to the presence of NAT, as we saw in Section 2.2.3, the one-to-one cor-

respondence of the tuples on both endpoints of a connection can no longer 

be maintained in a mobile environment. We note that this is a general prob-

lem applicable to any mobile communication system.

CELL addresses both problems with a single mechanism, by introducing a loca-

tion-independent label for each connection, which can be used to uniquely identify 

a connection without the tuple. In fact, in addition to the traditional tuple, CELL 

assigns a connection two labels, one for each endpoint.

When a connection is setup, each endpoint independently chooses a label unique 

within the respective endpoint and sends the label to its peer, as shown in Figure 2-
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9. The exchange is conducted in-band by piggybacking the labels onto the first data 

packets exchanged between the two endpoints. For example, for TCP, they are 

SYN and SYN-ACK packets; for UDP, they are the first data packets arriving on 

each endpoint. Therefore, no additional round-trip delay is introduced. Also, the 

piggybacking can be done transport-independently using one of several ways. For 

example, one way is to use IP option; another is to use encapsulation such as GRE 

(Generic Routing Encapsulation). In Section 5.1 in Chapter 5, we elaborate on the 

particular choice we made in our prototype implementation.

Since virtual tuples alone can uniquely identify a connection in the absence of 

migration, labels are not used in a stationary connection beyond the initial 

exchange. That is, after the initial exchange, no labels are attached to the data pack-

ets and the rest of the packet flow of a connection proceeds as usual, as long as the 

connection does not migrate. Once the connection migrates, each endpoint 

attaches its peer’s label learned at connection setup time to allow its peer to 

uniquely identify the connection without relying on the tuple. It is evident that a 

label needs only to be host-wide unique rather than globally unique since it’s only 

needed for demultiplexing incoming packets to their respective VNICs within an 

endpoint.

Figure 2-9. CELL abstraction: labels (exchanged at connection setup time)
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We first illustrate in Figure 2-10 how labels allow two connections with identical 

virtual tuple to be properly associated with their respective VNICs. As shown in 

the figure, CELL assigns the first connection label1 and label2, and assigns the 

second connection label3 and label4. After the host with the first connection 

moves from IP2 to IP3, CELL attaches label1 to all packets of the migrated con-

nection from IP3 to IP1, and label2 to all packets in the reverse direction. For the 

second connection, on the other hand, CELL attaches no labels after the initial 

exchange; since the connection has not migrated. Therefore in this case, the pres-

ence of label1 or the absence of a label will allow host IP1 to correctly identify the 

VNICs associated with each connection and to demultiplex packets for each con-

nection properly. If later the second host IP2 also moves, CELL will attach label3

and label4 to the second connection. In this case, the presence of label1 or label3, 

which are guaranteed to be different since both are assigned by host IP1, will allow 

host IP1 to distinguish the two connections.

Figure 2-10. Labels identify connections with identical virtual tuple
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We next illustrate in Figure 2-11 how labels allow connections to be uniquely iden-

tified across NAT boundaries. We use the most generic scenario from Section 2.2.3: 

a host moves from a private network behind a NAT to another private network 

behind a NAT. As shown in the figure, CELL again assigns the connection two 

labels, label1 and label2 when the connection was setup between host IP2 and 

IP1. Due to the NAT mapping {IP2:p2↔IP4:p4} at the original network, host IP2

perceives the connection as [IP2:p2, IP1:p1] (with label2), while host IP1 perceives 

the connection as [IP1:p1, IP4:p4] (with label1). After the host moves to IP3, on 

both host IP3 and IP1, their respective virtual tuples, [IP2:p2, IP1:p1] and [IP1:p1, 

IP4:p4], are maintained to provide transparent migration of the connection. On 

host IP3, CELL translates [IP2:p2, IP1:p1] into [IP3:p3, IP1:p1] and attaches label1

to all packets from IP3 to IP1. Due to the NAT mapping {IP3:p2↔IP5:p5} at the 

new network, packets for the migrated connection appear at host IP1 as [IP1:p1, 

Figure 2-11. Labels identify connections across NAT boundaries
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IP5:p5]. However, host IP1 can determine that the packets belong to the virtual 

connection [IP1:p1, IP4:p4] by using the label1 attached to the packets; and host 

IP1 can perform the correct translation of [IP1:p1, IP5:p5] into [IP1:p1, IP4:p4] by 

observing IP5:p5 from the network variant (physical packet) and IP4:p4 from the 

transport invariant (virtual tuple).

Keen readers will notice that since the labels are not globally unique and migrate 

along with their connections, they will then potentially face the same conflict prob-

lem as the virtual tuples do. While label conflict does not happen in the case when 

a host moves from one network to another, it does happen in the case when a con-

nection migrates from one host to another, as shown in Figure 2-12. We can see that 

label conflict happens because two pairs of hosts, [IP2, IP1] and [IP3, IP4], can 

independently choose exactly the same label1 and label2 for the two connections 

between each pair. This is normally perfectly fine as long as the two connections 

Figure 2-12. Label conflict
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do not share the same endpoints. However, when an endpoint of one connection 

is migrated to the host where an endpoint of the other connection resides, conflict 

can occur. Note that label1 used on both host IP1 and IP4 does not cause a conflict.

To resolve the label conflict, we observe a crucial difference between the label con-

flict and virtual tuple conflict, which is that a label does not have to stay constant 

throughout the lifetime of a connection while a virtual tuple does since it is the 

requirement of the transparent migration. Therefore, when a label conflict occurs, 

it can be resolved simply by replacing one of the labels with a new one. For exam-

ple in Figure 2-12, the migrated connection can simply choose another label3 and 

convey the new label to IP1 during the handoff process. We will see how this is 

done in Section 5.3.1 in Chapter 5 when we present the design and implementation 

of MOVE’s handoff signaling protocol.

2.3.4 Map between virtual and physical namespace

From previous sections, readers can note that CELL abstraction and its supporting 

mechanisms really make little change to the normal operation of a connection 

when it is not migrated. For example, lazy assignment makes virtual-physical 

translation unnecessary in the absence of migration; connection labels are also only 

exchanged at the beginning of a connection setup and are never used when the 

connection does not migrate. This is why MOVE incurs virtually zero network I/

O overhead to stationary connections, which we show in our performance mea-

surements in Chapter 6. Eventually, a connection will migrate and its CELL virtual 

namespace must then be mapped into the physical namespace and vice versa. We 
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describe the mechanisms that perform the mapping in this section, with an exam-

ple in Figure 2-13.

The figure shows the same example we have been using throughout the chapter, 

i.e., a connection [IP2:p2, IP1:p1] originally established between the hosts IP2 and 

IP1; and the endpoint of the connection on host IP2 then migrates to host IP3. We 

first look at the mobile endpoint of the connection on host IP3. From the figure, we 

can see that there are two mappings need to be performed:

• the virtual tuple [IP2:p2, IP1:p1] must be mapped into the physical tuple 

[IP3:p2, IP1:p1], and

• the VNIC with virtual address IP2 must be mapped into the NIC with 

physical address IP3.

Mapping of the tuple is done by address translation, which is commonly available 

Figure 2-13. Virtual-physical namespace mapping
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in modern OSes as part of the packet filtering and firewalling system. The transla-

tion is performed at the network layer therefore it is transparent to the transport-

and-above layers. In our example, on host IP3, since the only difference between 

the virtual tuple and the physical tuple is the source address, i.e., IP2 for the virtual 

tuple and IP3 for the physical tuple, this is commonly called a source address 

translation; similarly on host IP1, the translation is commonly called a destination 

address translation. Mapping of the network interface is done by interface redirec-

tion, which is again commonly available in modern OSes as part of the traffic con-

trol system. In our example, we redirect all outgoing traffic of the migrated 

connection from the VNIC to the NIC; and we redirect all incoming traffic from the 

NIC to the VNIC. Note that interface redirection is also performed at the network 

layer and therefore it is transparent to the transport-and-above layers as well. And 

because both address translation and interface redirection are very common and 

simple operations, it explains the reason why, for migrated connections, the map-

ping between the CELL virtual namespace and the physical namespace performed 

by MOVE incurs very low overhead to the traffic of the connection, as we will also 

show in our performance measurements in Chapter 6.

Finally, recall that packets of a migrated connection in both directions will carry a 

label, as we’ve indicated in Figure 2-13. The label enables CELL to identify the 

VNIC associated with the connection and to perform the interface redirection from 

the NIC to the VNIC. The labels are carried in the packets the same way they were 

piggybacked onto the first packets of the connection when they were exchanged.
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To summarize the main points of this section, we have described the CELL 

namespace abstraction and its supporting mechanisms that provide a clean and 

elegant solution to the fundamental problems of transparent migration while 

avoiding various drawbacks of existing solutions. The highlights of the abstraction 

and its supporting mechanisms are:

• Virtual network addresses allow transport tuple to remain constant even 

when and network address has changed; and address translation alleviates 

the address inconsistency problem. Lazy assignment avoids centralized 

management of virtual address space and eliminates extra round-trip con-

nection setup delay and virtual-physical translation overhead for station-

ary connections.

• Private transport identifications resolve conflict of virtual tuples due to lazy 

assignment. Software VNICs provide each connection with its own private 

virtual address space that is independent of each other; therefore identical 

virtual tuples can coexist on the same host. Invisibility of the VNICs in the 

physical network guarantees that network layer protocol semantics are not 

violated.

• Connection labels uniquely identify migrated connections and their associ-

ated VNICs, even when the connections pass through NAT devices before 

and/or after migration. Interface redirection maps between the VNIC and 

NIC for outgoing and incoming traffic of the migrated connections.

We conclude this section by presenting a visual representation of the CELL virtual 
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namespaces and their relation to the physical namespace, as shown in Figure 2-14. 

From the figure we can see that each value of the CELL namespace is just one tuple 

taken from the physical transport namespace plus a label. However, there are two 

key differences between the CELL namespace and the transport namespace:

• Each value of the transport namespace can only appear within one host, 

e.g., [IP1:p1, IP2:p2] can only appear within host IP1; each value of the 

CELL namespace, on the other hand, can appear anywhere in the network, 

e.g., [IP1:p1, IP2:p2]+label can appear on any host IPn.

• Each value of the transport namespace can only be used once within a sin-

gle host; each value of the CELL namespace, on the other hand, can be 

used multiple times on multiple hosts.

In essence, the first properties allows CELL values to persist across hosts. The 

second properties prevents identical CELL values from conflicting each other. And 

finally, the labels used in the CELL values maintain the one-to-one correspondence 

of two CELL values across address spaces.

Figure 2-14. Visual representation of the CELL namespace
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2.4 Other Architectural Issues

We conclude this chapter with discussions of a few other issues related to general 

mobile communication.

2.4.1 Host and service location

An important architectural decision made by MOVE is to separate the issue of 

locating a mobile endpoint before a connection is established and the issue of 

tracking a connection after it has been established. We believe they are two funda-

mentally different problems; generally speaking, host locating is a directory prob-

lem while connection tracking is a routing problem. The requirements for systems 

addressing the two problems are fundamentally different. MOVE shows that con-

nection tracking can be done completely within endpoints themselves without 

mandating new network infrastructure such as the home/foreign agents 

employed by MobileIP, whose main purpose is for host locating. Decoupling the 

two allows MOVE to take full advantage of solutions designed specifically for 

solving the problem of locating a mobile endpoint.

In certain application scenarios, locating a mobile endpoint may not even be an 

issue. For example, in the proxy-based server cluster we will consider in Chapter 4, 

a single static name and IP address is exposed to the rest of the world by the proxy. 

Mobility of the servers or services behind the proxy is purely a local matter with-

out any special requirement on the clients other than regular DNS lookup. Never-

theless, a general mobility architecture needs to address these issues and we 
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discuss MOVE’s approach.

2.4.1.1 Host location

MOVE leverages secure Dynamic DNS (DDNS) [133] to maintain a name-to-IP 

relationship to address the host locating aspect of the communication mobility 

problem so that a mobile host can be accessed by the same name after migration. 

DDNS is also used to locate mobile hosts by other approaches such as [122][136].

Since the mapping from a name to an IP address, the “A-record” in DNS, is cached 

by name resolvers, it is desirable to have a small caching time of a mobile host’s A-

record in order to minimize the time during which the mobile host is unreachable. 

Contrary to belief that small to zero TTL (time-to-live) values for an A-record 

would increase the DNS lookup traffic and latency and would cause scalability 

problem, studies by [75] have found that DNS scalability is not as dependent on 

the caching of A-records as commonly believed. This is because the NS-record, the 

name server record, which dictates where the DNS name lookup starts, is cache-

able. [75] suggests that current trend towards more use of DDNS with low TTL for 

A-record is not likely to be harmful. [75] further suggests that in terms of overall 

scalability, eliminating all A-record caching would increase wide-area DNS traffic 

by at most a factor of 4 and almost none of that would involve a root server or a 

general top-level domain server. Even eliminating all but per-client caching would 

little more than double DNS traffic.

Based on these studies, we think that DDNS is a suitable mobile host locating 

mechanism for MOVE. We conducted additional empirical DDNS studies for its 
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suitability as our host locating mechanism and we will present our findings in 

Section 6.4.1 in Chapter 6. Although even with zero to small TTL A-records there 

is still a chance for the mobile host to be unreachable if it moves frequently, our 

hope is that higher layer such as name resolvers and application themselves will 

become increasingly capable of dealing with DDNS name lookups.

2.4.1.2 Service location

To support fine-grain mobility of individual services, i.e., server processes, a cor-

responding directory service that can locate, in addition to mobile hosts, mobile 

server processes is required. As a simple example, a host with a DDNS name 

foo.move.cs.columbia.edu may have an IP address 1.1.1.1 and is hosting ser-

vices such as ssh, pop3, etc. Later, the ssh service may be migrated to another host 

with IP address 2.2.2.2. Since the host foo.move.cs.columbia.edu did not move, 

its DDNS name foo.move.cs.columbia.edu will still resolve to IP address 1.1.1.1; 

and clients trying to reach the pop3 service on foo.move.cs.columbia.edu will con-

tinue to be directed to the host 1.1.1.1. However, clients that trying to reach the 

ssh service on foo.move.cs.columbia.edu should be properly directed to the host 

2.2.2.2 rather than 1.1.1.1.

MOVE leverages the SRV resource record (RR) [65] defined for the DNS and 

dynamically updates the SRV RR to support locating mobile services. [65] defines 

a mapping from a symbolic {service name, host name} to {port number, IP address}. The 

primary intended application of the SRV RR is to allow a single domain to provide 

multiple instances of a service on different hosts and to allow clients to query these 
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instances and choose among them. We use a simple example to illustrate at a high-

level how SRV RR works. A domain move.cs.columbia.edu can define an SRV RR 

as follows:

$ORIGIN move.cs.columbia.edu.
; format of SRV records:
; _service._protocol SRV priority weight port host
;
_ssh._tcp SRV 0 1 22 foo1.move.cs.columbia.edu

SRV 0 2 22 foo2.move.cs.columbia.edu
; format of A records:
; hostname A IP address
;
foo1 A 1.1.1.1
foo2 A 2.2.2.2

In this example, the service “ssh” over protocol “tcp” for the domain 

move.cs.columbia.edu is provided by two hosts, foo1 with IP address 1.1.1.1, 

priority 0, weight 1, and port 22, and foo2 with IP address 2.2.2.2, priority 0, 

weight 2, port 22. A client that makes a DNS query of the SRV RR in the form of 

_ssh._tcp.move.cs.columbia.edu will receive both SRV RRs and can make a 

choice of the target host based on the “priority” and “weight”, which are explained 

in [65] but not important for our discussion.

By creating per-host SRV RRs and dynamically updating them through DDNS, 

locating mobile services can be achieved as follows:

• When a service, e.g., ssh, is running on a host, e.g., foo1 with IP address 

1.1.1.1, an SRV RR (and its accompanying A-record) can be created as:

$ORIGIN foo1.move.cs.columbia.edu.
_ssh._tcp SRV 0 0 22 foo1.move.cs.columbia.edu
foo1 A 1.1.1.1

A client making an SRV RR lookup in the form of 
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_ssh._tcp.foo1.move.cs.columbia.edu will get IP address 1.1.1.1 and 

port number 22.

• After the ssh service on foo1 is migrated to another host foo2 with IP 

address 2.2.2.2, the SRV RR is updated as:

$ORIGIN foo1.move.cs.columbia.edu.
_ssh._tcp SRV 0 0 22 foo2.move.cs.columbia.edu
foo2 A 2.2.2.2

Now a client making the same SRV RR lookup in the form of 

_ssh._tcp.foo1.move.cs.columbia.edu will get IP address 2.2.2.2 and 

port number 22 instead.

Evidently, in order for this to work, the client must support the SRV RR lookup. 

Unfortunately, the majority of the network applications today do not support SRV 

RR lookup. To connect to a service such as ssh, they only make the A-record 

lookup, which translates a name such as foo1.move.cs.columbia.edu into its IP 

address 1.1.1.1; and they use the port 22 from a standard static list such as /etc/

services. Therefore, to support locating mobile services in current network appli-

cations without changing them, we have designed and implemented a mechanism 

to transparently support SRV RR lookup for these applications. We will present 

our design in Section 5.6 in Chapter 5 and we will present evaluation of the mech-

anism in Section 6.4.2 in Chapter 6.

2.4.2 Connection-less transport protocol support

For connection-less transport protocols such as UDP, the notion of a “connection” 

is undefined beyond the mere association of two communicating endpoints in the 
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form of a {source IP address:source port number; destination IP address:destination port 

number} tuple. Therefore, connection-less communication can be, in addition to 

point-to-point, point-to-multipoint. For example, one type of point-to-multipoint 

communication is multicast [47]. A UDP socket can be used to send a packet to a 

special multicast address (class D IP address ranging from 224.0.0.0 to 

239.255.255.255); the packet is replicated at the network layer to any number of 

receivers subscribing to a multicast group denoted by the multicast address. Since 

there is no one-to-one correspondence at the transport protocol (in fact, the trans-

port protocol does not even know who the receivers are), the concept of an end-to-

end transport connection does not apply in multicast communication; therefore 

MOVE does not consider multicast communication. Another type of point-to-mul-

tipoint is to associate one source address/port pair with an arbitrary number of 

destination address/port pairs. In this case, the point-to-multipoint communica-

tion is maintained by the transport protocol as a group of one-to-one unicast “con-

nections”. To enable point-to-point only unicast communication, connection-less 

transport protocol such as UDP provides a “connected” mode operation to allow 

explicit binding of two communicating UDP endpoints such that the two will only 

accept messages from each other and no one else. Of course, this binding does not 

entail any other connection-oriented properties such as orderly and reliable deliv-

ery of packets.

MOVE is designed to provide transparent migration of communication endpoints 

without assuming any particular transport protocol semantics. To that end, a “con-

nection” for MOVE is a mere association of two communicating endpoints in the 
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same manner that unicast UDP treats a “connection”. Any states beyond the asso-

ciation maintained by the transport protocol, such as TCP’s sequence number, slid-

ing window, retransmission timer, etc., are solely the responsibility of the 

transport protocol itself and are opaque to MOVE. Therefore, a unicast UDP end-

point is really no different from a TCP endpoint as far as MOVE is concerned; and 

MOVE virtualizes, privatizes, and securely migrates unicast UDP “connections” 

the same way it does for TCP connections, with some minor differences:

• Since there is no explicit packet exchange for setting up a UDP “connec-

tion”, MOVE implicitly derives it by tracking the data packet exchange 

between two UDP endpoints. When the first time a packet is sent from a 

UDP socket, a virtual tuple for the “connection” is inferred from the send-

ing socket’s source address/port and the outgoing packet’s destination 

address/port.

• Since UDP “connections” are unreliable, MOVE must employ its own 

mechanism to reliably deliver its protocol messages for connection label 

exchange and handoff procedure. MOVE uses a simple finite state machine 

to implement this function. Details of the mechanism are presented in 

Chapter 5.

2.4.3 Application location-awareness

When a connection is virtualized, MOVE has the choice of exposing either the vir-

tual addresses or physical addresses to the applications, such as when the applica-

tions call the getsockname/getpeername socket system calls. There are pros and 
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cons for both choices: exposing virtual addresses makes the movement of an end-

point completely transparent to the applications, which is required for certain 

legacy applications that cannot handle endpoint movement in the middle of an 

active connection; on the other hand, location-aware applications rely on the cur-

rent physical addresses for their logic therefore cannot function properly with vir-

tual addresses. We will use an example to illustrate the tradeoff, the choice of 

MOVE, and the rationale of MOVE’s choice.

There are a few commonly used applications such as FTP and ICQ which are well-

known to create problems with address translation schemes such as NAT. These 

applications typically use two separate connections for the their communication, 

one for control traffic and the other for data traffic. This by itself is not really a 

problem. The problem, though, is that the ports for the data connection are, instead 

of being statically allocated and well-known, dynamically negotiated through the 

control connection. Therefore, in order to perform NAT on the data connection, 

one must look into the messages exchanged over the control connection to see the 

ports that have been negotiated for the data connection. This task is obviously 

highly application dependent. Note that for MOVE, even this dynamic negotiation 

of ports for the data connection is not a problem. Because first MOVE functions 

entirely within an end host rather than inside the network (where one has to look 

at the ports used in a packet to infer the sender and/or receiver application); and 

second as we said in the previous section, there will be no mapping on the data 

connection due to the lazy assignment as long as the connection doesn’t migrate.
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The problem with FTP-like applications in the face of migration comes as the result 

of another characteristic of these applications, i.e., they often save the IP addresses 

of the two machines between which the control connection is established and use 

them for the data connection. We illustrate the problem using FTP as an example. 

FTP works as follows in active mode:

1. an FTP client on IP1 opens a control connection to an FTP server on IP3 at 

port 21; it also saves IP1.

2. to open a data connection, the client creates another socket and binds it to a 

dynamically chosen port p1 and listens on this socket.

3. over the control connection, the client tells the server to connect to IP1:p1

for the data connection; note that the client uses the IP1 from the saved one 

in step 1.

4. after the client, along with the live control connection, has been migrated to 

IP2, to open a data connection, it creates another socket and binds it to a 

dynamically chosen port p2 and listens on this socket.

5. but now instead of telling the server to connect to IP2:p2, the client will tell 

the server to connect to IP1:p2 because it has saved the IP1 in step 1.

When the server attempts to connect to IP1:p2, MOVE has two choices: take IP1 as 

a virtual address and translate IP1:p2 into IP2:p2, the same way it translates for the 

control connection; or take IP1 as a physical address and perform no translation. 

We can see that MOVE’s default lazy assignment, which is essentially the second 
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choice of exposing physical address IP1 to FTP and performing no translation, is 

actually the wrong choice in this particular case. Because the server would have 

connected to the wrong client IP1:p2. The first choice of exposing virtual address 

IP1 (remember initially both the physical and virtual addresses are IP1) and trans-

lating IP1:p2 into IP2:p2 would have been the right choice. The reasons that MOVE 

defaults to exposing physical addresses rather than virtual addresses are the fol-

lowing:

• It supports location-aware applications.

• Most legacy network applications do not require such complete endpoint 

movement transparency.

• It’s the expected behavior of current (non-virtualized) protocol stack.

• It incurs no translation overhead for new connections created after an end-

point moves.

To support applications like FTP that require complete transparency of endpoint 

movement, MOVE allows, on a per application basis, the exposing of virtual 

addresses rather than physical addresses. Doing so implies that we must be able to 

special case these FTP-like applications, which fortunately are the minority. Also 

note that by exposing the virtual addresses, after migrating an FTP-like application 

and its control connection, all the new data connections will incur a translation 

overhead even though they haven’t migrated. But as we will see in Chapter 6, the 

translation overhead is very small.
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2.4.4 Compatibility with IPsec

Due to increasing IP network security concerns, the IETF proposed standard IPsec 

security architecture [78] is gaining acceptance. MOVE must work with connec-

tions protected by IPsec. IPsec is a complex suite of protocols and algorithms con-

sisting of security protocols, cryptographic algorithms, and key management, etc. 

Cryptographic algorithms and key management are issues orthogonal to MOVE 

and their discussion is beyond the scope of this thesis. Our focus in this section is 

on the compatibility between MOVE and the two IPsec security protocols: Authen-

tication Header (AH) [76] and Encapsulating Security Payload (ESP) [77]. AH 

offers data integrity and authentication. ESP offers, in addition to data integrity 

and authentication, data encryption as well. Both AH and ESP can operate in one 

of two modes: transport mode or tunnel mode. Transport mode is primarily 

intended for protecting end-to-end next higher layer protocols between hosts, 

while tunnel mode is primarily intended for protecting tunneled traffic between 

gateways. Figure 2-15 illustrates the protection services offered by AH and ESP in 

transport and tunnel mode.

The key to understand why MOVE is compatible with AH/ESP is that MOVE 

resides in endpoint only. Therefore, MOVE does not suffer from the incompatibil-

ity between AH/ESP and traditional NAT/NAPT, which operates outside end-

points. Within the endpoint, MOVE can be made transparent to AH/ESP by 

applying virtual-physical address mapping after AH/ESP processing for outgoing 

packets, and by applying virtual-physical address mapping before AH/ESP pro-

cessing for incoming packets.
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2.5 Summary

In this chapter, we first argued for a transparent connection migration system 

against a non-transparent one. We then analyzed the fundamental problems of 

transparent connection migration, namely state inconsistency, conflict, and syn-

chronization. And we introduced the CELL namespace abstraction and its sup-

porting mechanisms, which provide a virtual, private, and labeled namespace for 

individual connections, as a simple and elegant solution to these problems. We 

also discussed a few other issues related to a general mobile communication archi-

Figure 2-15. AH and ESP protection services
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tecture, e.g., host and service location, connection-less transport protocol support, 

application location-awareness, and IPsec compatibility.
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3H2O Handoff Signaling 
Protocol

The functions of an end-to-end transport connection are supported by two distinct 

components: (1) states maintained by the transport protocol on two logically asso-

ciated endpoints; and (2) connectivity between the two endpoints. In Chapter 2 we 

have shown how to preserve the connection states on two logically associated end-

points in a mobile environment and to resolve the fundamental problems of state 

inconsistency, conflict, and synchronization with the novel CELL namespace 

abstraction. In this chapter, we turn our attention to the second component: how 

to maintain the connectivity between two communication endpoints in a mobile 

environment, a mechanism commonly known as the handoff signaling protocol.

Similar to mobile communication architectures, a large body of prior art exists for 

handoff mechanisms. Some [51][69][82][123][137] are extensions to MobileIP while 

others [42][46][110] define their own micro-mobility domain with proprietary 

routing protocols. The common problem with these mechanisms is that they all 

require very complex infrastructure support. In contrast, we introduce in this 

chapter a novel handoff protocol called H2O (Host-only HandOff), that functions 

entirely within the endpoints and can handoff a connection securely in just a single 

one-way trip from the mobile endpoint to the stationary endpoint. We show that, 

through protocol analysis, H2O handoff performance is comparable to and under 
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certain situation better than existing handoff mechanisms. We will also describe 

H2O’s connection migration helper mechanism to support connection migration 

by suspension/resumption, where a mobile entity can be disconnected from the 

network for a prolonged period of time.

3.1 Handoff Related Issues

The connectivity for an end-to-end transport connection is supported at two sepa-

rate layers: (1) link layer (layer 2) connectivity; and (2) network layer (layer 3) con-

nectivity. Therefore, handoff involves a few related but orthogonal issues such as 

layer 2 handoff vs. layer 3 handoff, and handoff detection vs. handoff execution, 

etc. Before diving into the details of H2O mechanisms, we will first clarify these 

issues and define the problem space H2O addresses.

3.1.1 Layer 2 handoff vs. layer 3 handoff

When an endpoint of a connection changes its point of network attachment, the 

loss of link layer connectivity may or may not result in the loss of network layer 

connectivity. For example, in a wired LAN, one can unplug a machine from one 

jack and plug it into another jack. As long as the two jacks are in the same IP sub-

net, the machine need not change its IP address. Therefore network layer connec-

tivity is maintained without any special network layer signaling. Another example 

is in a wireless network such as WiFi, when users move from one access point (AP) 

to another, their network layer connectivity can also be maintained without any 

special signaling as long as the two APs are in the same IP subnet. Of course, when 
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the two jacks or two APs are in different IP subnet, which requires the mobile end-

point to change its IP address, the loss of network layer connectivity must be 

restored through special network layer signaling.

Maintaining connectivity for an end-to-end transport connection therefore can be 

achieved either by link layer (layer 2) handoff alone, or by link layer and network 

layer (layer 3) handoff combined. Using layer 2 handoff alone necessarily restricts 

the movement scope of a mobile endpoint to be within a single IP subnet. The pro-

cedure and performance characteristics of a layer 2 handoff also depend on the 

particular link layer technology involved, such as WiFi, TDMA, CDMA, or GSM, 

etc. In this thesis, we consider the more general case when the movement scope of 

a mobile endpoint is not restricted and therefore requires both layer 2 and layer 3 

handoff support. Furthermore, we do not address issues related to layer 2 handoff 

but rather those related to layer 3 handoff only since the two address distinct tech-

nical issues. H2O therefore is a layer 3 handoff protocol that makes no particular 

assumption about the layer 2 technology in use. 

3.1.2 Hand off detection vs. handoff execution

When both layer 2 and layer 3 handoff are required to maintain the connectivity of 

an end-to-end transport connection, the entire period during which no packets can 

be delivered to the mobile endpoint extends from the beginning of the layer 2 

handoff, i.e., loss of link layer connectivity, to the end of the layer 3 handoff, i.e., 

restoration of network layer connectivity, as shown in Figure 3-1a. Therefore, a 

handoff process generally consists of two phases, first handoff detection, followed 
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by handoff execution, also shown in Figure 3-1a. Handoff detection is defined as 

the period between the start of layer 2 handoff, i.e., loss of layer 2 connectivity, and 

the start of layer 3 handoff, i.e., commencement of network layer signaling. Hand-

off execution is defined as the period between the start of layer 3 handoff and the 

end of layer 3 handoff, i.e., restoration of network layer connectivity.

The length of handoff detection depends on the detection algorithm in use. Detec-

tion algorithms making use of pure network layer information such as Lazy Cell 

Switching (LCS), Prefix Matching (PM), and Eager Cell Switching (ECS) [104] gen-

erally have long detection delay. Algorithms making use of link layer information 

such as those suggested in [54][56] can generally improve detection performance. 

For example, certain link layer technologies, such as CDMA and TDMA, can pro-

vide an “advance notice” that the link to a device is about to be dropped. This fea-

ture provides the possibility of overlapping the layer 3 handoff with the layer 2 

Figure 3-1. Handoff detection and execution
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handoff therefore reducing the overall delay of the handoff process, as shown in 

Figure 3-1b. In this thesis, we do not address issues related to handoff detection 

phase but rather those related to handoff execution phase only. H2O therefore 

does not make any particular assumption about the handoff detection algorithm in 

use. For example, H2O does not assume the “advance notice” feature from the link 

layer since it’s not universally available; the widely deployed WiFi network today 

does not have this feature. However, if the underlying link layer technology does 

offer this feature, H2O can take advantage of it and improve its performance.

To summarize Section 3.1.1 and Section 3.1.2, H2O in MOVE is a layer 3 (rather 

than layer 2) handoff protocol that addresses issues related to handoff execution 

(rather than handoff detection).

3.2 H2O Handoff Signaling Protocol

The function of a handoff signaling protocol is to notify certain entity (or entities) 

in the network, which can be the stationary endpoint (SE) itself, that the mobile 

endpoint (ME) has moved and traffic destined to the old location of the ME must 

be redirected to its new location. The requirement for the handoff protocol is to 

minimize the length of the handoff process and the packet loss during the handoff 

process so as to minimize the impact on the connectivity of the end-to-end trans-

port connection between the ME and the SE.

A general approach to reduce handoff latency and packet loss is to introduce an 

entity in the network, known as the Mobility Anchor Point (MAP), that is close to 
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the ME so it can receive handoff signal and start buffering or redirecting packets 

sooner. This approach however has a couple of drawbacks:

• The shorter distance between the ME and the MAP is only beneficial when 

the movement of the ME does not result in a change of the MAP. In other 

words, the distance between the ME and the MAP determines the move-

ment scope of the ME; the shorter the distance, the smaller the movement 

scope.

• It introduces complexity in the network layer and requires network infra-

structure support therefore making it difficult to deploy.

The design philosophy behind H2O is based on the following key observation: for 

the particular problem of layer 3 handoff, the cost of introducing additional com-

plexity in the network layer to reduce packet loss does not necessarily translate 

into end-to-end transport layer benefit; because transport protocols and/or appli-

cations already have their own way of handling packet loss. For example, TCP’s 

timeout and retransmission mechanism does not distinguish between delayed and 

lost packets, therefore a layer 3 handoff system that reduces packet loss but not 

delay (by simply buffering packets) will provide no additional benefit. Even for 

unreliable transport protocols such as UDP, the benefit of the reduced packet loss 

is also questionable; because applications using UDP are generally more con-

cerned about the timely delivery rather than the loss of packets.

Therefore, H2O is an end-to-end handoff signaling protocol that functions entirely 

within the ME and SE themselves without requiring any network infrastructure 
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support. We have developed solutions for a few technical problems so that H2O 

can perform handoff securely with just one packet in a single one-way trip from 

the ME to the SE.

3.2.1 In-band vs. out-of-band signaling

The first design choice for H2O we made is to use an in-band rather than an out-

of-band signaling protocol. The choice is based on a few advantages of an in-band 

protocol:

• H2O protocol messages must be delivered from the ME to the SE reliably. 

Setting up a reliable out-of-band connection for the signaling protocol 

incurs extra round-trip delay therefore adding to the handoff latency and 

packet loss. An in-band signaling protocol, on the other hand, can reuse the 

existing connection without extra connection setup overhead and can take 

advantage of the reliable delivery of packets already provided to the exist-

ing connection by the transport protocol, such as TCP.

• An in-band protocol messages can be “authenticated” by whatever trans-

port protocol security mechanism already in place, e.g., either plain TCP’s 

sequence number or IPsec, etc. This is another major advantage for an in-

band signaling protocol over an out-of-band one. If an out-of-band signal-

ing protocol were used, the ME and the SE will need to conduct separate 

authentication process, which will increase the complexity and delay of the 

signaling process.

• An in-band protocol message can serve as a “trigger” for the transport pro-
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tocol to immediately restart transmitting packets without waiting for a tim-

eout. Because the protocol message is seen by the transport protocol just as 

a regular data packet. This feature obviously depends on the internal oper-

ational semantics of the transport protocol. We emphasize that H2O does 

not rely on this feature for its functions but rather it comes “for free” 

because the protocol messages are carried in-band.

For connection-less transport protocols such as UDP, these benefits of an in-band 

handoff protocol do not apply since, as we pointed out in Section 2.4.2 in 

Chapter 2, connection-less transport protocols do not maintain any connection 

states beyond the logical association of two communicating endpoints in the form 

of a {source IP address:source port number; destination IP address:destination port num-

ber} tuple. In other words, the difference between an in-band and an out-of-band 

handoff protocol for connection-less transport protocols is moot, with the only 

advantage of an in-band handoff protocol being that it does not require the cre-

ation of another endpoint (socket).

An in-band signaling protocol does have its drawbacks though. Generally, the pro-

tocol is implemented by interposing “special” protocol messages within the data 

stream. This introduces two problems:

1. There needs to be a way to differentiate these “special” protocol messages 

from the regular data messages.

2. Since the protocol messages are treated by the transport protocol as normal 

data messages, they can be buffered in a queue behind other data messages 
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which results in the delay of delivering the protocol messages.

The first problem can be handled by techniques such as bit stuffing, commonly 

used to frame continuous bit streams. However, it requires inspection of every mes-

sage body (instead of just the message header) by the signaling protocol (instead of 

just the applications). And potentially every message body has to be modified to 

avoid a normal data message that happens to be the same as the special protocol 

message being misinterpreted. This will considerably increase the complexity of 

the signaling protocol and the overhead of processing each message.

Certain transport protocols such as TCP provide an “urgent data” mechanism to 

allow certain messages to skip to the head of the data message queue, which can 

be used to deal with the second problem. However, the solution has a couple of 

drawbacks of its own. First, it obvious depends on the particular transport proto-

col in use. Second, it may interfere with certain applications such as telnet, which 

make explicit use of such urgent data for their normal operation.

Because of the limitations of these solutions, we have developed another mecha-

nism for H2O to resolve the problems. The mechanism is surprisingly simple. In 

stead of interposing a “special” protocol message within the data stream, we carry 

the H2O protocol messages inside the message header rather than the message 

body. This is possible since H2O protocol messages are all very simple and small. 

Because the message header is separate from the message body, there is never the 

problem of misinterpreting data messages as protocol messages. Also since a mes-

sage header is applied onto all data messages, by putting the protocol message 
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inside the message header of the data message at the head of the sending queue, 

H2O can circumvent the problem of protocol messages being blocked by other 

data messages in the queue without relying on any special feature of the transport 

protocol. Note that H2O does not incur any processing overhead for the data 

stream during normal operation. Because data messages with header carrying 

H2O protocol messages are sent only during a handoff.

3.2.2 H2O protocol operation

Figure 3-2 shows the operation of H2O signaling protocol. We consider three cases 

corresponding to the different types of link layer technologies: 

• no advance notice: link layer provides no warning of the imminent loss of 

connectivity. WiFi is an example of such network. Note that one can also 

consider unplug/plug in an Ethernet an example of such network.

• advance notice without simultaneous connectivity: link layer provides 

warning of the imminent loss of connectivity but does not allow simulta-

neous connectivity to both the old and new APs. TDMA is an example of 

such network.

• advance notice with simultaneous connectivity: link layer provides warn-

ing of the imminent loss of connectivity and allows simultaneous connec-

tivity to both the old and new APs. CDMA is an example of such network.

We can see that the primary protocol message of H2O is the HANDOFF message.

A second protocol message SUSPEND is also defined for the case when the link 

layer provides advance notice but not simultaneous connectivity. The SUSPEND 
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message is also used by H2O when connections are migrated by suspension/

resumption, which we discuss in Section 3.4. All H2O protocol messages are pro-

tected by its security mechanism presented in Section 3.2.4.

For the case of no advance notice, when the ME detects a layer 3 handoff, e.g., 

when it crosses network boundary and acquires a new IP address, it updates its 

virtual-physical address mapping for the migrated connections and sends a 

HANDOFF message to the SE. When the SE receives the HANDOFF message, it 

authenticates the messages, updates its virtual-physical address mapping for the 

migrated connections, and redirects traffic to the new location of the ME.

For the case of advance notice without simultaneous connectivity, when the ME 

receives the advance notice, since it does not yet know where it will move to, it 

cannot update its virtual-physical address mapping. Therefore it sends a SUS-

PEND message to the SE. When the SE receives the SUSPEND message, nor can it 

update its virtual-physical address mapping yet. The SE will instead, after authen-

Figure 3-2. H2O protocol timeline
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ticating the message, block the owner processes of the migrating connections from 

sending more messages to reduce message loss during the handoff process. When 

the ME regains network layer connectivity, it updates its virtual-physical address 

mapping and sends a HANDOFF message to the SE. When the SE receives the 

HANDOFF message, it performs the same tasks as those in the case of no advance 

notice, i.e., authenticates the message, updates its virtual-physical address map-

ping, and redirects traffic to the new location of the ME. In addition, it unblocks 

the owner processes of the migrated connections from sending more messages.

For the case of advance notice with simultaneous connectivity, when the ME 

receives the advance notice, it can start the layer 3 handoff and acquire new net-

work connectivity before losing the current one. As soon as it acquires a new IP 

address, the ME will update its virtual-physical address mapping and sends a 

HANDOFF message to the ME. After sending the HANDOFF message, the ME 

may continue to receive messages from the old IP address, which it will deliver as 

usual. From the perspective of the SE, there is no difference between the case of 

advance notice with simultaneous connectivity and the case of no advance notice. 

The SE performs the same tasks of authenticating the message, updating its vir-

tual-physical address mapping, and redirecting traffic to the new location of the 

ME when it receives the HANDOFF message. Note that in this case, there is really 

no loss of layer 2 and layer 3 connectivity at the ME since the new connectivity can 

be acquired before the old one is lost.
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3.2.3 Interaction with existing network security constructs

Maintaining the connectivity between two communication endpoints in a mobile 

environment is more difficult with the presence of certain network security con-

structs that are designed to limit network access, such as stateful packet inspection 

(SPI) firewalls and virtual private networks (VPN). We offer our view on the inter-

play between mobility and these constructs.

3.2.3.1 SPI firewall traversal

We first clarify that SPI firewall traversal is different from NAT traversal, even 

though the two functions are commonly performed by one single device. The most 

important difference between the two is that NAT is stateless packet filtering based 

solely on the IP address and port number, while SPI firewall is stateful session fil-

tering based on, in addition to IP address and port number, higher layer protocol 

(transport and above) information such as TCP SYN flag and FTP PORT com-

mand, etc. Furthermore, the operations of SPI firewalls are governed by their secu-

rity policies.

In Section 2.2.3 in Chapter 2, we have seen how NAT causes the lose of state syn-

chronization on the ME and SE due to the movement of the ME; and we have 

designed the connection label mechanism to solve the problem. Apart from break-

ing the end-to-end semantics, NAT does not otherwise hinder the handoff process. 

That is, the H2O HANDOFF message will pass through the (new) NAT device 

even though the messages are generated in-band in the middle of a connection. 

With SPI firewalls, however, the situation is reversed. SPI firewalls do not break 
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the end-to-end semantics since they generally do not modify packets but rather 

filter them according to their states and security policies. However, the session 

states maintained by the SPI firewalls are generally created at the beginning of a 

session by observing specific high level protocol information carried inside a 

packet, such as TCP SYN flag and FTP PORT command, etc. [2][18][124] As shown 

in Figure 3-3, after the migration, the H2O HANDOFF message, which appears to 

be a packet from the middle of a migrated connection, will not be able to pass a SPI 

firewall at the new location since the SPI firewall never saw the beginning of the 

connection. Note that if the migrating “connection” is UDP, the H2O HANDOFF 

message will be able to pass the SPI firewall.

To resolve this problem for TCP, H2O HANDOFF message will have its SYN bit 

turned on and its ACK bit turned off so that it will appear to the SPI firewall as a 

SYN packet initiating a new connection and will be allowed to pass through. On 

Figure 3-3. SPI firewall traversal
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the SE, the reverse is done before the message is delivered to TCP. The first return 

packet from the SE to the ME will also have its SYN bit turned on, which appears 

to the SPI firewall as a SYN-ACK packet. Of course, the SYN bit is turned off on the 

ME before the packet is delivered to TCP. As a result, states for the migrated con-

nection will be created on the SPI firewall at the new location and the rest of the 

connection traffic can continue. States for the connection on the SPI firewall at the 

old location will eventually timeout.

We still have to remember that the operations of SPI firewalls are under the control 

of their security policies. Therefore, the above mechanism will work only to the 

extent that is permitted by the security policies of the SPI firewall at the new loca-

tion. For example in Figure 3-3, if the security policy of the SPI firewall at the new 

location is such that no outgoing connections to the particular site IP1 from IP3 is 

allowed, then the migration will fail no matter what. This also serves to show that 

in order to provide a network service, mobility in this case, not only technology but 

also any other aspects involved such as security policies, etc., must go hand-in-

hand. Mobility in particular does not go along well with security. Current SPI fire-

wall security policies are mostly based on the same assumption that is made by 

transport protocols: IP address and port number do not change for the lifetime of 

a connection, which is broken by mobility. In this thesis, we address mobility 

issues in the context of technology; we believe the issues must be addressed in the 

context of policy as well. However, that is beyond the scope of this thesis.
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3.2.3.2 VPN traversal

VPNs are secure private networks constructed on top of insecure public networks 

through the use of crytography. VPNs are typically used to protect accesses to pri-

vate corporate resources, which are allowed only by users from within the VPN. 

There are a few different types of VPN, such as virtual private routed networks, 

virtual private LAN segment, and virtual private dial networks, etc. [59], but they 

don’t affect our discussion. We will use the virtual private dial networks, also 

known as remote access VPNs, as the example to illustrate how H2O handoff inter-

operates with a VPN.

Figure 3-4 shows a user IP2 accessing a server IP1 from within the corporate LAN. 

Later the user moves out of the corporate LAN and connects to the public Internet 

at IP4, e.g., the user goes from his/her office to home. Since the server IP1 is only 

accessible through the corporate LAN, the user “dials” his/her corporate VPN 

server and sets up a secure tunnel; the tunnel logically puts him/her on the corpo-

rate LAN at IP3. Therefore, as far as H2O is concerned, the connection [IP2, IP1] 

simply migrates to [IP3, IP1]. More specifically, H2O treats the tunnel interface IP3

Figure 3-4. VPN traversal
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as if it were the physical interface. Tunneling IP3 inside IP4 is part of the VPN func-

tion and therefore is transparent to H2O.

3.2.4 Migration security

By using an in-band signaling protocol, H2O can take advantage of existing secu-

rity protection already afforded to the migrating connection. For example, H2O 

protocol messages are “automatically” protected if the migrating connection is 

already protected by security mechanisms such as the AH/ESP service provided 

by IPsec. Unfortunately, IPsec is not yet widely deployed even though it’s gaining 

wider acceptance. Therefore, for unprotected TCP/UDP connections H2O must 

provide its own security mechanism to guarantee that no additional attack can be 

carried out by exploiting the added migration functions. H2O does not claim to 

make unprotected TCP/UDP connections more secure; rather our goal is to make 

H2O no worse than plain TCP/UDP against existing attacks.

Currently, there are two types of attacks that can be mounted against TCP connec-

tions: one is an attacker who is on the path of the TCP connection and can observe 

and modify packets of the connection; the other is an attacker who is not on the 

path of the TCP connection and can only guess the packets of the connection. Cur-

rently, there is essentially no protection for UDP but H2O protects the migration 

of UDP connections the same way it protects the migration of TCP connections.

For the first type of TCP attack, which is also known as the man-in-the-middle 

attack, H2O does not add any additional benefit to the attacker. Because the 

attacker already has full control of the connection. For the second type of TCP 
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attack, however, the blind attacker may carry out two additional attacks by 

exploiting H2O’s migration functions. First, the attacker can try to guess the TCP 

sequence number of a connection and send a fake SUSPEND message to cause the 

connection to be suspended. This attack, however, is only of marginal benefit to 

the attacker since he/she can also send a RST or FIN message to cause the connec-

tion to be closed. Second, the attacker can try to guess the TCP sequence number 

of a connection and send a fake HANDOFF message to cause the connection to be 

redirected to himself. This is a rather serious potential security vulnerability of 

H2O. Since by managing to redirect a connection to himself, the blind attacker 

effectively “upgrades” himself to a man-in-the-middle attacker. In other words, by 

exploiting the connection handoff function of H2O, a blind attacker can potentially 

conduct a man-in-the-middle attack without actually being on the path of a con-

nection.

3.2.4.1 H2O security mechanism

To prevent these potential exploits by a blind attacker, H2O provides its own secu-

rity mechanism to protect migration of plain TCP/UDP connections. The mecha-

nism is to use a shared secret key to protect the SUSPEND and HANDOFF 

messages. The shared secret key is established at the connection setup time 

through the well-known Diffie-Hellman (DH) key exchange [48]. And the SUS-

PEND and HANDOFF messages are protected by computing and verifying the 

Keyed-hashing Message Authentication Code (HMAC) [83] of the protocol mes-

sages using the shared secret key. The main challenges are (1) since generating DH 

key is computationally expensive due to the requirement of computing modular 
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exponentiation with large prime numbers and H2O must protect migration of 

individual connections, we must be able to conduct the key computation and 

exchange very efficiently in order to avoid excessive connection setup overhead; 

and (2) we must be able to perform the authentication in just one single trip with 

one message.

The security mechanism employed by H2O is based on two main observations: (1) 

the computation of the DH public key does not have to be performed on a per con-

nection basis; it can be performed on a per host basis and therefore can be precom-

puted; and (2) the computation of the shared secret key does not have to be 

performed at the connection setup time; it can be deferred until the time when a 

connection migrates.

Specifically, the shared secret key for a connection is established as follows:

1. For a given prime modulus p and generator g, each machine precomputes its 

public key PK=(gx mod p), where x is a randomly chosen private key.

2. When a machine A with PKA opens a connection to a machine B with PKB, 

PKA and PKB are exchanged by piggybacking them onto the first a few 

packets exchanged between A and B. For example, for TCP, PKA and PKB

are exchanged during the 3-way handshake; for UDP, they are exchanged 

during the first a few data packets arriving one each machine. The rest of 

the dataflow of the connection proceeds unaffected as usual.

3. Periodically, A and B refresh their private keys and recompute their public 
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keys for use with later connections between them.

At the time when a connection on machine A is about to be migrated, either by 

handoff or by suspension/resumption, A computes the shared secret key SK and 

then computes a HMAC by applying SK to the message header that carries the 

HANDOFF or SUSPEND protocol messages. When B receives the HANDOFF or 

SUSPEND protocol messages, it too computes the same shared secret key SK and 

verifies the HMAC carried inside the message header. Note that even the shared 

secret key SK only has to be computed once for a given pair of hosts. Once com-

puted, the SK can be found simply by looking up a table (PKA, PKB)⇒SK without 

having to do a modular exponentiation again until either PKA or PKB is recom-

puted.

We see that the two observations of H2O mitigates the cost of computing the 

public and shared secret keys of the DH protocol. By precomputing the public keys 

per host rather than on-the-fly computing the public keys per connection, H2O 

dramatically reduces the connection setup overhead required for DH key 

exchange protocol. The only connection setup overhead is piggybacking the pre-

computed public keys onto the first a few packets exchanged, which we show in 

Chapter 6 is minimal. By deferring the computation of the shared secret key until 

the time when a connection migrates, H2O eliminates the shared secret key com-

putation overhead altogether for connections that never migrate. By periodically 

refreshing the private keys and recomputing the public keys on each machine, 

H2O can reduce the size of the keys used therefore reduce the key computation 



72
overhead when connections migrate. Combining the key size with the refreshing 

frequency, one can fine tune the migration overhead while maintaining desired 

security strength.

Since the DH protocol and the HMAC algorithm are well-known security mecha-

nisms, the security strength of H2O’s security mechanism is also well understood. 

The only concern is the denial of service (DoS) attack since a blind attacker may use 

the HANDOFF or SUSPEND messages to cause H2O to repeatedly perform the 

expensive shared secret key computation. We note however that DoS attack is not 

specific to H2O; it’s a general attack that is applicable to other security systems 

such as IPsec as well. And currently there is no panacea for the DoS attack. The 

general rule of thumb for deterring DoS attack is to defer expensive computations 

as late as possible when processing incoming messages. This rule is used by H2O 

for the processing of HANDOFF and SUSPEND protocol messages. Since the 

HANDOFF and SUSPEND protocol messages are sent in-band through an existing 

connection, the messages must pass a few preliminary screening by the transport 

protocol first before the computation of the shared secret key occurs.

3.2.4.2 DH protocol and HMAC algorithm

We conclude this section with a brief overview of the DH key exchange protocol 

and HMAC algorithm for those readers who are not familiar with these technolo-

gies. For more detailed information on these topics, the readers are referred to the 

respective references [48] and [83].

The DH key exchange protocol is a well-known method developed by Diffie and 
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Hellman in the landmark paper [48] in 1976. The protocol allows two users to 

establish a shared secret key over an insecure medium without any prior secrets. 

It is based on the computationally infeasible discrete logarithm problem and 

works as follows:

1. For a given prime p (> 2), usually called the prime modulus, and an integer 

g (< p), usually called the generator, the two parties, A and B, wishing to 

communicate each individually chooses a private key x and y (< p-1), 

respectively.

2. A and B compute their public keys as follows: PKA=(gx mod p) and PKB=(gy

mod p). A and B then exchange their public keys over an insecure medium.

3. When A and B receive each other’s public keys, they compute the shared 

secret key as follows: SKAB=((PKB)x mod p)=((gy mod p)x mod p)=(gyx mod p) 

and SKBA=((PKA)y mod p)=((gx mod p)y mod p)=(gxy mod p). Note that 

SKAB=SKBA.

The assumption is that it is computationally infeasible to compute the shared 

secret key SK = (gxy mod p) given the two public keys (gx mod p) and (gy mod p) when 

the prime p is sufficiently large. [91] has shown that breaking the DH protocol is 

equivalent to computing discrete logarithms under certain assumptions. Note that 

the DH protocol is vulnerable to a man-in-the-middle attack. An adversary who 

can intercept all traffic between A and B can substitute the public keys of A and B

with his/her own during the step 2 above and can establish two separate shared 

secret keys with A and B. In other words, the adversary can impersonate A to B and 
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impersonate B to A and relay all traffic between A and B.

While the DH protocol is mathematically simple and elegant, in practice, however, 

its use often still requires specialized hardware when performance is of primary 

concern. Since the DH protocol relies on computing modular exponentiation with 

very large prime numbers, it’s computationally intensive even though many fast 

algorithms have been developed to compute modular exponentiation [61] and 

CPUs are becoming faster and faster. In fact, the increase in CPU speed does not 

necessarily benefit the DH protocol. Because in order to maintain the same level of 

security, one has to use larger key size.

The HMAC is an algorithm for computing Message Authentication Code (MAC) 

using cryptographic hash functions such as MD5 [115] and SHA-1 [50]. MAC is a 

common way to protect the integrity of data sent over insecure medium by attach-

ing to the data an authentication tag that is computed by the MAC algorithm as a 

function of the data and the shared secret key. The receiver accepts the data only 

if the recomputed authentication tag matches the one attached to the data. MACs 

have used to be commonly constructed from block ciphers such as DES [5]. 

Recently, however, there has been a lot of interest in constructing MACs from 

cryptographic hash functions such as MD5 and SHA-1. The main reason is that 

computing cryptographic hash functions is much faster than computing block 

ciphers, at least in software implementation. However, cryptographic hash func-

tions were not originally designed for computing MACs and therefore their use as 

MAC algorithms lacks sound security analysis. HMAC intends to fill this gap by 
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specifying ways to utilize the speed of cryptographic hash functions for computing 

MACs while offering rigorous analysis of their security properties.

The inputs to the HMAC algorithm are:

• H, the cryptographic hash function,

• K, the shared secret key,

• ipad, a string of 64 bytes filled with the octet 0x36,

• opad, a string of 64 bytes filled with the octet 0x5C, and

• text, the data to be protected.

The output of the HMAC algorithm is a string of variable length, depending on the 

particular hash function in use. For example, for MD5, the length is 16 bytes; for 

SHA-1, the length is 20 bytes.

To obtain the MAC, one computes:

output = H(K xor opad, H(K xor ipad, text))

specifically,

1. if the length of K is fewer than 64 bytes, pad it with zeros

2. bitwise exclusive-OR (xor) the (padded) K created in step 1 with ipad

3. append text to the result of step 2 and apply H to the whole stream

4. bitwise exclusive-OR (xor) the (padded) K created in step 1 with opad

5. append the result from step 3 to the result from step 4 and apply H again to 
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the whole stream

The result of step 5 is the final output of the HMAC algorithm.

3.3 H2O Protocol Analysis

We now present a qualitative analysis of the H2O handoff signaling protocol com-

pared to the signaling protocols used in other handoff architectures such as Hier-

archical MobileIP [123] (with or without Fast Handover [82]) and domain-based 

systems (e.g., HAWAII [110], Cellular IP [42], and EMA [46]). These architectures 

are all based on the same principle, i.e., using a crossover router (XR) located close 

to the ME to redirect traffic after the handoff and they differ only in the details of 

how the new route from the XR to the ME is setup and the exact handoff procedure. 

Therefore, for the purpose of this analysis, we do not differentiate among these 

approaches. Rather, to simplify the analysis, we consider the best case scenario for 

all these architectures; we assume that it takes just one single trip from the ME to 

the XR to effect the redirection. For the rest of the section, we categorically refer to 

all these architectures as IBH, infrastructure based handoff. We use TCP as the 

transport protocol in our analysis since it is the predominant connection-oriented 

transport protocol in use today. We also consider the scenario that data from the SE 

are continuously arriving at the MH during the handoff, which is typical of a non-

interactive client-server communication (where the ME is the client and the SE is 

the server) such as file downloading or media streaming.

The purpose of this analysis is to show that while under certain strong assump-



77
tions, such as advance notice with simultaneous connectivity that lasts long 

enough, IBH may perform better than H2O, for the most common case of today’s 

data network, the performance difference between H2O and IBH seen at the trans-

port protocol will be negligible.

3.3.1 No advance notice

Handoff without advance notice is the most common case today with data net-

works. For example, widely used WiFi networks do not provide advance notice for 

layer 2 handoff and do not provide simultaneous connectivity to both old and new 

APs during the layer 2 handoff.

The handoff timeline for both H2O and IBH is shown in Figure 3-5:

• At t0, the ME starts the layer 2 handoff and therefore losing connectivity to 

its current AP. Packets sent by the SE at T0, which would have arrived at 

Figure 3-5. H2O analysis: no advance notice
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the MH right after t0, will be lost. Note that with the continuous arrival of 

data and TCP’s sliding window protocol, it is almost certain that at t0 when 

the ME loses its connectivity to the AP, either all arrived data have not been 

acknowledged, or all buffered data in TCP have not been consumed by the 

application on the ME, or both. In other words, the next acknowledgement 

from the ME to the SE, which will happen after the layer 2 handoff at t1, 

will either acknowledge more data, or open up the window size, or both. 

In any case, the acknowledgement will allow the SE to send more data to 

the ME.

• At t1, ME finishes the layer 2 handoff and regains connectivity to a new AP 

and a new IP address. This is the earliest time the ME can send and receive 

packets. For H2O, the ME sends a HANDOFF message to the SE, which 

will reach the SE at T2. For IBH, the MH sends a control message to the XR, 

which will reach the XR at x0. For both H2O and IBH, if the MH has data to 

send, it can do so at t1 and the data will reach the SE at T2. These data will 

carry an acknowledgement that allows the SE to send more data to the ME 

(see discussion of previous bullet at t0). However, since all data sent by the 

SE after T0 are lost, the acknowledgement can only acknowledge the last 

packet received by the ME before t0 (i.e., last packet sent by the SE before 

T0). Assuming that the layer 2 handoff period [t0, t1] is small compared to 

the RTT (Round Trip Time) between the ME and the SE, the arrival of the 

acknowledgement at T2 will cause the SE to resend the lost packets it sent 

after T0 without going into slow start due to a timeout.
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• If the ME has no data to send at t1 after regaining connectivity with a new 

AP (which is the more common case), then the earliest time when the ME 

can receive a packet is t3 for H2O and t2 for IBH, respectively. From 

Figure 3-5, t3 corresponds to the times when a packet from the SE was redi-

rected at T2 after the SE has received the HANDOFF; so [t1, t3] is the layer 3 

handoff period for H2O during which packets for the ME are lost. Simi-

larly, t2 corresponds to the time when a packet sent from the SE at T1 was 

directed by the XR at x0 after the XR received a control message from the 

ME; so [t1, t2] is the layer 3 handoff period for IBH. We can see that for H2O 

all packets sent by the SE between [T0, T2] are lost while for IBH all packets 

sent by the SE between [T0, T1] are lost. However, the earliest time when 

the SE can receive an acknowledgement is T2 for H2O and T3 for IBH, 

respectively. Therefore, although H2O may lose more packets between [T1, 

T2], the SE can start resending lost packets earlier at T2 and the perfor-

mance difference between H2O and IBH seen at the transport protocol 

layer will be negligible. We also note that we have assumed the best case 

layer 3 handoff period [t1, t2] for IBH. More complex interaction between 

the ME and the XR may prolong [t1, t2] and consequently delay the time of 

arrival of the acknowledgement, T3. If the delay were long enough to cause 

a timeout for the lost packets sent after T0, TCP would go into slow start 

and the performance of IBH would suffer more.

To summarize, for the most common case with today’s data network where is no 

advance notice for the layer 2 handoff, the layer 3 handoff performance between 
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H2O and IBH from the transport protocol’s perspective is rather negligible.

3.3.2 Advance notice without simultaneous connectivity

With advance notice, packets can still be lost for IBH as shown in Figure 3-6a. This 

is because the advance notice at t-1 must come early enough such that it can reach 

the XR at time x0 to allow the XR to start buffering packets sent by the SE after T0, 

which would have arrived at the ME after t0 and been lost since the ME starts the 

layer 2 handoff at t0, as shown in Figure 3-6b. In other words, the time between the 

advance notice and the start of the layer 2 handoff, (t0-t-1), must be longer than 

RTTMX, the RTT between the MH and the XR, to prevent packet loss for IBH. Note 

that if (t0-t-1) were longer than RTTMS, the RTT between the ME and the SE, then 

there would be no packet loss for H2O either. But we assume this is unlikely to 

happen, if we assume that RTTMS is much longer than RTTMX. Therefore we 

assume there will always be packet loss for H2O. We first consider the case when 

there is packet loss for IBH; we then consider the case when there is no packet loss 

for IBH. From Figure 3-6a:

• At t-1, the advance notice causes H2O to send a SUSPEND message to the 

SE. This message signals the SE to stop sending more packets but does not 

allow the SE to perform redirection since the ME does not yet know where 

it is moving to. For IBH, a control message is sent to the XR so the XR can 

start buffering packets.

• At t0, the ME starts layer 2 handoff and loses connectivity to its current AP. 

Packets sent by the SE at T0, which would have arrived at the ME right 
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after t0, will be lost. For H2O, packet loss continues until T2, which is the 

time when the SE receives the SUSPEND message and stops sending more 

packets. For IBH, packet loss continues until T1, which corresponds to the 

time x0 when the XR receives the control message and starts buffering 

packets.

• At t1, the ME finishes the layer 2 handoff and regains connectivity to a new 

AP and a new IP address. This is the earliest time the ME can send and 

receive packets. For H2O, a HANDOFF message is sent to the SE; and for 

IBH, a control message is sent to the XR. And the rest of the comparison 

will be similar to the case with no advance notice. For H2O, at T3, the 

HANDOFF message will cause the SE to resend the packets lost between 

[T0, T2]. For IBH, packets sent by the SE after T1, which are buffered by the 

XR, will be sent by the XR at x1 and arrive at the ME at t2; and the acknowl-

edgements from the ME for these packets will arrive at the SE at T4. These 

acknowledgements will carry the acknowledgement for the last packet 

Figure 3-6. H2O analysis: advance notice without simultaneous connectivity
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sent by the SE before T0 and signal the SE to resend the packets lost 

between [T0, T1]. Therefore, while H2O may lose more packets, the SE can 

also start retransmission earlier. Again note that the time T1 and T4 in IBH 

can be delayed due to more complex interaction between the ME and the 

XR.

In the case of Figure 3-6b when there is no packet loss for IBH:

• For H2O, packets continue to be lost during [T0, T2]. However, the earliest 

time when the ME can send and receive packets is still t1 for both H2O and 

IBH.

• For H2O, it behaves similarly to the previous case with packet loss. The SE 

can start resending packets lost between [T0, T2] at T3 although packet loss 

is fewer in this case since [T0, T2] is shorter than the previous case. For IBH, 

since there is no packet loss, at x1 the XR can start delivering buffered pack-

ets (those sent by the SE after T0) to the ME, which will reach the ME at t2. 

Acknowledgements for these packets will reach the SE at T4 and it can start 

sending again more packets without any retransmission. The net effect is a 

delay of (t2-t0) for packets sent by the SE after T0.

To summarize, with advance notice but no simultaneous connectivity, if there is 

packet loss, then the performance difference between H2O and IBH seen by the 

transport protocol will be negligible. If the advance notice comes early enough for 

IBH to avoid packet loss, it can perform the handoff with packet delay but no 

retransmission. Again depending on the difference between T3, the time for H2O 
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when the SE can start resending lost packets, and T4, the time for IBH when the SE 

can start sending more packets, the case of no packet loss may or may be advanta-

geous for the IBH. In addition, the condition under which packet loss can be 

avoided is a rather strong assumption and not generally available in today’s data 

network.

3.3.3 Advance notice with simultaneous connectivity

Finally, even with advance notice and simultaneous connectivity, there still can be 

packet loss for IBH as shown in Figure 3-7a. Because the connectivity to the old AP, 

which ends at t0, must last long enough until t1, which corresponds to the time x0

when the XR has been notified and started redirecting packets to the new AP, as 

shown in Figure 3-7b. In other words, the period of simultaneous connectivity, (t0-

t-1), must be longer than RTTMX. Again note that if (t0-t-1) were longer than RTTMS, 

there would be no packet loss for H2O either; but we again do not make such 

assumption. First we consider the case when there is packet loss for IBH in 

Figure 3-7a:

• At t-1, the ME gains connectivity to the new AP while retaining connectiv-

ity to the old AP. For H2O, a HANDOFF message is sent to the SE; For IBH, 

a control message is sent to the XR. Note that although the ME can send 

from the new AP as early as t-1, the earliest time it can receive packets from 

the new AP is t1, which corresponds to the time x0 when the XR has been 

notified and started redirecting packets. During [t-1, t0], packets from the 

SE continue to arrive from the old AP.
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• At t0, the ME loses connectivity to the old AP. Packets sent from the SE at 

T0, which would have arrived right after t0, are lost. For H2O, the HAND-

OFF message will reach the SE at T2 and allow the SE to start resending the 

packets lost between [T0, T2]. For IBH, the earliest time when the SE can 

receive acknowledgements from the ME is T3, which allows the SE to 

resend packets lost between [T0, T1]. So once more, this case is similar to 

the case of no advance notice and the case of advance notice without simul-

taneous connectivity (with packet loss). H2O may lose more packets but 

the SE can start resending the lost packets earlier.

In the case of Figure 3-7b when there is no packet loss for IBH:

• For H2O, again there is really no difference between this case and previous 

case with packet loss. Packets sent from the SE are lost between [T0, T2], 

where T0 corresponds to the time t0 when the ME has lost its connectivity 

to the old AP and T2 is the time when the SE has received the HANDOFF 

Figure 3-7. H2O analysis: advance notice with simultaneous connectivity
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message and starts redirecting traffic to the new location of the ME. T2 is 

also the time when the SE starts to resend the packets lost between [T0, T2].

• For IBH, this is the case when it can achieve truly seamless handoff with-

out packet loss and delay. Before t0, all packets (sent before T0 from the SE) 

are received from the old AP; after t0, all packets are redirected to the new 

AP by the XR, which has received the control message at x0.

To summarize, again with advance notice and simultaneous connectivity, if there 

is packet loss, then the performance difference between H2O and IBH seen by the 

transport protocol will be negligible. If the simultaneous connectivity lasts long 

enough (at least RTTMX) for the IBH to avoid packet loss, it can achieve truly seam-

less handoff without packet loss and delay. However, this is an even stronger 

assumption than that for the case of advance notice without simultaneous connec-

tivity in today’s data network.

3.3.4 Intra-domain handoff

Although our analysis of H2O and IBH protocols has assumed the case where the 

ME and the SE are “far away” from each other across the Internet, one should not 

forget the case where the ME and the SE are “very close” to each other in the same 

network. As pointed out in [112], this type of traffic, termed as intra-domain traffic, 

constitutes a large part of today’s wireless traffic yet lacks support in existing 

handoff architectures. For example, architectures such as Hierarchical MobileIP 

and Cellular IP always route traffic towards the XR even if the ME and the SE are 

directly connected in the same network, while HAWAII did not specify how intra-
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domain traffic is handled. Only Fast Handoff and EMA has provision for handling 

intra-domain traffic more efficiently. In contrast, since H2O functions entirely 

within the endpoints, it doesn’t care whether the ME and the SE are far away from 

or close to each other. The H2O signaling protocol always takes one single trip 

from the ME to the SE; therefore H2O “automatically” takes advantage of the 

closer distance between the ME and the SE if they are directly connected.

In Figure 3-8 we illustrate the difference between the two cases when there is no 

advance notice. Figure 3-8a is duplicated from Figure 3-5 as a convenience. As one 

can see from Figure 3-8b, the time for H2O’s HANDOFF protocol message to 

arrive at the SE, T2, is now sooner than (or comparable to) the time for IBH’s con-

trol message to arrive at the XR, x0. Also, the layer 3 handoff period for H2O, [t1, 

t3], during which packets for the ME are lost, is now shorter than (or comparable 

to) that for IBH, [t1, t2]. More importantly, however, is that the earliest time when 

the SE can receive an acknowledgement from the ME and start resending lost 

Figure 3-8. H2O analysis: intra-domain handoff

ME SE

L3

oIP stop

nIP start

oIP stop
nIP start

HANDOFF

t0

t1

t2

t3

XR

x0

T0

T1

T2

T3

L2

ME SE

L3

oIP stop

nIP start
oIP stop
nIP start

HANDOFF

t0

t1

t2

t3

XR

x0

T0

T1

T2

T3

L2

(a) ME far away from SE (b) ME directly connected  to SE



87
packets is much earlier for H2O. For H2O, the SE can start resending packets lost 

between [T0, T2] at T2; while for IBH, the SE can only start resending packets lost 

between [T0, T1] at T3. For IBH, TCP in this case would almost certainly have timed 

out and gone into slow start.

3.4 Suspension/Resumption with Migration 
Helpers

While existing mobility architectures have all assumed handoff as the way for 

communication mobility, we recognize that there is another commonly used way 

for communication mobility, namely through suspension/resumption. For exam-

ple, laptop users today regularly suspend their laptop at one place such as office 

and resume it at another place such as home. In this section, we discuss how 

MOVE supports this type of mobility with the same H2O signaling protocol and 

addresses some of the issues specific to suspension/resumption.

There are mainly two differences between handoff and suspension/resumption:

• connections are not abruptly dropped as in the case of handoff without 

advance notice; rather there is a phase where the machine can receive a 

suspension event and perform necessary preparation prior to the suspen-

sion.

• the suspended machine may stay unconnected for a prolonged period of 

time.

If one recalls the handoff case when there is advance notice but no simultaneous 
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connectivity (Figure 3-6 in Section 3.3.2), one can see that there is really not much 

difference between the advance notice and the suspension event. In fact, as far as 

H2O is concerned, the two events are treated exactly the same way on the mobile 

endpoint: they both result in a SUSPEND message being sent to the stationary end-

point.

The real issue concerning suspension/resumption is the fact that the mobile end-

point can stay unconnected for a prolonged period of time. Because during this 

time the suspended connections may have been timed out on the stationary end-

point due to various timeout mechanisms employed either by the transport proto-

cols or by the applications. For example, TCP provides a keepalive mechanism 

that, when enabled, will send a probe to the peer if a connection has been idle for 

2 hours (the timeout is configurable but is recommended and defaults to be 2 

hours). Some applications such as telnet server use this feature to detect dead client 

(usually the timeout is changed to 15 minutes). Many other applications instru-

ment their own timeout mechanism. For example, an FTP server will close an idle 

connection after a preconfigured timeout period. Therefore, one must disable these 

timeout mechanisms in order to keep the suspended connections on the stationary 

endpoint alive beyond the timeout limits of these mechanisms while the mobile 

endpoint stays unconnected. However, due to the transport protocol and applica-

tion dependent nature of these timeout mechanisms, we recognize that satisfactory 

solution to this problem is also likely to be transport protocol and application 

dependent.
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In order to maintain transport protocol and application independence of the core 

MOVE architecture while still being able to deal with transport protocol and appli-

cation specific issues, we introduce a connection migration helper interface. A con-

nection migration helper is an optional function that can be defined by the user 

and registered with the MOVE system through a well-defined interface. The 

helper is activated for a connection on the stationary endpoint when the connec-

tion is suspended by the mobile endpoint and is deactivated when the connection 

is resumed. The helper can monitor potential outgoing traffic on the suspended 

connection and can buffer and/or respond to the traffic in any transport protocol 

and/or application specific manner. While the focus of MOVE is not on providing 

a comprehensive suite of migration helpers to address the timeout problem of all 

applications, we have studied the behavior of several popular servers and devel-

oped several application-independent helper that we believe is sufficient for many 

of today’s servers. We emphasize again that the use of these migration helpers is 

completely optional and we do not claim to handle all applications. One can 

always elect to migrate a connection using suspension/resumption under the tim-

eout constraints of the transport protocol and/or the applications involved.

The first helper is to disable the transport protocol timeout mechanism such as the 

TCP keepalive timer on the stationary endpoint. This can be done very easily on a 

per-connection basis.

The second helper is to block the server process on the stationary endpoint from 

sending messages on a suspended connection. The majority of the servers today 
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use either blocking or nonblocking sockets for their network I/O. And they either 

use select on the sockets or use read and write (or their variants) directly on the sock-

ets. When a connection is suspended, the helper takes over the select function asso-

ciated with the socket of the suspended connection on the stationary endpoint. The 

helper will make it appear that the socket is never ready to be written therefore the 

server process that uses select to check the readability and writability of a socket will 

never attempt to send messages through the socket. In addition, the helper takes 

over the write function (and its variants) associated with the socket and, when the 

process tries to send a message from the socket, either blocks the process if the socket

is in blocking mode or returns -EAGAIN if the socket is in non-blocking mode. 

These functions are restored to their original ones when the connection is resumed. 

Our experience indicates that this helper works very well as many of today's well-

known servers are written in such a “standard” way.

While blocking the server process from sending messages through the suspended 

connections worked quite well for many servers, there are still certain applications 

that do not work with the helper. One notable example is the popular FTP servers 

such as wu.ftpd and in.ftpd. The timeout mechanism for the FTP servers does not 

periodically send probe to detect dead client. Rather, the server registers with the 

OS a timer which will fire if a connection idles beyond the timeout limit of the 

timer. Fortunately, timers are always registered with a delta which specifies how 

long in the future from now they should fire rather than with absolute time. This 

allows us to develop a third application-independent helper, which is to “freeze” 

the timer registered by the server. Specifically, at the time when a connection is 
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suspended, the helper checks to see if a timer has been registered by the server of 

the connection. If yes, it finds out the delta of the timer, i.e., how long in the future 

the timer is scheduled to fire. At the time when the connection is resumed, the 

helper will modify the timer and adds delta to the current time. This effectively 

“freezes” the timer for the period when the connection is suspended.

Finally, we mention an example of applications that none of our migration helper 

will be able to handle and an application-specific helper is needed. The Internet 

Relay Chat (IRC) server is such an application. An IRC server usually has its own 

periodical “ping” mechanism to detect dead clients. Unfortunately, we cannot use 

the second helper to simply block the server from sending the “ping” when one of 

its clients suspends and moves. Because the IRC server is a single threaded process 

that handles all its connections within a single process. If we blocked the server 

process from sending message through a suspended connection, it would block 

the entire server process. In this case, an IRC-specific connection migration helper 

would be needed when an IRC client is suspended and moved to monitor the sus-

pended connection and to respond to the IRC server's “ping” probe until the con-

nection is resumed.

3.5 Summary

We presented in this chapter a layer 3 handoff signaling protocol, called H2O, that 

is employed by MOVE for handoff execution. H2O has the following features: end-

point only, single one-way trip handoff, self-secure, and suspension/resumption 
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support. The most distinguishing characteristic of H2O is its end-to-end nature, a 

clear departure from traditional handoff mechanisms that introduce complexity in 

the network infrastructure. We have shown, through qualitative analysis, that 

handoff performance difference between H2O and traditional handoff mecha-

nisms is essentially indistinguishable by the transport protocols, due to the fact 

that transport protocols often have their own packet loss handling mechanisms - a 

key observation of H2O. We will show with performance measurements in 

Chapter 6 that H2O incurs minimal impact on the end-to-end transport connection 

characteristics.
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4High Service Availability 
Support

In previous Chapter 2 and Chapter 3, we described the fundamental mechanisms 

of MOVE architecture for supporting transparent migration of fine-grain end-to-

end network connections. The endpoint-only nature of MOVE makes it easily 

applicable, besides general client mobility, to a variety of mobility application sce-

narios. In this chapter, we describe how we integrate MOVE with a process migra-

tion mechanism to fully exploit MOVE’s fine-grain connection migration 

capability and to enable new system support for high service availability. In par-

ticular, we show how the integration can provide high service availability in 

proxy-based server clusters by allowing server applications and their persistent 

connections to be migrated during a server maintenance to avoid service disrup-

tion. We start with our motivation for this particular application scenario.

4.1 Motivation

Online services and businesses are becoming an integral part of our daily life. For 

example, web, email, enews, messenger are now essentially commodity services; 

while critical business functions, such as order processing and tracking, inventory 

control, transaction processing, customer support, and electronic commerce, are 

also increasingly being conducted online. These services and businesses are sup-
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ported by computing and networking facilities that are typically organized as a 

server farm behind a firewall/proxy and must be up and running 24-7. A few min-

utes of downtime, scheduled or unscheduled, translates into millions of lost dol-

lars.

Server clusters are one of the most popular ways to meet the stringent demands for 

service scalability and availability in businesses today. Since server clusters can be 

built with cheap off-the-shelf hardware components; and free or commercial clus-

ter software are also readily available. Locally distributed web server systems [43] 

are the most widely used server clusters today. And a lot of research 

[31][81][101][102][120][130] have been conducted on mechanisms such as TCP 

handoff to support dynamic content-aware request distribution and to improve 

the performance and scalability of the web servers. Web server clusters also 

improve the service availability by allowing requests to be redirected when a 

server fails or is being serviced. A limitation of these server clusters though is that 

they require the services to be stateless. That is, each request from a client can be 

serviced independently by different servers; or in other words, no server applica-

tion states beyond those trivially replicated ones such as static web pages are 

needed to serve a request. However, many applications are transactional and state-

ful, such as database servers and application servers, etc. Providing high service 

availability for these applications require replicating and transferring both connec-

tion states and application states.

Server fault tolerant systems [26][29][80][90][99][138][140] are another way to pro-



95
vide high service availability in the events of unexpected failure by maintaining a 

mirror backup server of the primary server at all times. While the backup server 

replicates all states of the primary server, maintaining the exact mirror of the pri-

mary server states has proven to be very difficult. Consequently, current fault tol-

erant systems require the server applications to be “deterministic”, i.e., the server 

states are completely determined by the network stream between the client and the 

server. Due to the cost of backup hardware and software, fault tolerant systems are 

dedicated for a few critical servers rather than loosely coupled server clusters. 

Most fault tolerant systems also require server transport protocol (TCP) and/or 

server application change.

Therefore, providing high service availability for arbitrary stateful applications in 

server clusters remains a unsolved problem. Particularly, events such as scheduled 

server maintenance today require careful planning and cause lengthy service dis-

ruption. For example, typically an announcement is made well in advance in hope 

to steer clients away from the particular server involved and to reduce potential 

unsatisfactory factor. Still, any active sessions on the server are discarded at the 

time of the maintenance. Ironically, the busier the server, the more likely it is to 

require more frequent maintenance; and the better maintained a system is, the less 

likely it is to fail. In other words, maintenance today causes conflict in goals. On 

one hand, it is desirable to perform frequent maintenance in order to minimize the 

chance of failure; but on the other hand, the service disruption due to the mainte-

nance itself goes up. Therefore, avoiding service disruption due to server mainte-

nance entails great benefits.
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4.2 Example High Service Availability Scenario

The application environment we focus on is a proxy-based architecture commonly 

deployed by business service providers today, as shown in Figure 4-1. The proxy 

is a single address frontend that admits service requests from clients across the 

Internet, and dispatches the requests to the appropriate backend application serv-

ers. The proxy can operate at either layer 4 or layer 7 and can employ any suitable 

scheduling rule and load balancing policy for dispatching the requests.

We instrument both the proxy and the servers to provide zero service disruption 

server maintenance without touching the clients. The following steps are taken at 

maintenance time:

Stop dispatching new requests   to a server A that is about to be serviced. 

Figure 4-1. High service availability in proxy-based server cluster
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However, requests for existing application sessions on server A continue to be for-

warded.

Relocate existing sessions   on server A, along with their open network con-

nections, to other servers such as B and/or C. We allow sessions to be distributed 

to several other servers rather than just one because (1) it avoids overloading a run-

ning server; (2) one particular running server may not have all the software/hard-

ware configuration necessary to support all the active sessions on server A.

Resume dispatching new requests   to server A after maintenance. Migrated 

sessions of server A may continue to finish on server B and/or C, or be migrated 

back to server A.

We assume that there can be any number of services on each server, but only one 

instance of a service presents on each server (assuming no other virtualization 

such as VMware [22] is used). We also assume that a given service can be served 

by two or more servers in the cluster, which is generally the very purpose of a clus-

ter. Stopping and resuming new requests while continuing to service existing ses-

sions are common functions available on modern proxies such as Resonate Central 

Dispatch [16] and Foundry ServerIron [7]. So the main challenges are:

• migrate stateful sessions and their open persistent connections from one 

server to another

• allow easy deployment with minimal cluster configuration and manage-

ment, no server OS or application change
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• incur minimal server performance overhead and provide fast connection 

handoff while retaining scalability

We meet these requirements by integrate MOVE with the Zap [100] process migra-

tion mechanism. We introduce a new process and connection abstraction, called 

zPod, which combines Zap’s Pod abstraction for process states with MOVE’s 

CELL abstraction for connection states. zPod therefore provides a virtual and pri-

vate namespace for process states as well as transport connection states.

4.3 The zPod Abstraction

Migrating stateful application with open connections remains a difficult problem. 

Existing migration abstractions have generally required assigning each migratable 

unit with its own routable IP address, making the unit a host-like entity in terms 

of network communication. However, this requirement raises network configura-

tion, management, and compatibility issues.

First, since the migratable units are volatile and created dynamically on-demand, 

assigning them with static name/IP is infeasible; additional mechanisms such as 

DHCP are needed, which add possible sources of failure. Furthermore, dynamic 

server name/IP conflicts with current server configuration and management prac-

tice as existing server clusters are mostly configured with static server name/IP for 

easier management and better control. A few examples are:

• Cluster components such as loader balancers require configuration of vir-
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tual-physical IP address mapping, which can be very difficult to do with 

dynamic server IP. Most monitoring software also requires static server 

name/IP.

• Certain server properties such as SSL certificate are assigned on a per-

name basis; and many server software are licensed on a per-IP basis. These 

can be very hard to manage with dynamic server name/IP.

• Due to security concerns, static server name/IP is used for better control. 

For example, IBM Global Service configures everything static to have bet-

ter control on routing and address allocation.

Besides adding network configuration and management complexities, individual 

name/IP for each migration unit is incompatible with certain existing networking 

constructs, RPC (remote procedure call) being an example. RPC port mapper pro-

tocol allows a server written in RPC to register its listening port, transport proto-

col, program number, etc. But the implicit assumption is that the server will be at 

the same IP address where the port mapper is. Therefore, a server written in RPC 

must use the machine’s IP address which the port mapper uses.

zPod, similar to Zap’s pod, provides a group of processes with a virtual and pri-

vate namespace for a complete set of the underlying OS resources, including trans-

port connection states; and zPod allows these processes, along with their open 

connections, to be transparently migrated across hosts. zPod is a VM-like entity 

but without a guest OS; therefore zPod is very light-weight and requires no con-

figuration. zPod simply maps between its virtual namespace and the underlying 
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physical OS resources. Particularly, zPod exposes to its encapsulated applications 

a single virtual interface, which just mirrors the physical interface of the host 

where the zPod is initially created. All zPods on a host share the host’s interface 

and are reachable only through the different port number of the service they 

encapsulate, just like regular server processes. When a zPod migrates, its virtual 

interface stay intact and is mapped to the physical interface of the new host. There-

fore, zPod is completely transparent to the host and requires zero network config-

uration and management, and is also compatible with network constructs such as 

RPC.

Migrating zPod requires MOVE’s fine-grain connection migration; since migrated 

and non-migrated connections share the same host interface and they are not dis-

tinguishable by traditional host mobility solutions such as MobileIP. Although 

other mobility solutions such as transport layer and application layer approaches 

do provide fine-grain connection migration capability, these solutions, besides not 

being designed with process migration integration, all have drawbacks (see 

Chapter 7 related work) and do not meet deployability and performance require-

ments.

4.4 zPod Migration

Migrating a zPod amounts to packaging its process and connection states on one 

machine, and transporting and restoring the states on another machine. This thesis 

focuses on the connection migration aspect of zPod migration; therefore we refer 
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readers who are interested in the process migration aspect of zPod migration to the 

original Zap paper [100]. We reexamine the connection migration problems in the 

context of such proxy-based server clusters and see how the CELL abstraction and 

MOVE mechanisms can be equally applied to solve these problems. Note that for 

the rest of the chapter we concentrate on the proxy and the server part of the 

system since process and connection migration are completely transparent to the 

clients.

4.4.1 General server clusters

Figure 4-2 depicts problems of connection migration in a general proxy-based 

server cluster where servers can reside across different subnets. Obviously, con-

nection migration in the server cluster does not have to deal with cross address 

space synchronization problem due to NAT described in Section 2.2.3 in 

Chapter 2. However, the problems of inconsistency between network layer and 

transport layer and conflict in transport layer, described in Section 2.2.1 and 

Section 2.2.2 in Chapter 2 respectively, still arise. As illustrated in Figure 4-2, when 

a connection [IP20:p2, IP10:p1] is migrated from server A (IP20) to C (IP30), the 

same inconsistency problem as that described in Figure 2-1b in Chapter 2 occurs. 

Also as illustrated in Figure 4-2, if another process on server A (IP20) reuses port 

p2 to connect to the proxy (IP10) on port p1 after the first connection [IP20:p2, 

IP10:p1] is migrated to server C (IP30), we see that the same conflict problem as 

that described in Figure 2-2b in Chapter 2 will occur.

Without repeating the content of Chapter 2 and Chapter 3, readers should be able 
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to convince themselves that supporting connection migration across different sub-

nets of servers is a straightforward process of enabling MOVE on both the proxy 

and the servers because MOVE does not differentiate the two communication end-

points of a connection. By taking advantage of the proxy as the “anchor” point, 

MOVE can provide migration of the server end of a connection without touching 

the client end, as shown in Figure 4-1.

One issue worth some discussion is security. Since server clusters are generally 

protected by the proxy which also acts as a firewall, connection migration security 

in a server cluster is not as pressing as it is in a public network. However, firewalls 

are not one hundred percent safe; they can be broken into and when they are the 

servers behind the firewalls are just as open and unprotected as those on the public 

networks. For example, when a firewall is broken in and a server is compromised, 

an attacker can potentially carry out the same attacks that we described in 

Section 3.2.4 in Chapter 3. For example, the attacker can try to send a fake HAND-

Figure 4-2. Connection migration in proxy-based server clusters
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OFF message to the proxy and cause a connection belonging to another server to 

be redirected to himself. Therefore, we believe that migration in server clusters 

must be protected the same way as they are in public networks. MOVE’s security 

mechanism therefore applies equally in the server clusters as well.

In addition, to be compatible with IPsec, the proxy must terminate the IPsec secu-

rity association with the client. Because the proxy can work either at layer 4-7, in 

which case the termination is natural, or at layer 3, in which case the termination 

is necessary for its address translation functions that are inherently incompatible 

with IPsec. In either case, an IPsec connection between the client and the server 

consists of two security associations: one between the client and the proxy, and the 

other between the proxy and the server. Each association is an end-to-end associ-

ation. Therefore, MOVE functions performed on the proxy and the server are com-

patible with the proxy-server part of the IPsec security association; as they are 

compatible with any end-to-end IPsec security association we described in 

Section 2.4.4 in Chapter 2.

4.4.2 Different types of proxies

Another aspect of connection migration in the proxy-based server clusters con-

cerns with different types of proxies, depending on at which layer the proxy oper-

ates and whether the proxy maintains full transport connection states. Application 

Level Gateways (ALG) are proxies operating at application layer and maintaining 

full transport connection states. A connection between the client and the server 

going through an ALG is in fact two separate connections, one between the client 



104
and the ALG and the other between the ALG and the server, “spliced” together 

transparently by the ALG at the application level. Layer 4-7 switches are proxies 

operating at network layer without maintaining full transport connection states. 

Instead, they use layer 4-7 information of packets for making dispatching decisions 

and relay traffic between the client and the server by rewriting transport tuple in 

the packet header once the decision is made. Both types of proxies have their own 

pros and cons and are widely used in the real world: ALGs offer great flexibility in 

supporting various application layer protocols such as FTP, SSL, etc., and are 

simple to implement, while layer 4-7 switches have better performance.

Recall in Section 2.3.4 in Chapter 2, the mapping mechanisms of MOVE, address 

translation and interface redirection, function at network layer. Therefore, MOVE 

is transparent to ALGs. In fact, to MOVE, ALGs are exactly the same as any end 

host client or server applications. Layer 4-7 switches, on the other hand, operate 

also at network layer and their packet header rewrite function is rather similar to 

the address translation of MOVE. While MOVE can also work transparently with-

out requiring any change to the switch, because of the similarity between the func-

tions of the two, we discuss how they can be easily combined to simplify the switch 

functions and improve its performance. Layer 4-7 switches often come in two fla-

vors, depending on how incoming traffic to the servers and outgoing traffic back 

to the clients are routed. The main difference between the two is in the traffic from 

the servers back to the clients. In two-way architectures, both incoming and outgoing 

traffic pass through the switch, while in one-way architectures only the incoming 

traffic passes through the switch. We discuss each architecture in turn.
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Figure 4-3 shows the two-way layer 4-7 switch architecture. The figure shows a 

client opens a connection [IP2:p2, IP1:p1] to the public address IP1 of the switch, 

which is rewritten by the switch as [IP10:p2, IP20:p1] (with MOVE connection 

label) and forwarded to the server IP20. Return traffic from the server to the client 

is also translated properly by the switch. When the connection is migrated to the 

server IP30, two translations are performed on the connection by the switch, one 

is the original translation between [IP1:p1, IP2:p2] and [IP10:p2, IP20:p1] and the 

other is MOVE translation between [IP10:p2, IP20:p1] and [IP10:p2, IP30:p1]. The 

two can be easily combined as a single translation between [IP1:p1, IP2:p2] and 

[IP10:p2, IP30:p1].

Figure 4-4 shows the one-way layer 4-7 switch architecture. The figure shows a 

client opens a connection [IP2:p2, IP1:p1] to the public address IP1 of the switch, 

which is rewritten by the proxy as [IP2:p2, IP20:p1] (with MOVE connection label) 

and forwarded to the server IP20. Note that the source address IP2 is not changed 

by the switch and as a result the server IP20 perceives the connection as coming 

Figure 4-3. Combine MOVE and layer 4-7 switches: two-way architecture
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directly from the client. The return traffic goes directly from the server back to the 

client without passing through the switch. This, of course, requires another con-

nection for the return traffic; in addition, before sending packets back to the client, 

the server will translate its own private address IP20 back into the public address 

IP1 of the switch, as shown in Figure 4-4. When the connection is migrated to 

server IP30, we can see that both the switch and the server IP30 perform two trans-

lation on the connection. On the switch, both original translation and MOVE trans-

lation are performed for the incoming traffic. On the server IP30, both original 

translation and MOVE translation are performed for the outgoing traffic; in addi-

tion, MOVE translation is performed for the incoming traffic. From Figure 4-4, we 

can see that the original translation and MOVE translation on both the switch and 

the server IP30 can be combined for their respective traffic direction, similar to the 

way they are combined in the previous case of two-way architecture.

4.4.3 Single subnet of servers

Because the server cluster is under complete control of its owner, one potential 

Figure 4-4. Combine MOVE and layer 4-7 switches: one-way architecture
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solution to deal with connection migration when processes are migrated between 

servers is to connect all servers in a single flat subnet. A subnet is defined as a net-

work segment that is solely connected through layer 2 (switches and hubs) and 

below (repeaters) elements. This way, when connections are migrated along with 

their zPods from server to server, their layer 3 IP addresses need not change. 

Therefore, all connections can be kept intact from the point of view of layer 3 and 

above. Specifically, the mechanisms would work as follows:

• Assign IP addresses on a per-zPod base rather than a per host base. Recall 

from Section 4.3 that dynamically assigning per-zPod IP address is against 

the general practice of static configuration of server clusters. However, 

there may be situations where statically assigning per-zPod IP addresses is 

feasible, for example, when the number of zPods are relatively small and 

static (they only host pre-defined well-known services).

• Divide the entire IP address space of the single subnet into two parts, one 

for all the servers, and the other for all the zPods on the servers. For exam-

ple, assume the IP address space for the subnet is the 16-bit private address 

block 192.168/16 (defined in [113]), 192.168.0.1 - 192.168.0.255 can be 

reserved for the (255) servers, while the rest 192.168.1.0 - 

192.168.255.254 can be reserved for the (255*256-1=65279) zPods.

• Each time a zPod is created on a server, it’s assigned a unused IP address 

from the pool above, which is used for all network communication from 

and to the zPod. The IP address for the zPod is created as an alias to the 

server’s NIC. For example, the server NIC can have an IP address 
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192.168.0.1, while an IP address 192.168.1.1 can be assigned to the NIC 

as an alias for the zPod.

• When the zPod is migrated to another server, e.g., 192.168.0.2, its IP 

address 192.168.1.1 need not change since the entire network is a single 

subnet 192.168/16. Rather, its IP address is simply (re)created as an alias to 

the NIC of the new server. ARP (Address Resolution Protocol) will map the 

zPod’s IP address 192.168.1.1 to the MAC address of the current server’s 

NIC.

It should be evident that since the IP address of a zPod never changes and is never 

reused within the single subnet, the inconsistency and conflict problems due to 

migration can be avoided. Note that ARP caching may cause the zPod migration 

to be “invisible” to the proxy until its ARP cache times out, which is typically a few 

minutes. This can be easily addressed by having the migrated zPod send a “gratu-

itous” ARP request asking the MAC address of its own IP address, which allows 

the proxy to immediately invalidate its ARP cache for the zPod’s IP address in 

question. “Gratuitous” ARP requests are commonly used to detect duplicate IP 

address, and to allow a backup server’s NIC to take over a primary server’s NIC.

A single flat subnet, however, has a few drawbacks that limit its scalability, such 

as broadcast storm, switch address table overflow, and spanning tree loop, etc. In 

addition, physical limitations of the media make it difficult to expand the network 

even across buildings. For example, 100Mbits ethernet has a hard limit of 100 

meters between a transmitter and a receiver. Some of the problems such as broad-
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cast storm can be addressed by techniques such as VLAN [9]. But these solutions 

are often vendor specific and introduce their own management complexities. 

Therefore, in practice any nontrivial size LANs are almost always divided into dif-

ferent subnets.

4.5 Summary

In this chapter, we described how we integrated MOVE with the Zap process 

migration mechanism to fully exploit MOVE’s fine-grain connection migration 

capability. We developed the zPod abstraction to unify the migration of process 

states as well as connection states. We demonstrated how zPod enables zero dis-

ruption service availability for arbitrary stateful applications during server main-

tenance, without introducing additional server cluster configuration and 

management complexity. We showed that our solution meets the requirements of 

preserving application and networking sessions, complete transparency to the cli-

ents, no modification to server OS and applications, and compatibility with differ-

ent proxy and server cluster configurations. In Chapter 6, we will show the server 

handoff performance of MOVE integrated with Zap in such proxy-based server 

clusters.
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5Design and Implementation

To demonstrate the viability of the CELL concept and MOVE architecture mecha-

nisms introduced in Chapter 2 and Chapter 3, we have implemented a prototype 

MOVE system on the LINUX 2.4 operating system running on Intel x86 family pro-

cessors. We have implemented all of the MOVE functions as a kernel module, 

which can be dynamically loaded and unloaded at any time without modifying, 

recompiling, or rebooting the kernel. The entire system has fewer than 500 lines of 

C code, which serves as another testimonial to the simplicity and elegance of the 

CELL concept and its supporting mechanisms. In the following sections, we first 

present an overview of the MOVE system functions and we then look at each func-

tional component in more detail.

5.1 Functional Design Overview

MOVE consists of three major functional components, corresponding to the three 

points of time during a connection’s lifetime when these functions are performed. 

They are shown in Figure 5-1a. Figure 5-1b shows where these three components 

reside inside the OS kernel relative to the standard protocol stack and how they 

interact through a set of tables.

Part of the security module, which resides at the boundary of transport and net-

work protocol layers, implements the exchange of a per-connection Diffie-Hell-
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man public key and connection label at connection establishment time, which are 

recorded in the key table and label table. The other part of the security module, 

which is part of the resides inside the migration module at the boundary of the 

application layer and transport protocol layer, consults the key table and label 

table to compute and verify HMAC for the migration module at connection migra-

tion time.

The migration module implements the H2O signaling protocol for connection 

migration either through handoff or through suspension/resumption. It updates 

the map table for a migrated connection after the H2O signaling protocol messages 

are authenticated.

Once a connection migrates, the mapping module, which resides at the boundary 

of the network and data link protocol layers, uses the map table to perform the 

Figure 5-1. MOVE functional design overview

connection 
establishment

suspend handoff 
or resume

connection 
termination

migration
security

security

mapping

application

transport

network

link

key 
table

label 
table

map 
table

MOVE functional components

security migration mapping

(a) When MOVE functions

(b) Where MOVE functions

security



112
namespace mapping through address translation and interface redirection for the 

rest of the connection’s lifetime.

In addition, there is a common functional requirement for all three modules, which 

is not shown in Figure 5-1. As we pointed out in earlier sections, the DH public key 

and connection label are exchanged by piggybacking them onto the first a few 

packets exchanged between the two machines; the H2O signaling protocol uses in-

band data packets to carry its protocol messages; and finally, for a migrated con-

nection, a connection label is carried along with each packet. All of these require 

carrying certain information in the packet header. And since MOVE is transport 

protocol independent, this must also be done in a transport protocol independent 

fashion. There are different ways this can be accomplished. For example, one way 

is to use an IP option. The processing of IP options is well-defined by standards in 

routers and end hosts [33][107]. However, some routers do not conform to stan-

dards and may drop packets with (unknown) MOVE IP options. Another way is 

to use encapsulation, such as GRE (Generic Routing Encapsulation) or IPIP (IP in 

IP). The drawback with encapsulation is that it has slightly higher packet process-

ing overhead due to the encapsulation and decapsulation. In our prototype MOVE 

implementation, we have chosen to use the IP option approach since it’s simple 

and easy to implement.

One potential problem with carrying the handoff protocol messages in the packet 

header is that a packet of (or very close to) size MTU (Maximum Transmission 

Unit) will be fragmented due to the increased header size. For connection-less 
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transport protocols such as UDP, this is generally not a problem since the protocol 

doesn’t buffer packets and our experience shows that applications rarely send 

MTU sized UDP packets constantly since applications have no concept of MTU. 

For connection-oriented transport protocols such as TCP, this can be a problem 

since TCP buffers application data and attempts to stream packets to fill up the 

MTU. As a result, once a connection is migrated and a connection label is attached 

to the packet header, every MTU-sized packet may have to be re-fragmented, 

which can cause serious performance degradation. Fortunately, this problem can 

be solved relatively easily by properly reducing the MTU of the VNIC that the 

migrated connection is bound to. For example, before migration the MTU of the 

VNIC is the same as the NIC, i.e., 1500 bytes for ethernet; after migration the MTU 

of the VNIC is reduced to 1500-8=1492 bytes to account for the 8 bytes of connec-

tion label IP option. This will allow streaming transport protocols such as TCP to 

properly adjust their MSS (Maximum Segment Size) when building outgoing 

packets to avoid fragmentation. Note that right after the migration, there may be a 

few outgoing packets in the sending queue which are built using the original MTU 

size of 1500 bytes. These packets must be re-fragmented using the new MTU size 

of 1492 bytes. However, once these packets are cleared, all subsequent packets will 

be built with the proper MSS to avoid fragmentation.

5.2 Security Module

Because handoff or suspension/resumption can occur at any time during the life-

time of a connection, the security key necessary for protecting the H2O signaling 
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protocol messages and the connection label necessary for setting up proper 

namespace mapping must be in place right from the start of the connection. The 

DH public key and connection label are exchanged with a simple Finite State 

Machine (FSM) shown in Figure 5-2a. Figure 5-2b shows the sequence of packets 

exchanged between the two machines and Figure 5-2c shows the IP option format 

used to carry the key and label.

Figure 5-2. Security key and connection label exchange
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1. The sender starts by sending a packet (packet #1) that has one unused bit in 

the TOS byte of the IP header set and goes into the “TOS sent” state. The bit 

used by MOVE is the 5th bit (from the most significant bit, numbered as 0), 

which has a meaning of “maximize reliability” by the original TOS defini-

tion [28]. However, currently the diffserv [97] working group has redefined 

the TOS byte in the IP header and the 5th bit is unused. The reason for this 

special TOS packet is to probe whether MOVE is present on the peer in 

order to interoperate with machines that do not have MOVE installed. 

Remember that the security key and connection label have to be carried 

either inside an IP option or an encapsulated header. In the case of using an 

IP option, this special packet is not really necessary and the sender can put 

the key and label in the IP option of the very first packet it sends. Because if 

the receiver is not MOVE-enabled, the unknown IP option will just be 

ignored. However, in the case of using an encapsulated header, the sender 

cannot just blindly send the key and label in the very first packet. Since 

unless the receiver is MOVE-enabled, it wouldn’t know how to decapsu-

late the packet and will simply drop it.

2. When the receiver receives the special TOS packet, if it’s not MOVE-

enabled, it will ignore the TOS bit and reply with a normal packet. When 

the sender sees the normal packet, it knows that the receiver is not MOVE-

enabled and will go back to normal state and no further action will be 

taken by either side. Otherwise, the receiver will respond by sending its 

key and label (packet #2) and goes into the “TOS recv” state. In this state, 
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the receiver may continue to see the special TOS packet from the sender 

because the packet containing its key and label may be lost. Or the sender 

may have received the receiver’s key and label but the packet containing 

the sender’s key and label (packet #3) may be lost. Therefore, the receiver 

continues to send it key and label until it can transit into the next state, 

“KEY xchgd”, which can only happen when it has received sender’s key 

and label.

3. When the sender receives the packet carrying the receiver’s key and label, 

it knows the peer is MOVE-enabled. Therefore, it saves the receiver’s key 

and label, responds by sending its own key and label (packet #3), and goes 

into the “KEY recv” state. Because the packet carrying sender’s key and 

label can be lost, the sender continues to send it’s key and label until it 

knows that the receiver has received its key and label, which is indicated 

by a normal packet (packet #4) from the receiver.

4. When the receiver receives the sender’s key and label, it knows the peer 

has received its key and label; since otherwise it would be getting more 

special TOS packets from the sender. The receiver concludes its part of the 

exchange state transition by saving the sender’s key and label and goes 

into the “KEY xchgd” state. From now on, all packets sent by the receiver 

will be normal packets.

5. When the sender receives a normal packet from the receiver while in “KEY 

recv” state, it knows the receiver has received its key and label; since other-

wise it would be getting more packets carrying the receiver’s key and 
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label. The sender now concludes its part of the exchange state transition by 

going into the “KEY xchgd” state. From now on, all packets sent by the 

sender will be normal packets.

It is interesting to note that the packet sequence for the key and label exchange can 

be mapped directly to existing transport protocols, which means that the exchange 

can be performed in-band through piggybacking rather than use a separate control 

connection. For example, if the transport protocol in use is TCP, packet #1, #2, and 

#3 in the packet exchange sequence would be mapped directly to and piggybacked 

on the SYN, SYN, and SYN-ACK packets of the 3-way handshake; if the transport 

protocol in use is UDP, packet #1, #2, and #3 would then be mapped to and piggy-

backed on the first three data packets exchanged between the two machines. Note 

that for UDP, the traffic may be unidirectional, i.e., only the sender sends packets 

to the receiver and the receiver never sends any packets to the sender. In this case, 

packet #2 would be generated by the security module and dropped by the sender. 

The use of in-band rather than out-of-band key and label exchange results in very 

low overhead for connection establishment, which is shown in Chapter 6.

The definition of the fields in the IP option, which is duplicated in Figure 5-3 from 

Figure 5-2(c), is as follows:

• C: 1 bit, copy flag, set to 0: do not copy into fragments

• CL: 2 bits, class, set to 3: reserved option

• Number: 5 bits, set to 31: option number for MOVE
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• Length: 8 bits, total length of the option in bytes

• Command: 8 bits, protocol message type, set to IPOPT_MOVE_DHKEYEX

• Reserved: 8 bits, reserved for future use

• Connection label: 32 bits, the connection label chosen by the machine for its 

incoming messages, recall Section 2.3.3 in Chapter 2

• 128-bit DH public key: 128 bits, Diffie-Hellman public key, recall 

Section 3.2.4.2 in Chapter 3

Note that the layout of the first two bytes, i.e., the C, CL, Number, and Length fields, 

is standard for all IP options.

5.3 Migration Module

A connection can be migrated either through handoff or through suspension/

resumption. Also one can either migrate individual connections through a process 

migration mechanism, or migrate an entire machine by simply unplug/plug the 

network cable or by suspending/resuming the machine. When a connection is 

Figure 5-3. DH public key and label exchange IP option format

C CL Number Length Command Reserved

Connection label (local)

1st 32 bits of 128-bit DH public key

2nd 32 bits of 128-bit DH public key

3rd 32 bits of 128-bit DH public key

4th 32 bits of 128-bit DH public key

0 1 3 8 16 24 31
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being migrated by a process migration mechanism, it’s the responsibility of the 

process migration mechanism to inform MOVE’s migration module about the 

handoff or suspension/resumption events. When an entire machine is migrated, 

the migration module can receive the handoff and suspension/resumption events 

through various system services. For example, the migration module registers 

with the physical NIC device driver to receive interface up and down events. By 

comparing the new IP address assigned to the NIC with its previous IP address, 

the migration module can infer if a layer 3 handoff has occurred. The migration 

module also registers with the system’s power management services such as APM 

(Advanced Power Management) or ACPI (Advanced Configuration and Power 

Interface) to receive machine suspension/resumption events. In any case, when 

these events occur, the migration module sends the peer machine H2O signaling 

protocol messages as appropriate. On the peer (stationary) machine, the migration 

module authenticates incoming H2O signaling protocol messages and takes 

appropriate actions. For example, when a HANDOFF messages is received, the 

migration module updates the map table so the mapping module can perform the 

necessary address translation and interface redirection functions; when a SUS-

PEND message is received, the migration module will block the owner process of 

the connection from sending more packets until the connection is resumed by a 

HANDOFF message.

5.3.1 Handoff process

Similar to the security module, the migration module also performs its functions 

according to a simple FSM, which records the current state of a connection and the 
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actions need to be taken when a H2O signaling protocol message is received. 

Figure 5-4 shows the FSM for connection migration through handoff. Also shown 

in the figure are the packet exchange sequence and the IP option format used for 

the protocol message.

When the migration module on the mobile machine receives or detects a layer 3 

handoff event, it updates the mapping table, sends a HANDOFF protocol message 

to the stationary machine, and goes into “HANDOFF sent” state. In this state, the 

migration module continues to send the HANDOFF protocol message because the 

Figure 5-4. Handoff process FSM and IP option format
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protocol message may be lost. When the HANDOFF protocol message reaches the 

stationary machine, the migration module authenticates the protocol message 

using the HMAC carried inside the message, updates the mapping table, and com-

pletes its handoff process by going into the “migrated” state. Now all the packets 

from the stationary machine can be mapped properly and sent to the new location 

of the mobile machine. When the mobile machine see traffic coming from the sta-

tionary machine, it knows that the HANDOFF protocol message has reached the 

stationary machine. It therefore stops sending the HANDOFF protocol message 

and concludes its handoff process by going into the “migrated” state.

The format of the IP option carrying the HANDOFF protocol message is shown in 

Figure 5-4c. Apart from the standard fields, other relevant fields are:

• Command: set to IPOPT_MOVE_HANDOFF

• Connection label (remote): peer’s connection label learned at the connection 

establishment time 

• Connection label (local, if conflict): new connection label for the connection if 

a conflict is detected on the local end, recall Section 2.3.3 in Chapter 2

• Sequence number: 32-bit monotonically increasing anti-replay sequence 

number

• 128-bit HMAC: computed over the protocol message up to the Sequence 

number field using the shared secret key derived from the local private key 

and the remote public key.
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5.3.2 Suspension and resumption process

The suspension/resumption process is slightly more involving, requiring two 

more states to handle the suspension part. The resumption part is just the same as 

the handoff process, as show in Figure 5-5. The format of the IP option carrying the 

SUSPEND protocol message, which is omitted from the figure, is exactly the same 

as that of the IP option carrying the HANDOFF protocol message except the Com-

mand field is set to IPOPT_MOVE_SUSPEND.

When the migration module on the mobile machine receives or detects a suspen-

sion event, it sends a SUSPEND protocol message to the stationary machine and 

goes into the “SUSPEND sent” state. In this state, the migration module continues 

to send the SUSPEND protocol message until one of the following three events 

Figure 5-5. Suspension and resumption process FSM
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occurs and then moves into the “suspended” state:

• received an echo of the SUSPEND protocol message. This indicates the sta-

tionary machine has received the SUSPEND protocol message and moved 

into the “suspended” state.

• timed out. The migration module on the mobile machine never received an 

echo of the SUSPEND protocol message for a certain period of time. Either 

the protocol message may be lost, or the echo of the protocol message may 

be lost. So the stationary machine may or may not be in “suspended” state.

• lost layer 2 link connectivity. This case does not actually have much to do 

with the suspension process. It actually happens with the handoff process 

when there is advance notice (but no simultaneous connectivity, recall 

Section 3.3.2 in Chapter 3). The advance notice is treated the same as a sus-

pension event by the migration module. Similar to the timed out case, if no 

echo of the SUSPEND protocol message is seen before the mobile machine 

loses its layer 2 link connectivity, the stationary machine may or may not 

be in the “suspended” state.

When the stationary machine receives the SUSPEND protocol message, it blocks 

the owner process of the connection from sending more packets (receiving is still 

allowed), echoes the protocol message, and goes into the “suspended” state. If the 

stationary machine never receives the SUSPEND protocol message, the suspen-

sion/resumption process basically degenerates into a (prolonged) handoff process 

when the stationary machine receives a HANDOFF protocol message. It is not dif-
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ficult to see that the resumption process (with a successful suspension process) is 

basically the same as the handoff process except that the mobile and stationary 

machines start with the “suspended” state instead of the “INIT” state.

5.4 Mapping Module

The mapping module is the simplest among the three modules. And it is rightly so 

because its functions, i.e., address translation and interface redirection, must be 

performed for every packet for the rest of the lifetime of a connection once the con-

nection migrates. Every packet of a migrated connection carries a connection label 

in the IP option with the following format:

The command field is set to IPOPT_MOVE_VIRTUAL and the connection label field 

is the 32-bit label obtained from the peer at connection establishment time. All the 

mapping module needs to do is to use the connection label as a hash key to look 

up the map table associated with the connection and binds the connection to a 

dynamically created VNIC so that all traffic of the connection will now pass 

through the VNIC. Inside the VNIC, address translation is performed to map 

between the CELL namespace and the physical namespace according to the map 

table. For example, for outgoing traffic, the virtual IP address in the CELL 

namespace is translated to the physical IP address in the physical namespace 

Figure 5-6. Connection label IP option format

C CL Number Length Command Reserved

Connection label (remote)

0 1 3 8 16 24 31
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before a packet is passed on to the physical NIC. For incoming traffic, the reverse 

translation is done before a packet is passed up to the higher layer. In Chapter 6, 

we will present measurement results that demonstrate these operations are very 

simple and incur very low overhead on the traffic of migrated connections.

5.5 System Call Interception

MOVE virtualization and privatization are implemented below the transport 

layer. MOVE therefore is transparent to transport-and-above layers and do not 

generally interact with the application layer directly. There is only one exception: 

MOVE intercepts the getsockname/getpeername socket system calls in order to 

support location-aware applications.

The getsockname/getpeername socket system calls are used by applications to 

query the current physical IP addresses of the local/peer host, which is obtained 

from the connection states maintained by the transport protocols (note that even 

with connection-less transport protocols, the minimal “connection” states, i.e., the 

{source IP address:source port number; destination IP address:destination port number} 

tuple, provide the support for these calls). Since MOVE virtualizes the transport 

layer, the IP addresses returned by getsockname/getpeername will be the virtual 

ones. However, recall in Section 2.4.3 in Chapter 2 that MOVE’s lazy assignment 

by default exposes the physical IP addresses of the current local/peer host in order 

to support location-aware applications and avoid unnecessary virtual-physical 

translations. Therefore, MOVE by default intercepts the getsockname/getpeername

socket system calls and returns the physical IP addresses of the current local/peer 
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host instead. For legacy applications such as FTP where complete transparency of 

the migration is required, MOVE allows getsockname/getpeername to obtain the 

virtual IP addresses directly from the transport protocols. Choosing between one 

of the two behaviors is done on a per-application basis through the proc virtual file 

system [79].

5.6 Transparent SRV RR Lookup Support

While the focus of this thesis is not on locating mobile endpoints, we nevertheless 

have described a way for supporting host location with DDNS and service location 

with SRV RR in Section 2.4.1 in Chapter 2. Because existing network applications 

do not yet support SRV RR lookup, we have designed and implemented a mecha-

nism for transparently supporting it without changing the applications. The mech-

anism is a simple socket library wrapper that intercepts the following socket 

related calls: gethostbyname/getaddrinfo (getaddrinfo is a new name resolver 

function that is supposed to supersede gethostbyname; but many applications still 

use gethostbyname) and connect. They work as follows:

• gethostbyname/getaddrinfo: our version of the functions simply call the 

original version but saves the reverse IP address to host name mapping, 

which is needed for constructing the SRV RR request. We could also use 

gethostbyaddr to obtain the mapping but that requires an additional trip to 

the DNS server.

• connect: when a connect(IP_address, port_number) is called, we lookup 
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the host name corresponding to the IP address using the information saved 

by our gethostbyname/getaddrinfo, we lookup the service name by calling 

getservbyport(port_number), and we make an SRV RR lookup by calling 

res_querydomain(_service._protocol.hostname). The SRV RR lookup 

will return the current host name (which may be different from the host-

name we supplied) and port number where the service can be reached. We 

then call gethostbyname(current_hostname) to find out the IP address of 

the current host name. And finally, we call the original connect with con-

nect(current_IP_address, port_number).

5.7 Summary

In this chapter, we have demonstrated, with a prototype design and implementa-

tion of MOVE system, that the CELL abstraction, H2O protocol, and their support-

ing mechanisms lend themselves readily to efficient real world utilization. The key 

abstraction and simple mechanisms employed by MOVE are also the reason why 

MOVE can meet all (performance will be presented in the next chapter) the func-

tional requirements of a mobile communication architecture we outline in the 

introduction of this thesis, which we repeat here:

• easy deployment: MOVE resides and functions completely within end 

machines without requiring any infrastructure support inside the network; 

MOVE does not require modification or recompilation of existing OSes and 

applications, is compatible and can interoperate with legacy OSes and 

applications that are not MOVE-enabled; MOVE does not presume or rely 
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on any particular transport protocol operational semantics.

• fine-grain and unlimited mobility: MOVE supports migration of a single 

connection, a group of connections, or all the connections of an entire host; 

either endpoint of a connection can migrate anywhere in the network.

• secure and flexible migration: MOVE provides, in the absence of other 

security mechanisms such as IPsec, a low overhead self-securing mecha-

nism to protect its migration functions; connections can be migrated either 

through “on-line” natured handoff or through “off-line” natured suspen-

sion/resumption.

In the next chapter, we will complete our work by presenting a detailed evaluation 

of various performance measurements of our prototype MOVE system.
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6Performance Measurements

We have implemented a MOVE prototype on the LINUX x86 platform with 2.4 

series kernel. The entire functions of MOVE are implemented as a kernel module 

that can be dynamically loaded into the running kernel at any time without kernel 

recompilation or rebooting. This chapter presents various performance measure-

ments of our MOVE prototype. We present three main categories of tests: (1) hand-

off performance in Section 6.1; (2) scalability measurements in proxy-based 

environments in Section 6.2; and (3) connection virtualization and mapping over-

head in Section 6.3. We also present mobile host and service location mechanism 

studies in Section 6.4.

The handoff performance tests in Section 6.1 are to demonstrate the viability of 

MOVE with a variety of applications, endpoint migration mechanisms, network 

connectivity configurations, and transport layer protocols. Specifically, these tests 

show that MOVE handoff:

• works with a variety of off-the-shelf applications unchanged, such as 

mplayer/wget/lftp clients and apache/vsftpd/Darwin servers, etc.

• is compatible with different types of endpoint migration mechanisms, such 

as moving a physical machine, a virtual machine, or a process.

• works with different types of networks such as 10/100/1000Mbits ethernet 
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and 11Mbits WiFi. It also works across these different networks.

• incurs minimal impact on the connection characteristics perceived by the 

transport protocols and applications with a variety of duration of discon-

nection times (DDT) relative to the RTT, such as DDT<<RTT, DDT≈RTT, 

and DDT>>RTT. 

• performs very well under stress with increasing rate of handoff.

• is independent of and supports both connection-oriented (TCP) and con-

nection-less (UDP) transport protocols.

The scalability tests in Section 6.2 show that MOVE does not adversely affect the 

scalability of the existing system, especially when the existing system has certain 

hot spots such as proxies. The virtualization and mapping overhead measure-

ments in Section 6.3 show that MOVE adds very small network I/O performance 

overhead to the base system, regardless of whether the base system is low-end or 

high-end. Finally, Section 6.4 demonstrates the feasibility of using DDNS as the 

host and service location mechanism.

6.1 Handoff Performance

The extensive tests of MOVE handoff performance are broken down to five cate-

gories at the top level. The first three correspond to the three different types of end-

points that are migrated: (1) a client physical machine, (2) a client VMware virtual 

machine, and (3) a server process. Within each category, a variety of network con-

figurations and a variety of DDTs relative to the RTT are tested. Table 6-1 shows a 
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summary of the test cases and the sections in which they are described. We choose 

different DDT relative to the RTT because the operational semantics of reliable 

transport protocols such as TCP are heavily dependent upon the RTT. What mat-

ters most is not the absolute length of the DDT, but rather the relation of the DDT 

to the RTT. For example, as long as the DDT is sufficiently short and does not cause 

TCP to timeout, the exact length of the DDT makes little difference to TCP’s behav-

ior.

The fourth in Section 6.1.4 is a stress test in which a connection is “ping-pong” 

migrated between two interfaces with a varying interval between each migration. 

The fifth in Section 6.1.5 is a test for migrating connection-less transport protocols 

in which a RTSP streaming video session using RTP over UDP is migrated. Finally 

in Section 6.1.6, we also present a list of popular off-the-shelf network applications 

that we’ve tested to work with MOVE right out of the box.

6.1.1 Client handoff with machine migration

The client handoff performance is measured between an IBM T22 ThinkPad laptop 

within WAN within LAN WAN to LAN LAN to WAN

Client 
Machine

DDT≈10ms, 200ms, 4s
mplayer - apache
(Section 6.1.1.1)

DDT≈30ms, 3s
mplayer - apache
(Section 6.1.1.2)

DDT≈100ms, 2s
wget - apache

(Section 6.1.1.3)

DDT≈100ms, 2s
wget - apache

(Section 6.1.1.4)

Client 
VM

- -
DDT≈8s

lftp - vsftpd
(Section 6.1.2.1)

DDT≈11s
lftp - vsftpd

(Section 6.1.2.2)

Server 
Process

DDT≈2s
mplayer - apache
(Section 6.1.3.1)

DDT≈2s
mplayer - apache
(Section 6.1.3.2)

- -

Table 6-1. Handoff performance test cases



132
computer with 1GHz Pentium III CPU, 512MB RAM, 100Mbits Intel Pro/100 SP 

ethernet NIC, and 11Mbits Orinoco Gold WiFi PCCard, and an IBM 4500R rack 

mounted server computer, with dual 933MHz Pentium III CPU, 512MB RAM, and 

100Mbits AMD LANCE ethernet NIC. All machines are running LINUX kernel 

version 2.4.20. We study a variety of network connectivity scenarios illustrated in 

Figure 6-1, specifically:

• handoff on a campus WAN with wired connection

• handoff on an office LAN with wired connection

• handoff between a campus WAN with WiFi wireless connection and an 

office LAN with wired connection.

Figure 6-1. Client handoff with machine migration testbed
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For the first two cases, a RealVideo 8 encoded media clip is streamed through 

HTTP from the server running apache [1] version 2.0.40 to the laptop running 

mplayer [14] version 1.0pre4; the server and the laptop are connected through their 

100Mbits ethernet NIC. The handoff is effected by disconnecting the laptop’s 

100Mbits ethernet NIC after roughly 30 seconds of playback, waiting for a variable 

amount of time, and then reconnecting it with another address and continuing 

with roughly another 30 seconds of playback.

For the third case, the laptop is connected to the server from both its 100Mbits eth-

ernet NIC and its 11Mbits WiFi PCCard. The 100Mbits ethernet NIC is connected 

directly to the office LAN where the server is connected; and the 11Mbits WiFi 

PCCard is connected to the campus WAN through which the server is also reach-

able. The laptop uses wget [8] version 1.8.2 to fetch a file of roughly 50MB size 

through HTTP from the server. The connection is first made through one of the 

two interfaces on the laptop and then handed off to the other during the download. 

The handoff off is effected by bring down the first interface through which the con-

nection is established and then bring up the other interface. For the two cases of 

switching from WAN to LAN and vise versa, the handoff point is where roughly 

80% of the file is going through the LAN and 20% of the file is going through the 

WAN.

For all three cases, the playback or download network session is captured on the 

server using tcpdump [19] version 3.7.2 and analyzed using tcptrace [20] version 

6.6.1.



134
6.1.1.1 Handoff on a WAN, DDT≈10ms, 200ms, and 4s

The WAN used in the test is a campus network connecting offices and dormitories 

with no artificial elements involved. We study three cases of different DDTs: 

DDT≈10ms (<<RTT), DDT≈200ms (≈RTT), and DDT≈4s (>>RTT).

We first present the case when DDT≈10ms and show the TCP sequence trace and 

throughput of the entire playback session in Figure 6-2 and Figure 6-3. The TCP 

sequence trace graph (Figure 6-2) serves as a visual presentation that TCP is able 

to recover and playback at the same throughput after the handoff as that before the 

handoff. This is indicated by the slope of the sequence trace being unchanged 

before and after the handoff. The TCP throughput graph (Figure 6-3) is to quanti-

tatively verify the TCP throughput before and after the handoff. This is done by 

using tcptrace to compute the TCP throughput from the tcpdump data. Note that the 

throughput before and after handoff are computed independently by tcptrace as 

two separate connections due to the change of the client IP address. We present the 

throughput results for both averaging over last 20 packets (the tcptrace default of 

averaging 10 packets results in too much fluctuation to be useful) and averaging 

over all packets seen so far. A small box in the sequence trace graph (Figure 6-2) 

indicates where the handoff takes place and we will be looking into the events 

inside the box next. Throughout the rest of Section 6.1, for each of the handoff per-

formance measurements, this is how we will be presenting our results: we first 

show the TCP sequence trace and throughput for the entire network session; we 

then zoom into the small box in the sequence trace graph and explain in detail the 

handoff events.
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Figure 6-2. Entire playback TCP sequence trace, DDT≈10ms << RTT≈230ms

Figure 6-3. Entire playback TCP throughput, DDT≈10ms << RTT≈230ms
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Figure 6-4 shows the zoomed TCP sequence trace graph for the case when 

DDT≈10ms. While not shown in the figure, we used tcptrace to compute the aver-

age RTT and its standard deviation observed from the captured packet trace, 

which are 230.1ms and 27.7ms respectively. At 29.89s, the server sees the last ack 

from the laptop before it is disconnected. At 30.25s, the first ack from the laptop, 

which carries H2O HANDOFF message, arrives after it is reconnected. The lapse 

of 360ms may seem a little strange at first; since we only disconnected for 10ms and 

the single trip for H2O HANDOFF message takes about 115ms so the ack should 

have arrived at roughly 125ms after 29.89s, i.e., 30.015s. This is because disconnec-

tion and reconnection cannot happen instantaneously. There is a minimum delay 

of about 200ms before a reconnected interface is fully operational again; this 

includes the need to reinstate the default gateway route. This is also evident in the 

Figure 6-4. Zoomed TCP sequence trace, DDT≈10ms << RTT≈230ms
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other two cases. But this does not affect our discussion. The point of this case is to 

show that if the handoff at the laptop happens very quickly, H2O’s HANDOFF 

message can arrive at the server soon enough to prevent TCP from timeout. The 

interesting points to note in Figure 6-4 are:

1. When the first ack after reconnection arrives at 30.25s, it carries a higher 

seq number, roughly 0.853, than that carried by the last ack before discon-

nection at 29.89s, roughly 0.852. This means that right before disconnec-

tion, the laptop has received the packets between seq number 0.852 and 

0.853 but didn’t have a chance to ack them.

2. The ack at 30.25 has a lower seq number than the last packet sent by the 

server, which has a seq number roughly 0.854. This means that packets 

between seq number 0.853 and 0.854 are lost during the handoff.

3. The ack at 30.25s also advertises a bigger receiver window than the ack at 

29.9s, which means that some packets received on the laptop right before 

disconnection has been delivered to the application during the disconnec-

tion.

4. After receiving the ack at 30.25, TCP on the server immediately sends sev-

eral packets, between 0.856 and 0.862, to fill up the receiver window. This 

indicates that TCP on the server is still going at full throttle and never per-

ceived the handoff.

We can see that at 30.45s, the lost packets between 0.853 and 0.854 are being 

retransmitted, while new packets sent at 30.25s between 0.856 and 0.862 are being 
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SACKed. At 30.65s, the lost and retransmitted packets are acked, which fill the gap 

below the SACKed packets; therefore, the ack jumps from 0.853 to 0.862, which 

indicates the conclusion of the recovery period.

We next look at the case when DDT≈200ms. Similar to the case when DDT≈10ms, 

we first show the TCP sequence trace and throughput for the entire playback ses-

sion in Figure 6-5 and Figure 6-6. We then zoom into the small box in Figure 6-5 to 

see the details of the handoff events, which are shown in Figure 6-7.

For this test, tcptrace computes the average RTT and its standard deviation as 

234.7ms and 28.7ms respectively. The last ack from the laptop before disconnection 

arrives at the server at 29.81s. The first ack carrying H2O HANDOFF message after 

reconnection arrives at 30.32s. The interesting points to note in Figure 6-7 are:

Figure 6-5. Entire playback TCP sequence trace, DDT≈200ms ≈ RTT≈235ms
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Figure 6-6. Entire playback TCP throughput, DDT≈200ms ≈ RTT≈235ms

Figure 6-7. Zoomed TCP sequence trace, DDT≈200ms ≈ RTT≈235ms

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

20 packets

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

all packets

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

0.83

0.84

0.85

0.86

0.87

0.88

0.89

29.5
29.6

29.7
29.8

29.9
30.0

30.1
30.2

30.3
30.4

30.5
30.6

30.7
30.8

30.9
31.0

31.1
31.2

31.3
31.4

31.5
31.6

S
eq

ue
nc

e 
nu

m
be

r 
(x

 1
06 )

Time (seconds)

segment sent

0.83

0.84

0.85

0.86

0.87

0.88

0.89

29.5
29.6

29.7
29.8

29.9
30.0

30.1
30.2

30.3
30.4

30.5
30.6

30.7
30.8

30.9
31.0

31.1
31.2

31.3
31.4

31.5
31.6

S
eq

ue
nc

e 
nu

m
be

r 
(x

 1
06 )

Time (seconds)

0.83

0.84

0.85

0.86

0.87

0.88

0.89

29.5
29.6

29.7
29.8

29.9
30.0

30.1
30.2

30.3
30.4

30.5
30.6

30.7
30.8

30.9
31.0

31.1
31.2

31.3
31.4

31.5
31.6

S
eq

ue
nc

e 
nu

m
be

r 
(x

 1
06 )

Time (seconds)

retransmit

0.83

0.84

0.85

0.86

0.87

0.88

0.89

29.5
29.6

29.7
29.8

29.9
30.0

30.1
30.2

30.3
30.4

30.5
30.6

30.7
30.8

30.9
31.0

31.1
31.2

31.3
31.4

31.5
31.6

S
eq

ue
nc

e 
nu

m
be

r 
(x

 1
06 )

Time (seconds)

0.83

0.84

0.85

0.86

0.87

0.88

0.89

29.5
29.6

29.7
29.8

29.9
30.0

30.1
30.2

30.3
30.4

30.5
30.6

30.7
30.8

30.9
31.0

31.1
31.2

31.3
31.4

31.5
31.6

S
eq

ue
nc

e 
nu

m
be

r 
(x

 1
06 )

Time (seconds)

receiver window

0.83

0.84

0.85

0.86

0.87

0.88

0.89

29.5
29.6

29.7
29.8

29.9
30.0

30.1
30.2

30.3
30.4

30.5
30.6

30.7
30.8

30.9
31.0

31.1
31.2

31.3
31.4

31.5
31.6

S
eq

ue
nc

e 
nu

m
be

r 
(x

 1
06 )

Time (seconds)

0.83

0.84

0.85

0.86

0.87

0.88

0.89

29.5
29.6

29.7
29.8

29.9
30.0

30.1
30.2

30.3
30.4

30.5
30.6

30.7
30.8

30.9
31.0

31.1
31.2

31.3
31.4

31.5
31.6

S
eq

ue
nc

e 
nu

m
be

r 
(x

 1
06 )

Time (seconds)

ack seen

0.83

0.84

0.85

0.86

0.87

0.88

0.89

29.5
29.6

29.7
29.8

29.9
30.0

30.1
30.2

30.3
30.4

30.5
30.6

30.7
30.8

30.9
31.0

31.1
31.2

31.3
31.4

31.5
31.6

S
eq

ue
nc

e 
nu

m
be

r 
(x

 1
06 )

Time (seconds)

0.83

0.84

0.85

0.86

0.87

0.88

0.89

29.5
29.6

29.7
29.8

29.9
30.0

30.1
30.2

30.3
30.4

30.5
30.6

30.7
30.8

30.9
31.0

31.1
31.2

31.3
31.4

31.5
31.6

S
eq

ue
nc

e 
nu

m
be

r 
(x

 1
06 )

Time (seconds)

SACK seen



140
1. A timeout and retransmission occurs at 30.27s for packet 0.847, which was 

originally sent at 29.73s.

2. Due to the delay of interface becoming full operational after reconnection, 

the first H2O HANDOFF message after reconnection arrives at 200 

(DDT)+200 (reconnection delay)+117 (single trip)=517ms after 29.81s, i.e., 

30.327s, rather than 200 (DDT)+117 (single trip)=305ms after 29.81s, i.e., 

30.115s.

3. Different from previous case, the ack at 30.32s is not carrying a higher seq 

number than the ack at 29.81s. This means that all data received by the lap-

top right before disconnection are acked. But same as previous case, the 

ack at 30.32s advertises a bigger receiver window than the ack at 29.81s. 

This explains why, even though TCP on the server has timed out shortly 

before 30.32s and gone into slow start, it immediately starts transmission 

again and goes into recovery mode as soon as it receives the H2O HAND-

OFF message without waiting for another timeout. This also shows the 

advantage of an in-band signaling protocol.

We can see that, similar to the previous case, at 30.52s, lost packets between 0.847 

and 0.85 are being retransmitted, while new packets sent at 30.32s between 0.8512 

and 0.853 are being SACKed. In addition, at 30.52s, a new packet at 0.854 is sent. 

This packet, along with those sent at 30.32, are being SACKed throughout the 

retransmission period until 31.55s, at which point all lost packets are acked and the 

ack number jumps to 0.854.
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We finally look at the case when DDT≈4s. We again first present the TCP sequence 

trace and throughput for the entire playback session in Figure 6-8 and Figure 6-9. 

We then present in Figure 6-10 the zoomed view of the small box shown in 

Figure 6-8. For this test, tcptrace computes the average RTT and its standard devi-

ation as 230.8ms and 33.4ms respectively. This is a rather common TCP slow start 

recovery after several timeouts, where all data after disconnection are lost and 

retransmitted. Nevertheless, it’s again interesting to note in Figure 6-10 that:

1. The first timeout occurs at around 31.2s, which is the retransmission of the 

packet 0.852 originally sent at around 30.55s.

2. The elapsed time between the first ack after reconnection at 35s and the last 

ack before disconnection at 30.7s is 4.3s, which roughly corresponds to 4s 

Figure 6-8. Entire playback TCP sequence trace, DDT≈4s >> RTT≈231ms
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Figure 6-9. Entire playback TCP throughput, DDT≈4s >> RTT≈231ms

Figure 6-10. Zoomed TCP sequence trace, DDT≈4s >> RTT≈231ms
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(DDT)+200ms (reconnection delay)+115ms (single trip)=4.315s.

3. The recovery process again starts immediately at 35s without waiting for 

further retransmission timeouts because the ack at 35s acks more data than 

the one at 30.7s. The 4th retransmission would have occurred roughly 

8*600ms after the 3rd one, at 38.8s. Note that even with a big receiver win-

dow size at 35s, TCP does not attempt to fill up the window immediately 

since it’s in slow start.

6.1.1.2 Handoff on a LAN, DDT≈30ms and 3s

In this test, the laptop computer and the server computer are connected directly 

through a 100Mbits switch as shown in Figure 6-1b. The RTT perceived by TCP is 

around 30ms with a standard deviation of about 10ms. Recall from Section 6.1.1.1

that there is a minimum delay of about 200ms before a reconnected interface is 

fully operational again. In this case, however, we were able to reduce the delay to 

about 90ms since the two computers are on the same subnet therefore there is no 

need to reinstate the default gateway route. So for handoff across a LAN, we can 

only test two cases: DDT≈30ms (≈ RTT), and DDT≈3s (>> RTT) because the RTT on 

a LAN is already very small.

We first present the TCP sequence trace and throughput of the entire playback ses-

sion for the case when DDT≈30ms in Figure 6-11 and Figure 6-12. These graphs 

show that TCP is able to playback at the same throughput after the handoff as that 

before the handoff. We then zoom into the small boxes presented in Figure 6-11 to 

see the details of the handoff events, shown in Figure 6-13.



144
Figure 6-11. Entire playback TCP sequence trace, DDT≈30ms ≈ RTT≈33ms

Figure 6-12. Entire playback TCP throughput, DDT≈30ms ≈ RTT≈33ms
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As shown in Figure 6-13, the last ack from the laptop before disconnection arrives 

at the server at about 30.04s. The first ack carrying H2O HANDOFF message after 

reconnection arrives shortly after 30.18s. The interesting points to note in Figure 6-

13 are:

1. The last ack before disconnection at 30.04s carries a zero window size. This 

means that TCP receiver queue on the laptop is full. This is because in the 

100Mbits LAN packets arrive must faster than the rate at which they are 

played out by the application. As a result, during the handoff, no packets 

are sent by the server, i.e., no packets are lost.

2. The average RTT and its standard deviation D observed from the packet 

trace are 32.5ms and 11.4ms, respectively. The first ack after reconnection at 

Figure 6-13. Zoomed TCP sequence trace, DDT≈30ms ≈ RTT≈33ms
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30.18s is 140ms after the last ack before disconnection, which roughly cor-

responds to 90 (reconnection delay)+30 (DDT)+16 (single trip)=136ms. 

Since TCP computes its RTO=RTT+4*D, this would have turned out to be 

32.5+4*11.4=78ms. However, there is no retransmission at 30.04+0.078= 

30.118s. This is because LINUX has a minimum RTO=200ms.

3. The first ack after reconnection at 30.18s does not ack more data since no 

data are sent during the handoff and all data sent before the handoff have 

been acked. However, it carries a non-zero window therefore TCP on the 

server is able to continue sending immediately.

We next present the TCP sequence trace and throughput of the entire playback ses-

sion for the case when DDT≈3s in Figure 6-14 and Figure 6-15. And we zoom into 

the small boxes presented in Figure 6-14 to see the details of the handoff events, 

which are shown in Figure 6-16. The last ack before disconnection arrives at about 

30.1s, and the first ack after reconnection arrives roughly 3s later, at 33.1s. While 

this case looks similar to the case when DDT≈4s in the WAN test in Figure 6-10, 

there are a few interesting differences:

1. Even though the RTT and its standard deviation D are 30.7ms and 10.8ms 

respectively from the packet trace, which suggests the RTO=RTT+4*D= 

30.7+4*10.8=73.9ms, the first “retransmission” occurs at 30.3s, about 200ms 

after the last ack before disconnection at 30.1s. Again this is due to the min-

imum RTO of 200ms in LINUX.

2. The last ack before disconnection at 30.1s carries a zero window size, 
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Figure 6-14. Entire playback TCP sequence trace, DDT≈3s >> RTT≈31ms

Figure 6-15. Entire playback TCP throughput, DDT≈3s >> RTT≈31ms
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which means that TCP receiver queue on the laptop is again full, same as 

the previous case when DDT≈30ms. Therefore, no packets are sent during 

the 3s disconnection. The “retransmissions” are actually zero window 

probes by the TCP sender on the server, which follow the same exponential 

backoff rule governing the retransmissions.

3. Since no packets are lost during the handoff, when the first ack after recon-

nection arrives at 33.1s carrying a non-zero window, TCP immediately 

sends as much as it can to fill up the window instead of performing slow 

start.

6.1.1.3 Handoff from a WAN to LAN, DDT≈100ms and 2s

Figure 6-17 and Figure 6-18 show the TCP sequence trace and throughput of the 

Figure 6-16. Zoomed TCP sequence trace, DDT≈3s >> RTT≈31ms
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entire download session for the case of handoff from WAN to LAN when 

DDT≈100ms. We can see that throughput on the LAN connection is roughly 

8MBytes/second and throughput on the WAN connection is roughly 500KBytes/

second. The handoff happens at roughly 19s and TCP throughput adapts to the 

higher throughput of the wired LAN after the handoff. We also note that there is a 

“plateau” of roughly 2s for the LAN connection at roughly 23s, with 3 zero 

window probes sent by the server. This is the period when the buffer of wget on the 

laptop is full and is being written out to the disk so wget stops reading from the 

socket. Also note that since LINUX has a minimum RTO of 200ms, there is no tim-

eout and retransmission in this case.

Figure 6-17. Entire download TCP sequence trace, DDT≈100ms
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Figure 6-18. Entire download TCP throughput, DDT≈100ms

Figure 6-19. Zoomed TCP sequence trace, DDT≈100ms
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Figure 6-19 shows the zoomed view for the handoff case when DDT≈100ms. It 

shows that:

• Shortly after 18.84s, the server sees the last ack, seq numbered 10.425, from 

the client, and it sends a couple of packets to the client, seq numbered 

10.49.

• At roughly 18.946s, the first ack which carries H2O HANDOFF message is 

received by the server. This ack advertises a bigger window so the server 

immediately sends a few packets, seq numbered between 10.49 and 10.5. 

However, the ack only carries a seq number 10.445, which means that dur-

ing the handoff, packets between 10.425 and 10.445 are received but all 

packets between 10.445 and 10.49 are lost.

• The lost packets seq numbered between 10.445 and 10.49 are being retrans-

mitted during 18.947s and 18.955s, while new packets sent at 18.946s are 

being SACKed.

• At roughly 18.958s, the lost and retransmitted packets fill the gap below 

the SACKed packets and we see a jump of the ack to seq number 10.51 

from the receiver which indicates the end of recovery period. From that 

point on, the server transmits at the higher throughput allowed by the new 

wired 100Mbits connection. The recovery period takes roughly 11ms, from 

18.947s to 18.958s.

Figure 6-20 and Figure 6-21 show the TCP sequence trace and throughput of the 

entire download session for the case of handoff from WAN to LAN when DDT≈2s. 
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We can see that, similar to the case when DDT≈100ms, throughput on the LAN 

connection is roughly 8MBytes/second and throughput on the WAN connection 

is roughly 500KBytes/second. The handoff happens at roughly 18s and the TCP 

throughput also adapts to the higher throughput of the wired LAN after the hand-

off. We also note that there is a “plateau” of roughly 2s with 2 zero window probes 

for the LAN connection at roughly 22s, similar to that of the case when 

DDT≈100ms.

Figure 6-22 shows the zoomed view for the handoff case when DDT≈2s. After the 

timeout and retransmission, the server goes into slow start. When the first ack that 

carries H2O HANDOFF message arrives at around 19.8s, no new packets are sent. 

Instead, lost packets are retransmitted and the server adapts to the new wired LAN 

Figure 6-20. Entire download TCP sequence trace, DDT≈2s
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Figure 6-21. Entire download TCP throughput, DDT≈2s

Figure 6-22. Zoomed TCP sequence trace, DDT≈2s
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throughput as if the connection were just established.

6.1.1.4 Handoff from a LAN to WAN, DDT≈100ms and 2s

Figure 6-23 and Figure 6-24 show the TCP sequence trace and throughput of the 

entire download session for the handoff case from LAN to WAN when 

DDT≈100ms. We can see that, apart from the reversed throughput before and after 

the handoff, the characteristics of the download session are rather similar to those 

of the handoff case from WAN to LAN in Figure 6-17 and Figure 6-18. Note again 

the “plateau” for the LAN connection at roughly 3s with 3 zero window probes.

Figure 6-25 shows the zoomed view for the handoff case when DDT≈100ms. We 

can see that it has a recovery period similar to that of the handoff case from WAN 

to LAN when DDT≈100ms in Figure 6-19. During the recovery period, lost packets 

Figure 6-23. Entire download TCP sequence trace, DDT≈100ms
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Figure 6-24. Entire download TCP throughput, DDT≈100ms

Figure 6-25. Zoomed TCP sequence trace, DDT≈100ms
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seq numbered between 42.94 and 42.97 are being retransmitted while new packets 

sent at 8.01s seq numbered between 42.97 and 42.99 are being SACKed. The recov-

ery period, which lasts about 200ms from 8.0s to 8.2s, is much longer than that in 

Figure 6-19 due to the slower WiFi connection. Also different from the WAN to 

LAN case, at the end of the recovery period, roughly 8.2s, receiver window on the 

laptop only increases slightly, therefore the server can only send a few packets 

from 8.2s to 8.33s, at which point the receiver window becomes 0. After two zero 

windows probes from the server, one at 8.61s and the other at 9.08s, the laptop 

finally advertises a nonzero receiver window at roughly 9.23s and increases the 

window dramatically at 9.24s. From that point on, the server transmits freely but 

at a lower throughput restricted by the new WiFi 11Mbits connection.

Figure 6-26 and Figure 6-27 show the TCP sequence trace and throughput of the 

entire download session for the handoff case from LAN to WAN when DDT≈2s. 

Once more, apart from the reversed throughput before and after the handoff, the 

characteristics of the download session are rather similar to those of the handoff 

case from WAN to LAN in Figure 6-20 and Figure 6-21. The “plateau” with 3 zero 

window probes for the LAN connection also presents at roughly 3s.

Figure 6-28 show the zoomed view for the handoff case when DDT≈2s. Similar to 

the handoff case from WAN to LAN when DDT≈2s in Figure 6-22, after the time-

out and retransmission, the server goes into slow start. When the first ack that car-

ries H2O HANDOFF message arrives, no new packets are sent. Instead, lost 

packets are retransmitted and the server adapts to the new connection throughput 
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Figure 6-26. Entire download TCP sequence trace, DDT≈2s

Figure 6-27. Entire download TCP throughput, DDT≈2s
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as if the connection were just established.

6.1.2 Client handoff with VMware migration

This test is the same as the third case of the client handoff with machine migration 

test, except that instead of migrating the laptop by switching between its 100Mbits 

ethernet NIC and 11Mbits WiFi PCCard, a VMware version 4.5.2 virtual machine 

configured with 64MB RAM is suspended and resumed between two IBM T22 

ThinkPad laptop computers with 1GHz Pentium III CPU and 512MB RAM, one 

has an 100Mbits ethernet NIC, and the other an 11Mbits WiFi PCCard. Both lap-

tops as well as the VMware VM run LINUX kernel version 2.4.20. The testbed is 

depicted in Figure 6-29.

Also, instead of wget, we use lftp [12] version 2.6.3 running inside a VMware VM 

Figure 6-28. Zoomed TCP sequence trace, DDT≈2s
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on the laptop to fetch the same 50MB file from the server running vsftpd [24] ver-

sion 1.1.3. The handoff is effected by suspending the VM on one laptop and resum-

ing it on the other. For the two cases of switching from WAN to LAN and vise versa, 

the handoff point again is where roughly 80% of the file is going through the LAN 

and 20% of the file is going through the WAN. The download session is captured 

on the server using tcpdump and analyzed using tcptrace.

6.1.2.1 Handoff from a WAN to LAN, DDT≈8s

Figure 6-30 and Figure 6-31 show the TCP sequence trace and throughput of the 

entire download session for the handoff case from WAN to LAN with DDT≈8s. We 

can see that, apart from the longer gap due to the handoff, the characteristics of the 

download session are rather similar to those in Figure 6-20 and Figure 6-21 when 

a client machine is migrated from a WAN to LAN.

Figure 6-32 and Figure 6-33 show the zoomed view of the handoff, divided into 

two figures to avoid the large gap during the handoff. Since it takes about 8 sec-

onds to suspend and resume the VM, there is no way to avoid TCP timeout and 

Figure 6-29. Client handoff with VMware migration testbed
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Figure 6-30. Entire download TCP sequence trace, DDT≈8s

Figure 6-31. Entire download TCP throughput, DDT≈8s
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Figure 6-32. Zoomed TCP sequence trace, before handoff, DDT≈8s

Figure 6-33. Zoomed TCP sequence trace, after handoff, DDT≈8s
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retransmission. Therefore after the handoff, TCP on the server only sends one 

packet even though the receiver window has opened up. Apart from the longer 

handoff time, the characteristics of Figure 6-32 and Figure 6-33 are also rather sim-

ilar to those of Figure 6-22 when a client machine is migrated from a WAN to LAN.

6.1.2.2 Handoff from a LAN to WAN, DDT≈11s

Figure 6-34 and Figure 6-35 show the TCP sequence trace and throughput of the 

entire download session for the handoff case from LAN to WAN with DDT≈11s. 

Figure 6-36 and Figure 6-37 show the zoomed view for the handoff, again divided 

into two figures to avoid the large gap during the handoff. We can observe that 

apart from the reversed TCP throughput before and after the handoff, the charac-

teristics of the handoff are rather similar to those in Figure 6-30 through Figure 6-

33.

Since it takes about 11 seconds to suspend and resume the VM, there is also no way 

to avoid TCP timeout and retransmission in this case. Also apart from a longer 

handoff time, the characteristics of Figure 6-34 and Figure 6-35 are rather similar 

to those of Figure 6-26 and Figure 6-27 when a client machine is migrated from a 

LAN to WAN; and the characteristics of Figure 6-36 and Figure 6-37 are rather 

similar to those of Figure 6-28 when a client machine is migrated from a LAN to 

WAN.

6.1.3 Server handoff with process migration

This section presents handoff performance measurements of MOVE integrated 

with the Zap process migration mechanism and used in a proxy-based environ-
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Figure 6-34. Entire download TCP sequence trace, DDT≈11s

Figure 6-35. Entire download TCP throughput, DDT≈11s
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Figure 6-36. Zoomed TCP sequence trace, before handoff, DDT≈11s

Figure 6-37. Zoomed TCP sequence trace, after handoff, DDT≈11s
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ment, such as a server cluster described in Chapter 4. The testbed for these mea-

surements consists of an IBM T22 ThinkPad laptop with 1GHz Pentium III CPU, 

512MB RAM, and 100Mbits Intel Pro/100 SP ethernet NIC, four IBM rack mounted 

Netfinity 4500R servers, each with dual 933MHz Pentium III CPU, 512MB RAM, 

and 1Gbits Intel Pro/1000MT ethernet NIC, as illustrated in Figure 6-38. All 

machines are running LINUX kernel version 2.4.20.

We present the handoff performance of our integrated system by migrating an 

apache web server from server1 to server2 while it’s streaming an RealVideo 8 clip 

to an mplayer application on a client machine, either client1 or client2, through del-

egate [4] version 8.9.2, a popular general purpose application level proxy, on the 

proxy machine.

The same applications and RealVideo clip as those we used in client machine 

handoff in Section 6.1.1 are used in the server handoff performance tests. The dif-

ferences are:

Figure 6-38. Server handoff with process migration testbed
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• The mplayer client is instructed to connect to the delegate proxy, which in 

turn forwards the connection to the apache web server.

• The apache web server is migrated by checkpointing it to an NFS mounted 

storage on server1 and restarting it on server2. Note that in this case we do 

not have precise control on how long the server is “disconnected” from the 

network. Instead, we restart the server process on server2 immediately 

after it is checkpointed on server1. The entire procedure takes roughly 2 

seconds, counting checkpointing, restarting, and paging through NFS.

We also study two cases: (1) the mplayer client1 is connected to the delegate proxy 

through a WAN as the one we tested in Section 6.1.1.1; (2) the mplayer client2 is 

connected directly to the delegate proxy through a 1Gbit link. In both cases, the 

proxy and the servers are connected through 1Gbit links, as shown in Figure 6-38. 

Packet traces for both the client-proxy connection and the proxy-server connection 

are captured on the proxy using tcpdump and analyzed using tcptrace.

6.1.3.1 Handoff with a WAN client, DDT≈2s

We again first present, in Figure 6-39 through Figure 6-42, the TCP sequence trace 

and throughput for the entire trace of the playback for both the client-proxy con-

nection and the proxy-server connection. Note that both connections playback at 

roughly the same rate. The client-proxy playback has a delay of about 3-4 seconds 

relative to the proxy-server playback. This is due to the initial startup time (e.g., 

loading codec, initializing window system, etc.) of the mplayer client. Also note that 

the server handoff is completely transparent to the client-proxy connection, as 
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indicated by its throughput graph. The proxy-server connection, on the other 

hand, is perceived by tcptrace as two separate connection before and after migra-

tion due to the change of server IP address.

We now zoom into the small boxes indicated in the TCP sequence trace graphs 

(Figure 6-39 and Figure 6-40) for both connections. From Figure 6-43, we can see 

that the client-proxy connection never perceived the handoff due to buffering at 

the proxy; we also did not notice any visual disruption in the playback on the cli-

ent. For the proxy-server connection shown in Figure 6-44, the interesting points 

to note are:

• At about 35.2s, the proxy receives a zero-window probe from the server 

since the ack sent by the proxy at around 35s advertises a zero window. 

Figure 6-39. Entire download TCP sequence trace, client-proxy, DDT≈2s
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Figure 6-40. Entire download TCP sequence trace, proxy-server, DDT≈2s

Figure 6-41. Entire download TCP throughput, client-proxy, DDT≈2s
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Figure 6-42. Entire download TCP throughput, proxy-server, DDT≈2s

Figure 6-43. Zoomed TCP sequence trace, client-proxy, DDT≈2s
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This is also the last packet the proxy receives from the server before the 

server is checkpointed. While invisible from the figure but appeared in the 

raw packet trace, at 35.2s immediately after receiving the zero-window 

probe, the proxy responds with an ack. However, that ack still advertises a 

zero window. Later, at 35.9s, the proxy sends another ack to report a non-

zero window; but at this time the server is already checkpointed so the ack 

is lost. Note that TCP acks are not sent reliably.

• At 37.4, the server is restarted and sends another zero window probe, 

which carries H2O’s HANDOFF message. The proxy responds with a 

much bigger window than the one advertised at 35.9s since more data has 

been delivered to the client during the time the server is being check-

pointed and restarted. And the server immediate starts to send as much as 

Figure 6-44. Zoomed TCP sequence trace, proxy-server, DDT≈2s
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it can to fill up the window.

6.1.3.2 Handoff with a LAN client, DDT≈2s

Figure 6-45 through Figure 6-48 present the TCP sequence trace and throughput of 

the entire playback session for both the client-proxy connection and the proxy-

server connection in the all gigabit LAN testbed. The characteristics of the handoff 

behavior are rather similar to those in the WAN test presented in the previous sec-

tion, except that the delay of client-proxy playback relative to proxy-server play-

back is roughly 2-3 seconds. The shorter delay is due to the faster initial startup 

time of the mplayer on the client2 machine.

Figure 6-49 and Figure 6-50 present the zoomed view of the handoff TCP sequence 

trace of the client-proxy connection and proxy-server connection, respectively. 

Figure 6-45. Entire download TCP sequence trace, client-proxy, DDT≈2s
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Figure 6-46. Entire download TCP sequence trace, proxy-server, DDT≈2s

Figure 6-47. Entire download TCP throughput, client-proxy, DDT≈2s
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Figure 6-48. Entire download TCP throughput, proxy-server, DDT≈2s

Figure 6-49. Zoomed TCP sequence trace, client-proxy, DDT≈2s
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Again, the behavior is very similar to that in the WAN test so we do not repeat the 

discussion. This comes as no real surprise since the dynamic part of the test, migra-

tion of the server process behind the proxy, is the same for both cases.

6.1.4 Handoff “ping-pong” stress test

The handoff “ping-pong” stress test is conducted on the same testbed as that for 

the client machine migration on a LAN shown in Figure 6-1b. However, instead of 

using mplayer, we use wget to fetch a very large file from the apache server and the 

“ping-pong” migration is conducted as follows:

• wget on the client machine with IP1 starts downloading the large file

• after 5 seconds, the interface IP address is changed to IP2

Figure 6-50. Zoomed TCP sequence trace, proxy-server, DDT≈2s
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• for the next 60 or so seconds, the interface IP address is switched between 

IP1 and IP2 with a varying interval of 10 seconds, 5 seconds, and 1 second 

between each switch. In other words, with 10 seconds interval, 6 switches 

are made, with 5 seconds interval, 12 switches are made, and with 1 second 

interval, 60 switches are made

• at the end of the “ping-pong” switches, the download is continued for 

another 5 seconds before it is stopped

The test results are shown in Figure 6-51. Note that since it takes roughly 20ms to 

change the IP address of client’s NIC (during which time the client is disconnected 

from the network), the total elapsed time of a test increases as the rate of switch 

increases. But for all tests, the total connected time of the client should be roughly 

the same 5+60+5=70 seconds.

As shown in the figure, at a switch rate of once every 10 seconds, the impact of the 

handoffs is virtually invisible. Even at a switch rate of once every second, the 

impact of the handoffs is very small, with a decrease of about 1MB in the total bytes 

transferred at the end of the test comparing to the case of no handoff.

6.1.5 Handoff for connection-less transport protocols

Finally, we test MOVE’s handoff support for connection-less transport protocols, 

UDP in this case. We again use the same testbed as that for client machine handoff 

on a LAN shown in Figure 6-1b. However, instead of using mplayer client and 

apache server, we use openRTSP [15] version 2004.06.02 client to “play” an MPEG-

4 encoded video from Darwin streaming server [3] version 4.1.3 over RTP. Similar 



176
to the HTTP video playback test for client machine handoff described in 

Section 6.1.1, we “play” the video for about 30 seconds, change the IP address of 

the client’s NIC, and then let the playback continue for about another 30 seconds. 

Note that a RTP session actually consists of two connections, one is a control con-

nection over TCP known as RTCP (RTP Control Protocol), the other is a data “con-

nection” over UDP. Both are migrated simultaneously when the client machine is 

migrated but our focus in this section is on the UDP “connection”.

Since UDP packets do not have sequence numbers, we cannot plot sequence 

number trace like we did for TCP packets. Instead, we plot the cumulative bytes 

received at the client for the entire playback session, which is shown in Figure 6-

52. The UDP throughput is shown in Figure 6-53. The handoff shows no visible 

Figure 6-51. Handoff “ping-pong” stress test on a LAN
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impact on the playback.

Figure 6-54 shows the zoomed view of the handoff indicated by the small box in 

Figure 6-52. We see that the handoff lasts about 150ms, starting at around 30.17s 

when the laptop is disconnected from the network and ending at around 30.32s 

when the laptop is reconnected to the network. The first message from the client to 

the server at 30.32s carries the MOVE HANDOFF protocol message. Note that 

since we are counting cumulative bytes received at the client, those lost packets 

during the 150ms handoff are not reflected in the figure.

6.1.6 Migrate popular real world applications

To conclude the handoff performance measurement section, we test the migration 

capability of our MOVE system with a suite of popular real world LINUX applica-

Figure 6-52. Entire playback UDP byte counts, DDT≈150ms
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Figure 6-53. Entire playback UDP throughput, DDT≈150ms

Figure 6-54. Zoomed UDP byte counts, DDT≈150ms
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tions, including:

• telnet client and server (standalone and xinetd)

• ftp client and server (standalone and xinetd), both active and passive modes

• ssh client and server

• mozilla/netscape/opera client and apache/zeus server

• Ximian evolution client and qpopper/sendmail server

• slrn client and innd server

• VNC thin client and VNC server

• remote X client and X server

• mplayer/realplay client and Darwin/Helix server

All the above applications work over a virtualized connection right out of the box. 

We are able to migrate live connections created by all the above applications and 

the connections stay alive as if nothing happened. None of the applications, except 

ftp, requires us to completely hide the migration by exposing the virtual address. 

We are glad to see that these representative applications behave as we have 

expected. That is, rather than relying on transport connection properties for their 

application logic, they use the transport protocol solely for the purpose of trans-

porting data.

6.2 Scalability Tests

We perform scalability tests in a proxy-base server cluster environment using auto-

bench [92] version 2.1.1, a Perl script wrapper for httperf [94] version 0.8, with the 
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same testbed in Figure 6-38 that we used for server process handoff tests. We run 

autobench client on the client2 machine and apache web server on the server1 and 

server2 machines. We run delegate on the proxy machine to evenly distribute the 

connections from the autobench client to the two apache servers. The client1 machine 

is not used. We perform two scalability tests, one is scalability relative to the 

number of simultaneous connections and the other is scalability relative to the rate 

of new connections, for three different test configurations: Vanilla, MOVE1, and 

MOVE2. The Vanilla configuration is a stock LINUX system without MOVE loaded 

into the kernel. The MOVE1 and MOVE2 are configurations with MOVE loaded. 

On MOVE1, no connections are migrated and hence only connection virtualization 

is performed; on MOVE2, all connections are migrated and hence both connection 

virtualization and virtual-physical mapping are performed.

6.2.1 Number of simultaneous connections

For scalability test relative to the number of simultaneous connections, a number 

of connections are opened and the same number of requests are sent through each 

connection. Each request asks for a file of size 4KBytes which is locally available on 

each server, i.e., no NFS is involved. The total number of requests over all connec-

tions remains a constant of 1048576 (220) for each test run. For our testbed, this 

roughly translates into 5 minutes for each test run. We used HTTP 1.1 persistent 

connection in this test in order to be able to measure migrated connections for the 

MOVE2 configuration.

Figure 6-55 shows the throughput test. From the figure, MOVE1 has about at most 
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Figure 6-55. Throughput vs. number of connections

Figure 6-56. Latency vs. number of connections

 105

 110

 115

 120

 125

 130

 16  32  64  128  256  512  1024

T
hr

ou
gh

tp
ut

 (
M

bi
ts

/s
)

Simultaneous connections

Vanilla

 105

 110

 115

 120

 125

 130

 16  32  64  128  256  512  1024

T
hr

ou
gh

tp
ut

 (
M

bi
ts

/s
)

Simultaneous connections

MOVE1

 105

 110

 115

 120

 125

 130

 16  32  64  128  256  512  1024

T
hr

ou
gh

tp
ut

 (
M

bi
ts

/s
)

Simultaneous connections

MOVE2

 0

 10

 20

 30

 40

 50

 16  32  64  128  256  512  1024

La
te

nc
y 

(m
s)

Simultaneous connections

MOVE2

 0

 10

 20

 30

 40

 50

 16  32  64  128  256  512  1024

La
te

nc
y 

(m
s)

Simultaneous connections

MOVE1

 0

 10

 20

 30

 40

 50

 16  32  64  128  256  512  1024

La
te

nc
y 

(m
s)

Simultaneous connections

Vanilla



182
1.1Mbits/second overhead over Vanilla, and MOVE2 has about at most 1.8Mbits/

second overhead over Vanilla. Figure 6-56 shows the latency test, in which MOVE1

has about at most 0.8ms overhead over Vanilla and MOVE2 has about at most 

1.1ms overhead over Vanilla. However, the important thing to note is that, for both 

MOVE1 and MOVE2, the throughput and latency overhead do not increase after 

the proxy has been overloaded at around 256 simultaneous connections.

6.2.2 Rate of new connections

For scalability relative to the rate of new connections, connections are generated at 

certain rate and the rate remains constant for 5 minutes. Each connection sends 300 

requests, each asking for a file of size 4Kbytes available locally on each server. So 

again no NFS is involved. Note that for this test, we do not measure for the MOVE2

configuration since each connection doesn’t last long enough to be migrated.

Figure 6-57 shows that the throughput overhead of MOVE1 over Vanilla is at most 

about 5Mbits/second. Figure 6-58 shows that the latency overhead of MOVE1

over Vanilla is at most about 4.4ms. Again note that both throughput and latency 

overhead do not increase after the proxy has been overloaded at the rate of around 

128 connections per second.

6.3 Connection Virtualization and Mapping 
Overhead

We measure the virtualization and mapping overhead of the CELL abstraction 

employed by MOVE. The overhead is measured using a micro benchmark pro-
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Figure 6-57. Throughput vs. rate of connections

Figure 6-58. Latency vs. rate of connections
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gram netperf [72] version 2.2pl4 on two types of systems. One system, which we call 

the laptop system, consists of a pair of IBM ThinkPad 770 laptops, each with a 

233MHz Pentium CPU, 160MB RAM, and an 100Mbits LINKSYS PCM200 ethernet 

PCCard. The laptop system represents a system with low computing power. The 

other system, which we call the server system, consists of a pair of rack mounted 

IBM Netfinity 4500R servers, each with dual 933MHz Pentium III CPU, 512MB 

RAM, and an 1Gbits Intel Pro/1000MT ethernet NIC. The server system represents 

a system with high computing power. All machines are running LINUX kernel 

version 2.4.20. The two systems are illustrated in Figure 6-59. For both systems, we 

run netperf client and server and measure network I/O in terms of throughput, 

latency, CPU utilization, and connection setup for the same three different config-

urations, Vanilla, MOVE1, and MOVE2, that we used in the scalability tests in 

Section 6.2.

6.3.1 Throughput

The throughput experiment simply measures the throughput achieved when 

sending messages of varying sizes as fast as possible from the client to the server. 

Figure 6-60 and Figure 6-61 show the throughput overhead for the two systems we 

Figure 6-59. MOVE virtualization and mapping overhead testbed

(a) laptop system (b) server system

netperf
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netperf
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233MHz CPU
160MB RAM

233MHz CPU
160MB RAM

dual 933MHz CPU
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tested, each with three configurations. We can see that in both the laptop and server

systems, MOVE1 performs nearly identically to Vanilla. In the laptop system, 

throughput overhead is about 0.45Mbits/second, while in the server system, the 

overhead is about 1.3Mbits/second. This also shows that the overhead due to the 

exchanging of Diffie-Hellman public key and connection label is rather insignifi-

cant. MOVE2 shows the throughput overhead due to the virtual-physical map-

ping, i.e., address translation and interface redirection, which is at most around 

3.3Mbits/second in the laptop system, and 11.8Mbits/second in the server system.

6.3.2 Latency

The latency experiment measures the inverse of the transaction rate, where a trans-

action is the exchange of a request message of size 128 bytes and a reply message 

Figure 6-60. Throughput overhead, laptop system
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of varying sizes between the client and the server over a single connection. 

Figure 6-62 and Figure 6-63 show the latency overhead for the two systems we 

tested, each with three configurations. The results bear the same characteristic as 

that for the throughput overhead. Performances for Vanilla and MOVE1 are again 

rather indistinguishable, with a latency overhead of about 7.4 microseconds in the 

laptop system and 6.7 microseconds in the server system. Latency overhead due to 

the virtual-physical mapping in MOVE2 can be observed to be at most around 34.1 

microseconds in the laptop system and 32.5 microseconds in the server system.

Note that, in the server system, there is a strange drop of latency above the reply 

message size of 128 bytes. We determine that this unusual behavior is due to a 

problem with the LINUX device driver for the Intel Pro/1000MT NIC that was 

Figure 6-61. Throughput overhead, server system
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Figure 6-62. Latency overhead, laptop system

Figure 6-63. Latency overhead, server system
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used. While the behavior is unusual, it does not affect the key result shown, which 

is the small relative performance difference between using stock LINUX and 

MOVE.

6.3.3 CPU utilization

Figure 6-64 and Figure 6-65 show the CPU utilization overhead measured from the 

throughput test on the server; results on the client are similar and omitted. We can 

see that for both the laptop and the server systems, MOVE1 performs virtually the 

same as Vanilla, with a CPU utilization overhead of about 331.2 microseconds/

Mbits in the laptop system and 39.8 microseconds/Mbits in the server system. The 

CPU utilization overhead due to virtual-physical mapping in MOVE2 is at most 

around 1814.4 microseconds/Mbits in the laptop system and 145 microseconds/

Mbits in the server system.

Figure 6-66 and Figure 6-67 show the CPU utilization overhead measured from the 

latency test on the server; results on the client are similar and omitted. For both the 

laptop and the server systems, MOVE1 again performs virtually the same as Vanilla, 

with a CPU utilization overhead of about 4.7 microseconds per transaction in the 

laptop system and 0.5 microseconds per transaction in the server system. The CPU 

utilization overhead due to virtual-physical mapping in MOVE2 is at most around 

17.1 microseconds per transaction in the laptop system and 2.1 microseconds per 

transaction in the server system.



189
Figure 6-64. Throughput test CPU utilization overhead, laptop system

Figure 6-65. Throughput test CPU utilization overhead, server system
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Figure 6-66. Latency test CPU utilization overhead, laptop system

Figure 6-67. Latency test CPU utilization overhead, server system
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6.3.4 Connection setup

The connection setup experiment is the same as the latency experiment except that 

a new connection is used for every request/response transaction. This experiment 

simulates the interaction between a client and a server in which many short-lived 

connections are opened and closed. Figure 6-68 and Figure 6-69 show the TCP con-

nection setup overhead for Vanilla and MOVE1 in the two systems we tested. Note 

that since connection setup occurs before migration, there is no mapping overhead 

associated with connection setup, therefore this measurement is not applicable to 

MOVE2. This is the test that measures the overhead of exchanging Diffie-Hellman 

public key and connection label. From the figure we can see that the connection 

setup overhead is at most around 26.2 transactions per second in the laptop system 

and 19 transactions per second in the server system. In the server system, due to the 

same Intel Pro/1000MT NIC LINUX driver problem as that in the latency test, we 

also see a strange increase of connection rate above the reply message size of 128 

bytes.

6.3.5 Overhead in proxy-based environments

We finally repeat the micro benchmark for measuring virtualization and mapping 

overhead for proxy-based environments using the same testbed in Figure 6-38 that 

we used for server process handoff tests. We run netperf client on the client2 

machine and netperf server on the server2 machine. We run delegate on the proxy 

machine and it forwards all connections from the netperf client to the netperf server. 

Client1 and server1 machines are not used in this test.
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Figure 6-68. TCP connection setup overhead, laptop system

Figure 6-69. TCP connection setup overhead, server system
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Figure 6-70 shows the throughput overhead for the three configurations, Vanilla, 

MOVE1, and MOVE2. We can see that MOVE1 performs very close to Vanilla, with 

an overhead of about 1.4Mbits/second. MOVE2 shows the throughput overhead 

due to the virtual-physical mapping, which is around 10Mbits/second.

Figure 6-71 shows the latency overhead for the three configurations. The results 

bear the same characteristic as that for the throughput overhead. Performance dif-

ference between Vanilla and MOVE1 is about 9.4 microseconds; while latency due 

to the virtual-physical mapping in MOVE2 can be observed to be around 40 micro-

seconds. Note the similar drop of latency above the reply message size of 128 bytes 

we also observed in the server system in Section 6.3.2.

Figure 6-72 and Figure 6-73 show the CPU utilization overhead measured from 

Figure 6-70. Throughput overhead
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both the throughput and the latency tests. From the throughput test, we can see 

that MOVE1 again performed very close to Vanilla, with an overhead of about 44 

microseconds/Mbits; and the CPU utilization overhead due to virtual-physical 

mapping in MOVE2 is around 150 microseconds/Mbits. From the latency test, we 

can observe that the CPU overhead due to virtualization in MOVE1 is about 0.3 

microseconds per transaction; and the CPU utilization overhead due to virtual-

physical mapping in MOVE2 is fewer than 2 microseconds per transaction.

Figure 6-74 shows the TCP connection setup overhead for Vanilla and MOVE1. 

Note again that since connection setup occurs before migration, there is no virtual-

physical mapping overhead associated with connection setup, therefore this mea-

surement is not applicable to MOVE2. From the figure we can see that the over-

Figure 6-71. Latency overhead
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Figure 6-72. CPU utilization overhead, throughput test

Figure 6-73. CPU utilization overhead, latency test
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head is fewer than 10 transactions per second. Note the similar increase of 

transaction rate above the reply message size of 128 bytes we also observed in the 

server system in Section 6.3.4.

6.4 Host and Service Location Mechanism Studies

We present our empirical studies of DDNS and SRV RR for their suitability as 

mobile host and service location mechanisms.

6.4.1 Empirical DDNS studies

The first study we conduct is to find out the TTL of name records provided by 

some service providers who offer DDNS for free; since the TTL determines how 

long a host name to IP address mapping can be cached and therefore limits the fre-

Figure 6-74. TCP connection setup overhead
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quency a host or service can migrate. We sign up with several free DDNS provid-

ers and our findings are shown in Table 6-2. We see that it’s possible to have TTLs 

as low as 1 minute, which means that a mobile host or service can migrate as often 

as once every minute. We deem it adequate for most applications.

We then study if TTLs lower than 60 seconds will be honored by DNS servers and 

applications. To do this, we setup our own named [11] version 9.2.1 DNS server and 

domain move.cs.columbia.edu as a child of the Columbia Computer Science Depart-

ment DNS server. Our named DNS server run on a Dell Dimension XPS R400 with 

a 800MHz Pentium II CPU, 256MB RAM, and an 100Mbits 3Com 3c905B ethernet 

NIC. We create name records such as foo.move.cs.columbia.edu on our DNS 

server with TTLs set to 5 seconds or 0 seconds (no caching allowed) and use a suite 

of popular network applications to resolve these names. The applications we use 

for our studies are listed in Table 6-3. All the applications can resolve the updated 

names according to the TTL setting. That is, with TTL=5 seconds, an update of the 

host name to IP address mapping is reflected to the applications after 5 seconds; 

and with TTL=0 second, an update is instantly reflected. For GUI based web 

DDNS provider Name record TTL (seconds)

2mydns.org 60

dyndns.org 60

no-ip.org 60

blrf.net 300

myip.org 300

afraid.org 3600

Table 6-2. Name record TTL of some DDNS providers
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browsers, we do have to restart the browser for it to correctly resolve the names; 

simply pressing the “reload” button does not resolve the correct names since GUI 

web browsers typically cache a page (independent of DNS caching) for a variable 

amount of time, typically on the order of minutes.

6.4.2 Transparent SRV RR lookup measurements

Because no DDNS service providers support SRV RR lookup and update, we used 

our own DNS server that we use for the DDNS TTL tests for the SRV RR related 

tests as well. On the client side, we use our transparent SRV RR lookup mechanism 

described in Section 5.6 in Chapter 5 with those applications in Table 6-3 that we 

use for the DDNS TTL test. Again, all the applications can reach their services on 

the correct host after the services are migrated and their corresponding SRV RR are 

updated on our DNS server. Similar to the DDNS TTL tests in the previous section, 

GUI web browsers need to be restarted to resolve the SRV RR to the correct host.

We also measure the performance overhead of the socket calls that are intercepted. 

We compare the execution time, the time between when the function is entered 

and when the function is exited, of the original socket calls with that of our version. 

Category Application

remote login telnet, ssh

file transfer ftp

email pine, evolution, thunderbird

web browser lynx, netscape, mozilla, opera, firebird

media player mplayer, realplay, xmms

Table 6-3. Applications used for DDNS TTL test
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The measurements are performed on an IBM ThinkPad T770 with a 233MHz Pen-

tium CPU, 160MB RAM, and an 100MBits LINKSYS PCM200 PCCard. The results 

are shown in Table 6-4. We can see that our gethostbyname/getaddrinfo, getpeer-

name calls incur a very small amount of overhead. For connect, the overhead in a 

LAN is fairly large, about 6ms; but this overhead stays constant in the WAN case. 

The overhead is due to two trips to the local DNS server, one for SRV RR lookup, 

one for current host name lookup returned by the SRV RR.

6.5 Summary

We have presented in this chapter various performance measurements, using both 

application benchmarks and micro benchmarks, for our MOVE prototype imple-

mentation to demonstrate its feasibility. We showed that, with a variety of appli-

cations, endpoint migration mechanisms, network connectivity configurations, 

and transport protocols, MOVE’s handoff protocol H2O imposes minimal impact 

on the end-to-end connectivity perceived by the transport protocols and applica-

tions. Our scalability tests showed that MOVE virtualization and mapping over-

head stay constant with increased number of simultaneous connections or rate of 

socket call original (ms) intercepted (ms)

gethostbyname 2.28 2.31

getaddrinfo 74.55 77.18

connect

LAN 0.47 6.49

WAN 95.41 101.59

getpeername 0.0086 0.0096

Table 6-4. Execution overhead of intercepted socket calls
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new connections. We showed that MOVE’s virtualization overhead for stationary 

connections is essentially negligible; and for migrated connections MOVE’s vir-

tual-physical mapping overhead is also very low. We finally presented our empir-

ical studies on the suitability of DDNS, along with the SRV RR, as the mechanism 

for mobile host and service location.
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7Related Work

This thesis has touched upon a few aspects of the broad mobile computing area 

where many prior arts exist. These aspects include: mobile communication, hand-

off, service availability, and process migration. We survey these work in this chap-

ter. We first present, in Table 7-1, a summary of the difference between MOVE and 

the prior arts, whose main deficiencies are indicated by the shaded cells in the 

table. We then present more detailed account of each aspect in the rest of the chap-

ter.

7.1 Mobile Communication Architectures

A variety of approaches have been taken in previous work in providing commu-

nication mobility in current IP data networks. These approaches often work at a 

particular layer in the protocol stack and can be loosely classified as network layer 

solutions, transport layer solutions, application layer solutions, and split connec-

tion solutions. Despite the seemingly large variation of the mechanisms employed 

by these approaches, their fundamental differences can be traced back to the very 

mechanism that they use to address the key technical problems we described in 

Chapter 2: state inconsistency, conflict, and synchronization. In the comparison 

below, we first describe the general characteristics of each class of the solutions, 

followed by a more detailed look at each individual solutions within the class.
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Transparent Non-transparent

MOVE

Network layer
Transport 

layer
Application

layer
Split

connectionMobileIP
MobileIP w/

handoff
extensions

Others

Fine-grain 
and 

unlimited 
mobility

Fine-grain
migration

Yes No No No Yes Yes Yes

Process 
migration
integration

Yes No No No No
Limiteda

or No

a. ROCKS/RACKS [139] supports checkpointing/restarting MPI based applications

No

Unlimited
mobility

Yes Yes Yes Yes Yes Yes No

Work across 
NAT

Yes Limitedb

b. With RFC3519 extension [85], only works from no NAT to NAT

Limited No Yes or No No No

Secure and
flexible 

migration

Migration 
security

pre-com-
puted DH

IPsec IPsec
IPsec
or No

on-the-fly 
DH

or No

on-the-fly 
DH

or No

SOCKS
or No

Suspension/
resumption

Yes No No No No
Limitedc

or No

c. ROCKS/RACKS can prevent TCP from timing out but not applications

No

Easy 
deploy-

ment

New infra-
structure

No Yes Yes Yes No No Yes

Backward 
compatibility

Yes Yes Yes Yes Yes Yes Yes

Transport 
change

No No No No Yes No Nod

d. While I-TCP [34] doesn’t modify TCP, it violates TCP end-to-end semantics

Transport 
dependency

No No No No Yes Yes Yes

High
perfor-
mance

Connection 
setup

overhead
Low Low Low

Low
to

High

Low
to

High
High

Low
to

High
Pre-move

I/O
overhead

Low Low Low
Low

to
Low+

Low High Lowe

e. Consider connection between mobile endpoint and MSR (mobility support router, for I-TCP)/proxy (for 
MSOCKS [89]) only; same for post-move I/O overhead

Post-move
I/O

overhead
Low+

Low+
to

High

Low+
to

High 
Low+ Low High Low

Handoff 
latency

0.5 RTTf

f. RTT: round trip time between mobile endpoint and stationary endpoint or between mobile endpoint and home 
agent (for MobileIP [71][104])

O(RTT)

intra-domain: 
O(rttg)

inter-domain: 
O(RTT)

g. rtt: round trip time between mobile endpoint and MAP (mobility anchor point, for handoff extension architec-
tures) or between client and proxy (for MSOCKS)

O(RTT) 1.5 or 2 RTT > 1.5 RTT

2.5 rtt
or

0.3-1.4
seconds

Table 7-1. Comparison of MOVE and other mobility solutions
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7.1.1 Network layer solutions

Network layer solutions preserve connection states at both transport-and-above 

layers and network-and-below layers across migration. Therefore they address the 

inconsistency problem in a way similar to MOVE. However, their “virtual 

namespace” is only provided to the entire host rather than individual connections. 

Therefore they can only provide migration at the granularity of an entire host 

rather than individual connections. Network layer solutions must also deal with 

state conflict in the transport layer due to address and port reuse; and individual 

solutions differ in the way they address this problem. None of the existing network 

layer solutions addresses the cross address space synchronization problem, with 

the exception of MobileIP, to which an extension has been proposed to partially 

address the problem. Existing network layer solutions either do not address secu-

rity problem or rely on IPsec. And with the exception of MobileIP, none has pre-

sented studies on its handoff behavior.

MobileIP is the most well-known network layer mobility mechanism; recent ver-

sions [71][104] have consolidated various improvements to the original proposals 

[38][70][103]. MobileIP supports its “virtual namespace” by assigning each host a 

“home” IP address that is carried along with the host wherever it moves. It 

resolves the conflict problem by requiring that the assignment of the home IP 

address is permanent and non-reusable, which needs a global infrastructure. The 

main problem with MobileIP, however, is the use of the home IP address for both 

locating and tracking the host, which are two different issues. As a result, it man-

dates the requirement of additional network infrastructures (i.e., home/foreign 
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agents), which history has shown to be extremely difficult to deploy, even when 

there is no need for them. For example, the most common mobile hosts today are 

client machines that are never used as server machines, which means there was 

never a problem of locating them; the mobility problem in this case is entirely just 

the tracking problem. And we’ve shown that you don’t need any new network 

infrastructure for tracking. The coupling of locating and tracking also results the 

“triangle routing” (aka dog-leg routing) problem, which can be addressed [105] 

but it adds even more complexity to the architecture. [85] proposes an extension to 

partially address the synchronization problem in the case a mobile host moves 

from a public network without a NAT to a private network behind a NAT. But the 

solution requires more infrastructure support and has unresolved security issues. 

MobileIP’s handoff performance is generally considered inadequate due to the 

need for the mobile host to interact with the home agent on every move; its security 

mechanism in the absence of IPsec, called return routability procedure, also adds 

to infrastructure complexity and handoff delay.Therefore a large body of work has 

been proposed to improve its handoff performance, which we discuss in the next 

section.

A few other network layer solutions that use network address virtualization have 

been previously considered [66][131][132][136]. [131][132] supports its “virtual 

namespace” with a constant virtual IP (VIP) address that is set to be the initial 

physical IP address of a host in its native network. However, they did not address 

the conflict problem. [131][132] also employs a more complex virtual-physical 

mapping mechanism that requires network infrastructure support and host OS 
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kernel changes. [66] describes a way to implement a MobileIP equivalent service 

using its redirection mechanism. It shows how new connections are redirected but 

does not prescribe a way to migrate existing connections. The same per host per-

manent home IP address “virtual namespace” is assumed to avoid the conflict. [66] 

requires extra round trip delays to determine virtual-physical mapping for all con-

nection setup, regardless of wether a machine moves or not. [66] rewrites TCP 

stack values which requires TCP/IP stack changes and makes it dependent on not 

only TCP but also the TCP implementation as well. [136] employs reserved E-class 

IP addresses as the VIP for its “virtual namespace”. This avoids conflict since the 

E-class addresses are assumed to be never used as hosts’ physical IP addresses. 

However, the limited number of usable E-class addresses causes a few problems: 

(1) extra round trip delays to negotiate VIPs for all connection setup, regardless of 

whether a machine moves or not; (2) possibility of conflict between VIPs since 

there are more machines then the number of VIPs. [136] by default doesn’t address 

this issue but rather rely on the low possibility of the conflict happening. It pro-

vides an option to reserve a static physical IP as the VIP to avoid the conflict, which 

is equivalent to MobileIP’s permanent home IP address approach; and (3) com-

plexity of managing VIPs such as selection and garbage collection policies. None 

of these approaches addresses the synchronization problem and presents studies 

of their handoff behavior. Among them, only [136] considers security issues that 

arise due to host mobility; it assumes IPsec which is not yet widely deployed.

ROAM [142] is a host mobility approach using a peer-to-peer overlay network 

called i3. Communications on i3 are commenced with a rendezvous-based abstrac-



206
tion where all packets are of the form (id, data) and the id is location independent. 

While the overlay network possesses interesting properties pertinent to mobility, 

ROAM suffers from some of the same problems that MobileIP does. First ROAM 

requires the deployment of i3 servers to form the overlay. Second, similar to 

MobileIP’s home address, the id in i3 is used not only just for locating a mobile 

host, but also for routing packets to the mobile host. The i3 overlay therefore has 

the same problem of coupling the issues of host locating and connection tracking. 

The efficiency of ROAM to support i3-unaware legacy applications is likely to 

suffer because to transmit a packet, it must be converted from IP address 

namespace to the i3 id namespace, routed on the overlay, and then converted back 

from i3 id namespace to IP address space. The authors have suggested that one can 

potentially use i3 only for control traffic (e.g., exchanging new IP addresses when 

hosts move) but leave data traffic for the underlying physical network in order to 

reduce the overhead. However, doing so also reduces the functionality of the 

entire i3 overlay down to the equivalent of a DDNS.

[96] proposes an interesting approach that exploits the similarity between mobility 

and multicasting. Unfortunately, a scalable multicast infrastructure does not yet 

exist today.

7.1.2 Transport layer solutions

Transport layer solutions do not preserve all connection states at transport layer, 

therefore the migration is no longer transparent to the transport protocols. As we 

pointed out in Chapter 2, state inconsistency, conflict, and synchronization prob-
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lems do not apply to non-transparent migration solutions. Instead, the mobility 

functions are provided by modifying the transport protocol, TCP in this case, itself.

TCP-R [58], Migrate [121][122] and M-TCP [128] are transport layer solutions that 

“re-synchronize” some of the TCP states (e.g., tuple, sequence number, etc.) at the 

new location by modifying TCP on both endpoints. As a result, TCP-R, Migrate, 

and M-TCP cannot be used with existing unmodified transport protocol stack 

implementations. M-TCP also requires server application (the endpoint that 

moves) change.

TCP-R describes two security modes, called optimistic and pessimistic approach. 

The optimistic approach relies on TCP sequence number for rudimentary protec-

tion therefore is insecure. The pessimistic approach uses public key encryption and 

the keys are exchanged at connection setup time, similar to the H2O Diffie-Hell-

man key exchange. However, the keys are exchanged using TCP options therefore 

it supports TCP only; there are also no details given for the approach. The security 

mechanism of Migrate is based on Elliptic Curve Diffie-Hellman key exchange but 

the computation of secret key is performed per connection at connection setup 

time, which results in high connection setup overhead. A connection certificate is 

mentioned in M-TCP but no discussion on its use for security.

TCP-R and Migrate require 1.5 RTT for connection handoff while M-TCP requires 

2 RTT. Although TCP-R is capable of individual connection handoff, it is designed 

in the context of host migration and compared against MobileIP. Therefore, no 

process migration is mentioned in TCP-R. Neither Migrate nor M-TCP is inte-
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grated with process migration either. They rather assume that an “identical” pro-

cess already exists on the target host. This necessarily restricts them to 

“transactional” type of applications where the application states for processing 

individual transactions are easily duplicated. For example, an HTTP connection 

through which a file is being requested can be migrated by simply recreating the 

transport connection states at the “identical” process on the target host without 

migrating any application states, as long as the same file is also available on the 

target host.

Among the three solutions, only Migrate can work across NAT boundaries.

Emerging transport protocols such as SCTP (Stream Control Transmission Proto-

col) [127] have mobility-savvy features such as support for multihoming, which 

allow an endpoint to use multiple IP addresses for a connection. An SCTP exten-

sion described in [126] further allows an endpoint to dynamically add and delete 

IP addresses associated with a connection, therefore making SCTP a mobility 

enabled transport protocol [114]. This is indeed a welcome sign that new transport 

protocols have started to take mobility into consideration. Current SCTP mobility 

support, however, has a few limitations:

• New IP addresses can be added only through an existing connection, 

which means that the mobile endpoint must have simultaneous connec-

tions to the stationary endpoint from both the old and the new IP 

addresses. In a network such as WiFi where one interface can only be asso-

ciated with one access point at a time, this requires the mobile endpoint 
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have at least two interfaces for mobility support.

• Since only IP addresses, not port numbers, can be dynamically changed for 

a connection, SCTP mobility support cannot work across NAPT.

• SCTP mobility support does not address the security problem itself, but 

rather leave it up to IPsec.

Note that MOVE can also readily take advantage of multihoming by transparently 

migrating connection(s) from one interface to another as we’ve shown in 

Section 6.1.1 in Chapter 6 when we migrated a connection between a WAN and a 

LAN.

7.1.3 Application layer solutions

Application layer solutions do not preserve any connection states at transport 

layer and therefore are also non-transparent migration solutions for which state 

inconsistency, conflict, and synchronization problems do not apply, as we pointed 

out in Chapter 2. Unlike transport layer solutions, however, the mobility functions 

are provided not by modifying the transport protocols themselves but rather by 

emulating the migration through closing the old connection and opening a new 

one.

All application layer solutions, such as [98][109][139][141], are based on introduc-

ing a “shim” layer, generally a socket library wrapper, between the application 

and the transport protocol (again TCP) to emulate the migration. Because in-flight 

data, those that have been acknowledged by TCP but not yet delivered to the 

application, can be lost due to closing the old connection, these solutions must 
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employ double-buffering and go-back-N (or similar) mechanisms to recover lost 

in-flight data. These mechanisms essentially duplicate many of TCP’s functions 

and create substantial network I/O performance overhead [139], not only for 

migrated connections, but also for stationary connections as well.

Of these solutions, [141] and [109] do not address migration security issues. [98] 

mentions a “seed” for migration authentication but no details are given. Only [139] 

provides security protection for migrating connections, which is based on the 

Diffie-Hellman key exchange. Like Migrate, it computes the shared secret key per 

connection at connection setup time and has high connection setup overhead.

While none of these solutions presented studies of their handoff behavior, one can 

infer that they will require at least 1.5 RTT in order to open a new connection. The 

go-back-N for recovering lost in-flight data and authentication (if provided) will 

add additional handoff delay.

[139] is integrated with MPICH [64] and supports checkpointing/restarting con-

nections for MPI [13] based applications. [141], [109], [98] are not integrated with 

process migration. In addition, [98] is a pure Java [62] based socket library and sup-

ports connection migration for Java applications only.

Lastly, none of these solutions, or application layer solutions in general, can work 

across NAT boundaries. This is because application layer solutions rely on the abil-

ity of the mobile endpoint, after it moves, to establish a new connection to the sta-

tionary endpoint. However, if the stationary endpoint is behind a NAT device, 
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which masquerades the IP address and port number of the stationary endpoint, 

establishing a new connection is not always possible. For example, the stationary 

endpoint may be a client behind a NAT device which initiates a connection to a 

mobile server; after the server moves, it cannot connect back to the client due to the 

NAT device.

7.1.4 Split connection solutions

I-TCP [34] splits a TCP connection between a mobile host (MH), which is assumed 

to be on a wireless network, and a fixed host (FH), which is assumed to be on a 

wired network, into two connections using a mobile support router (MSR), which 

is a special base station with I-TCP support. The split is such that it’s transparent 

to the FH but not transparent to the MH; much like the way NAT works. The split 

of a connection offers two advantages:

• It separates TCP performance characteristics such as flow control and con-

gestion control on the wireless link from those on the wired link. The sepa-

ration is desirable because it allows separate control on the two vastly 

different type of links. For example, a different version of TCP that is spe-

cially tuned for the wireless link such as [35][41] or even a non-TCP trans-

port protocol can be used between the MH and the MSR to improve the 

performance of the overall connection.

• It allows the MSR to hide the movement of the MH from the FH by trans-

ferring TCP states and socket buffers of the MSR-FH connection to a new 

MSR and reestablishing a new MH-MSR connection after the MH moves. 
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I-TCP, however, has a few serious drawbacks. First, it needs network infrastruc-

ture support for the MSR. Second, the MSR breaks the end-to-end TCP acknowl-

edgement semantics because it separates acknowledgements for the wireless MH-

MSR part and the wired MSR-FH part of the connection, i.e., the MSR acknowl-

edges packets sent from the FH to the MH before delivering them to the MH. As a 

result, the MSR must buffer packets for the MH and can easily run out of buffer 

space since the FH has no idea that it’s talking to a slow wireless MH. In other 

words, the split connection is a double-edged sword. Third, every time the MH 

changes the MSR, TCP states and socket buffers must be transparently transferred 

to the new MSR. This is a rather complex task and requires careful kernel design 

and networking code modification on the MSR. As shown in [34], transferring 

large socket buffers (32KB) can take as long as 1.5 seconds, which severely impacts 

its handoff performance. Note that large sockets buffers are needed to prevent the 

MSR from running out of buffer space. Finally, I-TCP does not address migration 

security and process migration issues, and is limited to client mobility only.

MSOCKS [89] is another split connection solution which is based on a proxy utiliz-

ing the TCP Splice [88] technique. A proxy transparently splices a single TCP con-

nection between a client and a server. It handles the disconnecting and 

reconnecting of the client-proxy half while maintaining the proxy-server half 

intact in the face of client migration. MSOCKS can be classified as transport layer 

solution since TCP Splice is TCP specific. MSOCKS can also be classified as an 

application layer solution. Because the client-proxy half connection is “migrated” 

by closing the old one and opening a new one, the same way application layer 
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solutions “migrate” a connection. MSOCKS library must emulate the migration to 

the client and the proxy must emulate the migration to the server. Therefore, 

MSOCKS suffers from the same problems as those with application layer solu-

tions. Indeed, one can think of MSOCKS as another form of application layer solu-

tion, where the proxy plays the role of the socket library wrapper for the server. 

Comparing to the socket library wrappers, the advantage of MSOCKS is that it 

doesn’t have to touch the server. However, it requires kernel change on the proxy 

and supports only client mobility. The scope of client mobility is also restricted to 

the same proxy. MSOCKS relies on SOCKS [84] for its security and requires 2.5 

RTT between the client and the proxy for handoff delay.

7.1.5 Summary

To summarize and as a comparison, MOVE is a transparent migration architec-

ture, similar to network layer solutions. Unlike network layer solutions, however, 

MOVE’s virtual namespace extends to individual connections therefore MOVE 

provides migration at the granularity of individual connections yet still remains 

transport-independent. MOVE addresses state inconsistency, conflict, and syn-

chronization problems through a light-weight virtualization, privatization, and 

labeling mechanism that requires no explicit management of virtual address space, 

and incurs no delay to connection setup and no mapping when connections do not 

move. MOVE handoff is secure and its delay is 0.5 RTT, i.e., a single one-way trip 

between the two communication endpoints. MOVE is integrated with a general 

purpose process migration mechanism that supports migration of legacy applica-

tions running on commodity OS without requiring changes to either the applica-



214
tions or the OS. To some extent, one may classify MOVE as a multi-layer solution 

since the mechanisms for supporting the CELL namespace abstraction and H2O 

handoff protocol happen at multiple layers, as illustrated in Figure 5-1 in 

Chapter 5.

7.2 Handoff Mechanisms

Numerous approaches have been proposed to provide better handoff support for 

the original MobileIP. These work follow the same general idea: introduce a MAP 

(mobility anchor point) that is close to the mobile host (MH) so that traffic can be 

redirected more quickly without involving the home agent (HA) when the MH 

moves within the same micro-mobility domain under the MAP. 

[51][69][82][123][137] are direct extension to the MobileIP, while [42][46][110] 

define their own micro-mobility domain with proprietary routing protocols. We 

give a brief description of these approaches. We note that all the approaches fall 

back to MobileIP when the MH moves across MAPs.

7.2.1 Extensions to MobileIP

Low Latency Handoffs in MobileIPv4 [51] assumes the availability of an “advance 

notice” from layer 2 before the current link is dropped; it also assumes the new for-

eign agent (FA) is known before the handoff. It suggests three ways for low-latency 

layer 3 handoff. The first is called pre-registration, which registers the MH with the 

new FA (nFA) through the old FA (oFA) before the layer 2 handoff. The second is 

called post-registration, which sets up a tunnel between the oFA and the nFA to 
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forward traffic to the MH after it has moved the nFA but not yet registered. The 

third combines both methods one and two. It performs the advance registration 

and tunnel setup in parallel. If pre-registration can be completed before the layer 

2 handoff, no forwarding is necessary; otherwise, traffic for the MH is forwarded 

as specified in the post-registration method.

Fast Handovers for MobileIPv6 (FHMIPv6) [82] is essentially the low latency 

handoffs for MobileIPv4, except that it always use the third method above even 

when pre-registration is successful so the nFA can buffer in-flight packets tunneled 

to it by the oFA during MH's layer 2 handoff. It also provides a simple way to 

handle the case when the “advance notice” from layer 2 and the nFA are not avail-

able before the layer 2 handoff.

Hierarchical MobileIPv6 mobility management (HMIPv6) [123] organizes FAs into 

a tree hierarchy and assigns each MH with two Care-of Addresses (CoA): a 

regional CoA (RCoA) and an on-link CoA (LCoA). This allows an MH to perform 

a “regional registration” [67] with the “crossover” FA, the lowest common ances-

tor of the oFA and the nFA. Essentially, the crossover FA, functioning as the MAP, 

becomes the “local HA” for the MH which uses the RCoA as the “local home 

address” for the MH and performs binding between the RCoA and the LCoA. The 

original HA performs binding between the home address (HoA) and the RCoA. 

When the MH moves within a domain under the same MAP, no binding update 

by the HA is necessary since the RCoA does not change. This way, the registration 

traffic is confined within a local domain, eliminating the delay of having to register 
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with a distant HA every time the MH moves.

S-MIP [69] combines HMIPv6 and FHMIPv6, adding a movement tracking compo-

nent that is not covered by FHMIPv6 and a hybrid handoff mechanism that is loss-

less. Movement tracking is done by adding a Decision Engine (DE) in the network 

that maintains, through periodical feedback from access routers, a global view of 

the connection states of any mobile devices in the domain, as well as their move-

ment pattern. The hybrid handoff mechanism is termed as “mobile node initiated 

but network determined” since supposedly the MH has the best idea of when to 

move and the network has the best idea of where to move. It relies on simultaneous 

binding and knowledge of the nFA to allow packets to be bi-casted to both the oFA 

and the nFA to prevent packet loss. However, as with all bi-cast schemes, it must 

handle the packet duplicate and reordering problem created by the two separate 

packet streaming to the MH: one is forwarded via the oFA, the other is directly 

routed to the nFA. The proposed Synchronized-Packet-Simulcast (SPS) scheme 

assumes some type of sequencing capability of access routers. This capability is 

achieved by marking packets with a special bit and having the access routers main-

tain two separate buffers for the marked and unmarked packets.

[137] is the only approach that actually tries to make as little change to standard 

MobileIP as possible. Unfortunately, their approach still requires adding a special 

layer 2 bridge to connect the two WiFi networks between which an MH moves. By 

default, the bridge does not forward traffic between the two networks since they 

are two different layer 3 networks. Once an MH moves from one network to the 
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other, the bridge will “snoop” packets destined for the MH on the old network and 

forward them to the new network. The bridge essentially functions as a hardware 

tunnel between the oFA and nFA during the period of standard Mobile IP handoff. 

It of course will only work in a broadcast network such as WiFi. And all networks 

the MH will potentially visit must be connected by the special bridge.

7.2.2 Domain-based solutions

HAWAII [110], Cellular IP [42], and EMA [46] all share the same basic architecture 

design, know as the domain-based architecture that separates the notion of micro-

mobility and macro-mobility. Each approach defines its own domain and provides 

specialized routing and handoff signaling support for micro-mobility within the 

domain. They all assume standard MobileIP for the macro-mobility across 

domains. Their differences only lie in the details of how a path to an MH is setup 

and the handoff procedure. 

Within a HAWAII domain, traditional IP routers are extended with mobility sup-

port functions that handle specialized control messages to setup host-based routes 

to MHs. A hierarchical structure of routers similar to that of HMIPv6 is employed 

so path setup messages only travel as far up in the hierarchy as to the closest cross-

over router. Two path setup schemes are proposed. In the forwarding path setup 

scheme, old base-station (oBS) forwards traffic to the new base-station (nBS) until 

the crossover router starts to divert traffic directly to the nBS. In the non-forward-

ing path setup scheme, the crossover router simply diverts traffic (once it receives 

the path setup control message) either by unicast to the nBS (if the MH is able to 
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communicate with multiple base-stations during handoff) or by bi-cast to both the 

oBS and the nBS (if otherwise).

Within a Cellular IP domain, IP routers are replaced by special base-stations using 

a hop-by-hop routing scheme that resembles to the layer 2 spanning-tree packet 

forwarding scheme. The domain gateway periodically flood the network with a 

beacon so the base-stations can build a spanning tree rooted at the gateway. Base-

stations maintain soft state routing cache to MHs by observing traffic from the 

MHs to reduce explicit control messages. A special route-update packet is used by 

MHs to immediately refresh the routing cache of upstream base-stations after it 

moves. Two handoff procedures are described. In the Hard Handoff, the MN 

simply sends a route-update packet to refresh the routing cache in the routers 

between the nBS and the crossover router. In the Semisoft Handoff, it’s assumed 

the MH is able to communicate with the nBS before losing connection to the oBS. 

The MH will send a route-update message to the nBS before handoff so the nBS can 

start the process of refresh routing cache towards the crossover router before the 

MH arrives.

Within an EMA domain, a new routing algorithm called TORA (Temporally-

Ordered Routing Algorithm) is proposed that supports both prefix-based routing 

for stationary base-stations and host-based routing for MH. The details of TORA 

and how it is used to support handoff is presented in [46]. Two handoff proce-

dures, break-before-make (BBM) and make-before-break (MBB), are considered. In 

both cases, a temporary tunnel between the oBS and nBS is attempted before the 
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MH breaks its connection to the oBS and the tunnel is torn down (if it was created) 

after the MH makes its connection to the nBS. The tunnel is not really needed in 

the case of MBB but is attempted anyway as a backup.

To summarize, existing solutions designed to improve MobileIP handoff perfor-

mance all require introducing complex functions in the network infrastructure. 

Figure 7-1. Visual handoff comparison
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H2O, on the other hand, functions end-to-end completely within the communica-

tion endpoints. We present a visual comparison of these handoff solutions and 

H2O in Figure 7-1. Note that the overlapping of data connection and control con-

nection in H2O illustrates the in-band signaling of H2O.

7.2.3 Others

[129] describes a domain-based handoff scheme in which the MAP multicasts traf-

fic to the base-station where the MH is currently connected, as well as all the neigh-

boring base-stations; although only the base-station where the MH is currently 

connected actively forwards packets to the MH using unicast. The idea is to pre-

load neighboring base-stations with packets destined for the MH so that if it moves 

to any one of them, there will be a few packets buffered at the base-station for the 

MH therefore reducing packet loss and handoff delay.

FASTMIP [53] describes a domain-based handoff scheme in which the MH and all 

base-stations are equiped with a GPS (global positioning system) device. By 

making use of the position information, the base-station where the MH is currently 

connected can estimate the direction in which the MH is traveling and send dupli-

cate packets destined for the MH to several perspective base-stations that the MH 

is likely to connect next.

7.3 High Service Availability Mechanisms

Although relatively little attention has been paid to minimizing service disruption 

due to a scheduled server maintenance, such as applying patches or upgrading 
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system software/hardware, much research effort [26][27][29][80][90][99][138][140] 

has been put into providing TCP failover in server clusters in order to minimize 

the downtime due to unexpected failure. Special TCP handoff mechanisms 

[31][101][102][120][130] have also been proposed for web server clusters in order 

to improve their performance and scalability. We briefly survey these work in this 

section.

7.3.1 Fault tolerance with TCP failover

Most TCP failover mechanisms to date focus on failover of TCP connection states 

and require TCP stack and/or application change on the server. Another impor-

tant aspect of fault tolerance, failover of server application states for arbitrary non-

deterministic applications, remains an open issue.

FT-TCP (Fault-Tolerant TCP) [29][138] instruments a wrapper both above (called 

north-side wrap, NSW) and below (called south-side wrap, SSW) the server TCP 

stack. The wrapper intercepts, modifies, and logs packets on their way in and out 

of the TCP stack. The wrapper manipulates TCP sequence numbers to deal with 

the output commit problem [52] and to allow rollback recovery of server TCP 

states from the log. Early FT-TCP work [29] assumes an external mechanism to 

recovery application states. Later FT-TCP work [138] adapts it to “hot backup” sys-

tems using primary-back [39] and “cold backup” systems with message logging 

[52]. While FT-TCP is client transparent and avoids modifying server TCP stack, 

handling server application nondeterminism and keeping the replicas identical to 

the primary, however, remains an unresolved issue. [138] modifies two popular 
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server applications, Darwin streaming server and Samba file server, to show the 

feasibility of FT-TCP with some applications.

ST-TCP (Server fault-Tolerant TCP) [90] is based on the primary-backup protocol. 

It maintains an active backup server at all times to allow fast failover. An ST-TCP 

backup server uses ethernet tapping, originally presented in [99], to learn the com-

plete packet exchange between the client and the primary server. While ST-TCP is 

client transparent and ethernet tapping incurs low performance overhead during 

fault-free operation, ST-TCP requires modifying server TCP stack in order to syn-

chronize the TCP states on the primary and backup server. For synchronizing 

server application states, ST-TCP assumes that either the application is completely 

deterministic therefore identical application states on the backup server can be 

derived from the tapped packet stream, or a leader/follower consistency protocol 

such as [37] is available for nondeterministic applications.

[80] describes a mechanism very similar to ST-TCP but claims to have faster 

failover time (no comparison is given). Backup servers in [80] use promiscuous 

mode of their NIC to receives all packets exchanged between the client and the pri-

mary server. [80] is also client transparent but requires modifying server TCP 

stack. [80] assumes that server applications are deterministic.

[26][27] describes a fault-tolerant web service that can provide fault-tolerance for 

HTTP requests being processed at the time of server failure. It assumes a standard 

standby back system with message logging. Unlike FT-TCP, however, [26][27] logs 

at the granularity of HTTP requests rather than TCP packets, which allows it to 
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recovery in progress requests. But this also limits [26][27] to HTTP only. The log-

ging mechanism of [26][27] deals with the output commit problem by placing the 

backup server before the primary server, i.e., a client HTTP request passes through 

the backup server first, which ensures that a copy of the request is saved before 

passing it onto the primary server. [26][27] also implicitly assumes that the server 

application, a web server in this case, is deterministic and its states are completely 

determined by the sequence of HTTP requests.

[87] proposes another HTTP specific fault tolerant system for web server clusters. 

It places a lot of functions on the frontend switch which makes it susceptible to a 

single point of failure. [87] pre-establishes several persistent HTTP [55] connec-

tions between the frontend switch and the backend servers. A client’s connection 

to the switch is then spliced with one of the pre-established switch-server connec-

tions to create one seamless client-server connection. Requests for static contents 

can be redirected to a different server in case of failure by simply splicing the 

client-switch connection to another idle persistent switch-server connection. To 

support requests for dynamic contents, [87] uses the switch to cache the reply and 

only forward it to the client when the entire content has been stored. [87] also sup-

ports session based requests, which requires the ability to recover intermediate 

session states from the failed server. This is achieved by keeping a backup server 

that snoops packets for the primary server using the primary server’s IP address 

as an alias. In addition, the server application (apache) is modified to support a pro-

prietary protocol between the primary and the backup server to ensure that 

requests and replies are logged before they are posted to the client and the data-
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base server. [87] implicitly assumes that the server application is deterministic.

[140] describes a connection failover mechanism for web server clusters in which 

a frontend dispatches client requests to backend servers, which are organized into 

a ring. Each backend server is also a backup server for a fixed number n of its pre-

decessor servers; the paper considers the case of n=1. [140] implements its own 

protocol called BTCP (Backup TCP) to replace TCP for backup server functions. It’s 

main purpose is for the backup server to derive TCP states on the primary server 

by passively observing the packets sent from the client to the primary server, 

which are also forwarded to the backup server by the frontend. While this 

approach alleviates the need for explicit synchronization between the primary 

server and the backup server, it also has a few drawbacks. Since the backup server 

only sees the incoming packets, certain important information on the primary 

server is not available, such as when the primary server sends FIN or RST to ter-

minate or abort a connection. The solution adopted by [140] is to use a timeout. 

Connection failover is achieved by converting the passive TCP states maintained 

by BTCP on the backup server to regular TCP states, and reissuing the last request 

before primary server failure on the backup server. This approach, however, has a 

few drawbacks. It requires the server application to be stateless, i.e., no application 

states are required on the backup server to serve the request. This necessarily limits 

the type of applications to simple request/reply transactions such as serving static 

web page. It also requires the server application to be idempotent; and it’s not 

entirely transparent to the client since the failed (and restarted) request may have 

already sent some data back to the client.
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7.3.2 Performance and scalability with TCP handoff

TCP handoff is a mechanism designed specifically for the widely used web server 

clusters [43], typically consist of a frond-end dispatcher and a group of backend 

servers, to support client transparent content-aware request distribution, with the 

benefits of smart load balancing, cache affinity, etc. TCP handoff in this context 

deals with transferring TCP connection states only. Server applications are explic-

itly assumed to be stateless, i.e., no application states beyond those trivially repli-

cated ones such as static web page are needed in order to serve a request. 

Depending on the particular approach, the handoff can happen between the fron-

tend dispatcher and the backend server, or among backend server themselves. 

Most approaches require modifying server TCP stack; some also require modify-

ing server applications.

LARD [31][101] is one of the early system proposed for content-aware request dis-

tribution, with the focus on improving performance by exploiting content locality. 

In order to support content-aware dispatching at the frontend, the frontend must 

establish a TCP connection prior to dispatching a request. To reduce the load on 

the frontend, once the target backend server is chosen, the TCP connection states 

on the frontend are handed off to the chosen server, which can then reply directly 

to the client. LARD modifies the TCP stack on both the frontend dispatcher and the 

backend server to support the handoff, e.g., creating a new connection on the 

target server without going through a regular 3-way handshake. Early work [101] 

supports single handoff from the frontend to the backend at connection setup time. 

Later work [31] extends handoff support to persistent HTTP/1.1 and allows a con-
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nection to be handed off from one backend server to another at any time using 

backend forwarding. [130] describes an implementation of the TCP handoff with 

backend forwarding based on STREAMS TCP/IP in HP-UX11.0.

Socket cloning [120] describes a handoff mechanism similar to LARD. It modifies 

both the server application and TCP stack to clone both the socket states and trans-

port states of a connection from one server to another. After cloning, the original 

server forwards incoming packets to the cloned server, while outgoing packets go 

from the cloned server to the client directly. To avoid explicit state synchronization 

between the original and the cloned server, additional mechanism is introduced on 

the original server to derive implicit synchronization by observing the acknowl-

edgements from the client.

KNITS [102] proposes a TCP handoff mechanism in which content-aware request 

dispatching is performed at the backend server. The frontend dispatcher in KNITS 

is a layer-4 switch that sprays a request to a designated backend server using 

simple layer-4 information. The designated server parses the request content and 

may handoff the request to another optimal server if necessary. Unlike LARD, 

handoff in KNITS is not achieve by backend forwarding from the designated 

server to the optimal server. Instead, the designated server informs the frontend 

switch about the handoff, which then redirects further requests directly to the opti-

mal server without going through the designated server. The redirection is trans-

parent to the client and the optimal server but requires all traffic between the 

backend servers go through the frontend switch. KNITS uses an application proxy 
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on the backend servers to avoid directly modifying the server applications.

Half-pipe anchoring [81] advocates a backend handoff scheme in which a dedi-

cated backend server performs layer-7 switching and hands off requests to an 

appropriate optimal server. The terms “control pipe” and “data pipe” are used to 

refer to the connection from the client to the dedicated server and the connection 

from the optimal server to the client, respectively. The main idea of splitting the 

two “half-pipes” between the dedicated and the optimal server is to relax the 

requirement of performing layer-7 switching on optimal servers therefore allow-

ing heterogeneous cluster of special optimal servers. Handoff between the dedi-

cated and the optimal server is coordinated by modifying their TCP stack to 

support a proprietary “split-stack” protocol.

7.4 Process Migration Systems

Process migration is also a well traveled area with a large body of prior work and 

a variety of approaches proposed, such as special purpose OSes, user-level migra-

tion, language and middleware support, etc. We briefly survey these approaches. 

Interested readers are referred to the more in-depth presentation of [93].

7.4.1 Special purpose OSes

Several research OSes have been developed specifically with process migration 

support in mind, such as Accent [111], Amoeba [95], Charlotte [32], Chorus [116], 

MOSIX [36], Sprite [49], and V [45]. These are distributed OSes with a single system 

image across a cluster of machines. Process migration is supported by careful 
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kernel design to provide a global namespace and location-independent execution. 

While suitable for a small cluster of machines, these solutions require new OSes or 

substantial changes to existing ones, therefore limiting their general purpose usage 

and deployment. The single system image design also hinders their usage in clus-

ter environments where each machine is independent, which has become increas-

ingly common. Finally, these solutions typically handle certain process states such 

as IPC, open files, and system calls by forwarding requests to a home machine on 

which the migrated process originated. This leaves undesirable dependency on the 

home machine since if the home machine fails the migrated process on another 

machine will fail as well.

7.4.2 User-level migration

User-level migration mechanisms that do not require special purpose OSes and 

can run on unmodified commercial OSes, such as CoCheck [108], Condor [86], lib-

ckpt [106], and MPVM [44], have been proposed. However, providing transparent 

process migration without kernel support such as those mentioned in the previous 

section is much more challenging. Therefore, these solutions are primarily tar-

geted for long-running “well-behaved” applications that do not pose significant 

OS requirements and use only a limited set of system calls. For example, these 

applications cannot use common OS services such as IPC. These restrictions 

severely limit the kinds of applications that can be migrated.

7.4.3 Language and middleware support

Mobile objects and mobile agents are another form of migration. These systems 
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provide programming languages and middleware toolkits so that programmers 

can explicitly incorporate migration capability into their applications. Examples of 

these systems include Abacus [30], Emerald [74], Globus [57], Legion [63], Rover 

[73], and Telescript [21]. While language constructs provide a high-level abstrac-

tion for defining and encapsulating application states so that they can be easily 

migrated, these solutions require applications to be (re)written using the new pro-

gramming languages or toolkits. Therefore, they can not migrate legacy applica-

tions.

7.4.4 OS virtualization

Virtualization at OS level has recently been proposed in [100][118] as a mechanism 

for supporting process migration. [118] introduces a capsule abstraction that pro-

vides a virtual private namespace to a group of processes that can be migrated as 

a unit. However, implementation of capsule requires extensive OS changes. [100] 

is our choice of process migration mechanism to enable the fine-grain connection 

migration capability of MOVE. We have combined the Pod abstraction of [100] 

with our CELL abstraction to create a unified migration abstraction, called zPod, 

for both process and connection states.

7.4.5 Virtual machine monitors

Virtualization at machine hardware level, a technique commonly known as virtual 

machine monitors (VMM) [22][40][60][135], has long been recognized as an impor-

tant technology for supporting resource partitioning and multiplexing, and soft-

ware isolation and portability. Since the virtual machine encapsulates an entire OS 
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environment, it can be used to support process migration by migrating the entire 

OS environment from one machine to another assuming sufficient similarity in the 

underlying machine systems. For example, VMotion [23] from VMware [22] can 

migrate a live VM between two co-located machine through dedicated fast (giga-

bit) network. However, since VMMs operate below the OS, they cannot take 

advantage of OS specific mechanisms to reduce migration cost. All applications to 

be migrated must be running in the VMM and be migrated all together, which has 

high migration cost in terms of suspension/resumption time and image size as 

shown in [100].

Finally, we point out that no previous process migration mechanisms support 

migration of open network connections.
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8Conclusion

We have presented in this thesis a novel mobile communication architecture, 

MOVE, that solves key technical problems necessary for supporting the mobile 

communication needs of existing and emerging network applications. We have 

focused our attention on specific aspects of mobility problems that lack adequate 

support in current network and system infrastructures. In particular, we focused 

on the mobility of the end-to-end communication between two endpoints rather 

than the mobility of endpoints themselves. We further focused on the problem of 

tracking the mobile end-to-end communication rather than the problem of locating 

the mobile endpoints. To that end, we have made the following contributions in 

this thesis:

• We have identified the functional requirements of the network and system 

infrastructures needed for supporting general purpose mobile communica-

tions, which include: easy deployment, fine-grain and unlimited mobility, 

secure and flexible migration, and low performance overhead. We have 

also identified fundamental problems that must be resolved in order to 

meet these requirements, which are: state inconsistency, state conflict, and 

cross address space state synchronization problems.

• We have developed new concepts and mechanisms to solve these funda-

mental problems. In particular, we have developed the CELL namespace 
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abstraction, which provides a virtual, private, and labeled namespace for 

individual connections, to cleanly and uniformly address the three funda-

mental problems. We have also developed light-weight and efficient mech-

anisms, such as per-connection virtual network interface, lazy assignment, 

and connection label, etc. to support our CELL namespace abstraction.

• We have developed a new handoff protocol and security mechanism to 

enable fast and secure migration of end-to-end connections. In particular, 

our H2O handoff signaling protocol resonates the fundamental end-to-end 

tenet [117] with the key observation that the cost of introducing additional 

complexity in the network layer to reduce packet loss does not necessarily 

translate into end-to-end benefit. Our security mechanism is based the 

well-known Diffie-Hellman protocol with key observations to mitigate the 

overhead of expensive key computation. Combining the CELL virtual-

physical mapping, H2O handoff signaling, and our security mechanism, 

MOVE can migrate connections securely in just one packet in a single one-

way trip from the mobile endpoint to the stationary endpoint. We have 

also developed a migration helper mechanism to support connection 

migration through suspension/resumption with potentially extended 

period of disconnection time.

• We have seamlessly integrated our MOVE connection migration mecha-

nisms with the Zap process migration mechanisms through a unifying 

zPod abstraction, which provides a virtual and private namespace for both 

connection states and process states. We have demonstrated the power of 
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combining the two in a proxy-based server cluster environment to enable 

zero service disruption for arbitrary stateful applications during server 

maintenance, without introducing additional cluster configuration and 

management complexity.

• We have designed and implemented a prototype of our MOVE architecture 

on a commodity OS platform, i.e., LINUX x86. We have shown that all 

MOVE functions can be implemented completely within the endpoints and 

without requiring any change to existing network infrastructure, OS, and 

applications. We have also shown that all MOVE functions are backward 

compatible and can interoperate with existing network infrastructure, OS, 

and applications.

• We have evaluated our MOVE prototype and shown the performance of 

our MOVE prototype. We demonstrated that MOVE’s handoff has very lit-

tle impact on the network connectivity perceived by the transport proto-

cols and applications. We showed that MOVE has no negative impact on 

the system’s scalability. We also showed that MOVE’s virtualization and 

virtual-physical mapping functions introduce very low network I/O per-

formance overhead before and after connections are migrated.

With the rapid increase of ubiquitous mobile computing devices and universal 

network connectivity, there is a pressing need for developing new networking 

functionality to support the mobile communication needs of the applications. 

While we have no doubt that future networking infrastructure, protocols, and 

applications will be increasingly mobility-savvy, existing ones will continue to 
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function for many years to come. Therefore, developing and deploying new net-

working functions is often a long and enduring process. Nevertheless, we believe 

our work in this thesis is a step forward towards the new global pervasive mobile 

and network computing era. We also hope that our work in this thesis can give 

insight on how such new networking functionality can be developed and 

deployed while allowing existing legacy applications to take advantage of the tre-

mendous benefits offered by the coming reality of ubiquitous mobile computing 

and communication.

Despite our best intentions, this thesis alone cannot address all the issues of an area 

as broad as general purpose mobile communication. We discuss several issues that 

we would have liked to but did not have the manpower to address, and that we 

intend to pursue further in the future. These issues are listed in the order of their 

importance in our option, with the most important one first:

• Generalization of MOVE mechanisms. At a more abstract level, MOVE can 

be considered as a transport layer tunneling mechanism, in similar spirit to 

tunneling mechanisms at other layers such as network layer tunneling 

(VPNs) and link layer tunneling (VLANs). Besides supporting mobility by 

essentially tunneling one connection inside another, this fine-grain trans-

port level tunneling can potentially have many other ramifications. As one 

brain-storming example, one can associate semantics with the connection 

label therefore allowing migrated and stationary connections to be discrim-

inated with different security and QoS metric, etc.

• Further process migration development. While the focus of this thesis is on 
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connection migration rather than process migration, we fully recognize 

that process migration is one of the essential ingredients for truly fine-

grain connection migration. This thesis has touched upon a few issues of 

process migration from the same virtual private namespace point of view 

as that we used for connection migration. However, process migration is 

also a very broad area with many open issues and warrants significant 

research itself.

• Simultaneous move of both endpoints. While mobile endpoints today are 

mostly on the client side, we’ve also seen the need for server side mobility 

to support high service availability. In addition, peer-to-peer networks are 

becoming increasingly popular. Therefore, the chance of both endpoints 

are mobile is rather high in the future. While MOVE does not restrict which 

endpoint of a connection can move, it does assume that only one endpoint 

moves at a time. This restriction is necessary so that the mobile endpoint 

can trivially locate the stationary endpoint. If the stationary endpoint also 

moves, there needs to be a mechanism for the two endpoints to locate each 

other after they move simultaneously. One simple solution could be for 

both endpoints to use a directory service such as DDNS to locate each 

other whenever they move; this approach however requires infrastructure 

support. An alternative could be to use a proxy at each location where the 

mobile endpoints have visited to keep track of the mobile endpoints; this 

approach does not require infrastructure support but have the downside of 

leaving states behind.
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• More in-depth study of location services. While we have chosen DDNS 

and conducted studies for its suitability as MOVE’s mobile host and ser-

vice location mechanism, we feel that a single directory service may not be 

the answer for all possible application types and scenarios. For example, 

DDNS is a semantically simple name-to-value mapping directory service. 

For some applications, a more semantically rich type of directory service 

such as X.500 [6] that supports attribute-based retrieval may be more bene-

ficial. Also depending on the scale of the application, a local scale directory 

service such as LDAP (Light-weight Directory Access Protocol) [134] or 

SLP (Service Location Protocol) [68] may be more appropriate.
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