
MOVE: Mobility with Persistent
Network Connections

Gong Su

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2004

© 2004

Gong Su

All Rights Reserved

ABSTRACT

MOVE: Mobility with Persistent Network Connections

Gong Su

The combined force behind ubiquitous mobile computing and storage devices and

universal network access has created a unique era of mobile network computing,

in which computation units ranging from a single process to an entire host can

move while communicating with each other across the network. A key problem

therefore is how to preserve the ongoing network communication between two

computation units when they move from one place to another; because current

network infrastructure and protocols are designed to support stationary commu-

nication endpoints only.

We have developed MOVE, a fine-grain end-to-end connection migration architec-

ture, to address the problem. The most distinguishing characteristic of MOVE is

that MOVE achieves, in a single system, several essential goals of a mobile commu-

nication architecture including: (1) entirely end system only without any infra-

structure demand, transport protocol independence, and backward compatibility;

(2) fine-grain connection migration and unlimited mobility scope; (3) secure

migration with both handoff and suspension/resumption support; and (4) very

low performance overhead both before and after migration.

We first analyze the key technical problems of end-to-end network communica-

tion caused by mobility: state inconsistency, conflict, and synchronization; and we

develop a simple and elegant namespace abstraction called CELL to resolve these

problems. CELL provides a virtual, private, and labeled namespace for individual

connection states so that they can be transparently migrated anywhere free of the

problems mentioned above. We then develop a unique handoff signaling protocol

called H2O, which can handoff a connection securely in a single one-way end-to-

end trip with minimal impact on the connection characteristics perceived by the

transport protocols. H2O achieves this by combining the simple connection redi-

rection mechanism afforded by the CELL abstraction with a low-overhead security

mechanism, which is based on Diffie-Hellman protocol but computes session keys

only at migration time. We finally integrate MOVE seamlessly with a process

migration mechanism to fully exploit MOVE’s fine-grain connection migration

capability and enable support for new application scenarios. For example, we

show how the integration can provide high service availability in proxy-based

server clusters by allowing server applications and their persistent connections to

be migrated during a server maintenance to avoid service disruption.

We have implemented MOVE on a commodity OS without requiring any change

to the OS and applications and conducted various performance measurements,

such as handoff performance, scalability, and virtualization and virtual-physical

mapping overhead, etc. Our results show that MOVE handoff incurs minimal per-

formance impact on the migrating connection, MOVE does not adversely affect

system scalability, and MOVE virtualization and mapping overhead is very low.

We also test MOVE with a suite of popular off-the-shelf network applications, all

of which work out of the box.

Table of Contents

Table of Contents .i

List of Figures . iv

List of Tables. viii

Acknowledgements .ix

Chapter 1 Introduction . 1
1.1 Background and Motivation . 1
1.2 Thesis Contribution . 6
1.3 Thesis Focus Area . 8
1.4 Thesis Overview. 10

Chapter 2 CELL Namespace Abstraction. 12
2.1 Non-transparent vs Transparent Migration. 12
2.2 Key Problems of Connection Migration . 14

2.2.1 Inconsistency between network layer and transport layer. 15
2.2.2 Conflict in transport layer . 15
2.2.3 Cross address space synchronization in transport layer. 17

2.3 The CELL Namespace Abstraction . 22
2.3.1 Virtualize network addresses . 22
2.3.2 Privatize transport identifications . 25
2.3.3 Label end-to-end connections . 29
2.3.4 Map between virtual and physical namespace. 34

2.4 Other Architectural Issues . 39
2.4.1 Host and service location . 39

2.4.1.1 Host location. 40
2.4.1.2 Service location. 41

2.4.2 Connection-less transport protocol support . 43
2.4.3 Application location-awareness . 45
2.4.4 Compatibility with IPsec . 49

2.5 Summary . 50

Chapter 3 H2O Handoff Signaling Protocol 52
3.1 Handoff Related Issues . 53

3.1.1 Layer 2 handoff vs. layer 3 handoff . 53
3.1.2 Hand off detection vs. handoff execution . 54

3.2 H2O Handoff Signaling Protocol. 56
3.2.1 In-band vs. out-of-band signaling . 58
3.2.2 H2O protocol operation . 61
3.2.3 Interaction with existing network security constructs 64

3.2.3.1 SPI firewall traversal . 64
3.2.3.2 VPN traversal . 67

3.2.4 Migration security. 68
i

3.2.4.1 H2O security mechanism . 69
3.2.4.2 DH protocol and HMAC algorithm . 72

3.3 H2O Protocol Analysis . 76
3.3.1 No advance notice. 77
3.3.2 Advance notice without simultaneous connectivity 80
3.3.3 Advance notice with simultaneous connectivity . 83
3.3.4 Intra-domain handoff . 85

3.4 Suspension/Resumption with Migration Helpers 87
3.5 Summary . 91

Chapter 4 High Service Availability Support 93
4.1 Motivation. 93
4.2 Example High Service Availability Scenario 96
4.3 The zPod Abstraction . 98
4.4 zPod Migration. 100

4.4.1 General server clusters . 101
4.4.2 Different types of proxies. 103
4.4.3 Single subnet of servers . 106

4.5 Summary . 109

Chapter 5 Design and Implementation . 110
5.1 Functional Design Overview . 110
5.2 Security Module . 113
5.3 Migration Module . 118

5.3.1 Handoff process . 119
5.3.2 Suspension and resumption process . 122

5.4 Mapping Module . 124
5.5 System Call Interception . 125
5.6 Transparent SRV RR Lookup Support . 126
5.7 Summary . 127

Chapter 6 Performance Measurements . 129
6.1 Handoff Performance . 130

6.1.1 Client handoff with machine migration . 131
6.1.1.1 Handoff on a WAN, DDT≈10ms, 200ms, and 4s. 134
6.1.1.2 Handoff on a LAN, DDT≈30ms and 3s . 143
6.1.1.3 Handoff from a WAN to LAN, DDT≈100ms and 2s 148
6.1.1.4 Handoff from a LAN to WAN, DDT≈100ms and 2s 154

6.1.2 Client handoff with VMware migration . 158
6.1.2.1 Handoff from a WAN to LAN, DDT≈8s . 159
6.1.2.2 Handoff from a LAN to WAN, DDT≈11s . 162

6.1.3 Server handoff with process migration . 162
6.1.3.1 Handoff with a WAN client, DDT≈2s. 166
6.1.3.2 Handoff with a LAN client, DDT≈2s . 171

6.1.4 Handoff “ping-pong” stress test . 174
6.1.5 Handoff for connection-less transport protocols . 175
6.1.6 Migrate popular real world applications. 177

6.2 Scalability Tests . 179
ii

6.2.1 Number of simultaneous connections . 180
6.2.2 Rate of new connections. 182

6.3 Connection Virtualization and Mapping Overhead. 182
6.3.1 Throughput . 184
6.3.2 Latency . 185
6.3.3 CPU utilization . 188
6.3.4 Connection setup. 191
6.3.5 Overhead in proxy-based environments . 191

6.4 Host and Service Location Mechanism Studies. 196
6.4.1 Empirical DDNS studies . 196
6.4.2 Transparent SRV RR lookup measurements. 198

6.5 Summary . 199

Chapter 7 Related Work . 201
7.1 Mobile Communication Architectures . 201

7.1.1 Network layer solutions. 203
7.1.2 Transport layer solutions . 206
7.1.3 Application layer solutions . 209
7.1.4 Split connection solutions . 211
7.1.5 Summary . 213

7.2 Handoff Mechanisms . 214
7.2.1 Extensions to MobileIP. 214
7.2.2 Domain-based solutions. 217
7.2.3 Others . 220

7.3 High Service Availability Mechanisms. 220
7.3.1 Fault tolerance with TCP failover . 221
7.3.2 Performance and scalability with TCP handoff . 225

7.4 Process Migration Systems . 227
7.4.1 Special purpose OSes . 227
7.4.2 User-level migration . 228
7.4.3 Language and middleware support. 228
7.4.4 OS virtualization . 229
7.4.5 Virtual machine monitors . 229

Chapter 8 Conclusion . 231

Bibliography . 237
iii

List of Figures

Figure 2-1. Inconsistency between network layer and transport layer 16

Figure 2-2. Conflict in transport layer. 17

Figure 2-3. Synchronization: from no NAT to NAT . 19

Figure 2-4. Synchronization: from NAT to no NAT . 20

Figure 2-5. Synchronization: from NAT to another NAT 21

Figure 2-6. CELL abstraction: virtual network addresses 24

Figure 2-7. CELL abstraction: private transport identifications 26

Figure 2-8. Conflict between VNIC and NIC. 27

Figure 2-9. CELL abstraction: labels (exchanged at connection setup time). . . 30

Figure 2-10. Labels identify connections with identical virtual tuple 31

Figure 2-11. Labels identify connections across NAT boundaries 32

Figure 2-12. Label conflict. 33

Figure 2-13. Virtual-physical namespace mapping . 35

Figure 2-14. Visual representation of the CELL namespace 38

Figure 2-15. AH and ESP protection services . 50

Figure 3-1. Handoff detection and execution . 55

Figure 3-2. H2O protocol timeline. 62

Figure 3-3. SPI firewall traversal . 65

Figure 3-4. VPN traversal . 67

Figure 3-5. H2O analysis: no advance notice. 77

Figure 3-6. H2O analysis: advance notice without simultaneous connectivity 81

Figure 3-7. H2O analysis: advance notice with simultaneous connectivity . . . 84

Figure 3-8. H2O analysis: intra-domain handoff . 86

Figure 4-1. High service availability in proxy-based server cluster 96

Figure 4-2. Connection migration in proxy-based server clusters 102

Figure 4-3. Combine MOVE and layer 4-7 switches: two-way architecture . . 105

Figure 4-4. Combine MOVE and layer 4-7 switches: one-way architecture . . 106

Figure 5-1. MOVE functional design overview. 111

Figure 5-2. Security key and connection label exchange 114
iv

Figure 5-3. DH public key and label exchange IP option format 118

Figure 5-4. Handoff process FSM and IP option format 120

Figure 5-5. Suspension and resumption process FSM . 122

Figure 5-6. Connection label IP option format . 124

Figure 6-1. Client handoff with machine migration testbed 132

Figure 6-2. Entire playback TCP sequence trace, DDT≈10ms << RTT≈230ms 135

Figure 6-3. Entire playback TCP throughput, DDT≈10ms << RTT≈230ms. . . 135

Figure 6-4. Zoomed TCP sequence trace, DDT≈10ms << RTT≈230ms 136

Figure 6-5. Entire playback TCP sequence trace, DDT≈200ms ≈ RTT≈235ms 138

Figure 6-6. Entire playback TCP throughput, DDT≈200ms ≈ RTT≈235ms . . . 139

Figure 6-7. Zoomed TCP sequence trace, DDT≈200ms ≈ RTT≈235ms. 139

Figure 6-8. Entire playback TCP sequence trace, DDT≈4s >> RTT≈231ms. . . 141

Figure 6-9. Entire playback TCP throughput, DDT≈4s >> RTT≈231ms 142

Figure 6-10. Zoomed TCP sequence trace, DDT≈4s >> RTT≈231ms 142

Figure 6-11. Entire playback TCP sequence trace, DDT≈30ms ≈ RTT≈33ms . . 144

Figure 6-12. Entire playback TCP throughput, DDT≈30ms ≈ RTT≈33ms 144

Figure 6-13. Zoomed TCP sequence trace, DDT≈30ms ≈ RTT≈33ms. 145

Figure 6-14. Entire playback TCP sequence trace, DDT≈3s >> RTT≈31ms. . . . 147

Figure 6-15. Entire playback TCP throughput, DDT≈3s >> RTT≈31ms 147

Figure 6-16. Zoomed TCP sequence trace, DDT≈3s >> RTT≈31ms 148

Figure 6-17. Entire download TCP sequence trace, DDT≈100ms 149

Figure 6-18. Entire download TCP throughput, DDT≈100ms 150

Figure 6-19. Zoomed TCP sequence trace, DDT≈100ms 150

Figure 6-20. Entire download TCP sequence trace, DDT≈2s. 152

Figure 6-21. Entire download TCP throughput, DDT≈2s 153

Figure 6-22. Zoomed TCP sequence trace, DDT≈2s . 153

Figure 6-23. Entire download TCP sequence trace, DDT≈100ms 154

Figure 6-24. Entire download TCP throughput, DDT≈100ms 155

Figure 6-25. Zoomed TCP sequence trace, DDT≈100ms 155

Figure 6-26. Entire download TCP sequence trace, DDT≈2s. 157

Figure 6-27. Entire download TCP throughput, DDT≈2s 157
v

Figure 6-28. Zoomed TCP sequence trace, DDT≈2s . 158

Figure 6-29. Client handoff with VMware migration testbed. 159

Figure 6-30. Entire download TCP sequence trace, DDT≈8s. 160

Figure 6-31. Entire download TCP throughput, DDT≈8s 160

Figure 6-32. Zoomed TCP sequence trace, before handoff, DDT≈8s 161

Figure 6-33. Zoomed TCP sequence trace, after handoff, DDT≈8s 161

Figure 6-34. Entire download TCP sequence trace, DDT≈11s. 163

Figure 6-35. Entire download TCP throughput, DDT≈11s 163

Figure 6-36. Zoomed TCP sequence trace, before handoff, DDT≈11s 164

Figure 6-37. Zoomed TCP sequence trace, after handoff, DDT≈11s 164

Figure 6-38. Server handoff with process migration testbed. 165

Figure 6-39. Entire download TCP sequence trace, client-proxy, DDT≈2s 167

Figure 6-40. Entire download TCP sequence trace, proxy-server, DDT≈2s . . . 168

Figure 6-41. Entire download TCP throughput, client-proxy, DDT≈2s 168

Figure 6-42. Entire download TCP throughput, proxy-server, DDT≈2s 169

Figure 6-43. Zoomed TCP sequence trace, client-proxy, DDT≈2s 169

Figure 6-44. Zoomed TCP sequence trace, proxy-server, DDT≈2s. 170

Figure 6-45. Entire download TCP sequence trace, client-proxy, DDT≈2s 171

Figure 6-46. Entire download TCP sequence trace, proxy-server, DDT≈2s . . . 172

Figure 6-47. Entire download TCP throughput, client-proxy, DDT≈2s 172

Figure 6-48. Entire download TCP throughput, proxy-server, DDT≈2s 173

Figure 6-49. Zoomed TCP sequence trace, client-proxy, DDT≈2s 173

Figure 6-50. Zoomed TCP sequence trace, proxy-server, DDT≈2s. 174

Figure 6-51. Handoff “ping-pong” stress test on a LAN 176

Figure 6-52. Entire playback UDP byte counts, DDT≈150ms 177

Figure 6-53. Entire playback UDP throughput, DDT≈150ms 178

Figure 6-54. Zoomed UDP byte counts, DDT≈150ms . 178

Figure 6-55. Throughput vs. number of connections . 181

Figure 6-56. Latency vs. number of connections . 181

Figure 6-57. Throughput vs. rate of connections. 183

Figure 6-58. Latency vs. rate of connections . 183
vi

Figure 6-59. MOVE virtualization and mapping overhead testbed. 184

Figure 6-60. Throughput overhead, laptop system . 185

Figure 6-61. Throughput overhead, server system. 186

Figure 6-62. Latency overhead, laptop system . 187

Figure 6-63. Latency overhead, server system. 187

Figure 6-64. Throughput test CPU utilization overhead, laptop system. 189

Figure 6-65. Throughput test CPU utilization overhead, server system 189

Figure 6-66. Latency test CPU utilization overhead, laptop system 190

Figure 6-67. Latency test CPU utilization overhead, server system. 190

Figure 6-68. TCP connection setup overhead, laptop system 192

Figure 6-69. TCP connection setup overhead, server system 192

Figure 6-70. Throughput overhead . 193

Figure 6-71. Latency overhead. 194

Figure 6-72. CPU utilization overhead, throughput test 195

Figure 6-73. CPU utilization overhead, latency test . 195

Figure 6-74. TCP connection setup overhead . 196

Figure 7-1. Visual handoff comparison . 219
vii

viii

List of Tables

Table 6-1. Handoff performance test cases. 131

Table 6-2. Name record TTL of some DDNS providers 197

Table 6-3. Applications used for DDNS TTL test . 198

Table 6-4. Execution overhead of intercepted socket calls. 199

Table 7-1. Comparison of MOVE and other mobility solutions 202

Acknowledgements

I am in the deepest debt to my advisor, Jason Nieh, who graciously assumed and

continued my sources of academic and financial support at a time when my future

was uncertain. His open-mindedness and relentless pursuit for excellence without

leaving out any details have inspired many key ideas of this thesis. I am constantly

amazed by his ability to manage an army of students, each with a different project,

yet still dumbfound me with razor-sharp questions on issues that I have been pon-

dering myself for days. His generosity to others, calmness under stress, and toler-

ance for my stubbornness have taught me countless invaluable lessons towards

life, not just as a researcher, but more importantly, as a person as well.

I would like to thank my former advisor, Yechiam Yemini, who had the faith in me

and provided me the chance to pursue my dream of becoming a Computer Scien-

tist, despite the fact that my early education was in a different field, Physics to be

specific. I consider myself unimaginably fortunate to have the opportunity to work

with a visionary like him. Yet unfortunately, I cannot even begin to count how

much I learned from him to properly thank him. I can only hope that his incredible

intuition, comprehension, and presentation will continue to inspire me in the years

to come.

I would also like to thank my former office mate and best friend, Apostolos Daili-

anas, whose unreserved support, both inside and outside the office, carried me

through some of the most difficult times of my graduate life. Without his constant

caring, encouragement, and help, my graduate life would have ended a few years
ix

ago and this thesis would have died before it had even started. Two other members

of my thesis committee, Danilo Florissi and Bulent Yener, have also been my

sources of counseling who were always ready and willing for anything I threw at

them. Their understanding, encouragement, and guidance kept my course of grad-

uation from faltering at times of stress, helplessness, and uncertainty.

This thesis has benefited from many discussions with and helps by others. In par-

ticular, Dinesh Subhraveti, Shaya Potter, and Steven Osman have provided many

insights on process migration issues and implemented much of the prototype itself

used in Chapter 6. Sarita Bafna helped much with the DDNS host and service loca-

tion issues. Thanks also to Angelos Keromytis for his advice on security related

issues and graciously agreeing to serve as my thesis committee member.

My graduate life at Columbia would have been much less enjoyable were it not for

the wonderful friends and colleagues I was fortunate to meet. I cannot hope to enu-

merate them all. Nevertheless, let me mention a few: Sushil daSilva, Ioannis Sta-

mos, Susan and Joe Tritto, Patricia Florissi, Andreas Prodromidis, Maria

Papadopouli, Alexandros Konstantinou, Montek Singh, Martha and Erez Zadok,

Ashutosh and Manu Dutta, David Olshefski, Phil Wang, Hao Huang, Vasileios

Hatzivassiloglou, Michael Grossberg, Jakka Sairamesh, Tobias Höllerer, Simon

Baker, Shree Nayar, and Henning Schulzrinne.

This thesis is dedicated to my grandparents and parents, who brought me up with

their unreserved love, sacrifice, and patience. They are the reason for my very

existence.
x

xi

To my grandfather

Jishi Shi

and

the loving memory of my grandmother

Ying Jiang

and

my parents

Shaoquan Su and Hanqiao Shi

1

1 Introduction

1.1 Background and Motivation

The combined force behind ubiquitous mobility and universal connectivity has cre-

ated a phenomenal era of distributed and networked computing in which applica-

tion mobility with persistent connectivity is becoming a growing and pressing

necessity.

Ubiquitous mobile computing is a coming reality, fueled by the proliferation of

portable computing devices such as laptops, PDAs, and mobile phones, etc., and

portable storage devices such as memory stick, CompactFlash, and USB pen drive,

etc.; and on-demand computing and high service availability call for ways to move

applications among physical resources for better resource utilization and fault tol-

erance. At the same time, universal network access has also become an integral

part of our everyday life, driven by the immense success of World Wide Web

(WWW), and advances in wireless networking technologies such as 802.11 WLAN

[25], 3G/UMTS cellular [10], and Bluetooth [17], etc.

The demand for application mobility with persistent connectivity not only pre-

sents at the user frontend, but also at the server backend as well, as evidenced by

the following examples:

• At the user frontend, laptop, PDA, and mobile phone users rely on net-

2

work applications such as email, enews, file transfer, streaming media, etc.,

for their daily life and business. As the users move from one network loca-

tion to another, their ongoing network activities should not be interrupted.

Alternatively, the users may suspend their computing devices at one net-

work location and later resume them at another; their ongoing network

sessions should also be maintained.

• Also at the user frontend, cheap, portable storage devices with capacity

ranging from tens of megabyte to tens of gigabytes are readily available

today. They provide new user mobility opportunities even without the

mobile computing devices such as laptops or PDAs. Instead, a user com-

puting session or even an entire virtual machine running on a desktop

computer can be checkpointed, saved on the portable storage, and later

restarted on another desktop computer. As with the previous case, active

network connections of the user computing session or the virtual machine

must be preserved.

• At the server backend, online services and businesses require five nine

availability as they become an integral part of our daily life. For example,

web, email, enews, messenger are now essentially commodity services;

while critical business functions, such as order processing and tracking,

inventory control, transaction processing, customer support, and electronic

commerce, are also increasingly being conducted online. These services

and businesses are supported by computing and networking facilities that

must be up and running 24-7. A few minutes of downtime, scheduled or

3

unscheduled, translates into millions of lost dollars. Periodic maintenance

of these facilities today, however, requires careful planning and usually

causes lengthy service disruption. Technologies that allow maintenance

without service disruption, such as by moving services off to other servers,

are therefore being actively pursued.

• Also at the server backend, many commercially used network intensive

and long running scientific and engineering applications, such as massive

parallel graphics rendering, typically have a running time that is similar to

or longer than the MTBF (mean time between failures) of their supporting

hardware [119]. Therefore, there is high demand for the ability to check-

point and restart these applications in order to: (1) provide better resilience

to hardware failure; (2) enable dynamic load-balancing of the applications,

either to make way for interactive jobs or to reshuffle the work load to bet-

ter accommodate the cooling infrastructure in the computing center.

From these examples, which are by no means exhaustive, we can summarize the

functional requirements necessary for a mobile communication architecture to

adequately support the needs of these applications:

Easy deployment: The architecture must be easily deployable at the

Internet scale, which in turn means that several sub-requirements

must be met: (1) minimal infrastructure requirement. The architecture

should avoid mandating introduction of new network infrastruc-

ture, which history has shown to be extremely hard to deploy; (2)

transport protocol independency. The architecture should make mini-

mal assumptions about the operational semantics of the transport

4

protocols; and (3) backward compatibility. The architecture should

interoperate with and require no modification to existing network-

ing protocols, commodity OSes, and legacy applications.

Fine-grain and unlimited mobility: The architecture must enable

fine-grain mobility at the level of individual connections as well as

an entire host. In addition, the architecture should not restrict the

scope within which mobile endpoints can move; nor should it

restrict which endpoint of the connection can move.

Secure and flexible migration: The architecture must prevent a

malicious user from hijacking a connection by exploiting migration

functions, such as claiming that a connection has migrated from one

machine (the victim) to another (the attacker). In addition, the archi-

tecture should support both fast online-natured handoff with mini-

mal impact on connectivity and slow offline-natured suspension/

resumption where migrating connections must be kept alive for an

extended period of time.

Low performance overhead: The architecture should incur low net-

working performance overhead and retain good scalability during

normal communication, especially for those applications that do not

yet utilize the benefit of mobility. The architecture should also sup-

port fast handoff with minimal impact on transport protocol and/or

application perceived end-to-end network connectivity.

Although many approaches have been considered [34][38][58][70][89][98][103]

[109][122][128][132][136][139][141], achieving mobile communication functional-

ity has been difficult in practice, especially in the realm of end-to-end connection

mobility. To date, no single architecture has met all the requirements. More specifically,

network layer solutions such as [38][70][103][132][136] require infrastructure sup-

5

port; transport layer solutions such as [58][122][128] require modifying existing

transport protocol (TCP); application layer solutions such as [98][109][139][141]

are transport protocol dependant and have high performance overhead; and split

connection solutions such as [34][89] require special proxy support and limit

mobility scope to client only. The lack of system support for mobile communica-

tion today is primarily due to the fact that the current de facto worldwide data net-

work protocol standards suite, the network layer Internet Protocol (IP), the

transport layer Transmission Control Protocol (TCP)/User Datagram Protocol

(UDP), etc., were all designed with the assumption that devices attached to the net-

work are stationary. For example, IP addresses are assigned to fixed network

attachment points with implicit geographical association; TCP/UDP uses IP

address and port number to identify its connection endpoints and assumes these

values never change for the lifetime of a connection. As a result, one cannot move

either (or both) endpoint(s) of a connection without severing the connection.

The motivation behind this thesis, therefore, is to design and implement such a

mobile communication architecture that supports mobile applications with persis-

tent network connections, an architecture that meets all the requirements in order to

facilitate the wider deployment of mobility functions in both current and future

data networks.

1.2 Thesis Contribution

At a high level, the contribution of this thesis is the design and implementation of

a novel end-to-end mobile communication architecture called MOVE that, in a

6

single system, meets all the requirements outlined in the previous section, namely

easy deployment, fine-grain and unlimited mobility, secure and flexible migration,

and low performance overhead. More specifically, the requirements are met

through the research and development of a collection of novel concepts and mech-

anisms, along with their design, implementation, and real world application:

• A novel namespace abstraction, called CELL (ConnEction virtuaLization

and encapsuLation), that provides a virtual, private, and labeled

namespace for individual connections so that they can be transparently

migrated anywhere, even across address space boundaries separated by

NAT (Network Address Translation)/NAPT (Network Address Port

Translation) devices. CELL supporting mechanisms are independent of the

transport protocol and function entirely within the two communicating

endpoints without the need for a third-party entity such as a proxy or any

other new network infrastructure. CELL supporting mechanisms are also

compatible with and require no modification to current networking proto-

cols, OSes, and applications.

• A unique in-band layer 3 handoff signaling protocol called H2O (Host-

only HandOff) and a low-overhead security mechanism, that can migrate

connections securely with a single packet in a single one-way trip from the

mobile endpoint to the stationary endpoint, achieving handoff perfor-

mance perceived by the transport protocol similar to (and in certain case

better than) existing approaches that require very complex network infra-

structure support. With a connection migration helper mechanism, H2O

7

supports secure connection migration through suspension/resumption

where migrating connections can be kept alive for an extended period of

time. Similar to CELL supporting mechanisms, H2O is also independent of

the transport protocol and functions entirely within the two communicat-

ing endpoints without the need for a third-party entity such as a proxy or

any other new network infrastructure. H2O is also compatible with and

requires no modification to current networking protocols, OSes, and appli-

cations.

• Seamless integration with a new process migration mechanism, that is

built on the same virtual private namespace concept of CELL abstraction

extended to other OS resources such as PID (process ID)/GID (group ID),

IPC (inter-process communication) key, memory, file system, and device,

etc. We show how the integration allows MOVE’s fine-grain connection

migration capability to be fully exploited and enable support for new

application scenarios. For example, we show how the integration can pro-

vide high service availability in proxy-based server clusters by allowing

server applications and their persistent connections to be migrated during

a server maintenance to avoid service disruption.

• A design and implementation of the MOVE architecture on a generic OS

platform, i.e., LINUX, that requires no networking protocol, OS kernel, or

application modification; and an evaluation of our MOVE implementation.

We present our MOVE prototype’s handoff performance in a variety of net-

work configurations, both used standalone for moving a client host and

8

integrated with process migration for moving a server process; and we

show that MOVE has minimal impact on the connection characteristics

perceived by the transport protocols and applications. We show that our

MOVE prototype does not have negative effect on the scalability of existing

systems; and we also show that the virtualization overhead in terms of net-

working I/O such as bandwidth, delay, and CPU utilization of our unopti-

mized MOVE prototype is very low, which means that connections that do

not migrate suffer little overhead. Once a connection is migrated and vir-

tual-physical mapping is performed, our results show that the mapping

overhead introduced by our MOVE prototype stays very low. We test our

MOVE prototype with a suite of popular off-the-shelf network applica-

tions, all of which work out of the box.

1.3 Thesis Focus Area

Mobile communication is a broad area that comprises issues of many aspects. This

thesis does not claim to solve all issues of mobile communication but rather focus

on a few specific ones. In this section, we clarify the focus of the issues addressed

by this thesis.

First, this thesis focuses on mobility of end-to-end transport connections, which is

defined as the logical association of two communication endpoints by the trans-

port protocols, rather than mobility of the endpoints themselves. Mobility of end-

points has been studied under different contexts, such as host mobility, user

mobility, and session mobility, etc. Host mobility is concerned about tracking the

9

movement of an entire host such as a laptop, a PDA, or a mobile phone. User

mobility attempts to track the movement of a person by maintaining a list of

devices or applications through which the person is currently accessible. Session

mobility tracks the movement of a computation session, which is usually defined

as a group of related processes such as a capsule [118] or a Pod [100]. Regardless

of these different types of endpoints, the common problem that must be resolved

by a mobile communication architecture is to track the movement of the end-to-

end connection states maintained by the transport protocol on behave of the end-

points, which is the focus of this thesis. We assume that the states of the endpoints

themselves are saved and restored by appropriate migration mechanisms external

to our proposed MOVE architecture. In fact, we have designed our system to be

independent of and can interoperate with these different migration mechanisms.

For example, when an entire host is moved, the hardware BIOS suspension/

resumption functions are responsible for saving and restoring the endpoint states;

when a session is moved, the particular migration mechanism such as Zap [100] is

responsible for saving and restoring the endpoint states. And we have integrated

MOVE with Zap to fully exploit its fine-grain connection migration capability.

Second, this thesis focuses on the issue of tracking a connection between mobile

endpoints after it has been established, rather than the issue of locating a mobile

endpoint before a connection can be established. It is our belief that these are two

orthogonal and fundamentally different problems. Generally speaking, the former

is a routing problem, while the latter is a directory problem. The requirements for

systems addressing these two problems are therefore fundamentally different and

10
should not be mixed. For example, global directory service for locating a mobile

endpoint usually implies the need for infrastructure support; but as we will show

in our proposed MOVE architecture, tracking established connections can be done

completely within endpoints themselves without any infrastructure requirement.

Therefore, this thesis separates the tracking and locating aspects of communication

mobility and focuses on the former. We leverage existing locating systems,

Dynamic DNS (DDNS) [133] in particular, that are designed specifically for that

purpose and conduct empirical studies on their suitability for locating mobile

hosts and services in practice.

1.4 Thesis Overview

This thesis presents the design, implementation, and evaluation of the MOVE

mobile communication architecture. It is organized as follows: Chapter 2 intro-

duces the CELL namespace abstraction which is the foundation of the MOVE

architecture for resolving key technical problems of transparent connection migra-

tion; Chapter 3 presents the H2O handoff signaling protocol and its security mech-

anism for fast and secure handoff, as well as the connection migration helper

mechanism for migration through suspension/resumption; Chapter 4 describes

the integration of MOVE with a new process migration mechanism to fully exploit

its fine-grain connection migration capability and to provide high service avail-

ability support in a proxy-based server cluster environment; Chapter 5 presents

the design and implementation of a MOVE prototype on the LINUX x86 platform;

Chapter 6 evaluates our MOVE prototype performance and discuss the measure-

ment results; Chapter 7 surveys related work in mobile communication architec-

11
ture, layer 3 handoff approaches, high service availability mechanisms, and

process migration systems; finally, Chapter 8 concludes the thesis and discusses

directions for future work.

12
2CELL Namespace Abstraction

MOVE is a transparent connection migration system, which means that it preserves

the transport connection states across migration; since having persistent connec-

tion states throughout the lifetime of a connection is the fundamental assumption

made by existing transport protocols. Of course, connection migration can also be

achieved without preserving the transport connection states, as we will see exam-

ples of such solutions shortly; and we call such solutions non-transparent connec-

tion migration systems. In this chapter, we will first argue why we believe a

transparent migration system that preserves the transport connection states is a

more viable solution than a non-transparent one that does not. We will then intro-

duce the CELL namespace abstraction that is designed to solve key technical prob-

lems of transparent migration systems. We also consider a few other architectural

issues such as host and service location, connection-less transport protocol sup-

port, application location-awareness, and compatibility with IPsec.

2.1 Non-transparent vs Transparent Migration

While mobility solutions have traditionally been categorized based on the layer at

which they provide the mobile functionality, such as network, transport, or appli-

cation layer, we look at these solutions from another angle, which focuses on the

connection states rather than the layers, that has given us more insight on the fun-

13
damental problems of connection migration. We have defined an end-to-end con-

nection as the logical association of two communication endpoints by the transport

protocols. Therefore, the connection states we refer to throughout the chapter are

the states maintained by the transport protocols. Note that some applications may

have their own notion of a “connection”; but as we pointed out in Section 1.3 in

Chapter 1, migration of application states is part of endpoint mobility mechanism

orthogonal to transport connection mobility mechanism. Depending on whether

or not a connection migration system preserves transport protocol connection

states, it generally falls into one of the two categories: non-transparent or transpar-

ent.

Non-transparent connection migration systems do not maintain the connection

states at the transport layer across migration. Connection migration is achieved

either by modification to the transport protocol itself, TCP in particular, to handle

the change of IP address and port number - an approach taken by traditional trans-

port layer solutions, or by emulation above the transport layer through closing the

old connection and opening a new one - an approach taken by traditional applica-

tion layer solutions. These solutions, however, have a few serious drawbacks.

Modifying TCP results in transport protocol dependency not only on TCP’s oper-

ational semantics therefore making it incompatible with other transport protocols

such as UDP and SCTP, etc., but also on the particular TCP implementation and

therefore making it very hard if not impossible to deploy. Emulation at the appli-

cation layer requires duplicating many of the transport protocol functions, such as

double-buffering (in addition to transport protocol buffering) and go-back-N (or

14
similar), to account for potential packet loss due to closing the old connection. As

a result, while avoiding changing the transport protocol itself, emulation at the

application layer is still highly dependent upon the transport protocol operational

semantics. In addition, the double-buffering must be done on the critical data path

of the connections at all times, therefore creating substantial performance over-

head, not only for migrated connections, but also for regular stationary ones as

well. Furthermore, the go-back-N adds additional delay to the handoff process.

Because of these fundamental difficulties facing the non-transparent connection

migration systems, we have chosen to build MOVE as a transparent connection

migration system, which of course has its own set of problems that must be

resolved in order to meet all the requirements of a mobile communication system

we outlined in the introduction. In fact, many other transparent mobile communi-

cation systems have been proposed, such as [70][71][103][132][136], which are also

commonly known as the network layer solutions. However, as we will see in the

related work chapter, none of these solutions meets all the requirements. So we

will now take a closer look at the key technical problems associated with transpar-

ent connection migration. For the rest of the thesis, we will use the word “migra-

tion” to always refer to transparent migration unless noted otherwise.

2.2 Key Problems of Connection Migration

Despite the seemingly large variation of mechanisms employed by existing sys-

tems, the problems of connection migration can be traced to three fundamental

ones: state inconsistency, state conflict, and state synchronization, which we describe

15
in turn.

2.2.1 Inconsistency between network layer and transport layer

Preserving connection states at transport layer in a mobile environment is difficult

because existing transport protocols are not designed with mobility in mind. Spe-

cifically, transport layer connection states consist of two types of names: address

and port. A tuple, which consists of a pair of addresses and ports that correspond

to the two communication endpoints, is used by the transport protocol to uniquely

identify a connection. Transport protocols require that the tuple stay constant for

the lifetime of the connection. This requirement, however, is violated when a con-

nection endpoint is migrated from one host to another, or a host with open connec-

tions moves from one network to another; since the address of the endpoint has

changed. Mobility therefore creates inconsistency between the transport layer

tuple and the network layer address, as shown with an example in Figure 2-1.

Figure 2-1a shows that when a host with an open connection [IP2:p2, IP1:p1]

moves from IP2 to IP3, the transport layer tuple [IP2:p2, IP1:p1] is no longer

consistent with the new network layer address IP3. Figure 2-1b depicts the same

problem in the case when an endpoint of a connection [IP2:p2, IP1:p1] is trans-

parently migrated from host IP2 to host IP3.

2.2.2 Conflict in transport layer

In addition to inconsistency between network layer and transport layer, other

problems may arise due to mobility as well. One of these problems is that mobility

creates situations where names such as address and port may be reused therefore

16
causing naming conflict in the transport layer, as illustrated in Figure 2-2. Figure 2-

2a shows that a host with an open connection [IP2:p2, IP1:p1] moves from IP2 to

IP3. Later, another host may reuse IP2 at the original network and a process on it

may open another connection [IP2:p2, IP1:p1] to IP1:p1 using port p2. As a result,

host IP1 sees two identical connections [IP1:p1, IP2:p2], which is prohibited by the

transport protocols. Figure 2-2b shows the similar conflict in the case when an end-

point of a connection [IP2:p2, IP1:p1] migrates from host IP2 to host IP3 and

another process on IP2 reuses port p2 to open another connection [IP2:p2, IP1:p1]

to the same server IP1:p1.

Figure 2-1. Inconsistency between network layer and transport layer

Internet

IP1

m
ig

ra
te

inconsistency

Internet

IP1

m
ov

einconsistency

(b) connection endpoint migrates

(a) host with open connections moves

IP3

[IP2:p2, IP1:p1]

IP2

[IP2:p2, IP1:p1]

IP3

[IP2:p2, IP1:p1]

IP2

[IP2:p2, IP1:p1]

17
2.2.3 Cross address space synchronization in transport layer

Finally, we look at the third problem that can be caused by mobility. Transport

protocol semantics requires that the connection states on the two communication

endpoints must remain synchronized, i.e., each endpoint must have proper states

to identify the same connection and the one-to-one correspondence of the states on

both endpoints must be maintained for the lifetime of the connection. In traditional

IP network, the entire Internet is assumed to be a single address space and host IP

addresses are globally unique; therefore the synchronization can be achieved by

associating with a connection the same address:port pair, i.e., tuple, on both end-

Figure 2-2. Conflict in transport layer

Internet

m
ov

e migrated

(a) host with open connections moves

IP1

new

[IP1:p1, IP2:p2] [IP1:p1, IP2:p2]

conflict

Internet

m
ig

ra
te

migrated

(b) connection endpoint migrates

IP1

new

[IP1:p1, IP2:p2] [IP1:p1, IP2:p2]

conflict

[IP2:p2, IP1:p1]

IP3

IP2

IP3

IP2

IP2

[IP2:p2, IP1:p1]

[IP2:p2, IP1:p1]

[IP2:p2, IP1:p1]

[IP2:p2, IP1:p1]

[IP2:p2, IP1:p1]

18
points.

With the introduction of NAT (Network Address Translation)/NAPT (Network

Address Port Translation) devices [125] (simply referred to as NAT hereafter),

however, the assumption above no longer holds. NAT separates the Internet into

different address spaces and allows overlapping address spaces to coexist. As a

result, a connection passing through a NAT device can no longer be identified by

the same tuple on both endpoints; in addition, the one-to-one correspondence of

the (different) tuples on each endpoint can only be maintained with the presence

of the NAT mapping. Since NAT mapping is performed inside the network trans-

parent to both endpoints, mobility of either endpoint can result in the loss of NAT

mapping, and consequently the loss of connection state synchronization.

We illustrate the problem using the following examples covering all the possible

scenarios: from no NAT to NAT, from NAT to no NAT, and from NAT to another

NAT. For simplicity and without loss of generality, we assume that the stationary

end is not behind a NAT. Also note that in all the scenarios we assume the case

when an entire host moves from one network to another; but they apply equally to

the case when an endpoint of a connection migrates from one host to another.

Figure 2-3 shows that a host with an open connection [IP2:p2, IP1:p1] moves from

a public network without a NAT to a private network behind a NAT. At the new

location, the mobile endpoint obtains a new address IP3. Since the transport

invariant [IP2:p2, IP1:p1] must persist across the migration, a transparent migra-

tion system usually maintains a mapping between the transport invariant and a

19
network variant [IP3:p2, IP1:p1] that changes when the mobile endpoint moves, as

shown in the figure. This mapping, {IP3:p2↔IP2:p2}, must also be conveyed to the

stationary endpoint so that both endpoints can remain synchronized. However,

since now the connection goes through a NAT, which applies another mapping

{IP3:p2↔IP4:p4}, the correct mapping for the stationary endpoint is not

{IP3:p2↔IP2:p2}, but rather {IP4:p4↔IP2:p2}. In other words, due to the NAT map-

ping, the mobile and the stationary endpoints do not have an agreement on the

network variant to identify the connection and therefore cannot synchronize their

mappings for the connection.

Figure 2-4 shows the opposite scenario when a host with an open connection

[IP2:p2, IP1:p1] moves from a private network behind a NAT to a public network

without a NAT. We can see that the mapping for the mobile endpoint,

Figure 2-3. Synchronization: from no NAT to NAT

stationaryNATmobile

Internet

IP1

m
ov

e

NAT

IP3:p2↔IP4:p4

 [IP2:p2, IP1:p1] [IP1:p1, IP2:p2]

[IP3:p2, IP1:p1] IP3:p2↔IP4:p4 [IP1:p1, IP4:p4]

transport
invariant

network
variant

[IP1:p1, IP2:p2]

IP2

[IP2:p2, IP1:p1]

IP3

[IP2:p2, IP1:p1]

20
{IP3:p2↔IP2:p2}, is again wrong for the stationary endpoint, which should be

{IP3:p2↔IP4:p4}. This time, however, the problem lies with the transport invariant

instead of the network variant. Due to the NAT mapping {IP2:p2↔IP4:p4}, the

mobile and the stationary endpoints never had an agreement on the transport

invariant to uniquely identify the connection. The mobile endpoint saw the con-

nection as [IP2:p2, IP1:p1], while the stationary endpoint saw the connection as

[IP1:p1, IP4:p4]. The one-to-one correspondence between [IP2:p2, IP1:p1] and

[IP1:p1, IP4:p4] for identifying the same connection can only be maintained with

the presence of the NAT mapping {IP2:p2↔IP4:p4}, which is now lost.

Finally in Figure 2-5, a host with an open connection [IP2:p2, IP1:p1] moves from

a private network behind a NAT to another private network behind a NAT. It’s

obvious that in this case the mobile and the stationary endpoints do not have an

agreement on either the transport invariant or the network variant; and the correct

Figure 2-4. Synchronization: from NAT to no NAT

stationaryNATmobile

Internet

IP1

m
ov

e

NAT

IP2:p2↔IP4:p4

 [IP2:p2, IP1:p1] [IP1:p1, IP4:p4]

[IP3:p2, IP1:p1]

IP2:p2↔IP4:p4

[IP1:p1, IP3:p2]

transport
invariant

network
variant

[IP1:p1, IP4:p4]

IP3

[IP2:p2, IP1:p1]

IP2

[IP2:p2, IP1:p1]

21
mapping needed on both endpoints are completely unrelated.

To summarize the main points of this section, we have described three fundamen-

tal problems of transparent connection migration:

• state inconsistency, because existing transport protocols are designed

based on the assumption that connection endpoints are stationary and

mobility breaks this assumption

• state conflict, because mobility creates situations where names used for

identifying connections may be reused and therefore losing their global

uniqueness

• state synchronization, because NAT breaks the end-to-end semantics and

the network is no longer a globally addressable space and the one-to-one

correspondence of connection states on each endpoint can no longer be

Figure 2-5. Synchronization: from NAT to another NAT

stationaryNATmobile

Internet

IP1

m
ov

e

NAT

IP2:p2↔IP4:p4

 [IP2:p2, IP1:p1] [IP1:p1, IP4:p4]

[IP3:p2, IP1:p1]

IP2:p2↔IP4:p4

[IP1:p1, IP5:p5]

transport
invariant

network
variant

NAT

IP3:p2↔IP5:p5

IP3:p2↔IP5:p5

[IP1:p1, IP4:p4]

IP3

[IP2:p2, IP1:p1]

IP2

[IP2:p2, IP1:p1]

22
maintained without the NAT mapping, which may be lost due to mobility.

We will see in the next section how MOVE solves these problems.

2.3 The CELL Namespace Abstraction

To effectively address the key problems of fine-grain connection migration, as well

as achieve the essential goals of a migration system and avoid drawbacks of exist-

ing migration systems, MOVE introduces a novel namespace abstraction, called

CELL (ConnEction virtuaLization and encapsuLation). The purpose of CELL is to

provide a virtual, private, and labeled namespace for connections of individual pro-

cesses so that they can be transparently migrated anywhere free of state inconsis-

tency, conflict, and cross address space synchronization problems.

2.3.1 Virtualize network addresses

In order to allow transport layer connection identification, i.e., the tuple, to persist

across migration between different networks, CELL uses virtual addresses, which

have no semantic association with any particular network locations, to provide

individual connections with a constant virtual transport layer identification,

regardless of where a connection is migrated. The main challenges lie in the assign-

ment and management of the virtual address space; because virtual tuples, like

their physical counterparts, must satisfy a few constraints:

• Global identification. A virtual tuple must uniquely identify a connection

no matter where the connection migrates. One simple solution is to employ

23
a centralized system that manages a global pool of virtual addresses to

guarantee that each individual virtual tuple is globally unique. This solu-

tion, however, cannot scale to Internet size. An alternative is to employ a

distributed system such as DNS to manage the global pool of virtual

addresses. This solution, however, requires global infrastructure support

which is also undesirable.

• One-to-one correspondence. As we described in Section 2.2.3, two commu-

nication endpoints must maintain a one-to-one correspondence of the vir-

tual tuple they have chosen to identify a connection. This implies that the

two endpoints must negotiate their virtual tuples for each connection if the

virtual addresses chosen by both endpoints are not mutually known

beforehand. The negotiation therefore imposes extra round trip delay for

connection setup. In addition, virtual tuples must be translated into physi-

cal tuples and vice versa even when connections are stationary, therefore

creates unnecessary network I/O overhead.

CELL employs a unique virtual address assignment mechanism to answer these

challenges. The mechanism, which we call lazy assignment, is surprisingly simple.

By default, CELL selects the virtual addresses to be the current physical addresses

associated with a connection. Essentially, CELL treats all physical connections as

initially “implicitly” virtualized. As a host moves from one network to another or

a connection migrates from one host to another, CELL maintains the virtual

addresses unchanged for the migrated connection(s) and translates them into the

host’s current physical address to resolve inconsistency, as illustrated in Figure 2-

24
6. But for new connections created at the new network location, their virtual

(source) addresses will be the new current physical address of the host. Therefore

at any given point of time, a host/process can have multiple connections, each

with a different virtual tuple that corresponds to the physical tuple of a connection

created at each of the network location it has visited, as also illustrated in Figure 2-

6.

Since physical tuples are guaranteed to be globally unique (either by themselves or

with proper NAT mappings), the resulting virtual tuples are also globally unique.

Therefore, in the absence of migration, CELL does not need any additional mech-

anism to manage the virtual address space, which is simply an exact mirror of the

physical address space. There is also no additional round trip delays to connection

setup for exchanging the virtual addresses since they are already known. And

finally, CELL does not need to perform any virtual-physical translation in the

absence of migration since the virtual and physical addresses are by default the

Figure 2-6. CELL abstraction: virtual network addresses

Internet

IP1

[IP2:p2, IP1:p1]

m
ig

ra
te

new

migrated: [IP2:p2, IP1:p1]

IP4

migrated

new: [IP3:p3, IP4:p4] new:
[IP4:p4, IP3:p3]

migrated:
[IP1:p1, IP2:p2]

virtual-physical
translation resolves

inconsistency

IP3

IP2

25
same.

The benefits of CELL’s lazy assignment, which is essentially a unmanaged

approach, does come at the cost of losing one advantage that a managed approach

provides: global identification of the virtual tuples in the presence of migration.

Since CELL’s virtual address space is a mirror of the physical address space, reus-

ing a physical address due to mobility (recall Section 2.2.2) also results in reusing

a virtual address and potential conflict in the transport layer. In the next section,

we describe how CELL resolves the problem without resorting to a centralized

scheme.

2.3.2 Privatize transport identifications

To resolve the conflict in the transport layer caused by reusing a physical address

(and therefore reusing a virtual address) illustrated in Figure 2-2, CELL provides

a private per-connection virtual address space for each individual connections. In

existing transport protocols, all connection identification tuples share a single

transport layer namespace, which means no two connections can have the same

identification tuple. CELL, however, provides individual connections with their

own private virtual tuples that are isolated and independent of each other. One can

also think of this as if every connection in CELL had its own dedicated protocol

stack. As a result, two identical virtual tuples can coexist side-by-side on the same

host free of conflict. For example, Figure 2-7 shows the same conflict cases as those

shown in Figure 2-2; but the conflicts are now resolved since the two identical vir-

tual tuples are private to their respective connections and are independent to each

26
other.

Readers may note that, in the previous section, we did not provide a description of

how exactly CELL virtualizes network addresses (and how exactly lazy assign-

ment is performed). We defer it until now, along with the description of how CELL

privatizes transport tuples, because CELL supports both virtualizing network

addresses and privatizing transport tuples with the Virtual Network Interface

Card (VNIC) mechanism. A VNIC is a software emulation of a NIC at the link layer

and appears exactly the same as a NIC to network-and-above layers. Essentially,

Figure 2-7. CELL abstraction: private transport identifications

Internet

m
ov

e migrated

(a) host with open connections moves

IP1

new

(1) [IP1:p1, IP2:p2] (2) [IP1:p1, IP2:p2]

Internet

m
ig

ra
te

migrated

(b) connection endpoint migrates

IP1

new

(1) [IP1:p1, IP2:p2] (2) [IP1:p1, IP2:p2]

(2) [IP2:p2, IP1:p1]

private virtual tuple
resolves conflict

private virtual tuple
resolves conflict

IP3

(1) [IP2:p2, IP1:p1]

IP2

(1) [IP2:p2, IP1:p1]

IP2

(2) [IP2:p2, IP1:p1]

IP2

(1) [IP2:p2, IP1:p1]

IP3

(1) [IP2:p2, IP1:p1]

27
CELL virtualizes network addresses of a connection by simply creating a VNIC

with a virtual address on both endpoints and binding the connection to the VNICs.

Lazy assignment simply takes the NICs and their physical addresses as the VNICs

and their virtual addresses on both endpoints. To privatize transport tuples, CELL

provides each connection with its own private VNIC that is not shared with and

cannot be accessed by other connections. As a result, two VNICs with identical vir-

tual address, along with two identical virtual tuples bound to the two VNICs, can

coexist on the same host. The ambiguity can be resolved because the two VNICs

are different (e.g., with different device index), even though they have identical vir-

tual address.

Because lazy assignment uses the initial physical address of a NIC as the virtual

address of a VNIC, the VNIC mechanism itself may introduce additional problem

as illustrated in Figure 2-8. The figure shows the conflict in transport layer in the

case when a host moves from one network to another is being resolved by CELL’s

Figure 2-8. Conflict between VNIC and NIC

Internet

m
ov

e migrated

IP1 (NIC)
IP1 (VNIC1)
IP1 (VNIC2)

new

(1) [IP1:p1, IP2:p2] (2) [IP1:p1, IP2:p2]

IP3 (NIC)
IP2 (VNIC)

IP2 (NIC)
IP2 (VINC)

IP2 (NIC)
IP2 (VNIC)

(1) [IP2:p2, IP1:p1]

(1) [IP2:p2, IP1:p1]

(2) [IP2:p2, IP1:p1]

28
private virtual tuple abstraction, which is supported by the VNIC mechanism. We

can see that per-connection VNICs are created and their virtual addresses are

assigned with lazy assignment to properly resolve inconsistency and conflict.

However, network layer protocol semantics requires that, within a single address

space, an address must uniquely identify one network interface, which is clearly

violated by the VNICs in Figure 2-8. For example, the address IP1 is now associ-

ated with three network interfaces on host IP1, while the address IP2 is also asso-

ciated with three network interfaces, one on host IP3 and the other two on host IP2.

To remedy the problem, CELL imposes visibility constraints on the VNICs so that

they are invisible in the physical network. CELL prevents a VNIC from performing

any function on the physical network, such as sending and receiving packets,

influencing routing decisions, participating in network layer routing protocols

such as RIP, OSPF, or BGP, or participating in link layer protocols such as ARP, etc.

In other words, a VNIC is only visible to the transport protocols and the connection

bound to it. Therefore, network layer protocols can function unaffected. For exam-

ple, the addresses IP1 and IP2 now uniquely identify their respective interfaces,

the NIC on host IP1 and the NIC on host IP2; because all the VNICs are invisible

in the physical network.

Finally, in order to identify the VNIC of a connection and properly demultiplex

incoming packets with identical tuple, CELL augments traditional tuple with a

label to identify a connection. Since labels are location-independent, they also

allow connections to be identified even in the presence of NAT devices. We

29
describe the details of CELL’s connection label in the next section.

2.3.3 Label end-to-end connections

From previous sections we know that traditional tuple alone is no longer enough

to uniquely identify a connection because of two reasons:

• Due to the conflict caused by virtual address reuse in a mobile environ-

ment, as we saw in Section 2.2.2, virtual tuples are not globally unique.

While CELL uses VNIC to resolve the conflict within an endpoint, packets

belonging to a connection, however, must also carry additional informa-

tion beyond the traditional tuple in order for them to be properly demulti-

plexed to the right VNIC. We note that this is a CELL-specific requirement

necessitated by lazy assignment.

• Due to the presence of NAT, as we saw in Section 2.2.3, the one-to-one cor-

respondence of the tuples on both endpoints of a connection can no longer

be maintained in a mobile environment. We note that this is a general prob-

lem applicable to any mobile communication system.

CELL addresses both problems with a single mechanism, by introducing a loca-

tion-independent label for each connection, which can be used to uniquely identify

a connection without the tuple. In fact, in addition to the traditional tuple, CELL

assigns a connection two labels, one for each endpoint.

When a connection is setup, each endpoint independently chooses a label unique

within the respective endpoint and sends the label to its peer, as shown in Figure 2-

30
9. The exchange is conducted in-band by piggybacking the labels onto the first data

packets exchanged between the two endpoints. For example, for TCP, they are

SYN and SYN-ACK packets; for UDP, they are the first data packets arriving on

each endpoint. Therefore, no additional round-trip delay is introduced. Also, the

piggybacking can be done transport-independently using one of several ways. For

example, one way is to use IP option; another is to use encapsulation such as GRE

(Generic Routing Encapsulation). In Section 5.1 in Chapter 5, we elaborate on the

particular choice we made in our prototype implementation.

Since virtual tuples alone can uniquely identify a connection in the absence of

migration, labels are not used in a stationary connection beyond the initial

exchange. That is, after the initial exchange, no labels are attached to the data pack-

ets and the rest of the packet flow of a connection proceeds as usual, as long as the

connection does not migrate. Once the connection migrates, each endpoint

attaches its peer’s label learned at connection setup time to allow its peer to

uniquely identify the connection without relying on the tuple. It is evident that a

label needs only to be host-wide unique rather than globally unique since it’s only

needed for demultiplexing incoming packets to their respective VNICs within an

endpoint.

Figure 2-9. CELL abstraction: labels (exchanged at connection setup time)

IP1

label2 label1

IP2

31
We first illustrate in Figure 2-10 how labels allow two connections with identical

virtual tuple to be properly associated with their respective VNICs. As shown in

the figure, CELL assigns the first connection label1 and label2, and assigns the

second connection label3 and label4. After the host with the first connection

moves from IP2 to IP3, CELL attaches label1 to all packets of the migrated con-

nection from IP3 to IP1, and label2 to all packets in the reverse direction. For the

second connection, on the other hand, CELL attaches no labels after the initial

exchange; since the connection has not migrated. Therefore in this case, the pres-

ence of label1 or the absence of a label will allow host IP1 to correctly identify the

VNICs associated with each connection and to demultiplex packets for each con-

nection properly. If later the second host IP2 also moves, CELL will attach label3

and label4 to the second connection. In this case, the presence of label1 or label3,

which are guaranteed to be different since both are assigned by host IP1, will allow

host IP1 to distinguish the two connections.

Figure 2-10. Labels identify connections with identical virtual tuple

Internet

m
ov

e label1, label2

IP1
label1 → VNIC1

no label → VNIC2

no label

(1) [IP1:p1, IP2:p2] + label1
(learn, attach label2)

(2) [IP1:p1, IP2:p2] + label3
(learn label4)

IP3

IP2

IP2

(1) [IP2:p2, IP1:p1] + label2
(attach label1)

(1) [IP2:p2, IP1:p1] + label2
(learn label1)

(2) [IP2:p2, IP1:p1] + label4
(learn label3)

32
We next illustrate in Figure 2-11 how labels allow connections to be uniquely iden-

tified across NAT boundaries. We use the most generic scenario from Section 2.2.3:

a host moves from a private network behind a NAT to another private network

behind a NAT. As shown in the figure, CELL again assigns the connection two

labels, label1 and label2 when the connection was setup between host IP2 and

IP1. Due to the NAT mapping {IP2:p2↔IP4:p4} at the original network, host IP2

perceives the connection as [IP2:p2, IP1:p1] (with label2), while host IP1 perceives

the connection as [IP1:p1, IP4:p4] (with label1). After the host moves to IP3, on

both host IP3 and IP1, their respective virtual tuples, [IP2:p2, IP1:p1] and [IP1:p1,

IP4:p4], are maintained to provide transparent migration of the connection. On

host IP3, CELL translates [IP2:p2, IP1:p1] into [IP3:p3, IP1:p1] and attaches label1

to all packets from IP3 to IP1. Due to the NAT mapping {IP3:p2↔IP5:p5} at the

new network, packets for the migrated connection appear at host IP1 as [IP1:p1,

Figure 2-11. Labels identify connections across NAT boundaries

stationarymobile NAT

Internet

1. exchange labels

IP1
label1 → VNIC1

m
ov

e 2. attach peer’s label

NAT
IP2:p2↔IP4:p4

 [IP2:p2, IP1:p1] + label2 [IP1:p1, IP4:p4] + label1

[IP3:p2, IP1:p1] + label1

IP2:p2↔IP4:p4

[IP1:p1, IP5:p5] + label1

transport
invariant

network
variant

NAT

IP3:p2↔IP5:p5

IP3:p2↔IP5:p5

ID

[IP1:p1, IP4:p4]+label1
(learn, attach label2)

IP3

IP2

[IP2:p2, IP1:p1]+label2
(attach label1)

[IP2:p2, IP1:p1]+label2
(learn label1)

33
IP5:p5]. However, host IP1 can determine that the packets belong to the virtual

connection [IP1:p1, IP4:p4] by using the label1 attached to the packets; and host

IP1 can perform the correct translation of [IP1:p1, IP5:p5] into [IP1:p1, IP4:p4] by

observing IP5:p5 from the network variant (physical packet) and IP4:p4 from the

transport invariant (virtual tuple).

Keen readers will notice that since the labels are not globally unique and migrate

along with their connections, they will then potentially face the same conflict prob-

lem as the virtual tuples do. While label conflict does not happen in the case when

a host moves from one network to another, it does happen in the case when a con-

nection migrates from one host to another, as shown in Figure 2-12. We can see that

label conflict happens because two pairs of hosts, [IP2, IP1] and [IP3, IP4], can

independently choose exactly the same label1 and label2 for the two connections

between each pair. This is normally perfectly fine as long as the two connections

Figure 2-12. Label conflict

Internet

IP1

m
ig

ra
te

existing

migrated:
[IP2:p2, IP1:p1] + label2

(attach label1)

IP4

migrated

existing:
[IP3:p3, IP4:p4] + label2

(learn label1)

existing:
[IP4:p4, IP3:p3] + label1

(learn label2)

migrated:
[IP1:p1, IP2:p2] + label1

(learn, attach label2)

conflict

no conflictIP3

IP2

[IP2:p2, IP1:p1]+label2
(learn label1)

34
do not share the same endpoints. However, when an endpoint of one connection

is migrated to the host where an endpoint of the other connection resides, conflict

can occur. Note that label1 used on both host IP1 and IP4 does not cause a conflict.

To resolve the label conflict, we observe a crucial difference between the label con-

flict and virtual tuple conflict, which is that a label does not have to stay constant

throughout the lifetime of a connection while a virtual tuple does since it is the

requirement of the transparent migration. Therefore, when a label conflict occurs,

it can be resolved simply by replacing one of the labels with a new one. For exam-

ple in Figure 2-12, the migrated connection can simply choose another label3 and

convey the new label to IP1 during the handoff process. We will see how this is

done in Section 5.3.1 in Chapter 5 when we present the design and implementation

of MOVE’s handoff signaling protocol.

2.3.4 Map between virtual and physical namespace

From previous sections, readers can note that CELL abstraction and its supporting

mechanisms really make little change to the normal operation of a connection

when it is not migrated. For example, lazy assignment makes virtual-physical

translation unnecessary in the absence of migration; connection labels are also only

exchanged at the beginning of a connection setup and are never used when the

connection does not migrate. This is why MOVE incurs virtually zero network I/

O overhead to stationary connections, which we show in our performance mea-

surements in Chapter 6. Eventually, a connection will migrate and its CELL virtual

namespace must then be mapped into the physical namespace and vice versa. We

35
describe the mechanisms that perform the mapping in this section, with an exam-

ple in Figure 2-13.

The figure shows the same example we have been using throughout the chapter,

i.e., a connection [IP2:p2, IP1:p1] originally established between the hosts IP2 and

IP1; and the endpoint of the connection on host IP2 then migrates to host IP3. We

first look at the mobile endpoint of the connection on host IP3. From the figure, we

can see that there are two mappings need to be performed:

• the virtual tuple [IP2:p2, IP1:p1] must be mapped into the physical tuple

[IP3:p2, IP1:p1], and

• the VNIC with virtual address IP2 must be mapped into the NIC with

physical address IP3.

Mapping of the tuple is done by address translation, which is commonly available

Figure 2-13. Virtual-physical namespace mapping

Internet

IP1 (VNIC)

IP1 (NIC)

[IP1:p1, IP2:p2]

m
ig

ra
te

labeled

[IP2:p2, IP1:p1]

[IP3:p2, IP1:p1]

virtual

physical

• address translation

• interface redirection

mapping mechanisms

[IP1:p1, IP2:p2]

[IP1:p1, IP3:p2]

virtual

physical

IP2 (VNIC)

IP3 (NIC)

IP2

36
in modern OSes as part of the packet filtering and firewalling system. The transla-

tion is performed at the network layer therefore it is transparent to the transport-

and-above layers. In our example, on host IP3, since the only difference between

the virtual tuple and the physical tuple is the source address, i.e., IP2 for the virtual

tuple and IP3 for the physical tuple, this is commonly called a source address

translation; similarly on host IP1, the translation is commonly called a destination

address translation. Mapping of the network interface is done by interface redirec-

tion, which is again commonly available in modern OSes as part of the traffic con-

trol system. In our example, we redirect all outgoing traffic of the migrated

connection from the VNIC to the NIC; and we redirect all incoming traffic from the

NIC to the VNIC. Note that interface redirection is also performed at the network

layer and therefore it is transparent to the transport-and-above layers as well. And

because both address translation and interface redirection are very common and

simple operations, it explains the reason why, for migrated connections, the map-

ping between the CELL virtual namespace and the physical namespace performed

by MOVE incurs very low overhead to the traffic of the connection, as we will also

show in our performance measurements in Chapter 6.

Finally, recall that packets of a migrated connection in both directions will carry a

label, as we’ve indicated in Figure 2-13. The label enables CELL to identify the

VNIC associated with the connection and to perform the interface redirection from

the NIC to the VNIC. The labels are carried in the packets the same way they were

piggybacked onto the first packets of the connection when they were exchanged.

37
To summarize the main points of this section, we have described the CELL

namespace abstraction and its supporting mechanisms that provide a clean and

elegant solution to the fundamental problems of transparent migration while

avoiding various drawbacks of existing solutions. The highlights of the abstraction

and its supporting mechanisms are:

• Virtual network addresses allow transport tuple to remain constant even

when and network address has changed; and address translation alleviates

the address inconsistency problem. Lazy assignment avoids centralized

management of virtual address space and eliminates extra round-trip con-

nection setup delay and virtual-physical translation overhead for station-

ary connections.

• Private transport identifications resolve conflict of virtual tuples due to lazy

assignment. Software VNICs provide each connection with its own private

virtual address space that is independent of each other; therefore identical

virtual tuples can coexist on the same host. Invisibility of the VNICs in the

physical network guarantees that network layer protocol semantics are not

violated.

• Connection labels uniquely identify migrated connections and their associ-

ated VNICs, even when the connections pass through NAT devices before

and/or after migration. Interface redirection maps between the VNIC and

NIC for outgoing and incoming traffic of the migrated connections.

We conclude this section by presenting a visual representation of the CELL virtual

38
namespaces and their relation to the physical namespace, as shown in Figure 2-14.

From the figure we can see that each value of the CELL namespace is just one tuple

taken from the physical transport namespace plus a label. However, there are two

key differences between the CELL namespace and the transport namespace:

• Each value of the transport namespace can only appear within one host,

e.g., [IP1:p1, IP2:p2] can only appear within host IP1; each value of the

CELL namespace, on the other hand, can appear anywhere in the network,

e.g., [IP1:p1, IP2:p2]+label can appear on any host IPn.

• Each value of the transport namespace can only be used once within a sin-

gle host; each value of the CELL namespace, on the other hand, can be

used multiple times on multiple hosts.

In essence, the first properties allows CELL values to persist across hosts. The

second properties prevents identical CELL values from conflicting each other. And

finally, the labels used in the CELL values maintain the one-to-one correspondence

of two CELL values across address spaces.

Figure 2-14. Visual representation of the CELL namespace

[IP1:*, *:*] [IPn:*, *:*]

IP1 IPn

transport
namespace

network
namespace

... ...

... ...

[IP1:*, *:*] + label [IPn:*, *:*] + label
CELL

namespace... ...

39
2.4 Other Architectural Issues

We conclude this chapter with discussions of a few other issues related to general

mobile communication.

2.4.1 Host and service location

An important architectural decision made by MOVE is to separate the issue of

locating a mobile endpoint before a connection is established and the issue of

tracking a connection after it has been established. We believe they are two funda-

mentally different problems; generally speaking, host locating is a directory prob-

lem while connection tracking is a routing problem. The requirements for systems

addressing the two problems are fundamentally different. MOVE shows that con-

nection tracking can be done completely within endpoints themselves without

mandating new network infrastructure such as the home/foreign agents

employed by MobileIP, whose main purpose is for host locating. Decoupling the

two allows MOVE to take full advantage of solutions designed specifically for

solving the problem of locating a mobile endpoint.

In certain application scenarios, locating a mobile endpoint may not even be an

issue. For example, in the proxy-based server cluster we will consider in Chapter 4,

a single static name and IP address is exposed to the rest of the world by the proxy.

Mobility of the servers or services behind the proxy is purely a local matter with-

out any special requirement on the clients other than regular DNS lookup. Never-

theless, a general mobility architecture needs to address these issues and we

40
discuss MOVE’s approach.

2.4.1.1 Host location

MOVE leverages secure Dynamic DNS (DDNS) [133] to maintain a name-to-IP

relationship to address the host locating aspect of the communication mobility

problem so that a mobile host can be accessed by the same name after migration.

DDNS is also used to locate mobile hosts by other approaches such as [122][136].

Since the mapping from a name to an IP address, the “A-record” in DNS, is cached

by name resolvers, it is desirable to have a small caching time of a mobile host’s A-

record in order to minimize the time during which the mobile host is unreachable.

Contrary to belief that small to zero TTL (time-to-live) values for an A-record

would increase the DNS lookup traffic and latency and would cause scalability

problem, studies by [75] have found that DNS scalability is not as dependent on

the caching of A-records as commonly believed. This is because the NS-record, the

name server record, which dictates where the DNS name lookup starts, is cache-

able. [75] suggests that current trend towards more use of DDNS with low TTL for

A-record is not likely to be harmful. [75] further suggests that in terms of overall

scalability, eliminating all A-record caching would increase wide-area DNS traffic

by at most a factor of 4 and almost none of that would involve a root server or a

general top-level domain server. Even eliminating all but per-client caching would

little more than double DNS traffic.

Based on these studies, we think that DDNS is a suitable mobile host locating

mechanism for MOVE. We conducted additional empirical DDNS studies for its

41
suitability as our host locating mechanism and we will present our findings in

Section 6.4.1 in Chapter 6. Although even with zero to small TTL A-records there

is still a chance for the mobile host to be unreachable if it moves frequently, our

hope is that higher layer such as name resolvers and application themselves will

become increasingly capable of dealing with DDNS name lookups.

2.4.1.2 Service location

To support fine-grain mobility of individual services, i.e., server processes, a cor-

responding directory service that can locate, in addition to mobile hosts, mobile

server processes is required. As a simple example, a host with a DDNS name

foo.move.cs.columbia.edu may have an IP address 1.1.1.1 and is hosting ser-

vices such as ssh, pop3, etc. Later, the ssh service may be migrated to another host

with IP address 2.2.2.2. Since the host foo.move.cs.columbia.edu did not move,

its DDNS name foo.move.cs.columbia.edu will still resolve to IP address 1.1.1.1;

and clients trying to reach the pop3 service on foo.move.cs.columbia.edu will con-

tinue to be directed to the host 1.1.1.1. However, clients that trying to reach the

ssh service on foo.move.cs.columbia.edu should be properly directed to the host

2.2.2.2 rather than 1.1.1.1.

MOVE leverages the SRV resource record (RR) [65] defined for the DNS and

dynamically updates the SRV RR to support locating mobile services. [65] defines

a mapping from a symbolic {service name, host name} to {port number, IP address}. The

primary intended application of the SRV RR is to allow a single domain to provide

multiple instances of a service on different hosts and to allow clients to query these

42
instances and choose among them. We use a simple example to illustrate at a high-

level how SRV RR works. A domain move.cs.columbia.edu can define an SRV RR

as follows:

$ORIGIN move.cs.columbia.edu.
; format of SRV records:
; _service._protocol SRV priority weight port host
;
_ssh._tcp SRV 0 1 22 foo1.move.cs.columbia.edu

SRV 0 2 22 foo2.move.cs.columbia.edu
; format of A records:
; hostname A IP address
;
foo1 A 1.1.1.1
foo2 A 2.2.2.2

In this example, the service “ssh” over protocol “tcp” for the domain

move.cs.columbia.edu is provided by two hosts, foo1 with IP address 1.1.1.1,

priority 0, weight 1, and port 22, and foo2 with IP address 2.2.2.2, priority 0,

weight 2, port 22. A client that makes a DNS query of the SRV RR in the form of

_ssh._tcp.move.cs.columbia.edu will receive both SRV RRs and can make a

choice of the target host based on the “priority” and “weight”, which are explained

in [65] but not important for our discussion.

By creating per-host SRV RRs and dynamically updating them through DDNS,

locating mobile services can be achieved as follows:

• When a service, e.g., ssh, is running on a host, e.g., foo1 with IP address

1.1.1.1, an SRV RR (and its accompanying A-record) can be created as:

$ORIGIN foo1.move.cs.columbia.edu.
_ssh._tcp SRV 0 0 22 foo1.move.cs.columbia.edu
foo1 A 1.1.1.1

A client making an SRV RR lookup in the form of

43
_ssh._tcp.foo1.move.cs.columbia.edu will get IP address 1.1.1.1 and

port number 22.

• After the ssh service on foo1 is migrated to another host foo2 with IP

address 2.2.2.2, the SRV RR is updated as:

$ORIGIN foo1.move.cs.columbia.edu.
_ssh._tcp SRV 0 0 22 foo2.move.cs.columbia.edu
foo2 A 2.2.2.2

Now a client making the same SRV RR lookup in the form of

_ssh._tcp.foo1.move.cs.columbia.edu will get IP address 2.2.2.2 and

port number 22 instead.

Evidently, in order for this to work, the client must support the SRV RR lookup.

Unfortunately, the majority of the network applications today do not support SRV

RR lookup. To connect to a service such as ssh, they only make the A-record

lookup, which translates a name such as foo1.move.cs.columbia.edu into its IP

address 1.1.1.1; and they use the port 22 from a standard static list such as /etc/

services. Therefore, to support locating mobile services in current network appli-

cations without changing them, we have designed and implemented a mechanism

to transparently support SRV RR lookup for these applications. We will present

our design in Section 5.6 in Chapter 5 and we will present evaluation of the mech-

anism in Section 6.4.2 in Chapter 6.

2.4.2 Connection-less transport protocol support

For connection-less transport protocols such as UDP, the notion of a “connection”

is undefined beyond the mere association of two communicating endpoints in the

44
form of a {source IP address:source port number; destination IP address:destination port

number} tuple. Therefore, connection-less communication can be, in addition to

point-to-point, point-to-multipoint. For example, one type of point-to-multipoint

communication is multicast [47]. A UDP socket can be used to send a packet to a

special multicast address (class D IP address ranging from 224.0.0.0 to

239.255.255.255); the packet is replicated at the network layer to any number of

receivers subscribing to a multicast group denoted by the multicast address. Since

there is no one-to-one correspondence at the transport protocol (in fact, the trans-

port protocol does not even know who the receivers are), the concept of an end-to-

end transport connection does not apply in multicast communication; therefore

MOVE does not consider multicast communication. Another type of point-to-mul-

tipoint is to associate one source address/port pair with an arbitrary number of

destination address/port pairs. In this case, the point-to-multipoint communica-

tion is maintained by the transport protocol as a group of one-to-one unicast “con-

nections”. To enable point-to-point only unicast communication, connection-less

transport protocol such as UDP provides a “connected” mode operation to allow

explicit binding of two communicating UDP endpoints such that the two will only

accept messages from each other and no one else. Of course, this binding does not

entail any other connection-oriented properties such as orderly and reliable deliv-

ery of packets.

MOVE is designed to provide transparent migration of communication endpoints

without assuming any particular transport protocol semantics. To that end, a “con-

nection” for MOVE is a mere association of two communicating endpoints in the

45
same manner that unicast UDP treats a “connection”. Any states beyond the asso-

ciation maintained by the transport protocol, such as TCP’s sequence number, slid-

ing window, retransmission timer, etc., are solely the responsibility of the

transport protocol itself and are opaque to MOVE. Therefore, a unicast UDP end-

point is really no different from a TCP endpoint as far as MOVE is concerned; and

MOVE virtualizes, privatizes, and securely migrates unicast UDP “connections”

the same way it does for TCP connections, with some minor differences:

• Since there is no explicit packet exchange for setting up a UDP “connec-

tion”, MOVE implicitly derives it by tracking the data packet exchange

between two UDP endpoints. When the first time a packet is sent from a

UDP socket, a virtual tuple for the “connection” is inferred from the send-

ing socket’s source address/port and the outgoing packet’s destination

address/port.

• Since UDP “connections” are unreliable, MOVE must employ its own

mechanism to reliably deliver its protocol messages for connection label

exchange and handoff procedure. MOVE uses a simple finite state machine

to implement this function. Details of the mechanism are presented in

Chapter 5.

2.4.3 Application location-awareness

When a connection is virtualized, MOVE has the choice of exposing either the vir-

tual addresses or physical addresses to the applications, such as when the applica-

tions call the getsockname/getpeername socket system calls. There are pros and

46
cons for both choices: exposing virtual addresses makes the movement of an end-

point completely transparent to the applications, which is required for certain

legacy applications that cannot handle endpoint movement in the middle of an

active connection; on the other hand, location-aware applications rely on the cur-

rent physical addresses for their logic therefore cannot function properly with vir-

tual addresses. We will use an example to illustrate the tradeoff, the choice of

MOVE, and the rationale of MOVE’s choice.

There are a few commonly used applications such as FTP and ICQ which are well-

known to create problems with address translation schemes such as NAT. These

applications typically use two separate connections for the their communication,

one for control traffic and the other for data traffic. This by itself is not really a

problem. The problem, though, is that the ports for the data connection are, instead

of being statically allocated and well-known, dynamically negotiated through the

control connection. Therefore, in order to perform NAT on the data connection,

one must look into the messages exchanged over the control connection to see the

ports that have been negotiated for the data connection. This task is obviously

highly application dependent. Note that for MOVE, even this dynamic negotiation

of ports for the data connection is not a problem. Because first MOVE functions

entirely within an end host rather than inside the network (where one has to look

at the ports used in a packet to infer the sender and/or receiver application); and

second as we said in the previous section, there will be no mapping on the data

connection due to the lazy assignment as long as the connection doesn’t migrate.

47
The problem with FTP-like applications in the face of migration comes as the result

of another characteristic of these applications, i.e., they often save the IP addresses

of the two machines between which the control connection is established and use

them for the data connection. We illustrate the problem using FTP as an example.

FTP works as follows in active mode:

1. an FTP client on IP1 opens a control connection to an FTP server on IP3 at

port 21; it also saves IP1.

2. to open a data connection, the client creates another socket and binds it to a

dynamically chosen port p1 and listens on this socket.

3. over the control connection, the client tells the server to connect to IP1:p1

for the data connection; note that the client uses the IP1 from the saved one

in step 1.

4. after the client, along with the live control connection, has been migrated to

IP2, to open a data connection, it creates another socket and binds it to a

dynamically chosen port p2 and listens on this socket.

5. but now instead of telling the server to connect to IP2:p2, the client will tell

the server to connect to IP1:p2 because it has saved the IP1 in step 1.

When the server attempts to connect to IP1:p2, MOVE has two choices: take IP1 as

a virtual address and translate IP1:p2 into IP2:p2, the same way it translates for the

control connection; or take IP1 as a physical address and perform no translation.

We can see that MOVE’s default lazy assignment, which is essentially the second

48
choice of exposing physical address IP1 to FTP and performing no translation, is

actually the wrong choice in this particular case. Because the server would have

connected to the wrong client IP1:p2. The first choice of exposing virtual address

IP1 (remember initially both the physical and virtual addresses are IP1) and trans-

lating IP1:p2 into IP2:p2 would have been the right choice. The reasons that MOVE

defaults to exposing physical addresses rather than virtual addresses are the fol-

lowing:

• It supports location-aware applications.

• Most legacy network applications do not require such complete endpoint

movement transparency.

• It’s the expected behavior of current (non-virtualized) protocol stack.

• It incurs no translation overhead for new connections created after an end-

point moves.

To support applications like FTP that require complete transparency of endpoint

movement, MOVE allows, on a per application basis, the exposing of virtual

addresses rather than physical addresses. Doing so implies that we must be able to

special case these FTP-like applications, which fortunately are the minority. Also

note that by exposing the virtual addresses, after migrating an FTP-like application

and its control connection, all the new data connections will incur a translation

overhead even though they haven’t migrated. But as we will see in Chapter 6, the

translation overhead is very small.

49
2.4.4 Compatibility with IPsec

Due to increasing IP network security concerns, the IETF proposed standard IPsec

security architecture [78] is gaining acceptance. MOVE must work with connec-

tions protected by IPsec. IPsec is a complex suite of protocols and algorithms con-

sisting of security protocols, cryptographic algorithms, and key management, etc.

Cryptographic algorithms and key management are issues orthogonal to MOVE

and their discussion is beyond the scope of this thesis. Our focus in this section is

on the compatibility between MOVE and the two IPsec security protocols: Authen-

tication Header (AH) [76] and Encapsulating Security Payload (ESP) [77]. AH

offers data integrity and authentication. ESP offers, in addition to data integrity

and authentication, data encryption as well. Both AH and ESP can operate in one

of two modes: transport mode or tunnel mode. Transport mode is primarily

intended for protecting end-to-end next higher layer protocols between hosts,

while tunnel mode is primarily intended for protecting tunneled traffic between

gateways. Figure 2-15 illustrates the protection services offered by AH and ESP in

transport and tunnel mode.

The key to understand why MOVE is compatible with AH/ESP is that MOVE

resides in endpoint only. Therefore, MOVE does not suffer from the incompatibil-

ity between AH/ESP and traditional NAT/NAPT, which operates outside end-

points. Within the endpoint, MOVE can be made transparent to AH/ESP by

applying virtual-physical address mapping after AH/ESP processing for outgoing

packets, and by applying virtual-physical address mapping before AH/ESP pro-

cessing for incoming packets.

50
2.5 Summary

In this chapter, we first argued for a transparent connection migration system

against a non-transparent one. We then analyzed the fundamental problems of

transparent connection migration, namely state inconsistency, conflict, and syn-

chronization. And we introduced the CELL namespace abstraction and its sup-

porting mechanisms, which provide a virtual, private, and labeled namespace for

individual connections, as a simple and elegant solution to these problems. We

also discussed a few other issues related to a general mobile communication archi-

Figure 2-15. AH and ESP protection services

IP dataTCPAH

IP (outer) dataTCPIP (inner)AH

IP ESP (trailer)dataTCPESP (header)

IP (outer) ESP (trailer)dataTCPIP (inner)ESP (header)

(a) AH, transport mode

(b) AH, tunnel mode

(c) ESP, transport mode

authenticated

authenticated

encrypted
authenticated

(d) ESP, tunnel mode

encrypted
authenticated

51
tecture, e.g., host and service location, connection-less transport protocol support,

application location-awareness, and IPsec compatibility.

52
3H2O Handoff Signaling
Protocol

The functions of an end-to-end transport connection are supported by two distinct

components: (1) states maintained by the transport protocol on two logically asso-

ciated endpoints; and (2) connectivity between the two endpoints. In Chapter 2 we

have shown how to preserve the connection states on two logically associated end-

points in a mobile environment and to resolve the fundamental problems of state

inconsistency, conflict, and synchronization with the novel CELL namespace

abstraction. In this chapter, we turn our attention to the second component: how

to maintain the connectivity between two communication endpoints in a mobile

environment, a mechanism commonly known as the handoff signaling protocol.

Similar to mobile communication architectures, a large body of prior art exists for

handoff mechanisms. Some [51][69][82][123][137] are extensions to MobileIP while

others [42][46][110] define their own micro-mobility domain with proprietary

routing protocols. The common problem with these mechanisms is that they all

require very complex infrastructure support. In contrast, we introduce in this

chapter a novel handoff protocol called H2O (Host-only HandOff), that functions

entirely within the endpoints and can handoff a connection securely in just a single

one-way trip from the mobile endpoint to the stationary endpoint. We show that,

through protocol analysis, H2O handoff performance is comparable to and under

53
certain situation better than existing handoff mechanisms. We will also describe

H2O’s connection migration helper mechanism to support connection migration

by suspension/resumption, where a mobile entity can be disconnected from the

network for a prolonged period of time.

3.1 Handoff Related Issues

The connectivity for an end-to-end transport connection is supported at two sepa-

rate layers: (1) link layer (layer 2) connectivity; and (2) network layer (layer 3) con-

nectivity. Therefore, handoff involves a few related but orthogonal issues such as

layer 2 handoff vs. layer 3 handoff, and handoff detection vs. handoff execution,

etc. Before diving into the details of H2O mechanisms, we will first clarify these

issues and define the problem space H2O addresses.

3.1.1 Layer 2 handoff vs. layer 3 handoff

When an endpoint of a connection changes its point of network attachment, the

loss of link layer connectivity may or may not result in the loss of network layer

connectivity. For example, in a wired LAN, one can unplug a machine from one

jack and plug it into another jack. As long as the two jacks are in the same IP sub-

net, the machine need not change its IP address. Therefore network layer connec-

tivity is maintained without any special network layer signaling. Another example

is in a wireless network such as WiFi, when users move from one access point (AP)

to another, their network layer connectivity can also be maintained without any

special signaling as long as the two APs are in the same IP subnet. Of course, when

54
the two jacks or two APs are in different IP subnet, which requires the mobile end-

point to change its IP address, the loss of network layer connectivity must be

restored through special network layer signaling.

Maintaining connectivity for an end-to-end transport connection therefore can be

achieved either by link layer (layer 2) handoff alone, or by link layer and network

layer (layer 3) handoff combined. Using layer 2 handoff alone necessarily restricts

the movement scope of a mobile endpoint to be within a single IP subnet. The pro-

cedure and performance characteristics of a layer 2 handoff also depend on the

particular link layer technology involved, such as WiFi, TDMA, CDMA, or GSM,

etc. In this thesis, we consider the more general case when the movement scope of

a mobile endpoint is not restricted and therefore requires both layer 2 and layer 3

handoff support. Furthermore, we do not address issues related to layer 2 handoff

but rather those related to layer 3 handoff only since the two address distinct tech-

nical issues. H2O therefore is a layer 3 handoff protocol that makes no particular

assumption about the layer 2 technology in use.

3.1.2 Hand off detection vs. handoff execution

When both layer 2 and layer 3 handoff are required to maintain the connectivity of

an end-to-end transport connection, the entire period during which no packets can

be delivered to the mobile endpoint extends from the beginning of the layer 2

handoff, i.e., loss of link layer connectivity, to the end of the layer 3 handoff, i.e.,

restoration of network layer connectivity, as shown in Figure 3-1a. Therefore, a

handoff process generally consists of two phases, first handoff detection, followed

55
by handoff execution, also shown in Figure 3-1a. Handoff detection is defined as

the period between the start of layer 2 handoff, i.e., loss of layer 2 connectivity, and

the start of layer 3 handoff, i.e., commencement of network layer signaling. Hand-

off execution is defined as the period between the start of layer 3 handoff and the

end of layer 3 handoff, i.e., restoration of network layer connectivity.

The length of handoff detection depends on the detection algorithm in use. Detec-

tion algorithms making use of pure network layer information such as Lazy Cell

Switching (LCS), Prefix Matching (PM), and Eager Cell Switching (ECS) [104] gen-

erally have long detection delay. Algorithms making use of link layer information

such as those suggested in [54][56] can generally improve detection performance.

For example, certain link layer technologies, such as CDMA and TDMA, can pro-

vide an “advance notice” that the link to a device is about to be dropped. This fea-

ture provides the possibility of overlapping the layer 3 handoff with the layer 2

Figure 3-1. Handoff detection and execution

layer 2
handoff

layer 3 handoff

detection execution

layer 2
handoff

layer 3 handoff

detection

execution

time

time

advance
notice

(a) without advance notice

(b) with advance notice

56
handoff therefore reducing the overall delay of the handoff process, as shown in

Figure 3-1b. In this thesis, we do not address issues related to handoff detection

phase but rather those related to handoff execution phase only. H2O therefore

does not make any particular assumption about the handoff detection algorithm in

use. For example, H2O does not assume the “advance notice” feature from the link

layer since it’s not universally available; the widely deployed WiFi network today

does not have this feature. However, if the underlying link layer technology does

offer this feature, H2O can take advantage of it and improve its performance.

To summarize Section 3.1.1 and Section 3.1.2, H2O in MOVE is a layer 3 (rather

than layer 2) handoff protocol that addresses issues related to handoff execution

(rather than handoff detection).

3.2 H2O Handoff Signaling Protocol

The function of a handoff signaling protocol is to notify certain entity (or entities)

in the network, which can be the stationary endpoint (SE) itself, that the mobile

endpoint (ME) has moved and traffic destined to the old location of the ME must

be redirected to its new location. The requirement for the handoff protocol is to

minimize the length of the handoff process and the packet loss during the handoff

process so as to minimize the impact on the connectivity of the end-to-end trans-

port connection between the ME and the SE.

A general approach to reduce handoff latency and packet loss is to introduce an

entity in the network, known as the Mobility Anchor Point (MAP), that is close to

57
the ME so it can receive handoff signal and start buffering or redirecting packets

sooner. This approach however has a couple of drawbacks:

• The shorter distance between the ME and the MAP is only beneficial when

the movement of the ME does not result in a change of the MAP. In other

words, the distance between the ME and the MAP determines the move-

ment scope of the ME; the shorter the distance, the smaller the movement

scope.

• It introduces complexity in the network layer and requires network infra-

structure support therefore making it difficult to deploy.

The design philosophy behind H2O is based on the following key observation: for

the particular problem of layer 3 handoff, the cost of introducing additional com-

plexity in the network layer to reduce packet loss does not necessarily translate

into end-to-end transport layer benefit; because transport protocols and/or appli-

cations already have their own way of handling packet loss. For example, TCP’s

timeout and retransmission mechanism does not distinguish between delayed and

lost packets, therefore a layer 3 handoff system that reduces packet loss but not

delay (by simply buffering packets) will provide no additional benefit. Even for

unreliable transport protocols such as UDP, the benefit of the reduced packet loss

is also questionable; because applications using UDP are generally more con-

cerned about the timely delivery rather than the loss of packets.

Therefore, H2O is an end-to-end handoff signaling protocol that functions entirely

within the ME and SE themselves without requiring any network infrastructure

58
support. We have developed solutions for a few technical problems so that H2O

can perform handoff securely with just one packet in a single one-way trip from

the ME to the SE.

3.2.1 In-band vs. out-of-band signaling

The first design choice for H2O we made is to use an in-band rather than an out-

of-band signaling protocol. The choice is based on a few advantages of an in-band

protocol:

• H2O protocol messages must be delivered from the ME to the SE reliably.

Setting up a reliable out-of-band connection for the signaling protocol

incurs extra round-trip delay therefore adding to the handoff latency and

packet loss. An in-band signaling protocol, on the other hand, can reuse the

existing connection without extra connection setup overhead and can take

advantage of the reliable delivery of packets already provided to the exist-

ing connection by the transport protocol, such as TCP.

• An in-band protocol messages can be “authenticated” by whatever trans-

port protocol security mechanism already in place, e.g., either plain TCP’s

sequence number or IPsec, etc. This is another major advantage for an in-

band signaling protocol over an out-of-band one. If an out-of-band signal-

ing protocol were used, the ME and the SE will need to conduct separate

authentication process, which will increase the complexity and delay of the

signaling process.

• An in-band protocol message can serve as a “trigger” for the transport pro-

59
tocol to immediately restart transmitting packets without waiting for a tim-

eout. Because the protocol message is seen by the transport protocol just as

a regular data packet. This feature obviously depends on the internal oper-

ational semantics of the transport protocol. We emphasize that H2O does

not rely on this feature for its functions but rather it comes “for free”

because the protocol messages are carried in-band.

For connection-less transport protocols such as UDP, these benefits of an in-band

handoff protocol do not apply since, as we pointed out in Section 2.4.2 in

Chapter 2, connection-less transport protocols do not maintain any connection

states beyond the logical association of two communicating endpoints in the form

of a {source IP address:source port number; destination IP address:destination port num-

ber} tuple. In other words, the difference between an in-band and an out-of-band

handoff protocol for connection-less transport protocols is moot, with the only

advantage of an in-band handoff protocol being that it does not require the cre-

ation of another endpoint (socket).

An in-band signaling protocol does have its drawbacks though. Generally, the pro-

tocol is implemented by interposing “special” protocol messages within the data

stream. This introduces two problems:

1. There needs to be a way to differentiate these “special” protocol messages

from the regular data messages.

2. Since the protocol messages are treated by the transport protocol as normal

data messages, they can be buffered in a queue behind other data messages

60
which results in the delay of delivering the protocol messages.

The first problem can be handled by techniques such as bit stuffing, commonly

used to frame continuous bit streams. However, it requires inspection of every mes-

sage body (instead of just the message header) by the signaling protocol (instead of

just the applications). And potentially every message body has to be modified to

avoid a normal data message that happens to be the same as the special protocol

message being misinterpreted. This will considerably increase the complexity of

the signaling protocol and the overhead of processing each message.

Certain transport protocols such as TCP provide an “urgent data” mechanism to

allow certain messages to skip to the head of the data message queue, which can

be used to deal with the second problem. However, the solution has a couple of

drawbacks of its own. First, it obvious depends on the particular transport proto-

col in use. Second, it may interfere with certain applications such as telnet, which

make explicit use of such urgent data for their normal operation.

Because of the limitations of these solutions, we have developed another mecha-

nism for H2O to resolve the problems. The mechanism is surprisingly simple. In

stead of interposing a “special” protocol message within the data stream, we carry

the H2O protocol messages inside the message header rather than the message

body. This is possible since H2O protocol messages are all very simple and small.

Because the message header is separate from the message body, there is never the

problem of misinterpreting data messages as protocol messages. Also since a mes-

sage header is applied onto all data messages, by putting the protocol message

61
inside the message header of the data message at the head of the sending queue,

H2O can circumvent the problem of protocol messages being blocked by other

data messages in the queue without relying on any special feature of the transport

protocol. Note that H2O does not incur any processing overhead for the data

stream during normal operation. Because data messages with header carrying

H2O protocol messages are sent only during a handoff.

3.2.2 H2O protocol operation

Figure 3-2 shows the operation of H2O signaling protocol. We consider three cases

corresponding to the different types of link layer technologies:

• no advance notice: link layer provides no warning of the imminent loss of

connectivity. WiFi is an example of such network. Note that one can also

consider unplug/plug in an Ethernet an example of such network.

• advance notice without simultaneous connectivity: link layer provides

warning of the imminent loss of connectivity but does not allow simulta-

neous connectivity to both the old and new APs. TDMA is an example of

such network.

• advance notice with simultaneous connectivity: link layer provides warn-

ing of the imminent loss of connectivity and allows simultaneous connec-

tivity to both the old and new APs. CDMA is an example of such network.

We can see that the primary protocol message of H2O is the HANDOFF message.

A second protocol message SUSPEND is also defined for the case when the link

layer provides advance notice but not simultaneous connectivity. The SUSPEND

62
message is also used by H2O when connections are migrated by suspension/

resumption, which we discuss in Section 3.4. All H2O protocol messages are pro-

tected by its security mechanism presented in Section 3.2.4.

For the case of no advance notice, when the ME detects a layer 3 handoff, e.g.,

when it crosses network boundary and acquires a new IP address, it updates its

virtual-physical address mapping for the migrated connections and sends a

HANDOFF message to the SE. When the SE receives the HANDOFF message, it

authenticates the messages, updates its virtual-physical address mapping for the

migrated connections, and redirects traffic to the new location of the ME.

For the case of advance notice without simultaneous connectivity, when the ME

receives the advance notice, since it does not yet know where it will move to, it

cannot update its virtual-physical address mapping. Therefore it sends a SUS-

PEND message to the SE. When the SE receives the SUSPEND message, nor can it

update its virtual-physical address mapping yet. The SE will instead, after authen-

Figure 3-2. H2O protocol timeline

ME SE ME

L2

L3

oIP stop

nIP start

SE

L3

SUSPEND
L2

HANDOFF
oIP stop
nIP start nIP start

oIP stop

nIP start

advance
notice

L3

L2
oIP stop

nIP start

ME SE

(a) no advance notice (b) advance notice without
simultaneous connectivity

(c) advance notice with
simultaneous connectivity

HANDOFF oIP stop oIP stop
nIP start

HANDOFF

63
ticating the message, block the owner processes of the migrating connections from

sending more messages to reduce message loss during the handoff process. When

the ME regains network layer connectivity, it updates its virtual-physical address

mapping and sends a HANDOFF message to the SE. When the SE receives the

HANDOFF message, it performs the same tasks as those in the case of no advance

notice, i.e., authenticates the message, updates its virtual-physical address map-

ping, and redirects traffic to the new location of the ME. In addition, it unblocks

the owner processes of the migrated connections from sending more messages.

For the case of advance notice with simultaneous connectivity, when the ME

receives the advance notice, it can start the layer 3 handoff and acquire new net-

work connectivity before losing the current one. As soon as it acquires a new IP

address, the ME will update its virtual-physical address mapping and sends a

HANDOFF message to the ME. After sending the HANDOFF message, the ME

may continue to receive messages from the old IP address, which it will deliver as

usual. From the perspective of the SE, there is no difference between the case of

advance notice with simultaneous connectivity and the case of no advance notice.

The SE performs the same tasks of authenticating the message, updating its vir-

tual-physical address mapping, and redirecting traffic to the new location of the

ME when it receives the HANDOFF message. Note that in this case, there is really

no loss of layer 2 and layer 3 connectivity at the ME since the new connectivity can

be acquired before the old one is lost.

64
3.2.3 Interaction with existing network security constructs

Maintaining the connectivity between two communication endpoints in a mobile

environment is more difficult with the presence of certain network security con-

structs that are designed to limit network access, such as stateful packet inspection

(SPI) firewalls and virtual private networks (VPN). We offer our view on the inter-

play between mobility and these constructs.

3.2.3.1 SPI firewall traversal

We first clarify that SPI firewall traversal is different from NAT traversal, even

though the two functions are commonly performed by one single device. The most

important difference between the two is that NAT is stateless packet filtering based

solely on the IP address and port number, while SPI firewall is stateful session fil-

tering based on, in addition to IP address and port number, higher layer protocol

(transport and above) information such as TCP SYN flag and FTP PORT com-

mand, etc. Furthermore, the operations of SPI firewalls are governed by their secu-

rity policies.

In Section 2.2.3 in Chapter 2, we have seen how NAT causes the lose of state syn-

chronization on the ME and SE due to the movement of the ME; and we have

designed the connection label mechanism to solve the problem. Apart from break-

ing the end-to-end semantics, NAT does not otherwise hinder the handoff process.

That is, the H2O HANDOFF message will pass through the (new) NAT device

even though the messages are generated in-band in the middle of a connection.

With SPI firewalls, however, the situation is reversed. SPI firewalls do not break

65
the end-to-end semantics since they generally do not modify packets but rather

filter them according to their states and security policies. However, the session

states maintained by the SPI firewalls are generally created at the beginning of a

session by observing specific high level protocol information carried inside a

packet, such as TCP SYN flag and FTP PORT command, etc. [2][18][124] As shown

in Figure 3-3, after the migration, the H2O HANDOFF message, which appears to

be a packet from the middle of a migrated connection, will not be able to pass a SPI

firewall at the new location since the SPI firewall never saw the beginning of the

connection. Note that if the migrating “connection” is UDP, the H2O HANDOFF

message will be able to pass the SPI firewall.

To resolve this problem for TCP, H2O HANDOFF message will have its SYN bit

turned on and its ACK bit turned off so that it will appear to the SPI firewall as a

SYN packet initiating a new connection and will be allowed to pass through. On

Figure 3-3. SPI firewall traversal

Internet

IP1

m
ov

e

HANDOFF (IP3->IP1)
cannot pass SPI

states for
[IP2:p2↔IP1:p1]

no states for
[IP3:p2↔IP1:p1]

[IP1:p1, IP2:p2]

[IP1:p1, IP3:p2]
(with label)

SPI

SPI

IP3

[IP2:p2, IP1:p1]

[IP3:p2, IP1:p1]
(with label)

IP2

[IP2:p2, IP1:p1]

66
the SE, the reverse is done before the message is delivered to TCP. The first return

packet from the SE to the ME will also have its SYN bit turned on, which appears

to the SPI firewall as a SYN-ACK packet. Of course, the SYN bit is turned off on the

ME before the packet is delivered to TCP. As a result, states for the migrated con-

nection will be created on the SPI firewall at the new location and the rest of the

connection traffic can continue. States for the connection on the SPI firewall at the

old location will eventually timeout.

We still have to remember that the operations of SPI firewalls are under the control

of their security policies. Therefore, the above mechanism will work only to the

extent that is permitted by the security policies of the SPI firewall at the new loca-

tion. For example in Figure 3-3, if the security policy of the SPI firewall at the new

location is such that no outgoing connections to the particular site IP1 from IP3 is

allowed, then the migration will fail no matter what. This also serves to show that

in order to provide a network service, mobility in this case, not only technology but

also any other aspects involved such as security policies, etc., must go hand-in-

hand. Mobility in particular does not go along well with security. Current SPI fire-

wall security policies are mostly based on the same assumption that is made by

transport protocols: IP address and port number do not change for the lifetime of

a connection, which is broken by mobility. In this thesis, we address mobility

issues in the context of technology; we believe the issues must be addressed in the

context of policy as well. However, that is beyond the scope of this thesis.

67
3.2.3.2 VPN traversal

VPNs are secure private networks constructed on top of insecure public networks

through the use of crytography. VPNs are typically used to protect accesses to pri-

vate corporate resources, which are allowed only by users from within the VPN.

There are a few different types of VPN, such as virtual private routed networks,

virtual private LAN segment, and virtual private dial networks, etc. [59], but they

don’t affect our discussion. We will use the virtual private dial networks, also

known as remote access VPNs, as the example to illustrate how H2O handoff inter-

operates with a VPN.

Figure 3-4 shows a user IP2 accessing a server IP1 from within the corporate LAN.

Later the user moves out of the corporate LAN and connects to the public Internet

at IP4, e.g., the user goes from his/her office to home. Since the server IP1 is only

accessible through the corporate LAN, the user “dials” his/her corporate VPN

server and sets up a secure tunnel; the tunnel logically puts him/her on the corpo-

rate LAN at IP3. Therefore, as far as H2O is concerned, the connection [IP2, IP1]

simply migrates to [IP3, IP1]. More specifically, H2O treats the tunnel interface IP3

Figure 3-4. VPN traversal

Internet

Corporate
LAN

IP1

physical move

VPN
server

lo
gi

ca
l m

ov
e

tunnel
ext: IP4
int: IP3 IP3

IP2

68
as if it were the physical interface. Tunneling IP3 inside IP4 is part of the VPN func-

tion and therefore is transparent to H2O.

3.2.4 Migration security

By using an in-band signaling protocol, H2O can take advantage of existing secu-

rity protection already afforded to the migrating connection. For example, H2O

protocol messages are “automatically” protected if the migrating connection is

already protected by security mechanisms such as the AH/ESP service provided

by IPsec. Unfortunately, IPsec is not yet widely deployed even though it’s gaining

wider acceptance. Therefore, for unprotected TCP/UDP connections H2O must

provide its own security mechanism to guarantee that no additional attack can be

carried out by exploiting the added migration functions. H2O does not claim to

make unprotected TCP/UDP connections more secure; rather our goal is to make

H2O no worse than plain TCP/UDP against existing attacks.

Currently, there are two types of attacks that can be mounted against TCP connec-

tions: one is an attacker who is on the path of the TCP connection and can observe

and modify packets of the connection; the other is an attacker who is not on the

path of the TCP connection and can only guess the packets of the connection. Cur-

rently, there is essentially no protection for UDP but H2O protects the migration

of UDP connections the same way it protects the migration of TCP connections.

For the first type of TCP attack, which is also known as the man-in-the-middle

attack, H2O does not add any additional benefit to the attacker. Because the

attacker already has full control of the connection. For the second type of TCP

69
attack, however, the blind attacker may carry out two additional attacks by

exploiting H2O’s migration functions. First, the attacker can try to guess the TCP

sequence number of a connection and send a fake SUSPEND message to cause the

connection to be suspended. This attack, however, is only of marginal benefit to

the attacker since he/she can also send a RST or FIN message to cause the connec-

tion to be closed. Second, the attacker can try to guess the TCP sequence number

of a connection and send a fake HANDOFF message to cause the connection to be

redirected to himself. This is a rather serious potential security vulnerability of

H2O. Since by managing to redirect a connection to himself, the blind attacker

effectively “upgrades” himself to a man-in-the-middle attacker. In other words, by

exploiting the connection handoff function of H2O, a blind attacker can potentially

conduct a man-in-the-middle attack without actually being on the path of a con-

nection.

3.2.4.1 H2O security mechanism

To prevent these potential exploits by a blind attacker, H2O provides its own secu-

rity mechanism to protect migration of plain TCP/UDP connections. The mecha-

nism is to use a shared secret key to protect the SUSPEND and HANDOFF

messages. The shared secret key is established at the connection setup time

through the well-known Diffie-Hellman (DH) key exchange [48]. And the SUS-

PEND and HANDOFF messages are protected by computing and verifying the

Keyed-hashing Message Authentication Code (HMAC) [83] of the protocol mes-

sages using the shared secret key. The main challenges are (1) since generating DH

key is computationally expensive due to the requirement of computing modular

70
exponentiation with large prime numbers and H2O must protect migration of

individual connections, we must be able to conduct the key computation and

exchange very efficiently in order to avoid excessive connection setup overhead;

and (2) we must be able to perform the authentication in just one single trip with

one message.

The security mechanism employed by H2O is based on two main observations: (1)

the computation of the DH public key does not have to be performed on a per con-

nection basis; it can be performed on a per host basis and therefore can be precom-

puted; and (2) the computation of the shared secret key does not have to be

performed at the connection setup time; it can be deferred until the time when a

connection migrates.

Specifically, the shared secret key for a connection is established as follows:

1. For a given prime modulus p and generator g, each machine precomputes its

public key PK=(gx mod p), where x is a randomly chosen private key.

2. When a machine A with PKA opens a connection to a machine B with PKB,

PKA and PKB are exchanged by piggybacking them onto the first a few

packets exchanged between A and B. For example, for TCP, PKA and PKB

are exchanged during the 3-way handshake; for UDP, they are exchanged

during the first a few data packets arriving one each machine. The rest of

the dataflow of the connection proceeds unaffected as usual.

3. Periodically, A and B refresh their private keys and recompute their public

71
keys for use with later connections between them.

At the time when a connection on machine A is about to be migrated, either by

handoff or by suspension/resumption, A computes the shared secret key SK and

then computes a HMAC by applying SK to the message header that carries the

HANDOFF or SUSPEND protocol messages. When B receives the HANDOFF or

SUSPEND protocol messages, it too computes the same shared secret key SK and

verifies the HMAC carried inside the message header. Note that even the shared

secret key SK only has to be computed once for a given pair of hosts. Once com-

puted, the SK can be found simply by looking up a table (PKA, PKB)⇒SK without

having to do a modular exponentiation again until either PKA or PKB is recom-

puted.

We see that the two observations of H2O mitigates the cost of computing the

public and shared secret keys of the DH protocol. By precomputing the public keys

per host rather than on-the-fly computing the public keys per connection, H2O

dramatically reduces the connection setup overhead required for DH key

exchange protocol. The only connection setup overhead is piggybacking the pre-

computed public keys onto the first a few packets exchanged, which we show in

Chapter 6 is minimal. By deferring the computation of the shared secret key until

the time when a connection migrates, H2O eliminates the shared secret key com-

putation overhead altogether for connections that never migrate. By periodically

refreshing the private keys and recomputing the public keys on each machine,

H2O can reduce the size of the keys used therefore reduce the key computation

72
overhead when connections migrate. Combining the key size with the refreshing

frequency, one can fine tune the migration overhead while maintaining desired

security strength.

Since the DH protocol and the HMAC algorithm are well-known security mecha-

nisms, the security strength of H2O’s security mechanism is also well understood.

The only concern is the denial of service (DoS) attack since a blind attacker may use

the HANDOFF or SUSPEND messages to cause H2O to repeatedly perform the

expensive shared secret key computation. We note however that DoS attack is not

specific to H2O; it’s a general attack that is applicable to other security systems

such as IPsec as well. And currently there is no panacea for the DoS attack. The

general rule of thumb for deterring DoS attack is to defer expensive computations

as late as possible when processing incoming messages. This rule is used by H2O

for the processing of HANDOFF and SUSPEND protocol messages. Since the

HANDOFF and SUSPEND protocol messages are sent in-band through an existing

connection, the messages must pass a few preliminary screening by the transport

protocol first before the computation of the shared secret key occurs.

3.2.4.2 DH protocol and HMAC algorithm

We conclude this section with a brief overview of the DH key exchange protocol

and HMAC algorithm for those readers who are not familiar with these technolo-

gies. For more detailed information on these topics, the readers are referred to the

respective references [48] and [83].

The DH key exchange protocol is a well-known method developed by Diffie and

73
Hellman in the landmark paper [48] in 1976. The protocol allows two users to

establish a shared secret key over an insecure medium without any prior secrets.

It is based on the computationally infeasible discrete logarithm problem and

works as follows:

1. For a given prime p (> 2), usually called the prime modulus, and an integer

g (< p), usually called the generator, the two parties, A and B, wishing to

communicate each individually chooses a private key x and y (< p-1),

respectively.

2. A and B compute their public keys as follows: PKA=(gx mod p) and PKB=(gy

mod p). A and B then exchange their public keys over an insecure medium.

3. When A and B receive each other’s public keys, they compute the shared

secret key as follows: SKAB=((PKB)x mod p)=((gy mod p)x mod p)=(gyx mod p)

and SKBA=((PKA)y mod p)=((gx mod p)y mod p)=(gxy mod p). Note that

SKAB=SKBA.

The assumption is that it is computationally infeasible to compute the shared

secret key SK = (gxy mod p) given the two public keys (gx mod p) and (gy mod p) when

the prime p is sufficiently large. [91] has shown that breaking the DH protocol is

equivalent to computing discrete logarithms under certain assumptions. Note that

the DH protocol is vulnerable to a man-in-the-middle attack. An adversary who

can intercept all traffic between A and B can substitute the public keys of A and B

with his/her own during the step 2 above and can establish two separate shared

secret keys with A and B. In other words, the adversary can impersonate A to B and

74
impersonate B to A and relay all traffic between A and B.

While the DH protocol is mathematically simple and elegant, in practice, however,

its use often still requires specialized hardware when performance is of primary

concern. Since the DH protocol relies on computing modular exponentiation with

very large prime numbers, it’s computationally intensive even though many fast

algorithms have been developed to compute modular exponentiation [61] and

CPUs are becoming faster and faster. In fact, the increase in CPU speed does not

necessarily benefit the DH protocol. Because in order to maintain the same level of

security, one has to use larger key size.

The HMAC is an algorithm for computing Message Authentication Code (MAC)

using cryptographic hash functions such as MD5 [115] and SHA-1 [50]. MAC is a

common way to protect the integrity of data sent over insecure medium by attach-

ing to the data an authentication tag that is computed by the MAC algorithm as a

function of the data and the shared secret key. The receiver accepts the data only

if the recomputed authentication tag matches the one attached to the data. MACs

have used to be commonly constructed from block ciphers such as DES [5].

Recently, however, there has been a lot of interest in constructing MACs from

cryptographic hash functions such as MD5 and SHA-1. The main reason is that

computing cryptographic hash functions is much faster than computing block

ciphers, at least in software implementation. However, cryptographic hash func-

tions were not originally designed for computing MACs and therefore their use as

MAC algorithms lacks sound security analysis. HMAC intends to fill this gap by

75
specifying ways to utilize the speed of cryptographic hash functions for computing

MACs while offering rigorous analysis of their security properties.

The inputs to the HMAC algorithm are:

• H, the cryptographic hash function,

• K, the shared secret key,

• ipad, a string of 64 bytes filled with the octet 0x36,

• opad, a string of 64 bytes filled with the octet 0x5C, and

• text, the data to be protected.

The output of the HMAC algorithm is a string of variable length, depending on the

particular hash function in use. For example, for MD5, the length is 16 bytes; for

SHA-1, the length is 20 bytes.

To obtain the MAC, one computes:

output = H(K xor opad, H(K xor ipad, text))

specifically,

1. if the length of K is fewer than 64 bytes, pad it with zeros

2. bitwise exclusive-OR (xor) the (padded) K created in step 1 with ipad

3. append text to the result of step 2 and apply H to the whole stream

4. bitwise exclusive-OR (xor) the (padded) K created in step 1 with opad

5. append the result from step 3 to the result from step 4 and apply H again to

76
the whole stream

The result of step 5 is the final output of the HMAC algorithm.

3.3 H2O Protocol Analysis

We now present a qualitative analysis of the H2O handoff signaling protocol com-

pared to the signaling protocols used in other handoff architectures such as Hier-

archical MobileIP [123] (with or without Fast Handover [82]) and domain-based

systems (e.g., HAWAII [110], Cellular IP [42], and EMA [46]). These architectures

are all based on the same principle, i.e., using a crossover router (XR) located close

to the ME to redirect traffic after the handoff and they differ only in the details of

how the new route from the XR to the ME is setup and the exact handoff procedure.

Therefore, for the purpose of this analysis, we do not differentiate among these

approaches. Rather, to simplify the analysis, we consider the best case scenario for

all these architectures; we assume that it takes just one single trip from the ME to

the XR to effect the redirection. For the rest of the section, we categorically refer to

all these architectures as IBH, infrastructure based handoff. We use TCP as the

transport protocol in our analysis since it is the predominant connection-oriented

transport protocol in use today. We also consider the scenario that data from the SE

are continuously arriving at the MH during the handoff, which is typical of a non-

interactive client-server communication (where the ME is the client and the SE is

the server) such as file downloading or media streaming.

The purpose of this analysis is to show that while under certain strong assump-

77
tions, such as advance notice with simultaneous connectivity that lasts long

enough, IBH may perform better than H2O, for the most common case of today’s

data network, the performance difference between H2O and IBH seen at the trans-

port protocol will be negligible.

3.3.1 No advance notice

Handoff without advance notice is the most common case today with data net-

works. For example, widely used WiFi networks do not provide advance notice for

layer 2 handoff and do not provide simultaneous connectivity to both old and new

APs during the layer 2 handoff.

The handoff timeline for both H2O and IBH is shown in Figure 3-5:

• At t0, the ME starts the layer 2 handoff and therefore losing connectivity to

its current AP. Packets sent by the SE at T0, which would have arrived at

Figure 3-5. H2O analysis: no advance notice

ME SE

L3

oIP stop

nIP start

oIP stop
nIP start

HANDOFF

t0

t1

t2

t3

XR

x0

T0

T1

T2

T3

L2

78
the MH right after t0, will be lost. Note that with the continuous arrival of

data and TCP’s sliding window protocol, it is almost certain that at t0 when

the ME loses its connectivity to the AP, either all arrived data have not been

acknowledged, or all buffered data in TCP have not been consumed by the

application on the ME, or both. In other words, the next acknowledgement

from the ME to the SE, which will happen after the layer 2 handoff at t1,

will either acknowledge more data, or open up the window size, or both.

In any case, the acknowledgement will allow the SE to send more data to

the ME.

• At t1, ME finishes the layer 2 handoff and regains connectivity to a new AP

and a new IP address. This is the earliest time the ME can send and receive

packets. For H2O, the ME sends a HANDOFF message to the SE, which

will reach the SE at T2. For IBH, the MH sends a control message to the XR,

which will reach the XR at x0. For both H2O and IBH, if the MH has data to

send, it can do so at t1 and the data will reach the SE at T2. These data will

carry an acknowledgement that allows the SE to send more data to the ME

(see discussion of previous bullet at t0). However, since all data sent by the

SE after T0 are lost, the acknowledgement can only acknowledge the last

packet received by the ME before t0 (i.e., last packet sent by the SE before

T0). Assuming that the layer 2 handoff period [t0, t1] is small compared to

the RTT (Round Trip Time) between the ME and the SE, the arrival of the

acknowledgement at T2 will cause the SE to resend the lost packets it sent

after T0 without going into slow start due to a timeout.

79
• If the ME has no data to send at t1 after regaining connectivity with a new

AP (which is the more common case), then the earliest time when the ME

can receive a packet is t3 for H2O and t2 for IBH, respectively. From

Figure 3-5, t3 corresponds to the times when a packet from the SE was redi-

rected at T2 after the SE has received the HANDOFF; so [t1, t3] is the layer 3

handoff period for H2O during which packets for the ME are lost. Simi-

larly, t2 corresponds to the time when a packet sent from the SE at T1 was

directed by the XR at x0 after the XR received a control message from the

ME; so [t1, t2] is the layer 3 handoff period for IBH. We can see that for H2O

all packets sent by the SE between [T0, T2] are lost while for IBH all packets

sent by the SE between [T0, T1] are lost. However, the earliest time when

the SE can receive an acknowledgement is T2 for H2O and T3 for IBH,

respectively. Therefore, although H2O may lose more packets between [T1,

T2], the SE can start resending lost packets earlier at T2 and the perfor-

mance difference between H2O and IBH seen at the transport protocol

layer will be negligible. We also note that we have assumed the best case

layer 3 handoff period [t1, t2] for IBH. More complex interaction between

the ME and the XR may prolong [t1, t2] and consequently delay the time of

arrival of the acknowledgement, T3. If the delay were long enough to cause

a timeout for the lost packets sent after T0, TCP would go into slow start

and the performance of IBH would suffer more.

To summarize, for the most common case with today’s data network where is no

advance notice for the layer 2 handoff, the layer 3 handoff performance between

80
H2O and IBH from the transport protocol’s perspective is rather negligible.

3.3.2 Advance notice without simultaneous connectivity

With advance notice, packets can still be lost for IBH as shown in Figure 3-6a. This

is because the advance notice at t-1 must come early enough such that it can reach

the XR at time x0 to allow the XR to start buffering packets sent by the SE after T0,

which would have arrived at the ME after t0 and been lost since the ME starts the

layer 2 handoff at t0, as shown in Figure 3-6b. In other words, the time between the

advance notice and the start of the layer 2 handoff, (t0-t-1), must be longer than

RTTMX, the RTT between the MH and the XR, to prevent packet loss for IBH. Note

that if (t0-t-1) were longer than RTTMS, the RTT between the ME and the SE, then

there would be no packet loss for H2O either. But we assume this is unlikely to

happen, if we assume that RTTMS is much longer than RTTMX. Therefore we

assume there will always be packet loss for H2O. We first consider the case when

there is packet loss for IBH; we then consider the case when there is no packet loss

for IBH. From Figure 3-6a:

• At t-1, the advance notice causes H2O to send a SUSPEND message to the

SE. This message signals the SE to stop sending more packets but does not

allow the SE to perform redirection since the ME does not yet know where

it is moving to. For IBH, a control message is sent to the XR so the XR can

start buffering packets.

• At t0, the ME starts layer 2 handoff and loses connectivity to its current AP.

Packets sent by the SE at T0, which would have arrived at the ME right

81
after t0, will be lost. For H2O, packet loss continues until T2, which is the

time when the SE receives the SUSPEND message and stops sending more

packets. For IBH, packet loss continues until T1, which corresponds to the

time x0 when the XR receives the control message and starts buffering

packets.

• At t1, the ME finishes the layer 2 handoff and regains connectivity to a new

AP and a new IP address. This is the earliest time the ME can send and

receive packets. For H2O, a HANDOFF message is sent to the SE; and for

IBH, a control message is sent to the XR. And the rest of the comparison

will be similar to the case with no advance notice. For H2O, at T3, the

HANDOFF message will cause the SE to resend the packets lost between

[T0, T2]. For IBH, packets sent by the SE after T1, which are buffered by the

XR, will be sent by the XR at x1 and arrive at the ME at t2; and the acknowl-

edgements from the ME for these packets will arrive at the SE at T4. These

acknowledgements will carry the acknowledgement for the last packet

Figure 3-6. H2O analysis: advance notice without simultaneous connectivity

ME SE

oIP stop

HANDOFF

t0

t1

t2

t3

XR

x1

T0

T1

T2

T4

L2
SUSPENDx0

T3 nIP start

t-1

L3

oIP stop

nIP start

ME SE

oIP stop

HANDOFF

t0

t1

t2

t3

XR

x1

T0

T2

T4

L2

SUSPENDx0

T3 nIP start

t-1

L3

oIP stop

nIP start

(a) with packet loss (b) without packet loss

82
sent by the SE before T0 and signal the SE to resend the packets lost

between [T0, T1]. Therefore, while H2O may lose more packets, the SE can

also start retransmission earlier. Again note that the time T1 and T4 in IBH

can be delayed due to more complex interaction between the ME and the

XR.

In the case of Figure 3-6b when there is no packet loss for IBH:

• For H2O, packets continue to be lost during [T0, T2]. However, the earliest

time when the ME can send and receive packets is still t1 for both H2O and

IBH.

• For H2O, it behaves similarly to the previous case with packet loss. The SE

can start resending packets lost between [T0, T2] at T3 although packet loss

is fewer in this case since [T0, T2] is shorter than the previous case. For IBH,

since there is no packet loss, at x1 the XR can start delivering buffered pack-

ets (those sent by the SE after T0) to the ME, which will reach the ME at t2.

Acknowledgements for these packets will reach the SE at T4 and it can start

sending again more packets without any retransmission. The net effect is a

delay of (t2-t0) for packets sent by the SE after T0.

To summarize, with advance notice but no simultaneous connectivity, if there is

packet loss, then the performance difference between H2O and IBH seen by the

transport protocol will be negligible. If the advance notice comes early enough for

IBH to avoid packet loss, it can perform the handoff with packet delay but no

retransmission. Again depending on the difference between T3, the time for H2O

83
when the SE can start resending lost packets, and T4, the time for IBH when the SE

can start sending more packets, the case of no packet loss may or may be advanta-

geous for the IBH. In addition, the condition under which packet loss can be

avoided is a rather strong assumption and not generally available in today’s data

network.

3.3.3 Advance notice with simultaneous connectivity

Finally, even with advance notice and simultaneous connectivity, there still can be

packet loss for IBH as shown in Figure 3-7a. Because the connectivity to the old AP,

which ends at t0, must last long enough until t1, which corresponds to the time x0

when the XR has been notified and started redirecting packets to the new AP, as

shown in Figure 3-7b. In other words, the period of simultaneous connectivity, (t0-

t-1), must be longer than RTTMX. Again note that if (t0-t-1) were longer than RTTMS,

there would be no packet loss for H2O either; but we again do not make such

assumption. First we consider the case when there is packet loss for IBH in

Figure 3-7a:

• At t-1, the ME gains connectivity to the new AP while retaining connectiv-

ity to the old AP. For H2O, a HANDOFF message is sent to the SE; For IBH,

a control message is sent to the XR. Note that although the ME can send

from the new AP as early as t-1, the earliest time it can receive packets from

the new AP is t1, which corresponds to the time x0 when the XR has been

notified and started redirecting packets. During [t-1, t0], packets from the

SE continue to arrive from the old AP.

84
• At t0, the ME loses connectivity to the old AP. Packets sent from the SE at

T0, which would have arrived right after t0, are lost. For H2O, the HAND-

OFF message will reach the SE at T2 and allow the SE to start resending the

packets lost between [T0, T2]. For IBH, the earliest time when the SE can

receive acknowledgements from the ME is T3, which allows the SE to

resend packets lost between [T0, T1]. So once more, this case is similar to

the case of no advance notice and the case of advance notice without simul-

taneous connectivity (with packet loss). H2O may lose more packets but

the SE can start resending the lost packets earlier.

In the case of Figure 3-7b when there is no packet loss for IBH:

• For H2O, again there is really no difference between this case and previous

case with packet loss. Packets sent from the SE are lost between [T0, T2],

where T0 corresponds to the time t0 when the ME has lost its connectivity

to the old AP and T2 is the time when the SE has received the HANDOFF

Figure 3-7. H2O analysis: advance notice with simultaneous connectivity

ME SE

oIP stop
nIP start

t0

t1

t2

XR

T0

T1

T2

T3

L2
HANDOFF

x0

t-1

L3

oIP stop

nIP start

ME SE

oIP stop
nIP start

t0

t2

XR

T0

T2

L2
HANDOFF

x0

t-1

L3

oIP stop

nIP start

(a) with packet loss (b) without packet loss

85
message and starts redirecting traffic to the new location of the ME. T2 is

also the time when the SE starts to resend the packets lost between [T0, T2].

• For IBH, this is the case when it can achieve truly seamless handoff with-

out packet loss and delay. Before t0, all packets (sent before T0 from the SE)

are received from the old AP; after t0, all packets are redirected to the new

AP by the XR, which has received the control message at x0.

To summarize, again with advance notice and simultaneous connectivity, if there

is packet loss, then the performance difference between H2O and IBH seen by the

transport protocol will be negligible. If the simultaneous connectivity lasts long

enough (at least RTTMX) for the IBH to avoid packet loss, it can achieve truly seam-

less handoff without packet loss and delay. However, this is an even stronger

assumption than that for the case of advance notice without simultaneous connec-

tivity in today’s data network.

3.3.4 Intra-domain handoff

Although our analysis of H2O and IBH protocols has assumed the case where the

ME and the SE are “far away” from each other across the Internet, one should not

forget the case where the ME and the SE are “very close” to each other in the same

network. As pointed out in [112], this type of traffic, termed as intra-domain traffic,

constitutes a large part of today’s wireless traffic yet lacks support in existing

handoff architectures. For example, architectures such as Hierarchical MobileIP

and Cellular IP always route traffic towards the XR even if the ME and the SE are

directly connected in the same network, while HAWAII did not specify how intra-

86
domain traffic is handled. Only Fast Handoff and EMA has provision for handling

intra-domain traffic more efficiently. In contrast, since H2O functions entirely

within the endpoints, it doesn’t care whether the ME and the SE are far away from

or close to each other. The H2O signaling protocol always takes one single trip

from the ME to the SE; therefore H2O “automatically” takes advantage of the

closer distance between the ME and the SE if they are directly connected.

In Figure 3-8 we illustrate the difference between the two cases when there is no

advance notice. Figure 3-8a is duplicated from Figure 3-5 as a convenience. As one

can see from Figure 3-8b, the time for H2O’s HANDOFF protocol message to

arrive at the SE, T2, is now sooner than (or comparable to) the time for IBH’s con-

trol message to arrive at the XR, x0. Also, the layer 3 handoff period for H2O, [t1,

t3], during which packets for the ME are lost, is now shorter than (or comparable

to) that for IBH, [t1, t2]. More importantly, however, is that the earliest time when

the SE can receive an acknowledgement from the ME and start resending lost

Figure 3-8. H2O analysis: intra-domain handoff

ME SE

L3

oIP stop

nIP start

oIP stop
nIP start

HANDOFF

t0

t1

t2

t3

XR

x0

T0

T1

T2

T3

L2

ME SE

L3

oIP stop

nIP start
oIP stop
nIP start

HANDOFF

t0

t1

t2

t3

XR

x0

T0

T1

T2

T3

L2

(a) ME far away from SE (b) ME directly connected to SE

87
packets is much earlier for H2O. For H2O, the SE can start resending packets lost

between [T0, T2] at T2; while for IBH, the SE can only start resending packets lost

between [T0, T1] at T3. For IBH, TCP in this case would almost certainly have timed

out and gone into slow start.

3.4 Suspension/Resumption with Migration
Helpers

While existing mobility architectures have all assumed handoff as the way for

communication mobility, we recognize that there is another commonly used way

for communication mobility, namely through suspension/resumption. For exam-

ple, laptop users today regularly suspend their laptop at one place such as office

and resume it at another place such as home. In this section, we discuss how

MOVE supports this type of mobility with the same H2O signaling protocol and

addresses some of the issues specific to suspension/resumption.

There are mainly two differences between handoff and suspension/resumption:

• connections are not abruptly dropped as in the case of handoff without

advance notice; rather there is a phase where the machine can receive a

suspension event and perform necessary preparation prior to the suspen-

sion.

• the suspended machine may stay unconnected for a prolonged period of

time.

If one recalls the handoff case when there is advance notice but no simultaneous

88
connectivity (Figure 3-6 in Section 3.3.2), one can see that there is really not much

difference between the advance notice and the suspension event. In fact, as far as

H2O is concerned, the two events are treated exactly the same way on the mobile

endpoint: they both result in a SUSPEND message being sent to the stationary end-

point.

The real issue concerning suspension/resumption is the fact that the mobile end-

point can stay unconnected for a prolonged period of time. Because during this

time the suspended connections may have been timed out on the stationary end-

point due to various timeout mechanisms employed either by the transport proto-

cols or by the applications. For example, TCP provides a keepalive mechanism

that, when enabled, will send a probe to the peer if a connection has been idle for

2 hours (the timeout is configurable but is recommended and defaults to be 2

hours). Some applications such as telnet server use this feature to detect dead client

(usually the timeout is changed to 15 minutes). Many other applications instru-

ment their own timeout mechanism. For example, an FTP server will close an idle

connection after a preconfigured timeout period. Therefore, one must disable these

timeout mechanisms in order to keep the suspended connections on the stationary

endpoint alive beyond the timeout limits of these mechanisms while the mobile

endpoint stays unconnected. However, due to the transport protocol and applica-

tion dependent nature of these timeout mechanisms, we recognize that satisfactory

solution to this problem is also likely to be transport protocol and application

dependent.

89
In order to maintain transport protocol and application independence of the core

MOVE architecture while still being able to deal with transport protocol and appli-

cation specific issues, we introduce a connection migration helper interface. A con-

nection migration helper is an optional function that can be defined by the user

and registered with the MOVE system through a well-defined interface. The

helper is activated for a connection on the stationary endpoint when the connec-

tion is suspended by the mobile endpoint and is deactivated when the connection

is resumed. The helper can monitor potential outgoing traffic on the suspended

connection and can buffer and/or respond to the traffic in any transport protocol

and/or application specific manner. While the focus of MOVE is not on providing

a comprehensive suite of migration helpers to address the timeout problem of all

applications, we have studied the behavior of several popular servers and devel-

oped several application-independent helper that we believe is sufficient for many

of today’s servers. We emphasize again that the use of these migration helpers is

completely optional and we do not claim to handle all applications. One can

always elect to migrate a connection using suspension/resumption under the tim-

eout constraints of the transport protocol and/or the applications involved.

The first helper is to disable the transport protocol timeout mechanism such as the

TCP keepalive timer on the stationary endpoint. This can be done very easily on a

per-connection basis.

The second helper is to block the server process on the stationary endpoint from

sending messages on a suspended connection. The majority of the servers today

90
use either blocking or nonblocking sockets for their network I/O. And they either

use select on the sockets or use read and write (or their variants) directly on the sock-

ets. When a connection is suspended, the helper takes over the select function asso-

ciated with the socket of the suspended connection on the stationary endpoint. The

helper will make it appear that the socket is never ready to be written therefore the

server process that uses select to check the readability and writability of a socket will

never attempt to send messages through the socket. In addition, the helper takes

over the write function (and its variants) associated with the socket and, when the

process tries to send a message from the socket, either blocks the process if the socket

is in blocking mode or returns -EAGAIN if the socket is in non-blocking mode.

These functions are restored to their original ones when the connection is resumed.

Our experience indicates that this helper works very well as many of today's well-

known servers are written in such a “standard” way.

While blocking the server process from sending messages through the suspended

connections worked quite well for many servers, there are still certain applications

that do not work with the helper. One notable example is the popular FTP servers

such as wu.ftpd and in.ftpd. The timeout mechanism for the FTP servers does not

periodically send probe to detect dead client. Rather, the server registers with the

OS a timer which will fire if a connection idles beyond the timeout limit of the

timer. Fortunately, timers are always registered with a delta which specifies how

long in the future from now they should fire rather than with absolute time. This

allows us to develop a third application-independent helper, which is to “freeze”

the timer registered by the server. Specifically, at the time when a connection is

91
suspended, the helper checks to see if a timer has been registered by the server of

the connection. If yes, it finds out the delta of the timer, i.e., how long in the future

the timer is scheduled to fire. At the time when the connection is resumed, the

helper will modify the timer and adds delta to the current time. This effectively

“freezes” the timer for the period when the connection is suspended.

Finally, we mention an example of applications that none of our migration helper

will be able to handle and an application-specific helper is needed. The Internet

Relay Chat (IRC) server is such an application. An IRC server usually has its own

periodical “ping” mechanism to detect dead clients. Unfortunately, we cannot use

the second helper to simply block the server from sending the “ping” when one of

its clients suspends and moves. Because the IRC server is a single threaded process

that handles all its connections within a single process. If we blocked the server

process from sending message through a suspended connection, it would block

the entire server process. In this case, an IRC-specific connection migration helper

would be needed when an IRC client is suspended and moved to monitor the sus-

pended connection and to respond to the IRC server's “ping” probe until the con-

nection is resumed.

3.5 Summary

We presented in this chapter a layer 3 handoff signaling protocol, called H2O, that

is employed by MOVE for handoff execution. H2O has the following features: end-

point only, single one-way trip handoff, self-secure, and suspension/resumption

92
support. The most distinguishing characteristic of H2O is its end-to-end nature, a

clear departure from traditional handoff mechanisms that introduce complexity in

the network infrastructure. We have shown, through qualitative analysis, that

handoff performance difference between H2O and traditional handoff mecha-

nisms is essentially indistinguishable by the transport protocols, due to the fact

that transport protocols often have their own packet loss handling mechanisms - a

key observation of H2O. We will show with performance measurements in

Chapter 6 that H2O incurs minimal impact on the end-to-end transport connection

characteristics.

93
4High Service Availability
Support

In previous Chapter 2 and Chapter 3, we described the fundamental mechanisms

of MOVE architecture for supporting transparent migration of fine-grain end-to-

end network connections. The endpoint-only nature of MOVE makes it easily

applicable, besides general client mobility, to a variety of mobility application sce-

narios. In this chapter, we describe how we integrate MOVE with a process migra-

tion mechanism to fully exploit MOVE’s fine-grain connection migration

capability and to enable new system support for high service availability. In par-

ticular, we show how the integration can provide high service availability in

proxy-based server clusters by allowing server applications and their persistent

connections to be migrated during a server maintenance to avoid service disrup-

tion. We start with our motivation for this particular application scenario.

4.1 Motivation

Online services and businesses are becoming an integral part of our daily life. For

example, web, email, enews, messenger are now essentially commodity services;

while critical business functions, such as order processing and tracking, inventory

control, transaction processing, customer support, and electronic commerce, are

also increasingly being conducted online. These services and businesses are sup-

94
ported by computing and networking facilities that are typically organized as a

server farm behind a firewall/proxy and must be up and running 24-7. A few min-

utes of downtime, scheduled or unscheduled, translates into millions of lost dol-

lars.

Server clusters are one of the most popular ways to meet the stringent demands for

service scalability and availability in businesses today. Since server clusters can be

built with cheap off-the-shelf hardware components; and free or commercial clus-

ter software are also readily available. Locally distributed web server systems [43]

are the most widely used server clusters today. And a lot of research

[31][81][101][102][120][130] have been conducted on mechanisms such as TCP

handoff to support dynamic content-aware request distribution and to improve

the performance and scalability of the web servers. Web server clusters also

improve the service availability by allowing requests to be redirected when a

server fails or is being serviced. A limitation of these server clusters though is that

they require the services to be stateless. That is, each request from a client can be

serviced independently by different servers; or in other words, no server applica-

tion states beyond those trivially replicated ones such as static web pages are

needed to serve a request. However, many applications are transactional and state-

ful, such as database servers and application servers, etc. Providing high service

availability for these applications require replicating and transferring both connec-

tion states and application states.

Server fault tolerant systems [26][29][80][90][99][138][140] are another way to pro-

95
vide high service availability in the events of unexpected failure by maintaining a

mirror backup server of the primary server at all times. While the backup server

replicates all states of the primary server, maintaining the exact mirror of the pri-

mary server states has proven to be very difficult. Consequently, current fault tol-

erant systems require the server applications to be “deterministic”, i.e., the server

states are completely determined by the network stream between the client and the

server. Due to the cost of backup hardware and software, fault tolerant systems are

dedicated for a few critical servers rather than loosely coupled server clusters.

Most fault tolerant systems also require server transport protocol (TCP) and/or

server application change.

Therefore, providing high service availability for arbitrary stateful applications in

server clusters remains a unsolved problem. Particularly, events such as scheduled

server maintenance today require careful planning and cause lengthy service dis-

ruption. For example, typically an announcement is made well in advance in hope

to steer clients away from the particular server involved and to reduce potential

unsatisfactory factor. Still, any active sessions on the server are discarded at the

time of the maintenance. Ironically, the busier the server, the more likely it is to

require more frequent maintenance; and the better maintained a system is, the less

likely it is to fail. In other words, maintenance today causes conflict in goals. On

one hand, it is desirable to perform frequent maintenance in order to minimize the

chance of failure; but on the other hand, the service disruption due to the mainte-

nance itself goes up. Therefore, avoiding service disruption due to server mainte-

nance entails great benefits.

96
4.2 Example High Service Availability Scenario

The application environment we focus on is a proxy-based architecture commonly

deployed by business service providers today, as shown in Figure 4-1. The proxy

is a single address frontend that admits service requests from clients across the

Internet, and dispatches the requests to the appropriate backend application serv-

ers. The proxy can operate at either layer 4 or layer 7 and can employ any suitable

scheduling rule and load balancing policy for dispatching the requests.

We instrument both the proxy and the servers to provide zero service disruption

server maintenance without touching the clients. The following steps are taken at

maintenance time:

Stop dispatching new requests to a server A that is about to be serviced.

Figure 4-1. High service availability in proxy-based server cluster

server B

server A
(to be serviced)

FTP
email

SSH

server C

media

email

FTP

web

m
ig

ra
te

Internet

client

proxy
shared
storage

m
ig

ra
te

client

client

97
However, requests for existing application sessions on server A continue to be for-

warded.

Relocate existing sessions on server A, along with their open network con-

nections, to other servers such as B and/or C. We allow sessions to be distributed

to several other servers rather than just one because (1) it avoids overloading a run-

ning server; (2) one particular running server may not have all the software/hard-

ware configuration necessary to support all the active sessions on server A.

Resume dispatching new requests to server A after maintenance. Migrated

sessions of server A may continue to finish on server B and/or C, or be migrated

back to server A.

We assume that there can be any number of services on each server, but only one

instance of a service presents on each server (assuming no other virtualization

such as VMware [22] is used). We also assume that a given service can be served

by two or more servers in the cluster, which is generally the very purpose of a clus-

ter. Stopping and resuming new requests while continuing to service existing ses-

sions are common functions available on modern proxies such as Resonate Central

Dispatch [16] and Foundry ServerIron [7]. So the main challenges are:

• migrate stateful sessions and their open persistent connections from one

server to another

• allow easy deployment with minimal cluster configuration and manage-

ment, no server OS or application change

98
• incur minimal server performance overhead and provide fast connection

handoff while retaining scalability

We meet these requirements by integrate MOVE with the Zap [100] process migra-

tion mechanism. We introduce a new process and connection abstraction, called

zPod, which combines Zap’s Pod abstraction for process states with MOVE’s

CELL abstraction for connection states. zPod therefore provides a virtual and pri-

vate namespace for process states as well as transport connection states.

4.3 The zPod Abstraction

Migrating stateful application with open connections remains a difficult problem.

Existing migration abstractions have generally required assigning each migratable

unit with its own routable IP address, making the unit a host-like entity in terms

of network communication. However, this requirement raises network configura-

tion, management, and compatibility issues.

First, since the migratable units are volatile and created dynamically on-demand,

assigning them with static name/IP is infeasible; additional mechanisms such as

DHCP are needed, which add possible sources of failure. Furthermore, dynamic

server name/IP conflicts with current server configuration and management prac-

tice as existing server clusters are mostly configured with static server name/IP for

easier management and better control. A few examples are:

• Cluster components such as loader balancers require configuration of vir-

99
tual-physical IP address mapping, which can be very difficult to do with

dynamic server IP. Most monitoring software also requires static server

name/IP.

• Certain server properties such as SSL certificate are assigned on a per-

name basis; and many server software are licensed on a per-IP basis. These

can be very hard to manage with dynamic server name/IP.

• Due to security concerns, static server name/IP is used for better control.

For example, IBM Global Service configures everything static to have bet-

ter control on routing and address allocation.

Besides adding network configuration and management complexities, individual

name/IP for each migration unit is incompatible with certain existing networking

constructs, RPC (remote procedure call) being an example. RPC port mapper pro-

tocol allows a server written in RPC to register its listening port, transport proto-

col, program number, etc. But the implicit assumption is that the server will be at

the same IP address where the port mapper is. Therefore, a server written in RPC

must use the machine’s IP address which the port mapper uses.

zPod, similar to Zap’s pod, provides a group of processes with a virtual and pri-

vate namespace for a complete set of the underlying OS resources, including trans-

port connection states; and zPod allows these processes, along with their open

connections, to be transparently migrated across hosts. zPod is a VM-like entity

but without a guest OS; therefore zPod is very light-weight and requires no con-

figuration. zPod simply maps between its virtual namespace and the underlying

100
physical OS resources. Particularly, zPod exposes to its encapsulated applications

a single virtual interface, which just mirrors the physical interface of the host

where the zPod is initially created. All zPods on a host share the host’s interface

and are reachable only through the different port number of the service they

encapsulate, just like regular server processes. When a zPod migrates, its virtual

interface stay intact and is mapped to the physical interface of the new host. There-

fore, zPod is completely transparent to the host and requires zero network config-

uration and management, and is also compatible with network constructs such as

RPC.

Migrating zPod requires MOVE’s fine-grain connection migration; since migrated

and non-migrated connections share the same host interface and they are not dis-

tinguishable by traditional host mobility solutions such as MobileIP. Although

other mobility solutions such as transport layer and application layer approaches

do provide fine-grain connection migration capability, these solutions, besides not

being designed with process migration integration, all have drawbacks (see

Chapter 7 related work) and do not meet deployability and performance require-

ments.

4.4 zPod Migration

Migrating a zPod amounts to packaging its process and connection states on one

machine, and transporting and restoring the states on another machine. This thesis

focuses on the connection migration aspect of zPod migration; therefore we refer

101
readers who are interested in the process migration aspect of zPod migration to the

original Zap paper [100]. We reexamine the connection migration problems in the

context of such proxy-based server clusters and see how the CELL abstraction and

MOVE mechanisms can be equally applied to solve these problems. Note that for

the rest of the chapter we concentrate on the proxy and the server part of the

system since process and connection migration are completely transparent to the

clients.

4.4.1 General server clusters

Figure 4-2 depicts problems of connection migration in a general proxy-based

server cluster where servers can reside across different subnets. Obviously, con-

nection migration in the server cluster does not have to deal with cross address

space synchronization problem due to NAT described in Section 2.2.3 in

Chapter 2. However, the problems of inconsistency between network layer and

transport layer and conflict in transport layer, described in Section 2.2.1 and

Section 2.2.2 in Chapter 2 respectively, still arise. As illustrated in Figure 4-2, when

a connection [IP20:p2, IP10:p1] is migrated from server A (IP20) to C (IP30), the

same inconsistency problem as that described in Figure 2-1b in Chapter 2 occurs.

Also as illustrated in Figure 4-2, if another process on server A (IP20) reuses port

p2 to connect to the proxy (IP10) on port p1 after the first connection [IP20:p2,

IP10:p1] is migrated to server C (IP30), we see that the same conflict problem as

that described in Figure 2-2b in Chapter 2 will occur.

Without repeating the content of Chapter 2 and Chapter 3, readers should be able

102
to convince themselves that supporting connection migration across different sub-

nets of servers is a straightforward process of enabling MOVE on both the proxy

and the servers because MOVE does not differentiate the two communication end-

points of a connection. By taking advantage of the proxy as the “anchor” point,

MOVE can provide migration of the server end of a connection without touching

the client end, as shown in Figure 4-1.

One issue worth some discussion is security. Since server clusters are generally

protected by the proxy which also acts as a firewall, connection migration security

in a server cluster is not as pressing as it is in a public network. However, firewalls

are not one hundred percent safe; they can be broken into and when they are the

servers behind the firewalls are just as open and unprotected as those on the public

networks. For example, when a firewall is broken in and a server is compromised,

an attacker can potentially carry out the same attacks that we described in

Section 3.2.4 in Chapter 3. For example, the attacker can try to send a fake HAND-

Figure 4-2. Connection migration in proxy-based server clusters

server A: IP20
(to be serviced)

proxy: IP10

server C: IP30

m
ig

ra
te

inconsistency

conflict
[IP20:p2, IP10:p1]

[IP20:p2, IP10:p1]

[IP20:p2, IP10:p1]

[IP10:p1, IP20:p2][IP10:p1, IP20:p2]

new

migrated

103
OFF message to the proxy and cause a connection belonging to another server to

be redirected to himself. Therefore, we believe that migration in server clusters

must be protected the same way as they are in public networks. MOVE’s security

mechanism therefore applies equally in the server clusters as well.

In addition, to be compatible with IPsec, the proxy must terminate the IPsec secu-

rity association with the client. Because the proxy can work either at layer 4-7, in

which case the termination is natural, or at layer 3, in which case the termination

is necessary for its address translation functions that are inherently incompatible

with IPsec. In either case, an IPsec connection between the client and the server

consists of two security associations: one between the client and the proxy, and the

other between the proxy and the server. Each association is an end-to-end associ-

ation. Therefore, MOVE functions performed on the proxy and the server are com-

patible with the proxy-server part of the IPsec security association; as they are

compatible with any end-to-end IPsec security association we described in

Section 2.4.4 in Chapter 2.

4.4.2 Different types of proxies

Another aspect of connection migration in the proxy-based server clusters con-

cerns with different types of proxies, depending on at which layer the proxy oper-

ates and whether the proxy maintains full transport connection states. Application

Level Gateways (ALG) are proxies operating at application layer and maintaining

full transport connection states. A connection between the client and the server

going through an ALG is in fact two separate connections, one between the client

104
and the ALG and the other between the ALG and the server, “spliced” together

transparently by the ALG at the application level. Layer 4-7 switches are proxies

operating at network layer without maintaining full transport connection states.

Instead, they use layer 4-7 information of packets for making dispatching decisions

and relay traffic between the client and the server by rewriting transport tuple in

the packet header once the decision is made. Both types of proxies have their own

pros and cons and are widely used in the real world: ALGs offer great flexibility in

supporting various application layer protocols such as FTP, SSL, etc., and are

simple to implement, while layer 4-7 switches have better performance.

Recall in Section 2.3.4 in Chapter 2, the mapping mechanisms of MOVE, address

translation and interface redirection, function at network layer. Therefore, MOVE

is transparent to ALGs. In fact, to MOVE, ALGs are exactly the same as any end

host client or server applications. Layer 4-7 switches, on the other hand, operate

also at network layer and their packet header rewrite function is rather similar to

the address translation of MOVE. While MOVE can also work transparently with-

out requiring any change to the switch, because of the similarity between the func-

tions of the two, we discuss how they can be easily combined to simplify the switch

functions and improve its performance. Layer 4-7 switches often come in two fla-

vors, depending on how incoming traffic to the servers and outgoing traffic back

to the clients are routed. The main difference between the two is in the traffic from

the servers back to the clients. In two-way architectures, both incoming and outgoing

traffic pass through the switch, while in one-way architectures only the incoming

traffic passes through the switch. We discuss each architecture in turn.

105
Figure 4-3 shows the two-way layer 4-7 switch architecture. The figure shows a

client opens a connection [IP2:p2, IP1:p1] to the public address IP1 of the switch,

which is rewritten by the switch as [IP10:p2, IP20:p1] (with MOVE connection

label) and forwarded to the server IP20. Return traffic from the server to the client

is also translated properly by the switch. When the connection is migrated to the

server IP30, two translations are performed on the connection by the switch, one

is the original translation between [IP1:p1, IP2:p2] and [IP10:p2, IP20:p1] and the

other is MOVE translation between [IP10:p2, IP20:p1] and [IP10:p2, IP30:p1]. The

two can be easily combined as a single translation between [IP1:p1, IP2:p2] and

[IP10:p2, IP30:p1].

Figure 4-4 shows the one-way layer 4-7 switch architecture. The figure shows a

client opens a connection [IP2:p2, IP1:p1] to the public address IP1 of the switch,

which is rewritten by the proxy as [IP2:p2, IP20:p1] (with MOVE connection label)

and forwarded to the server IP20. Note that the source address IP2 is not changed

by the switch and as a result the server IP20 perceives the connection as coming

Figure 4-3. Combine MOVE and layer 4-7 switches: two-way architecture

Internet

layer 4-7 switch
public: IP1

private: IP10

server A: IP20
(to be serviced)

server C: IP30

m
ig

ra
te

[IP20:p1, IP10:p2]+label

[IP20:p1, IP10:p2]+label

[IP30:p1, IP10:p2]+label

[IP1:p1, IP2:p2] [IP10:p2, IP20:p1]+label

[IP10:p2, IP30:p1]+label

can be
combined

client
IP2

[IP2:p2, IP1:p1]

106
directly from the client. The return traffic goes directly from the server back to the

client without passing through the switch. This, of course, requires another con-

nection for the return traffic; in addition, before sending packets back to the client,

the server will translate its own private address IP20 back into the public address

IP1 of the switch, as shown in Figure 4-4. When the connection is migrated to

server IP30, we can see that both the switch and the server IP30 perform two trans-

lation on the connection. On the switch, both original translation and MOVE trans-

lation are performed for the incoming traffic. On the server IP30, both original

translation and MOVE translation are performed for the outgoing traffic; in addi-

tion, MOVE translation is performed for the incoming traffic. From Figure 4-4, we

can see that the original translation and MOVE translation on both the switch and

the server IP30 can be combined for their respective traffic direction, similar to the

way they are combined in the previous case of two-way architecture.

4.4.3 Single subnet of servers

Because the server cluster is under complete control of its owner, one potential

Figure 4-4. Combine MOVE and layer 4-7 switches: one-way architecture

Internet

layer 4-7 switch
public: IP1

private: IP10

server A: IP20
(to be serviced)

server C: IP30

m
ig

ra
te

[IP20:p1, IP2:p2]+label

[IP20:p1, IP2:p2]+label

[IP30:p1, IP2:p2]+label

[IP1:p1, IP2:p2] [IP2:p2, IP20:p1]+label

[IP2:p2, IP30:p1]+label

can be combined
(incoming only)

[IP1:p1, IP2:p2]

[IP1:p1, IP2:p2]

can be combined
(outgoing only)

client
IP2

[IP2:p2, IP1:p1]

107
solution to deal with connection migration when processes are migrated between

servers is to connect all servers in a single flat subnet. A subnet is defined as a net-

work segment that is solely connected through layer 2 (switches and hubs) and

below (repeaters) elements. This way, when connections are migrated along with

their zPods from server to server, their layer 3 IP addresses need not change.

Therefore, all connections can be kept intact from the point of view of layer 3 and

above. Specifically, the mechanisms would work as follows:

• Assign IP addresses on a per-zPod base rather than a per host base. Recall

from Section 4.3 that dynamically assigning per-zPod IP address is against

the general practice of static configuration of server clusters. However,

there may be situations where statically assigning per-zPod IP addresses is

feasible, for example, when the number of zPods are relatively small and

static (they only host pre-defined well-known services).

• Divide the entire IP address space of the single subnet into two parts, one

for all the servers, and the other for all the zPods on the servers. For exam-

ple, assume the IP address space for the subnet is the 16-bit private address

block 192.168/16 (defined in [113]), 192.168.0.1 - 192.168.0.255 can be

reserved for the (255) servers, while the rest 192.168.1.0 -

192.168.255.254 can be reserved for the (255*256-1=65279) zPods.

• Each time a zPod is created on a server, it’s assigned a unused IP address

from the pool above, which is used for all network communication from

and to the zPod. The IP address for the zPod is created as an alias to the

server’s NIC. For example, the server NIC can have an IP address

108
192.168.0.1, while an IP address 192.168.1.1 can be assigned to the NIC

as an alias for the zPod.

• When the zPod is migrated to another server, e.g., 192.168.0.2, its IP

address 192.168.1.1 need not change since the entire network is a single

subnet 192.168/16. Rather, its IP address is simply (re)created as an alias to

the NIC of the new server. ARP (Address Resolution Protocol) will map the

zPod’s IP address 192.168.1.1 to the MAC address of the current server’s

NIC.

It should be evident that since the IP address of a zPod never changes and is never

reused within the single subnet, the inconsistency and conflict problems due to

migration can be avoided. Note that ARP caching may cause the zPod migration

to be “invisible” to the proxy until its ARP cache times out, which is typically a few

minutes. This can be easily addressed by having the migrated zPod send a “gratu-

itous” ARP request asking the MAC address of its own IP address, which allows

the proxy to immediately invalidate its ARP cache for the zPod’s IP address in

question. “Gratuitous” ARP requests are commonly used to detect duplicate IP

address, and to allow a backup server’s NIC to take over a primary server’s NIC.

A single flat subnet, however, has a few drawbacks that limit its scalability, such

as broadcast storm, switch address table overflow, and spanning tree loop, etc. In

addition, physical limitations of the media make it difficult to expand the network

even across buildings. For example, 100Mbits ethernet has a hard limit of 100

meters between a transmitter and a receiver. Some of the problems such as broad-

109
cast storm can be addressed by techniques such as VLAN [9]. But these solutions

are often vendor specific and introduce their own management complexities.

Therefore, in practice any nontrivial size LANs are almost always divided into dif-

ferent subnets.

4.5 Summary

In this chapter, we described how we integrated MOVE with the Zap process

migration mechanism to fully exploit MOVE’s fine-grain connection migration

capability. We developed the zPod abstraction to unify the migration of process

states as well as connection states. We demonstrated how zPod enables zero dis-

ruption service availability for arbitrary stateful applications during server main-

tenance, without introducing additional server cluster configuration and

management complexity. We showed that our solution meets the requirements of

preserving application and networking sessions, complete transparency to the cli-

ents, no modification to server OS and applications, and compatibility with differ-

ent proxy and server cluster configurations. In Chapter 6, we will show the server

handoff performance of MOVE integrated with Zap in such proxy-based server

clusters.

110
5Design and Implementation

To demonstrate the viability of the CELL concept and MOVE architecture mecha-

nisms introduced in Chapter 2 and Chapter 3, we have implemented a prototype

MOVE system on the LINUX 2.4 operating system running on Intel x86 family pro-

cessors. We have implemented all of the MOVE functions as a kernel module,

which can be dynamically loaded and unloaded at any time without modifying,

recompiling, or rebooting the kernel. The entire system has fewer than 500 lines of

C code, which serves as another testimonial to the simplicity and elegance of the

CELL concept and its supporting mechanisms. In the following sections, we first

present an overview of the MOVE system functions and we then look at each func-

tional component in more detail.

5.1 Functional Design Overview

MOVE consists of three major functional components, corresponding to the three

points of time during a connection’s lifetime when these functions are performed.

They are shown in Figure 5-1a. Figure 5-1b shows where these three components

reside inside the OS kernel relative to the standard protocol stack and how they

interact through a set of tables.

Part of the security module, which resides at the boundary of transport and net-

work protocol layers, implements the exchange of a per-connection Diffie-Hell-

111
man public key and connection label at connection establishment time, which are

recorded in the key table and label table. The other part of the security module,

which is part of the resides inside the migration module at the boundary of the

application layer and transport protocol layer, consults the key table and label

table to compute and verify HMAC for the migration module at connection migra-

tion time.

The migration module implements the H2O signaling protocol for connection

migration either through handoff or through suspension/resumption. It updates

the map table for a migrated connection after the H2O signaling protocol messages

are authenticated.

Once a connection migrates, the mapping module, which resides at the boundary

of the network and data link protocol layers, uses the map table to perform the

Figure 5-1. MOVE functional design overview

connection
establishment

suspend handoff
or resume

connection
termination

migration
security

security

mapping

application

transport

network

link

key
table

label
table

map
table

MOVE functional components

security migration mapping

(a) When MOVE functions

(b) Where MOVE functions

security

112
namespace mapping through address translation and interface redirection for the

rest of the connection’s lifetime.

In addition, there is a common functional requirement for all three modules, which

is not shown in Figure 5-1. As we pointed out in earlier sections, the DH public key

and connection label are exchanged by piggybacking them onto the first a few

packets exchanged between the two machines; the H2O signaling protocol uses in-

band data packets to carry its protocol messages; and finally, for a migrated con-

nection, a connection label is carried along with each packet. All of these require

carrying certain information in the packet header. And since MOVE is transport

protocol independent, this must also be done in a transport protocol independent

fashion. There are different ways this can be accomplished. For example, one way

is to use an IP option. The processing of IP options is well-defined by standards in

routers and end hosts [33][107]. However, some routers do not conform to stan-

dards and may drop packets with (unknown) MOVE IP options. Another way is

to use encapsulation, such as GRE (Generic Routing Encapsulation) or IPIP (IP in

IP). The drawback with encapsulation is that it has slightly higher packet process-

ing overhead due to the encapsulation and decapsulation. In our prototype MOVE

implementation, we have chosen to use the IP option approach since it’s simple

and easy to implement.

One potential problem with carrying the handoff protocol messages in the packet

header is that a packet of (or very close to) size MTU (Maximum Transmission

Unit) will be fragmented due to the increased header size. For connection-less

113
transport protocols such as UDP, this is generally not a problem since the protocol

doesn’t buffer packets and our experience shows that applications rarely send

MTU sized UDP packets constantly since applications have no concept of MTU.

For connection-oriented transport protocols such as TCP, this can be a problem

since TCP buffers application data and attempts to stream packets to fill up the

MTU. As a result, once a connection is migrated and a connection label is attached

to the packet header, every MTU-sized packet may have to be re-fragmented,

which can cause serious performance degradation. Fortunately, this problem can

be solved relatively easily by properly reducing the MTU of the VNIC that the

migrated connection is bound to. For example, before migration the MTU of the

VNIC is the same as the NIC, i.e., 1500 bytes for ethernet; after migration the MTU

of the VNIC is reduced to 1500-8=1492 bytes to account for the 8 bytes of connec-

tion label IP option. This will allow streaming transport protocols such as TCP to

properly adjust their MSS (Maximum Segment Size) when building outgoing

packets to avoid fragmentation. Note that right after the migration, there may be a

few outgoing packets in the sending queue which are built using the original MTU

size of 1500 bytes. These packets must be re-fragmented using the new MTU size

of 1492 bytes. However, once these packets are cleared, all subsequent packets will

be built with the proper MSS to avoid fragmentation.

5.2 Security Module

Because handoff or suspension/resumption can occur at any time during the life-

time of a connection, the security key necessary for protecting the H2O signaling

114
protocol messages and the connection label necessary for setting up proper

namespace mapping must be in place right from the start of the connection. The

DH public key and connection label are exchanged with a simple Finite State

Machine (FSM) shown in Figure 5-2a. Figure 5-2b shows the sequence of packets

exchanged between the two machines and Figure 5-2c shows the IP option format

used to carry the key and label.

Figure 5-2. Security key and connection label exchange

KEY
xchgd

INIT

TOS
sent

KEY
recv

TOS
recv

sen
t TO

S

rec
v n

orm
al

recv peer’s KEY+LABEL
send our KEY+LABEL

recv norm
al

recv TOS

send our KEY+LABEL

recv
pee

r’s
KEY

+LABEL

1. send TOS

2. send KEY+LABEL

3. send KEY+LABEL

4. normal

5. normal

sender receiver

TOS
sent

TOS
recv

KEY
recv

KEY
xchgd

KEY
xchgd

INIT INIT

C CL Number Length Command Reserved

Connection label (local)

1st 32 bits of 128-bit DH public key

2nd 32 bits of 128-bit DH public key

3rd 32 bits of 128-bit DH public key

4th 32 bits of 128-bit DH public key

0 1 3 8 16 24 31

(a) state transition diagram (b) packet exchange sequence

(c) IP option format

115
1. The sender starts by sending a packet (packet #1) that has one unused bit in

the TOS byte of the IP header set and goes into the “TOS sent” state. The bit

used by MOVE is the 5th bit (from the most significant bit, numbered as 0),

which has a meaning of “maximize reliability” by the original TOS defini-

tion [28]. However, currently the diffserv [97] working group has redefined

the TOS byte in the IP header and the 5th bit is unused. The reason for this

special TOS packet is to probe whether MOVE is present on the peer in

order to interoperate with machines that do not have MOVE installed.

Remember that the security key and connection label have to be carried

either inside an IP option or an encapsulated header. In the case of using an

IP option, this special packet is not really necessary and the sender can put

the key and label in the IP option of the very first packet it sends. Because if

the receiver is not MOVE-enabled, the unknown IP option will just be

ignored. However, in the case of using an encapsulated header, the sender

cannot just blindly send the key and label in the very first packet. Since

unless the receiver is MOVE-enabled, it wouldn’t know how to decapsu-

late the packet and will simply drop it.

2. When the receiver receives the special TOS packet, if it’s not MOVE-

enabled, it will ignore the TOS bit and reply with a normal packet. When

the sender sees the normal packet, it knows that the receiver is not MOVE-

enabled and will go back to normal state and no further action will be

taken by either side. Otherwise, the receiver will respond by sending its

key and label (packet #2) and goes into the “TOS recv” state. In this state,

116
the receiver may continue to see the special TOS packet from the sender

because the packet containing its key and label may be lost. Or the sender

may have received the receiver’s key and label but the packet containing

the sender’s key and label (packet #3) may be lost. Therefore, the receiver

continues to send it key and label until it can transit into the next state,

“KEY xchgd”, which can only happen when it has received sender’s key

and label.

3. When the sender receives the packet carrying the receiver’s key and label,

it knows the peer is MOVE-enabled. Therefore, it saves the receiver’s key

and label, responds by sending its own key and label (packet #3), and goes

into the “KEY recv” state. Because the packet carrying sender’s key and

label can be lost, the sender continues to send it’s key and label until it

knows that the receiver has received its key and label, which is indicated

by a normal packet (packet #4) from the receiver.

4. When the receiver receives the sender’s key and label, it knows the peer

has received its key and label; since otherwise it would be getting more

special TOS packets from the sender. The receiver concludes its part of the

exchange state transition by saving the sender’s key and label and goes

into the “KEY xchgd” state. From now on, all packets sent by the receiver

will be normal packets.

5. When the sender receives a normal packet from the receiver while in “KEY

recv” state, it knows the receiver has received its key and label; since other-

wise it would be getting more packets carrying the receiver’s key and

117
label. The sender now concludes its part of the exchange state transition by

going into the “KEY xchgd” state. From now on, all packets sent by the

sender will be normal packets.

It is interesting to note that the packet sequence for the key and label exchange can

be mapped directly to existing transport protocols, which means that the exchange

can be performed in-band through piggybacking rather than use a separate control

connection. For example, if the transport protocol in use is TCP, packet #1, #2, and

#3 in the packet exchange sequence would be mapped directly to and piggybacked

on the SYN, SYN, and SYN-ACK packets of the 3-way handshake; if the transport

protocol in use is UDP, packet #1, #2, and #3 would then be mapped to and piggy-

backed on the first three data packets exchanged between the two machines. Note

that for UDP, the traffic may be unidirectional, i.e., only the sender sends packets

to the receiver and the receiver never sends any packets to the sender. In this case,

packet #2 would be generated by the security module and dropped by the sender.

The use of in-band rather than out-of-band key and label exchange results in very

low overhead for connection establishment, which is shown in Chapter 6.

The definition of the fields in the IP option, which is duplicated in Figure 5-3 from

Figure 5-2(c), is as follows:

• C: 1 bit, copy flag, set to 0: do not copy into fragments

• CL: 2 bits, class, set to 3: reserved option

• Number: 5 bits, set to 31: option number for MOVE

118
• Length: 8 bits, total length of the option in bytes

• Command: 8 bits, protocol message type, set to IPOPT_MOVE_DHKEYEX

• Reserved: 8 bits, reserved for future use

• Connection label: 32 bits, the connection label chosen by the machine for its

incoming messages, recall Section 2.3.3 in Chapter 2

• 128-bit DH public key: 128 bits, Diffie-Hellman public key, recall

Section 3.2.4.2 in Chapter 3

Note that the layout of the first two bytes, i.e., the C, CL, Number, and Length fields,

is standard for all IP options.

5.3 Migration Module

A connection can be migrated either through handoff or through suspension/

resumption. Also one can either migrate individual connections through a process

migration mechanism, or migrate an entire machine by simply unplug/plug the

network cable or by suspending/resuming the machine. When a connection is

Figure 5-3. DH public key and label exchange IP option format

C CL Number Length Command Reserved

Connection label (local)

1st 32 bits of 128-bit DH public key

2nd 32 bits of 128-bit DH public key

3rd 32 bits of 128-bit DH public key

4th 32 bits of 128-bit DH public key

0 1 3 8 16 24 31

119
being migrated by a process migration mechanism, it’s the responsibility of the

process migration mechanism to inform MOVE’s migration module about the

handoff or suspension/resumption events. When an entire machine is migrated,

the migration module can receive the handoff and suspension/resumption events

through various system services. For example, the migration module registers

with the physical NIC device driver to receive interface up and down events. By

comparing the new IP address assigned to the NIC with its previous IP address,

the migration module can infer if a layer 3 handoff has occurred. The migration

module also registers with the system’s power management services such as APM

(Advanced Power Management) or ACPI (Advanced Configuration and Power

Interface) to receive machine suspension/resumption events. In any case, when

these events occur, the migration module sends the peer machine H2O signaling

protocol messages as appropriate. On the peer (stationary) machine, the migration

module authenticates incoming H2O signaling protocol messages and takes

appropriate actions. For example, when a HANDOFF messages is received, the

migration module updates the map table so the mapping module can perform the

necessary address translation and interface redirection functions; when a SUS-

PEND message is received, the migration module will block the owner process of

the connection from sending more packets until the connection is resumed by a

HANDOFF message.

5.3.1 Handoff process

Similar to the security module, the migration module also performs its functions

according to a simple FSM, which records the current state of a connection and the

120
actions need to be taken when a H2O signaling protocol message is received.

Figure 5-4 shows the FSM for connection migration through handoff. Also shown

in the figure are the packet exchange sequence and the IP option format used for

the protocol message.

When the migration module on the mobile machine receives or detects a layer 3

handoff event, it updates the mapping table, sends a HANDOFF protocol message

to the stationary machine, and goes into “HANDOFF sent” state. In this state, the

migration module continues to send the HANDOFF protocol message because the

Figure 5-4. Handoff process FSM and IP option format

migrated

INIT

HANDOFF
sent

ha
nd

of
f e

ve
nt

se
nd

 H
AN

DO
FF

recv normal (with label)

recv HANDOFF

1. send HANDOFF

2. normal (w
ith label)

3. normal (with label)

mobile stationary

C CL Number Length Command Reserved

Connection label (remote)

1st 32 bits of 128-bit HMAC

2nd 32 bits of 128-bit HMAC

3rd 32 bits of 128-bit HMAC

4th 32 bits of 128-bit HMAC

0 1 3 8 16 24 31

(a) state transition diagram (b) packet exchange sequence

(c) IP option format

INIT

migrated

INIT

HANDOFF
sent

migrated

Sequence number

Connection label (local, if conflict)

121
protocol message may be lost. When the HANDOFF protocol message reaches the

stationary machine, the migration module authenticates the protocol message

using the HMAC carried inside the message, updates the mapping table, and com-

pletes its handoff process by going into the “migrated” state. Now all the packets

from the stationary machine can be mapped properly and sent to the new location

of the mobile machine. When the mobile machine see traffic coming from the sta-

tionary machine, it knows that the HANDOFF protocol message has reached the

stationary machine. It therefore stops sending the HANDOFF protocol message

and concludes its handoff process by going into the “migrated” state.

The format of the IP option carrying the HANDOFF protocol message is shown in

Figure 5-4c. Apart from the standard fields, other relevant fields are:

• Command: set to IPOPT_MOVE_HANDOFF

• Connection label (remote): peer’s connection label learned at the connection

establishment time

• Connection label (local, if conflict): new connection label for the connection if

a conflict is detected on the local end, recall Section 2.3.3 in Chapter 2

• Sequence number: 32-bit monotonically increasing anti-replay sequence

number

• 128-bit HMAC: computed over the protocol message up to the Sequence

number field using the shared secret key derived from the local private key

and the remote public key.

122
5.3.2 Suspension and resumption process

The suspension/resumption process is slightly more involving, requiring two

more states to handle the suspension part. The resumption part is just the same as

the handoff process, as show in Figure 5-5. The format of the IP option carrying the

SUSPEND protocol message, which is omitted from the figure, is exactly the same

as that of the IP option carrying the HANDOFF protocol message except the Com-

mand field is set to IPOPT_MOVE_SUSPEND.

When the migration module on the mobile machine receives or detects a suspen-

sion event, it sends a SUSPEND protocol message to the stationary machine and

goes into the “SUSPEND sent” state. In this state, the migration module continues

to send the SUSPEND protocol message until one of the following three events

Figure 5-5. Suspension and resumption process FSM

migrated

INIT

SUSPEND
sent suspended HANDOFF

sent

sus
pe

nsio
n e

ve
nt

sen
d S

USP
EN

D

recv echo or timed out
or lost link

recv H
AN

D
O

FF rec
v n

orm
al

(w
ith

 la
ble

)

1. send SUSPEND

2. echo SUSPEND

3. send HANDOFF

4. normal (with label)

5. normal (with label)

sender receiver

(a) state transition diagram (b) packet exchange sequence

recv SU
SPEN

D

resumption event
send HANDOFF

SUSPEND
sent

INIT INIT

suspended

suspended

HANDOFF
sent

migrated

migrated

123
occurs and then moves into the “suspended” state:

• received an echo of the SUSPEND protocol message. This indicates the sta-

tionary machine has received the SUSPEND protocol message and moved

into the “suspended” state.

• timed out. The migration module on the mobile machine never received an

echo of the SUSPEND protocol message for a certain period of time. Either

the protocol message may be lost, or the echo of the protocol message may

be lost. So the stationary machine may or may not be in “suspended” state.

• lost layer 2 link connectivity. This case does not actually have much to do

with the suspension process. It actually happens with the handoff process

when there is advance notice (but no simultaneous connectivity, recall

Section 3.3.2 in Chapter 3). The advance notice is treated the same as a sus-

pension event by the migration module. Similar to the timed out case, if no

echo of the SUSPEND protocol message is seen before the mobile machine

loses its layer 2 link connectivity, the stationary machine may or may not

be in the “suspended” state.

When the stationary machine receives the SUSPEND protocol message, it blocks

the owner process of the connection from sending more packets (receiving is still

allowed), echoes the protocol message, and goes into the “suspended” state. If the

stationary machine never receives the SUSPEND protocol message, the suspen-

sion/resumption process basically degenerates into a (prolonged) handoff process

when the stationary machine receives a HANDOFF protocol message. It is not dif-

124
ficult to see that the resumption process (with a successful suspension process) is

basically the same as the handoff process except that the mobile and stationary

machines start with the “suspended” state instead of the “INIT” state.

5.4 Mapping Module

The mapping module is the simplest among the three modules. And it is rightly so

because its functions, i.e., address translation and interface redirection, must be

performed for every packet for the rest of the lifetime of a connection once the con-

nection migrates. Every packet of a migrated connection carries a connection label

in the IP option with the following format:

The command field is set to IPOPT_MOVE_VIRTUAL and the connection label field

is the 32-bit label obtained from the peer at connection establishment time. All the

mapping module needs to do is to use the connection label as a hash key to look

up the map table associated with the connection and binds the connection to a

dynamically created VNIC so that all traffic of the connection will now pass

through the VNIC. Inside the VNIC, address translation is performed to map

between the CELL namespace and the physical namespace according to the map

table. For example, for outgoing traffic, the virtual IP address in the CELL

namespace is translated to the physical IP address in the physical namespace

Figure 5-6. Connection label IP option format

C CL Number Length Command Reserved

Connection label (remote)

0 1 3 8 16 24 31

125
before a packet is passed on to the physical NIC. For incoming traffic, the reverse

translation is done before a packet is passed up to the higher layer. In Chapter 6,

we will present measurement results that demonstrate these operations are very

simple and incur very low overhead on the traffic of migrated connections.

5.5 System Call Interception

MOVE virtualization and privatization are implemented below the transport

layer. MOVE therefore is transparent to transport-and-above layers and do not

generally interact with the application layer directly. There is only one exception:

MOVE intercepts the getsockname/getpeername socket system calls in order to

support location-aware applications.

The getsockname/getpeername socket system calls are used by applications to

query the current physical IP addresses of the local/peer host, which is obtained

from the connection states maintained by the transport protocols (note that even

with connection-less transport protocols, the minimal “connection” states, i.e., the

{source IP address:source port number; destination IP address:destination port number}

tuple, provide the support for these calls). Since MOVE virtualizes the transport

layer, the IP addresses returned by getsockname/getpeername will be the virtual

ones. However, recall in Section 2.4.3 in Chapter 2 that MOVE’s lazy assignment

by default exposes the physical IP addresses of the current local/peer host in order

to support location-aware applications and avoid unnecessary virtual-physical

translations. Therefore, MOVE by default intercepts the getsockname/getpeername

socket system calls and returns the physical IP addresses of the current local/peer

126
host instead. For legacy applications such as FTP where complete transparency of

the migration is required, MOVE allows getsockname/getpeername to obtain the

virtual IP addresses directly from the transport protocols. Choosing between one

of the two behaviors is done on a per-application basis through the proc virtual file

system [79].

5.6 Transparent SRV RR Lookup Support

While the focus of this thesis is not on locating mobile endpoints, we nevertheless

have described a way for supporting host location with DDNS and service location

with SRV RR in Section 2.4.1 in Chapter 2. Because existing network applications

do not yet support SRV RR lookup, we have designed and implemented a mecha-

nism for transparently supporting it without changing the applications. The mech-

anism is a simple socket library wrapper that intercepts the following socket

related calls: gethostbyname/getaddrinfo (getaddrinfo is a new name resolver

function that is supposed to supersede gethostbyname; but many applications still

use gethostbyname) and connect. They work as follows:

• gethostbyname/getaddrinfo: our version of the functions simply call the

original version but saves the reverse IP address to host name mapping,

which is needed for constructing the SRV RR request. We could also use

gethostbyaddr to obtain the mapping but that requires an additional trip to

the DNS server.

• connect: when a connect(IP_address, port_number) is called, we lookup

127
the host name corresponding to the IP address using the information saved

by our gethostbyname/getaddrinfo, we lookup the service name by calling

getservbyport(port_number), and we make an SRV RR lookup by calling

res_querydomain(_service._protocol.hostname). The SRV RR lookup

will return the current host name (which may be different from the host-

name we supplied) and port number where the service can be reached. We

then call gethostbyname(current_hostname) to find out the IP address of

the current host name. And finally, we call the original connect with con-

nect(current_IP_address, port_number).

5.7 Summary

In this chapter, we have demonstrated, with a prototype design and implementa-

tion of MOVE system, that the CELL abstraction, H2O protocol, and their support-

ing mechanisms lend themselves readily to efficient real world utilization. The key

abstraction and simple mechanisms employed by MOVE are also the reason why

MOVE can meet all (performance will be presented in the next chapter) the func-

tional requirements of a mobile communication architecture we outline in the

introduction of this thesis, which we repeat here:

• easy deployment: MOVE resides and functions completely within end

machines without requiring any infrastructure support inside the network;

MOVE does not require modification or recompilation of existing OSes and

applications, is compatible and can interoperate with legacy OSes and

applications that are not MOVE-enabled; MOVE does not presume or rely

128
on any particular transport protocol operational semantics.

• fine-grain and unlimited mobility: MOVE supports migration of a single

connection, a group of connections, or all the connections of an entire host;

either endpoint of a connection can migrate anywhere in the network.

• secure and flexible migration: MOVE provides, in the absence of other

security mechanisms such as IPsec, a low overhead self-securing mecha-

nism to protect its migration functions; connections can be migrated either

through “on-line” natured handoff or through “off-line” natured suspen-

sion/resumption.

In the next chapter, we will complete our work by presenting a detailed evaluation

of various performance measurements of our prototype MOVE system.

129
6Performance Measurements

We have implemented a MOVE prototype on the LINUX x86 platform with 2.4

series kernel. The entire functions of MOVE are implemented as a kernel module

that can be dynamically loaded into the running kernel at any time without kernel

recompilation or rebooting. This chapter presents various performance measure-

ments of our MOVE prototype. We present three main categories of tests: (1) hand-

off performance in Section 6.1; (2) scalability measurements in proxy-based

environments in Section 6.2; and (3) connection virtualization and mapping over-

head in Section 6.3. We also present mobile host and service location mechanism

studies in Section 6.4.

The handoff performance tests in Section 6.1 are to demonstrate the viability of

MOVE with a variety of applications, endpoint migration mechanisms, network

connectivity configurations, and transport layer protocols. Specifically, these tests

show that MOVE handoff:

• works with a variety of off-the-shelf applications unchanged, such as

mplayer/wget/lftp clients and apache/vsftpd/Darwin servers, etc.

• is compatible with different types of endpoint migration mechanisms, such

as moving a physical machine, a virtual machine, or a process.

• works with different types of networks such as 10/100/1000Mbits ethernet

130
and 11Mbits WiFi. It also works across these different networks.

• incurs minimal impact on the connection characteristics perceived by the

transport protocols and applications with a variety of duration of discon-

nection times (DDT) relative to the RTT, such as DDT<<RTT, DDT≈RTT,

and DDT>>RTT.

• performs very well under stress with increasing rate of handoff.

• is independent of and supports both connection-oriented (TCP) and con-

nection-less (UDP) transport protocols.

The scalability tests in Section 6.2 show that MOVE does not adversely affect the

scalability of the existing system, especially when the existing system has certain

hot spots such as proxies. The virtualization and mapping overhead measure-

ments in Section 6.3 show that MOVE adds very small network I/O performance

overhead to the base system, regardless of whether the base system is low-end or

high-end. Finally, Section 6.4 demonstrates the feasibility of using DDNS as the

host and service location mechanism.

6.1 Handoff Performance

The extensive tests of MOVE handoff performance are broken down to five cate-

gories at the top level. The first three correspond to the three different types of end-

points that are migrated: (1) a client physical machine, (2) a client VMware virtual

machine, and (3) a server process. Within each category, a variety of network con-

figurations and a variety of DDTs relative to the RTT are tested. Table 6-1 shows a

131
summary of the test cases and the sections in which they are described. We choose

different DDT relative to the RTT because the operational semantics of reliable

transport protocols such as TCP are heavily dependent upon the RTT. What mat-

ters most is not the absolute length of the DDT, but rather the relation of the DDT

to the RTT. For example, as long as the DDT is sufficiently short and does not cause

TCP to timeout, the exact length of the DDT makes little difference to TCP’s behav-

ior.

The fourth in Section 6.1.4 is a stress test in which a connection is “ping-pong”

migrated between two interfaces with a varying interval between each migration.

The fifth in Section 6.1.5 is a test for migrating connection-less transport protocols

in which a RTSP streaming video session using RTP over UDP is migrated. Finally

in Section 6.1.6, we also present a list of popular off-the-shelf network applications

that we’ve tested to work with MOVE right out of the box.

6.1.1 Client handoff with machine migration

The client handoff performance is measured between an IBM T22 ThinkPad laptop

within WAN within LAN WAN to LAN LAN to WAN

Client
Machine

DDT≈10ms, 200ms, 4s
mplayer - apache
(Section 6.1.1.1)

DDT≈30ms, 3s
mplayer - apache
(Section 6.1.1.2)

DDT≈100ms, 2s
wget - apache

(Section 6.1.1.3)

DDT≈100ms, 2s
wget - apache

(Section 6.1.1.4)

Client
VM

- -
DDT≈8s

lftp - vsftpd
(Section 6.1.2.1)

DDT≈11s
lftp - vsftpd

(Section 6.1.2.2)

Server
Process

DDT≈2s
mplayer - apache
(Section 6.1.3.1)

DDT≈2s
mplayer - apache
(Section 6.1.3.2)

- -

Table 6-1. Handoff performance test cases

132
computer with 1GHz Pentium III CPU, 512MB RAM, 100Mbits Intel Pro/100 SP

ethernet NIC, and 11Mbits Orinoco Gold WiFi PCCard, and an IBM 4500R rack

mounted server computer, with dual 933MHz Pentium III CPU, 512MB RAM, and

100Mbits AMD LANCE ethernet NIC. All machines are running LINUX kernel

version 2.4.20. We study a variety of network connectivity scenarios illustrated in

Figure 6-1, specifically:

• handoff on a campus WAN with wired connection

• handoff on an office LAN with wired connection

• handoff between a campus WAN with WiFi wireless connection and an

office LAN with wired connection.

Figure 6-1. Client handoff with machine migration testbed

(a) handoff on a WAN (b) handoff on a LAN

Campus
WAN

100Mbits
switch

apache apachech
an

ge
 I

P

ch
an

ge
 I

P

Campus
WAN

100Mbits
switch

apache

change NIC

(c) handoff between a WAN and a LAN

100 Mbit link

11 Mbit link

mplayer

mplayer

wget

mplayer

mplayer

133
For the first two cases, a RealVideo 8 encoded media clip is streamed through

HTTP from the server running apache [1] version 2.0.40 to the laptop running

mplayer [14] version 1.0pre4; the server and the laptop are connected through their

100Mbits ethernet NIC. The handoff is effected by disconnecting the laptop’s

100Mbits ethernet NIC after roughly 30 seconds of playback, waiting for a variable

amount of time, and then reconnecting it with another address and continuing

with roughly another 30 seconds of playback.

For the third case, the laptop is connected to the server from both its 100Mbits eth-

ernet NIC and its 11Mbits WiFi PCCard. The 100Mbits ethernet NIC is connected

directly to the office LAN where the server is connected; and the 11Mbits WiFi

PCCard is connected to the campus WAN through which the server is also reach-

able. The laptop uses wget [8] version 1.8.2 to fetch a file of roughly 50MB size

through HTTP from the server. The connection is first made through one of the

two interfaces on the laptop and then handed off to the other during the download.

The handoff off is effected by bring down the first interface through which the con-

nection is established and then bring up the other interface. For the two cases of

switching from WAN to LAN and vise versa, the handoff point is where roughly

80% of the file is going through the LAN and 20% of the file is going through the

WAN.

For all three cases, the playback or download network session is captured on the

server using tcpdump [19] version 3.7.2 and analyzed using tcptrace [20] version

6.6.1.

134
6.1.1.1 Handoff on a WAN, DDT≈10ms, 200ms, and 4s

The WAN used in the test is a campus network connecting offices and dormitories

with no artificial elements involved. We study three cases of different DDTs:

DDT≈10ms (<<RTT), DDT≈200ms (≈RTT), and DDT≈4s (>>RTT).

We first present the case when DDT≈10ms and show the TCP sequence trace and

throughput of the entire playback session in Figure 6-2 and Figure 6-3. The TCP

sequence trace graph (Figure 6-2) serves as a visual presentation that TCP is able

to recover and playback at the same throughput after the handoff as that before the

handoff. This is indicated by the slope of the sequence trace being unchanged

before and after the handoff. The TCP throughput graph (Figure 6-3) is to quanti-

tatively verify the TCP throughput before and after the handoff. This is done by

using tcptrace to compute the TCP throughput from the tcpdump data. Note that the

throughput before and after handoff are computed independently by tcptrace as

two separate connections due to the change of the client IP address. We present the

throughput results for both averaging over last 20 packets (the tcptrace default of

averaging 10 packets results in too much fluctuation to be useful) and averaging

over all packets seen so far. A small box in the sequence trace graph (Figure 6-2)

indicates where the handoff takes place and we will be looking into the events

inside the box next. Throughout the rest of Section 6.1, for each of the handoff per-

formance measurements, this is how we will be presenting our results: we first

show the TCP sequence trace and throughput for the entire network session; we

then zoom into the small box in the sequence trace graph and explain in detail the

handoff events.

135
Figure 6-2. Entire playback TCP sequence trace, DDT≈10ms << RTT≈230ms

Figure 6-3. Entire playback TCP throughput, DDT≈10ms << RTT≈230ms

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment sent

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack seen

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

SACK seen

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

20 packets

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

all packets

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

136
Figure 6-4 shows the zoomed TCP sequence trace graph for the case when

DDT≈10ms. While not shown in the figure, we used tcptrace to compute the aver-

age RTT and its standard deviation observed from the captured packet trace,

which are 230.1ms and 27.7ms respectively. At 29.89s, the server sees the last ack

from the laptop before it is disconnected. At 30.25s, the first ack from the laptop,

which carries H2O HANDOFF message, arrives after it is reconnected. The lapse

of 360ms may seem a little strange at first; since we only disconnected for 10ms and

the single trip for H2O HANDOFF message takes about 115ms so the ack should

have arrived at roughly 125ms after 29.89s, i.e., 30.015s. This is because disconnec-

tion and reconnection cannot happen instantaneously. There is a minimum delay

of about 200ms before a reconnected interface is fully operational again; this

includes the need to reinstate the default gateway route. This is also evident in the

Figure 6-4. Zoomed TCP sequence trace, DDT≈10ms << RTT≈230ms

0.840

0.845

0.850

0.855

0.860

0.865

0.870

0.875

0.880

0.885

29.5
29.6

29.7
29.8

29.9
30.0

30.1
30.2

30.3
30.4

30.5
30.6

30.7
30.8

30.9
31.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment sent

0.840

0.845

0.850

0.855

0.860

0.865

0.870

0.875

0.880

0.885

29.5
29.6

29.7
29.8

29.9
30.0

30.1
30.2

30.3
30.4

30.5
30.6

30.7
30.8

30.9
31.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.840

0.845

0.850

0.855

0.860

0.865

0.870

0.875

0.880

0.885

29.5
29.6

29.7
29.8

29.9
30.0

30.1
30.2

30.3
30.4

30.5
30.6

30.7
30.8

30.9
31.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

0.840

0.845

0.850

0.855

0.860

0.865

0.870

0.875

0.880

0.885

29.5
29.6

29.7
29.8

29.9
30.0

30.1
30.2

30.3
30.4

30.5
30.6

30.7
30.8

30.9
31.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.840

0.845

0.850

0.855

0.860

0.865

0.870

0.875

0.880

0.885

29.5
29.6

29.7
29.8

29.9
30.0

30.1
30.2

30.3
30.4

30.5
30.6

30.7
30.8

30.9
31.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack seen

0.840

0.845

0.850

0.855

0.860

0.865

0.870

0.875

0.880

0.885

29.5
29.6

29.7
29.8

29.9
30.0

30.1
30.2

30.3
30.4

30.5
30.6

30.7
30.8

30.9
31.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.840

0.845

0.850

0.855

0.860

0.865

0.870

0.875

0.880

0.885

29.5
29.6

29.7
29.8

29.9
30.0

30.1
30.2

30.3
30.4

30.5
30.6

30.7
30.8

30.9
31.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

SACK seen

137
other two cases. But this does not affect our discussion. The point of this case is to

show that if the handoff at the laptop happens very quickly, H2O’s HANDOFF

message can arrive at the server soon enough to prevent TCP from timeout. The

interesting points to note in Figure 6-4 are:

1. When the first ack after reconnection arrives at 30.25s, it carries a higher

seq number, roughly 0.853, than that carried by the last ack before discon-

nection at 29.89s, roughly 0.852. This means that right before disconnec-

tion, the laptop has received the packets between seq number 0.852 and

0.853 but didn’t have a chance to ack them.

2. The ack at 30.25 has a lower seq number than the last packet sent by the

server, which has a seq number roughly 0.854. This means that packets

between seq number 0.853 and 0.854 are lost during the handoff.

3. The ack at 30.25s also advertises a bigger receiver window than the ack at

29.9s, which means that some packets received on the laptop right before

disconnection has been delivered to the application during the disconnec-

tion.

4. After receiving the ack at 30.25, TCP on the server immediately sends sev-

eral packets, between 0.856 and 0.862, to fill up the receiver window. This

indicates that TCP on the server is still going at full throttle and never per-

ceived the handoff.

We can see that at 30.45s, the lost packets between 0.853 and 0.854 are being

retransmitted, while new packets sent at 30.25s between 0.856 and 0.862 are being

138
SACKed. At 30.65s, the lost and retransmitted packets are acked, which fill the gap

below the SACKed packets; therefore, the ack jumps from 0.853 to 0.862, which

indicates the conclusion of the recovery period.

We next look at the case when DDT≈200ms. Similar to the case when DDT≈10ms,

we first show the TCP sequence trace and throughput for the entire playback ses-

sion in Figure 6-5 and Figure 6-6. We then zoom into the small box in Figure 6-5 to

see the details of the handoff events, which are shown in Figure 6-7.

For this test, tcptrace computes the average RTT and its standard deviation as

234.7ms and 28.7ms respectively. The last ack from the laptop before disconnection

arrives at the server at 29.81s. The first ack carrying H2O HANDOFF message after

reconnection arrives at 30.32s. The interesting points to note in Figure 6-7 are:

Figure 6-5. Entire playback TCP sequence trace, DDT≈200ms ≈ RTT≈235ms

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment sent

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

retransmit

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack seen

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

SACK seen

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

139
Figure 6-6. Entire playback TCP throughput, DDT≈200ms ≈ RTT≈235ms

Figure 6-7. Zoomed TCP sequence trace, DDT≈200ms ≈ RTT≈235ms

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

20 packets

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

all packets

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

0.83

0.84

0.85

0.86

0.87

0.88

0.89

29.5
29.6

29.7
29.8

29.9
30.0

30.1
30.2

30.3
30.4

30.5
30.6

30.7
30.8

30.9
31.0

31.1
31.2

31.3
31.4

31.5
31.6

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment sent

0.83

0.84

0.85

0.86

0.87

0.88

0.89

29.5
29.6

29.7
29.8

29.9
30.0

30.1
30.2

30.3
30.4

30.5
30.6

30.7
30.8

30.9
31.0

31.1
31.2

31.3
31.4

31.5
31.6

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.83

0.84

0.85

0.86

0.87

0.88

0.89

29.5
29.6

29.7
29.8

29.9
30.0

30.1
30.2

30.3
30.4

30.5
30.6

30.7
30.8

30.9
31.0

31.1
31.2

31.3
31.4

31.5
31.6

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

retransmit

0.83

0.84

0.85

0.86

0.87

0.88

0.89

29.5
29.6

29.7
29.8

29.9
30.0

30.1
30.2

30.3
30.4

30.5
30.6

30.7
30.8

30.9
31.0

31.1
31.2

31.3
31.4

31.5
31.6

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.83

0.84

0.85

0.86

0.87

0.88

0.89

29.5
29.6

29.7
29.8

29.9
30.0

30.1
30.2

30.3
30.4

30.5
30.6

30.7
30.8

30.9
31.0

31.1
31.2

31.3
31.4

31.5
31.6

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

0.83

0.84

0.85

0.86

0.87

0.88

0.89

29.5
29.6

29.7
29.8

29.9
30.0

30.1
30.2

30.3
30.4

30.5
30.6

30.7
30.8

30.9
31.0

31.1
31.2

31.3
31.4

31.5
31.6

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.83

0.84

0.85

0.86

0.87

0.88

0.89

29.5
29.6

29.7
29.8

29.9
30.0

30.1
30.2

30.3
30.4

30.5
30.6

30.7
30.8

30.9
31.0

31.1
31.2

31.3
31.4

31.5
31.6

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack seen

0.83

0.84

0.85

0.86

0.87

0.88

0.89

29.5
29.6

29.7
29.8

29.9
30.0

30.1
30.2

30.3
30.4

30.5
30.6

30.7
30.8

30.9
31.0

31.1
31.2

31.3
31.4

31.5
31.6

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.83

0.84

0.85

0.86

0.87

0.88

0.89

29.5
29.6

29.7
29.8

29.9
30.0

30.1
30.2

30.3
30.4

30.5
30.6

30.7
30.8

30.9
31.0

31.1
31.2

31.3
31.4

31.5
31.6

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

SACK seen

140
1. A timeout and retransmission occurs at 30.27s for packet 0.847, which was

originally sent at 29.73s.

2. Due to the delay of interface becoming full operational after reconnection,

the first H2O HANDOFF message after reconnection arrives at 200

(DDT)+200 (reconnection delay)+117 (single trip)=517ms after 29.81s, i.e.,

30.327s, rather than 200 (DDT)+117 (single trip)=305ms after 29.81s, i.e.,

30.115s.

3. Different from previous case, the ack at 30.32s is not carrying a higher seq

number than the ack at 29.81s. This means that all data received by the lap-

top right before disconnection are acked. But same as previous case, the

ack at 30.32s advertises a bigger receiver window than the ack at 29.81s.

This explains why, even though TCP on the server has timed out shortly

before 30.32s and gone into slow start, it immediately starts transmission

again and goes into recovery mode as soon as it receives the H2O HAND-

OFF message without waiting for another timeout. This also shows the

advantage of an in-band signaling protocol.

We can see that, similar to the previous case, at 30.52s, lost packets between 0.847

and 0.85 are being retransmitted, while new packets sent at 30.32s between 0.8512

and 0.853 are being SACKed. In addition, at 30.52s, a new packet at 0.854 is sent.

This packet, along with those sent at 30.32, are being SACKed throughout the

retransmission period until 31.55s, at which point all lost packets are acked and the

ack number jumps to 0.854.

141
We finally look at the case when DDT≈4s. We again first present the TCP sequence

trace and throughput for the entire playback session in Figure 6-8 and Figure 6-9.

We then present in Figure 6-10 the zoomed view of the small box shown in

Figure 6-8. For this test, tcptrace computes the average RTT and its standard devi-

ation as 230.8ms and 33.4ms respectively. This is a rather common TCP slow start

recovery after several timeouts, where all data after disconnection are lost and

retransmitted. Nevertheless, it’s again interesting to note in Figure 6-10 that:

1. The first timeout occurs at around 31.2s, which is the retransmission of the

packet 0.852 originally sent at around 30.55s.

2. The elapsed time between the first ack after reconnection at 35s and the last

ack before disconnection at 30.7s is 4.3s, which roughly corresponds to 4s

Figure 6-8. Entire playback TCP sequence trace, DDT≈4s >> RTT≈231ms

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment sent

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

retransmit

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack seen

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

SACK seen

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

142
Figure 6-9. Entire playback TCP throughput, DDT≈4s >> RTT≈231ms

Figure 6-10. Zoomed TCP sequence trace, DDT≈4s >> RTT≈231ms

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

20 packets

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

all packets

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

29 30 31 32 33 34 35 36

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment sent

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

29 30 31 32 33 34 35 36

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

29 30 31 32 33 34 35 36

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

retransmit

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

29 30 31 32 33 34 35 36

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

29 30 31 32 33 34 35 36

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

29 30 31 32 33 34 35 36

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack seen

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

29 30 31 32 33 34 35 36

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

29 30 31 32 33 34 35 36

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

SACK seen

143
(DDT)+200ms (reconnection delay)+115ms (single trip)=4.315s.

3. The recovery process again starts immediately at 35s without waiting for

further retransmission timeouts because the ack at 35s acks more data than

the one at 30.7s. The 4th retransmission would have occurred roughly

8*600ms after the 3rd one, at 38.8s. Note that even with a big receiver win-

dow size at 35s, TCP does not attempt to fill up the window immediately

since it’s in slow start.

6.1.1.2 Handoff on a LAN, DDT≈30ms and 3s

In this test, the laptop computer and the server computer are connected directly

through a 100Mbits switch as shown in Figure 6-1b. The RTT perceived by TCP is

around 30ms with a standard deviation of about 10ms. Recall from Section 6.1.1.1

that there is a minimum delay of about 200ms before a reconnected interface is

fully operational again. In this case, however, we were able to reduce the delay to

about 90ms since the two computers are on the same subnet therefore there is no

need to reinstate the default gateway route. So for handoff across a LAN, we can

only test two cases: DDT≈30ms (≈ RTT), and DDT≈3s (>> RTT) because the RTT on

a LAN is already very small.

We first present the TCP sequence trace and throughput of the entire playback ses-

sion for the case when DDT≈30ms in Figure 6-11 and Figure 6-12. These graphs

show that TCP is able to playback at the same throughput after the handoff as that

before the handoff. We then zoom into the small boxes presented in Figure 6-11 to

see the details of the handoff events, shown in Figure 6-13.

144
Figure 6-11. Entire playback TCP sequence trace, DDT≈30ms ≈ RTT≈33ms

Figure 6-12. Entire playback TCP throughput, DDT≈30ms ≈ RTT≈33ms

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment sent

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack seen

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

20 packets

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

all packets

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

145
As shown in Figure 6-13, the last ack from the laptop before disconnection arrives

at the server at about 30.04s. The first ack carrying H2O HANDOFF message after

reconnection arrives shortly after 30.18s. The interesting points to note in Figure 6-

13 are:

1. The last ack before disconnection at 30.04s carries a zero window size. This

means that TCP receiver queue on the laptop is full. This is because in the

100Mbits LAN packets arrive must faster than the rate at which they are

played out by the application. As a result, during the handoff, no packets

are sent by the server, i.e., no packets are lost.

2. The average RTT and its standard deviation D observed from the packet

trace are 32.5ms and 11.4ms, respectively. The first ack after reconnection at

Figure 6-13. Zoomed TCP sequence trace, DDT≈30ms ≈ RTT≈33ms

0.855

0.860

0.865

0.870

0.875

0.880

0.885

0.890

29.7 29.8 29.9 30.0 30.1 30.2 30.3 30.4 30.5 30.6 30.7

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment sent

0.855

0.860

0.865

0.870

0.875

0.880

0.885

0.890

29.7 29.8 29.9 30.0 30.1 30.2 30.3 30.4 30.5 30.6 30.7

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.855

0.860

0.865

0.870

0.875

0.880

0.885

0.890

29.7 29.8 29.9 30.0 30.1 30.2 30.3 30.4 30.5 30.6 30.7

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

0.855

0.860

0.865

0.870

0.875

0.880

0.885

0.890

29.7 29.8 29.9 30.0 30.1 30.2 30.3 30.4 30.5 30.6 30.7

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.855

0.860

0.865

0.870

0.875

0.880

0.885

0.890

29.7 29.8 29.9 30.0 30.1 30.2 30.3 30.4 30.5 30.6 30.7

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack seen

0.855

0.860

0.865

0.870

0.875

0.880

0.885

0.890

29.7 29.8 29.9 30.0 30.1 30.2 30.3 30.4 30.5 30.6 30.7

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

146
30.18s is 140ms after the last ack before disconnection, which roughly cor-

responds to 90 (reconnection delay)+30 (DDT)+16 (single trip)=136ms.

Since TCP computes its RTO=RTT+4*D, this would have turned out to be

32.5+4*11.4=78ms. However, there is no retransmission at 30.04+0.078=

30.118s. This is because LINUX has a minimum RTO=200ms.

3. The first ack after reconnection at 30.18s does not ack more data since no

data are sent during the handoff and all data sent before the handoff have

been acked. However, it carries a non-zero window therefore TCP on the

server is able to continue sending immediately.

We next present the TCP sequence trace and throughput of the entire playback ses-

sion for the case when DDT≈3s in Figure 6-14 and Figure 6-15. And we zoom into

the small boxes presented in Figure 6-14 to see the details of the handoff events,

which are shown in Figure 6-16. The last ack before disconnection arrives at about

30.1s, and the first ack after reconnection arrives roughly 3s later, at 33.1s. While

this case looks similar to the case when DDT≈4s in the WAN test in Figure 6-10,

there are a few interesting differences:

1. Even though the RTT and its standard deviation D are 30.7ms and 10.8ms

respectively from the packet trace, which suggests the RTO=RTT+4*D=

30.7+4*10.8=73.9ms, the first “retransmission” occurs at 30.3s, about 200ms

after the last ack before disconnection at 30.1s. Again this is due to the min-

imum RTO of 200ms in LINUX.

2. The last ack before disconnection at 30.1s carries a zero window size,

147
Figure 6-14. Entire playback TCP sequence trace, DDT≈3s >> RTT≈31ms

Figure 6-15. Entire playback TCP throughput, DDT≈3s >> RTT≈31ms

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment sent

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack seen

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

zero window probe

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

20 packets

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

all packets

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

148
which means that TCP receiver queue on the laptop is again full, same as

the previous case when DDT≈30ms. Therefore, no packets are sent during

the 3s disconnection. The “retransmissions” are actually zero window

probes by the TCP sender on the server, which follow the same exponential

backoff rule governing the retransmissions.

3. Since no packets are lost during the handoff, when the first ack after recon-

nection arrives at 33.1s carrying a non-zero window, TCP immediately

sends as much as it can to fill up the window instead of performing slow

start.

6.1.1.3 Handoff from a WAN to LAN, DDT≈100ms and 2s

Figure 6-17 and Figure 6-18 show the TCP sequence trace and throughput of the

Figure 6-16. Zoomed TCP sequence trace, DDT≈3s >> RTT≈31ms

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment sent

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack seen

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

zero window probe

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

149
entire download session for the case of handoff from WAN to LAN when

DDT≈100ms. We can see that throughput on the LAN connection is roughly

8MBytes/second and throughput on the WAN connection is roughly 500KBytes/

second. The handoff happens at roughly 19s and TCP throughput adapts to the

higher throughput of the wired LAN after the handoff. We also note that there is a

“plateau” of roughly 2s for the LAN connection at roughly 23s, with 3 zero

window probes sent by the server. This is the period when the buffer of wget on the

laptop is full and is being written out to the disk so wget stops reading from the

socket. Also note that since LINUX has a minimum RTO of 200ms, there is no tim-

eout and retransmission in this case.

Figure 6-17. Entire download TCP sequence trace, DDT≈100ms

0

10

20

30

40

50

60

0 5 10 15 20 25 30

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment sent

0

10

20

30

40

50

60

0 5 10 15 20 25 30

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 5 10 15 20 25 30

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

0

10

20

30

40

50

60

0 5 10 15 20 25 30

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 5 10 15 20 25 30

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack seen

0

10

20

30

40

50

60

0 5 10 15 20 25 30

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 5 10 15 20 25 30

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

SACK seen

0

10

20

30

40

50

60

0 5 10 15 20 25 30

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

zero window probe

0

10

20

30

40

50

60

0 5 10 15 20 25 30

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 5 10 15 20 25 30

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 5 10 15 20 25 30

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

150
Figure 6-18. Entire download TCP throughput, DDT≈100ms

Figure 6-19. Zoomed TCP sequence trace, DDT≈100ms

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

20 packets

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

all packets

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

10.35

10.40

10.45

10.50

10.55

10.60

10.65

10.70

18.82
18.83

18.84
18.85

18.86
18.87

18.88
18.89

18.90
18.91

18.92
18.93

18.94
18.95

18.96
18.97

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment sent

10.35

10.40

10.45

10.50

10.55

10.60

10.65

10.70

18.82
18.83

18.84
18.85

18.86
18.87

18.88
18.89

18.90
18.91

18.92
18.93

18.94
18.95

18.96
18.97

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

10.35

10.40

10.45

10.50

10.55

10.60

10.65

10.70

18.82
18.83

18.84
18.85

18.86
18.87

18.88
18.89

18.90
18.91

18.92
18.93

18.94
18.95

18.96
18.97

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

10.35

10.40

10.45

10.50

10.55

10.60

10.65

10.70

18.82
18.83

18.84
18.85

18.86
18.87

18.88
18.89

18.90
18.91

18.92
18.93

18.94
18.95

18.96
18.97

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

10.35

10.40

10.45

10.50

10.55

10.60

10.65

10.70

18.82
18.83

18.84
18.85

18.86
18.87

18.88
18.89

18.90
18.91

18.92
18.93

18.94
18.95

18.96
18.97

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack seen

10.35

10.40

10.45

10.50

10.55

10.60

10.65

10.70

18.82
18.83

18.84
18.85

18.86
18.87

18.88
18.89

18.90
18.91

18.92
18.93

18.94
18.95

18.96
18.97

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

10.35

10.40

10.45

10.50

10.55

10.60

10.65

10.70

18.82
18.83

18.84
18.85

18.86
18.87

18.88
18.89

18.90
18.91

18.92
18.93

18.94
18.95

18.96
18.97

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

SACK seen

151
Figure 6-19 shows the zoomed view for the handoff case when DDT≈100ms. It

shows that:

• Shortly after 18.84s, the server sees the last ack, seq numbered 10.425, from

the client, and it sends a couple of packets to the client, seq numbered

10.49.

• At roughly 18.946s, the first ack which carries H2O HANDOFF message is

received by the server. This ack advertises a bigger window so the server

immediately sends a few packets, seq numbered between 10.49 and 10.5.

However, the ack only carries a seq number 10.445, which means that dur-

ing the handoff, packets between 10.425 and 10.445 are received but all

packets between 10.445 and 10.49 are lost.

• The lost packets seq numbered between 10.445 and 10.49 are being retrans-

mitted during 18.947s and 18.955s, while new packets sent at 18.946s are

being SACKed.

• At roughly 18.958s, the lost and retransmitted packets fill the gap below

the SACKed packets and we see a jump of the ack to seq number 10.51

from the receiver which indicates the end of recovery period. From that

point on, the server transmits at the higher throughput allowed by the new

wired 100Mbits connection. The recovery period takes roughly 11ms, from

18.947s to 18.958s.

Figure 6-20 and Figure 6-21 show the TCP sequence trace and throughput of the

entire download session for the case of handoff from WAN to LAN when DDT≈2s.

152
We can see that, similar to the case when DDT≈100ms, throughput on the LAN

connection is roughly 8MBytes/second and throughput on the WAN connection

is roughly 500KBytes/second. The handoff happens at roughly 18s and the TCP

throughput also adapts to the higher throughput of the wired LAN after the hand-

off. We also note that there is a “plateau” of roughly 2s with 2 zero window probes

for the LAN connection at roughly 22s, similar to that of the case when

DDT≈100ms.

Figure 6-22 shows the zoomed view for the handoff case when DDT≈2s. After the

timeout and retransmission, the server goes into slow start. When the first ack that

carries H2O HANDOFF message arrives at around 19.8s, no new packets are sent.

Instead, lost packets are retransmitted and the server adapts to the new wired LAN

Figure 6-20. Entire download TCP sequence trace, DDT≈2s

0

10

20

30

40

50

60

0 5 10 15 20 25 30

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment sent

0

10

20

30

40

50

60

0 5 10 15 20 25 30

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 5 10 15 20 25 30

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

retransmit

0

10

20

30

40

50

60

0 5 10 15 20 25 30

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

0

10

20

30

40

50

60

0 5 10 15 20 25 30

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 5 10 15 20 25 30

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack seen

0

10

20

30

40

50

60

0 5 10 15 20 25 30

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 5 10 15 20 25 30

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

SACK seen

0

10

20

30

40

50

60

0 5 10 15 20 25 30

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

zero window probe

0

10

20

30

40

50

60

0 5 10 15 20 25 30

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 5 10 15 20 25 30

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 5 10 15 20 25 30

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

153
Figure 6-21. Entire download TCP throughput, DDT≈2s

Figure 6-22. Zoomed TCP sequence trace, DDT≈2s

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

20 packets

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

all packets

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

10.3

10.4

10.5

10.6

10.7

10.8

10.9

11.0

17.6
17.7

17.8
17.9

18.0
18.1

18.2
18.3

18.4
18.5

18.6
18.7

18.8
18.9

19.0
19.1

19.2
19.3

19.4
19.5

19.6
19.7

19.8
19.9

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment sent

10.3

10.4

10.5

10.6

10.7

10.8

10.9

11.0

17.6
17.7

17.8
17.9

18.0
18.1

18.2
18.3

18.4
18.5

18.6
18.7

18.8
18.9

19.0
19.1

19.2
19.3

19.4
19.5

19.6
19.7

19.8
19.9

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

10.3

10.4

10.5

10.6

10.7

10.8

10.9

11.0

17.6
17.7

17.8
17.9

18.0
18.1

18.2
18.3

18.4
18.5

18.6
18.7

18.8
18.9

19.0
19.1

19.2
19.3

19.4
19.5

19.6
19.7

19.8
19.9

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

retransmit

10.3

10.4

10.5

10.6

10.7

10.8

10.9

11.0

17.6
17.7

17.8
17.9

18.0
18.1

18.2
18.3

18.4
18.5

18.6
18.7

18.8
18.9

19.0
19.1

19.2
19.3

19.4
19.5

19.6
19.7

19.8
19.9

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

10.3

10.4

10.5

10.6

10.7

10.8

10.9

11.0

17.6
17.7

17.8
17.9

18.0
18.1

18.2
18.3

18.4
18.5

18.6
18.7

18.8
18.9

19.0
19.1

19.2
19.3

19.4
19.5

19.6
19.7

19.8
19.9

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

10.3

10.4

10.5

10.6

10.7

10.8

10.9

11.0

17.6
17.7

17.8
17.9

18.0
18.1

18.2
18.3

18.4
18.5

18.6
18.7

18.8
18.9

19.0
19.1

19.2
19.3

19.4
19.5

19.6
19.7

19.8
19.9

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack seen

10.3

10.4

10.5

10.6

10.7

10.8

10.9

11.0

17.6
17.7

17.8
17.9

18.0
18.1

18.2
18.3

18.4
18.5

18.6
18.7

18.8
18.9

19.0
19.1

19.2
19.3

19.4
19.5

19.6
19.7

19.8
19.9

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

10.3

10.4

10.5

10.6

10.7

10.8

10.9

11.0

17.6
17.7

17.8
17.9

18.0
18.1

18.2
18.3

18.4
18.5

18.6
18.7

18.8
18.9

19.0
19.1

19.2
19.3

19.4
19.5

19.6
19.7

19.8
19.9

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

SACK seen

154
throughput as if the connection were just established.

6.1.1.4 Handoff from a LAN to WAN, DDT≈100ms and 2s

Figure 6-23 and Figure 6-24 show the TCP sequence trace and throughput of the

entire download session for the handoff case from LAN to WAN when

DDT≈100ms. We can see that, apart from the reversed throughput before and after

the handoff, the characteristics of the download session are rather similar to those

of the handoff case from WAN to LAN in Figure 6-17 and Figure 6-18. Note again

the “plateau” for the LAN connection at roughly 3s with 3 zero window probes.

Figure 6-25 shows the zoomed view for the handoff case when DDT≈100ms. We

can see that it has a recovery period similar to that of the handoff case from WAN

to LAN when DDT≈100ms in Figure 6-19. During the recovery period, lost packets

Figure 6-23. Entire download TCP sequence trace, DDT≈100ms

0

10

20

30

40

50

60

0 5 10 15 20 25

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment sent

0

10

20

30

40

50

60

0 5 10 15 20 25

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 5 10 15 20 25

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

0

10

20

30

40

50

60

0 5 10 15 20 25

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 5 10 15 20 25

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack seen

0

10

20

30

40

50

60

0 5 10 15 20 25

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 5 10 15 20 25

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

SACK seen

0

10

20

30

40

50

60

0 5 10 15 20 25

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

zero window probe

0

10

20

30

40

50

60

0 5 10 15 20 25

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 5 10 15 20 25

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 5 10 15 20 25

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

155
Figure 6-24. Entire download TCP throughput, DDT≈100ms

Figure 6-25. Zoomed TCP sequence trace, DDT≈100ms

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20 25

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

20 packets

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20 25

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20 25

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

all packets

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20 25

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

42.6

42.7

42.8

42.9

43.0

43.1

43.2

43.3

43.4

7.8
7.9

8.0
8.1

8.2
8.3

8.4
8.5

8.6
8.7

8.8
8.9

9.0
9.1

9.2
9.3

9.4

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment sent

42.6

42.7

42.8

42.9

43.0

43.1

43.2

43.3

43.4

7.8
7.9

8.0
8.1

8.2
8.3

8.4
8.5

8.6
8.7

8.8
8.9

9.0
9.1

9.2
9.3

9.4

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

42.6

42.7

42.8

42.9

43.0

43.1

43.2

43.3

43.4

7.8
7.9

8.0
8.1

8.2
8.3

8.4
8.5

8.6
8.7

8.8
8.9

9.0
9.1

9.2
9.3

9.4

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

42.6

42.7

42.8

42.9

43.0

43.1

43.2

43.3

43.4

7.8
7.9

8.0
8.1

8.2
8.3

8.4
8.5

8.6
8.7

8.8
8.9

9.0
9.1

9.2
9.3

9.4

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

42.6

42.7

42.8

42.9

43.0

43.1

43.2

43.3

43.4

7.8
7.9

8.0
8.1

8.2
8.3

8.4
8.5

8.6
8.7

8.8
8.9

9.0
9.1

9.2
9.3

9.4

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack seen

42.6

42.7

42.8

42.9

43.0

43.1

43.2

43.3

43.4

7.8
7.9

8.0
8.1

8.2
8.3

8.4
8.5

8.6
8.7

8.8
8.9

9.0
9.1

9.2
9.3

9.4

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

42.6

42.7

42.8

42.9

43.0

43.1

43.2

43.3

43.4

7.8
7.9

8.0
8.1

8.2
8.3

8.4
8.5

8.6
8.7

8.8
8.9

9.0
9.1

9.2
9.3

9.4

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

SACK seen

42.6

42.7

42.8

42.9

43.0

43.1

43.2

43.3

43.4

7.8
7.9

8.0
8.1

8.2
8.3

8.4
8.5

8.6
8.7

8.8
8.9

9.0
9.1

9.2
9.3

9.4

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

zero window probe

42.6

42.7

42.8

42.9

43.0

43.1

43.2

43.3

43.4

7.8
7.9

8.0
8.1

8.2
8.3

8.4
8.5

8.6
8.7

8.8
8.9

9.0
9.1

9.2
9.3

9.4

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

156
seq numbered between 42.94 and 42.97 are being retransmitted while new packets

sent at 8.01s seq numbered between 42.97 and 42.99 are being SACKed. The recov-

ery period, which lasts about 200ms from 8.0s to 8.2s, is much longer than that in

Figure 6-19 due to the slower WiFi connection. Also different from the WAN to

LAN case, at the end of the recovery period, roughly 8.2s, receiver window on the

laptop only increases slightly, therefore the server can only send a few packets

from 8.2s to 8.33s, at which point the receiver window becomes 0. After two zero

windows probes from the server, one at 8.61s and the other at 9.08s, the laptop

finally advertises a nonzero receiver window at roughly 9.23s and increases the

window dramatically at 9.24s. From that point on, the server transmits freely but

at a lower throughput restricted by the new WiFi 11Mbits connection.

Figure 6-26 and Figure 6-27 show the TCP sequence trace and throughput of the

entire download session for the handoff case from LAN to WAN when DDT≈2s.

Once more, apart from the reversed throughput before and after the handoff, the

characteristics of the download session are rather similar to those of the handoff

case from WAN to LAN in Figure 6-20 and Figure 6-21. The “plateau” with 3 zero

window probes for the LAN connection also presents at roughly 3s.

Figure 6-28 show the zoomed view for the handoff case when DDT≈2s. Similar to

the handoff case from WAN to LAN when DDT≈2s in Figure 6-22, after the time-

out and retransmission, the server goes into slow start. When the first ack that car-

ries H2O HANDOFF message arrives, no new packets are sent. Instead, lost

packets are retransmitted and the server adapts to the new connection throughput

157
Figure 6-26. Entire download TCP sequence trace, DDT≈2s

Figure 6-27. Entire download TCP throughput, DDT≈2s

0

10

20

30

40

50

60

0 5 10 15 20 25

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment sent

0

10

20

30

40

50

60

0 5 10 15 20 25

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 5 10 15 20 25

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

retransmit

0

10

20

30

40

50

60

0 5 10 15 20 25

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

0

10

20

30

40

50

60

0 5 10 15 20 25

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 5 10 15 20 25

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack seen

0

10

20

30

40

50

60

0 5 10 15 20 25

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 5 10 15 20 25

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

SACK seen

0

10

20

30

40

50

60

0 5 10 15 20 25

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

zero window probe

0

10

20

30

40

50

60

0 5 10 15 20 25

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 5 10 15 20 25

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20 25

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

20 packets

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20 25

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20 25

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

all packets

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20 25

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

158
as if the connection were just established.

6.1.2 Client handoff with VMware migration

This test is the same as the third case of the client handoff with machine migration

test, except that instead of migrating the laptop by switching between its 100Mbits

ethernet NIC and 11Mbits WiFi PCCard, a VMware version 4.5.2 virtual machine

configured with 64MB RAM is suspended and resumed between two IBM T22

ThinkPad laptop computers with 1GHz Pentium III CPU and 512MB RAM, one

has an 100Mbits ethernet NIC, and the other an 11Mbits WiFi PCCard. Both lap-

tops as well as the VMware VM run LINUX kernel version 2.4.20. The testbed is

depicted in Figure 6-29.

Also, instead of wget, we use lftp [12] version 2.6.3 running inside a VMware VM

Figure 6-28. Zoomed TCP sequence trace, DDT≈2s

42.0

42.1

42.2

42.3

42.4

42.5

42.6

8.1
8.2

8.3
8.4

8.5
8.6

8.7
8.8

8.9
9.0

9.1
9.2

9.3
9.4

9.5
9.6

9.7
9.8

9.9
10.0

10.1
10.2

10.3
10.4

10.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment sent

42.0

42.1

42.2

42.3

42.4

42.5

42.6

8.1
8.2

8.3
8.4

8.5
8.6

8.7
8.8

8.9
9.0

9.1
9.2

9.3
9.4

9.5
9.6

9.7
9.8

9.9
10.0

10.1
10.2

10.3
10.4

10.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

42.0

42.1

42.2

42.3

42.4

42.5

42.6

8.1
8.2

8.3
8.4

8.5
8.6

8.7
8.8

8.9
9.0

9.1
9.2

9.3
9.4

9.5
9.6

9.7
9.8

9.9
10.0

10.1
10.2

10.3
10.4

10.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

retransmit

42.0

42.1

42.2

42.3

42.4

42.5

42.6

8.1
8.2

8.3
8.4

8.5
8.6

8.7
8.8

8.9
9.0

9.1
9.2

9.3
9.4

9.5
9.6

9.7
9.8

9.9
10.0

10.1
10.2

10.3
10.4

10.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

42.0

42.1

42.2

42.3

42.4

42.5

42.6

8.1
8.2

8.3
8.4

8.5
8.6

8.7
8.8

8.9
9.0

9.1
9.2

9.3
9.4

9.5
9.6

9.7
9.8

9.9
10.0

10.1
10.2

10.3
10.4

10.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

42.0

42.1

42.2

42.3

42.4

42.5

42.6

8.1
8.2

8.3
8.4

8.5
8.6

8.7
8.8

8.9
9.0

9.1
9.2

9.3
9.4

9.5
9.6

9.7
9.8

9.9
10.0

10.1
10.2

10.3
10.4

10.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack seen

42.0

42.1

42.2

42.3

42.4

42.5

42.6

8.1
8.2

8.3
8.4

8.5
8.6

8.7
8.8

8.9
9.0

9.1
9.2

9.3
9.4

9.5
9.6

9.7
9.8

9.9
10.0

10.1
10.2

10.3
10.4

10.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

42.0

42.1

42.2

42.3

42.4

42.5

42.6

8.1
8.2

8.3
8.4

8.5
8.6

8.7
8.8

8.9
9.0

9.1
9.2

9.3
9.4

9.5
9.6

9.7
9.8

9.9
10.0

10.1
10.2

10.3
10.4

10.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

SACK seen

159
on the laptop to fetch the same 50MB file from the server running vsftpd [24] ver-

sion 1.1.3. The handoff is effected by suspending the VM on one laptop and resum-

ing it on the other. For the two cases of switching from WAN to LAN and vise versa,

the handoff point again is where roughly 80% of the file is going through the LAN

and 20% of the file is going through the WAN. The download session is captured

on the server using tcpdump and analyzed using tcptrace.

6.1.2.1 Handoff from a WAN to LAN, DDT≈8s

Figure 6-30 and Figure 6-31 show the TCP sequence trace and throughput of the

entire download session for the handoff case from WAN to LAN with DDT≈8s. We

can see that, apart from the longer gap due to the handoff, the characteristics of the

download session are rather similar to those in Figure 6-20 and Figure 6-21 when

a client machine is migrated from a WAN to LAN.

Figure 6-32 and Figure 6-33 show the zoomed view of the handoff, divided into

two figures to avoid the large gap during the handoff. Since it takes about 8 sec-

onds to suspend and resume the VM, there is no way to avoid TCP timeout and

Figure 6-29. Client handoff with VMware migration testbed

Campus
WAN

100Mbits
switch

vsftpd

suspend/resume VM

lftp inside
VMware

lftp inside
VMware

160
Figure 6-30. Entire download TCP sequence trace, DDT≈8s

Figure 6-31. Entire download TCP throughput, DDT≈8s

0

10

20

30

40

50

60

0 10 20 30 40 50

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment sent

0

10

20

30

40

50

60

0 10 20 30 40 50

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 10 20 30 40 50

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

retransmit

0

10

20

30

40

50

60

0 10 20 30 40 50

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

0

10

20

30

40

50

60

0 10 20 30 40 50

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 10 20 30 40 50

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack seen

0

10

20

30

40

50

60

0 10 20 30 40 50

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 10 20 30 40 50

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

SACK seen

0

10

20

30

40

50

60

0 10 20 30 40 50

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

zero window probe

0

10

20

30

40

50

60

0 10 20 30 40 50

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 10 20 30 40 50

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 10 20 30 40 50

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 10 20 30 40 50

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 10 20 30 40 50

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

1000

2000

3000

4000

5000

0 10 20 30 40 50

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

20 packets

0

1000

2000

3000

4000

5000

0 10 20 30 40 50

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

0

1000

2000

3000

4000

5000

0 10 20 30 40 50

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

all packets

0

1000

2000

3000

4000

5000

0 10 20 30 40 50

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

161
Figure 6-32. Zoomed TCP sequence trace, before handoff, DDT≈8s

Figure 6-33. Zoomed TCP sequence trace, after handoff, DDT≈8s

10.6

10.7

10.8

10.9

11.0

11.1

11.2

11.3

22.5 22.6 22.7 22.8 22.9 23.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment sent

10.6

10.7

10.8

10.9

11.0

11.1

11.2

11.3

22.5 22.6 22.7 22.8 22.9 23.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

10.6

10.7

10.8

10.9

11.0

11.1

11.2

11.3

22.5 22.6 22.7 22.8 22.9 23.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

retransmit

10.6

10.7

10.8

10.9

11.0

11.1

11.2

11.3

22.5 22.6 22.7 22.8 22.9 23.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

10.6

10.7

10.8

10.9

11.0

11.1

11.2

11.3

22.5 22.6 22.7 22.8 22.9 23.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

10.6

10.7

10.8

10.9

11.0

11.1

11.2

11.3

22.5 22.6 22.7 22.8 22.9 23.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack seen

10.6

10.7

10.8

10.9

11.0

11.1

11.2

11.3

22.5 22.6 22.7 22.8 22.9 23.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

10.6

10.7

10.8

10.9

11.0

11.1

11.2

11.3

31.0 31.1 31.2 31.3 31.4 31.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment sent

10.6

10.7

10.8

10.9

11.0

11.1

11.2

11.3

31.0 31.1 31.2 31.3 31.4 31.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

10.6

10.7

10.8

10.9

11.0

11.1

11.2

11.3

31.0 31.1 31.2 31.3 31.4 31.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

retransmit

10.6

10.7

10.8

10.9

11.0

11.1

11.2

11.3

31.0 31.1 31.2 31.3 31.4 31.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

10.6

10.7

10.8

10.9

11.0

11.1

11.2

11.3

31.0 31.1 31.2 31.3 31.4 31.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

10.6

10.7

10.8

10.9

11.0

11.1

11.2

11.3

31.0 31.1 31.2 31.3 31.4 31.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack seen

10.6

10.7

10.8

10.9

11.0

11.1

11.2

11.3

31.0 31.1 31.2 31.3 31.4 31.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

10.6

10.7

10.8

10.9

11.0

11.1

11.2

11.3

31.0 31.1 31.2 31.3 31.4 31.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

SACK seen

162
retransmission. Therefore after the handoff, TCP on the server only sends one

packet even though the receiver window has opened up. Apart from the longer

handoff time, the characteristics of Figure 6-32 and Figure 6-33 are also rather sim-

ilar to those of Figure 6-22 when a client machine is migrated from a WAN to LAN.

6.1.2.2 Handoff from a LAN to WAN, DDT≈11s

Figure 6-34 and Figure 6-35 show the TCP sequence trace and throughput of the

entire download session for the handoff case from LAN to WAN with DDT≈11s.

Figure 6-36 and Figure 6-37 show the zoomed view for the handoff, again divided

into two figures to avoid the large gap during the handoff. We can observe that

apart from the reversed TCP throughput before and after the handoff, the charac-

teristics of the handoff are rather similar to those in Figure 6-30 through Figure 6-

33.

Since it takes about 11 seconds to suspend and resume the VM, there is also no way

to avoid TCP timeout and retransmission in this case. Also apart from a longer

handoff time, the characteristics of Figure 6-34 and Figure 6-35 are rather similar

to those of Figure 6-26 and Figure 6-27 when a client machine is migrated from a

LAN to WAN; and the characteristics of Figure 6-36 and Figure 6-37 are rather

similar to those of Figure 6-28 when a client machine is migrated from a LAN to

WAN.

6.1.3 Server handoff with process migration

This section presents handoff performance measurements of MOVE integrated

with the Zap process migration mechanism and used in a proxy-based environ-

163
Figure 6-34. Entire download TCP sequence trace, DDT≈11s

Figure 6-35. Entire download TCP throughput, DDT≈11s

0

10

20

30

40

50

60

0 10 20 30 40

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment sent

0

10

20

30

40

50

60

0 10 20 30 40

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 10 20 30 40

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

retransmit

0

10

20

30

40

50

60

0 10 20 30 40

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

0

10

20

30

40

50

60

0 10 20 30 40

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 10 20 30 40

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack seen

0

10

20

30

40

50

60

0 10 20 30 40

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 10 20 30 40

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

SACK seen

0

10

20

30

40

50

60

0 10 20 30 40

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

zero window probe

0

10

20

30

40

50

60

0 10 20 30 40

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 10 20 30 40

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 10 20 30 40

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

0 10 20 30 40

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

20 packets

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

all packets

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

164
Figure 6-36. Zoomed TCP sequence trace, before handoff, DDT≈11s

Figure 6-37. Zoomed TCP sequence trace, after handoff, DDT≈11s

43.6

43.7

43.8

43.9

44.0

44.1

44.2

44.3

10.0 10.1 10.2 10.3 10.4 10.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment sent

43.6

43.7

43.8

43.9

44.0

44.1

44.2

44.3

10.0 10.1 10.2 10.3 10.4 10.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

43.6

43.7

43.8

43.9

44.0

44.1

44.2

44.3

10.0 10.1 10.2 10.3 10.4 10.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

retransmit

43.6

43.7

43.8

43.9

44.0

44.1

44.2

44.3

10.0 10.1 10.2 10.3 10.4 10.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

43.6

43.7

43.8

43.9

44.0

44.1

44.2

44.3

10.0 10.1 10.2 10.3 10.4 10.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

43.6

43.7

43.8

43.9

44.0

44.1

44.2

44.3

10.0 10.1 10.2 10.3 10.4 10.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack seen

43.6

43.7

43.8

43.9

44.0

44.1

44.2

44.3

10.0 10.1 10.2 10.3 10.4 10.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

43.6

43.7

43.8

43.9

44.0

44.1

44.2

44.3

22.0 22.1 22.2 22.3 22.4 22.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment sent

43.6

43.7

43.8

43.9

44.0

44.1

44.2

44.3

22.0 22.1 22.2 22.3 22.4 22.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

43.6

43.7

43.8

43.9

44.0

44.1

44.2

44.3

22.0 22.1 22.2 22.3 22.4 22.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

retransmit

43.6

43.7

43.8

43.9

44.0

44.1

44.2

44.3

22.0 22.1 22.2 22.3 22.4 22.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

43.6

43.7

43.8

43.9

44.0

44.1

44.2

44.3

22.0 22.1 22.2 22.3 22.4 22.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

43.6

43.7

43.8

43.9

44.0

44.1

44.2

44.3

22.0 22.1 22.2 22.3 22.4 22.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack seen

43.6

43.7

43.8

43.9

44.0

44.1

44.2

44.3

22.0 22.1 22.2 22.3 22.4 22.5

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

165
ment, such as a server cluster described in Chapter 4. The testbed for these mea-

surements consists of an IBM T22 ThinkPad laptop with 1GHz Pentium III CPU,

512MB RAM, and 100Mbits Intel Pro/100 SP ethernet NIC, four IBM rack mounted

Netfinity 4500R servers, each with dual 933MHz Pentium III CPU, 512MB RAM,

and 1Gbits Intel Pro/1000MT ethernet NIC, as illustrated in Figure 6-38. All

machines are running LINUX kernel version 2.4.20.

We present the handoff performance of our integrated system by migrating an

apache web server from server1 to server2 while it’s streaming an RealVideo 8 clip

to an mplayer application on a client machine, either client1 or client2, through del-

egate [4] version 8.9.2, a popular general purpose application level proxy, on the

proxy machine.

The same applications and RealVideo clip as those we used in client machine

handoff in Section 6.1.1 are used in the server handoff performance tests. The dif-

ferences are:

Figure 6-38. Server handoff with process migration testbed

Netgear
GS105 NFS

server1
(with MOVE & Zap)

server2
(with MOVE & Zap)

proxy
(with MOVE)

client2

1 Gbit link

100 Mbit link

Campus
WAN

client1

166
• The mplayer client is instructed to connect to the delegate proxy, which in

turn forwards the connection to the apache web server.

• The apache web server is migrated by checkpointing it to an NFS mounted

storage on server1 and restarting it on server2. Note that in this case we do

not have precise control on how long the server is “disconnected” from the

network. Instead, we restart the server process on server2 immediately

after it is checkpointed on server1. The entire procedure takes roughly 2

seconds, counting checkpointing, restarting, and paging through NFS.

We also study two cases: (1) the mplayer client1 is connected to the delegate proxy

through a WAN as the one we tested in Section 6.1.1.1; (2) the mplayer client2 is

connected directly to the delegate proxy through a 1Gbit link. In both cases, the

proxy and the servers are connected through 1Gbit links, as shown in Figure 6-38.

Packet traces for both the client-proxy connection and the proxy-server connection

are captured on the proxy using tcpdump and analyzed using tcptrace.

6.1.3.1 Handoff with a WAN client, DDT≈2s

We again first present, in Figure 6-39 through Figure 6-42, the TCP sequence trace

and throughput for the entire trace of the playback for both the client-proxy con-

nection and the proxy-server connection. Note that both connections playback at

roughly the same rate. The client-proxy playback has a delay of about 3-4 seconds

relative to the proxy-server playback. This is due to the initial startup time (e.g.,

loading codec, initializing window system, etc.) of the mplayer client. Also note that

the server handoff is completely transparent to the client-proxy connection, as

167
indicated by its throughput graph. The proxy-server connection, on the other

hand, is perceived by tcptrace as two separate connection before and after migra-

tion due to the change of server IP address.

We now zoom into the small boxes indicated in the TCP sequence trace graphs

(Figure 6-39 and Figure 6-40) for both connections. From Figure 6-43, we can see

that the client-proxy connection never perceived the handoff due to buffering at

the proxy; we also did not notice any visual disruption in the playback on the cli-

ent. For the proxy-server connection shown in Figure 6-44, the interesting points

to note are:

• At about 35.2s, the proxy receives a zero-window probe from the server

since the ack sent by the proxy at around 35s advertises a zero window.

Figure 6-39. Entire download TCP sequence trace, client-proxy, DDT≈2s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment sent

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack seen

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

168
Figure 6-40. Entire download TCP sequence trace, proxy-server, DDT≈2s

Figure 6-41. Entire download TCP throughput, client-proxy, DDT≈2s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment received

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack sent

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

zero window probe received

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

20 packets

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

all packets

169
Figure 6-42. Entire download TCP throughput, proxy-server, DDT≈2s

Figure 6-43. Zoomed TCP sequence trace, client-proxy, DDT≈2s

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

20 packets

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

all packets

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01

34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment sent

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01

34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01

34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack seen

170
This is also the last packet the proxy receives from the server before the

server is checkpointed. While invisible from the figure but appeared in the

raw packet trace, at 35.2s immediately after receiving the zero-window

probe, the proxy responds with an ack. However, that ack still advertises a

zero window. Later, at 35.9s, the proxy sends another ack to report a non-

zero window; but at this time the server is already checkpointed so the ack

is lost. Note that TCP acks are not sent reliably.

• At 37.4, the server is restarted and sends another zero window probe,

which carries H2O’s HANDOFF message. The proxy responds with a

much bigger window than the one advertised at 35.9s since more data has

been delivered to the client during the time the server is being check-

pointed and restarted. And the server immediate starts to send as much as

Figure 6-44. Zoomed TCP sequence trace, proxy-server, DDT≈2s

1.04

1.05

1.06

1.07

1.08

1.09

1.10

1.11

1.12

1.13

1.14

1.15

34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment received

1.04

1.05

1.06

1.07

1.08

1.09

1.10

1.11

1.12

1.13

1.14

1.15

34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

1.04

1.05

1.06

1.07

1.08

1.09

1.10

1.11

1.12

1.13

1.14

1.15

34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

1.04

1.05

1.06

1.07

1.08

1.09

1.10

1.11

1.12

1.13

1.14

1.15

34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

1.04

1.05

1.06

1.07

1.08

1.09

1.10

1.11

1.12

1.13

1.14

1.15

34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack sent

1.04

1.05

1.06

1.07

1.08

1.09

1.10

1.11

1.12

1.13

1.14

1.15

34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

1.04

1.05

1.06

1.07

1.08

1.09

1.10

1.11

1.12

1.13

1.14

1.15

34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

zero window probe received

1.04

1.05

1.06

1.07

1.08

1.09

1.10

1.11

1.12

1.13

1.14

1.15

34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

171
it can to fill up the window.

6.1.3.2 Handoff with a LAN client, DDT≈2s

Figure 6-45 through Figure 6-48 present the TCP sequence trace and throughput of

the entire playback session for both the client-proxy connection and the proxy-

server connection in the all gigabit LAN testbed. The characteristics of the handoff

behavior are rather similar to those in the WAN test presented in the previous sec-

tion, except that the delay of client-proxy playback relative to proxy-server play-

back is roughly 2-3 seconds. The shorter delay is due to the faster initial startup

time of the mplayer on the client2 machine.

Figure 6-49 and Figure 6-50 present the zoomed view of the handoff TCP sequence

trace of the client-proxy connection and proxy-server connection, respectively.

Figure 6-45. Entire download TCP sequence trace, client-proxy, DDT≈2s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment sent

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack seen

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

172
Figure 6-46. Entire download TCP sequence trace, proxy-server, DDT≈2s

Figure 6-47. Entire download TCP throughput, client-proxy, DDT≈2s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment received

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack sent

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

zero window probe received

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

20 packets

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

all packets

173
Figure 6-48. Entire download TCP throughput, proxy-server, DDT≈2s

Figure 6-49. Zoomed TCP sequence trace, client-proxy, DDT≈2s

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

20 packets

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

all packets

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01

33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment sent

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01

33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01

33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack seen

174
Again, the behavior is very similar to that in the WAN test so we do not repeat the

discussion. This comes as no real surprise since the dynamic part of the test, migra-

tion of the server process behind the proxy, is the same for both cases.

6.1.4 Handoff “ping-pong” stress test

The handoff “ping-pong” stress test is conducted on the same testbed as that for

the client machine migration on a LAN shown in Figure 6-1b. However, instead of

using mplayer, we use wget to fetch a very large file from the apache server and the

“ping-pong” migration is conducted as follows:

• wget on the client machine with IP1 starts downloading the large file

• after 5 seconds, the interface IP address is changed to IP2

Figure 6-50. Zoomed TCP sequence trace, proxy-server, DDT≈2s

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.10

1.11

1.12

33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

segment received

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.10

1.11

1.12

33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.10

1.11

1.12

33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

receiver window

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.10

1.11

1.12

33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.10

1.11

1.12

33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

ack sent

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.10

1.11

1.12

33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.10

1.11

1.12

33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

zero window probe received

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.10

1.11

1.12

33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

175
• for the next 60 or so seconds, the interface IP address is switched between

IP1 and IP2 with a varying interval of 10 seconds, 5 seconds, and 1 second

between each switch. In other words, with 10 seconds interval, 6 switches

are made, with 5 seconds interval, 12 switches are made, and with 1 second

interval, 60 switches are made

• at the end of the “ping-pong” switches, the download is continued for

another 5 seconds before it is stopped

The test results are shown in Figure 6-51. Note that since it takes roughly 20ms to

change the IP address of client’s NIC (during which time the client is disconnected

from the network), the total elapsed time of a test increases as the rate of switch

increases. But for all tests, the total connected time of the client should be roughly

the same 5+60+5=70 seconds.

As shown in the figure, at a switch rate of once every 10 seconds, the impact of the

handoffs is virtually invisible. Even at a switch rate of once every second, the

impact of the handoffs is very small, with a decrease of about 1MB in the total bytes

transferred at the end of the test comparing to the case of no handoff.

6.1.5 Handoff for connection-less transport protocols

Finally, we test MOVE’s handoff support for connection-less transport protocols,

UDP in this case. We again use the same testbed as that for client machine handoff

on a LAN shown in Figure 6-1b. However, instead of using mplayer client and

apache server, we use openRTSP [15] version 2004.06.02 client to “play” an MPEG-

4 encoded video from Darwin streaming server [3] version 4.1.3 over RTP. Similar

176
to the HTTP video playback test for client machine handoff described in

Section 6.1.1, we “play” the video for about 30 seconds, change the IP address of

the client’s NIC, and then let the playback continue for about another 30 seconds.

Note that a RTP session actually consists of two connections, one is a control con-

nection over TCP known as RTCP (RTP Control Protocol), the other is a data “con-

nection” over UDP. Both are migrated simultaneously when the client machine is

migrated but our focus in this section is on the UDP “connection”.

Since UDP packets do not have sequence numbers, we cannot plot sequence

number trace like we did for TCP packets. Instead, we plot the cumulative bytes

received at the client for the entire playback session, which is shown in Figure 6-

52. The UDP throughput is shown in Figure 6-53. The handoff shows no visible

Figure 6-51. Handoff “ping-pong” stress test on a LAN

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

no handoff

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

every 10 sec.

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

every 5 sec.

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

every 1 sec.

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80

S
eq

ue
nc

e
nu

m
be

r
(x

 1
06)

Time (seconds)

177
impact on the playback.

Figure 6-54 shows the zoomed view of the handoff indicated by the small box in

Figure 6-52. We see that the handoff lasts about 150ms, starting at around 30.17s

when the laptop is disconnected from the network and ending at around 30.32s

when the laptop is reconnected to the network. The first message from the client to

the server at 30.32s carries the MOVE HANDOFF protocol message. Note that

since we are counting cumulative bytes received at the client, those lost packets

during the 150ms handoff are not reflected in the figure.

6.1.6 Migrate popular real world applications

To conclude the handoff performance measurement section, we test the migration

capability of our MOVE system with a suite of popular real world LINUX applica-

Figure 6-52. Entire playback UDP byte counts, DDT≈150ms

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60 70

B
yt

es
 R

ec
ei

ve
d

(x
 1

06)

Time (seconds)

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60 70

B
yt

es
 R

ec
ei

ve
d

(x
 1

06)

Time (seconds)

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60 70

B
yt

es
 R

ec
ei

ve
d

(x
 1

06)

Time (seconds)

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60 70

B
yt

es
 R

ec
ei

ve
d

(x
 1

06)

Time (seconds)

178
Figure 6-53. Entire playback UDP throughput, DDT≈150ms

Figure 6-54. Zoomed UDP byte counts, DDT≈150ms

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

20 packets

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

all packets

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
)

Time (seconds)

1.20

1.21

1.22

1.23

1.24

1.25

1.26

1.27

1.28

1.29

1.30

29.5
29.6

29.7
29.8

29.9
30.0

30.1
30.2

30.3
30.4

30.5
30.6

30.7
30.8

30.9
31.0

B
yt

es
 r

ec
ei

ve
d

(x
 1

06)

Time (seconds)

1.20

1.21

1.22

1.23

1.24

1.25

1.26

1.27

1.28

1.29

1.30

29.5
29.6

29.7
29.8

29.9
30.0

30.1
30.2

30.3
30.4

30.5
30.6

30.7
30.8

30.9
31.0

B
yt

es
 r

ec
ei

ve
d

(x
 1

06)

Time (seconds)

1.20

1.21

1.22

1.23

1.24

1.25

1.26

1.27

1.28

1.29

1.30

29.5
29.6

29.7
29.8

29.9
30.0

30.1
30.2

30.3
30.4

30.5
30.6

30.7
30.8

30.9
31.0

B
yt

es
 r

ec
ei

ve
d

(x
 1

06)

Time (seconds)

HANDOFF

179
tions, including:

• telnet client and server (standalone and xinetd)

• ftp client and server (standalone and xinetd), both active and passive modes

• ssh client and server

• mozilla/netscape/opera client and apache/zeus server

• Ximian evolution client and qpopper/sendmail server

• slrn client and innd server

• VNC thin client and VNC server

• remote X client and X server

• mplayer/realplay client and Darwin/Helix server

All the above applications work over a virtualized connection right out of the box.

We are able to migrate live connections created by all the above applications and

the connections stay alive as if nothing happened. None of the applications, except

ftp, requires us to completely hide the migration by exposing the virtual address.

We are glad to see that these representative applications behave as we have

expected. That is, rather than relying on transport connection properties for their

application logic, they use the transport protocol solely for the purpose of trans-

porting data.

6.2 Scalability Tests

We perform scalability tests in a proxy-base server cluster environment using auto-

bench [92] version 2.1.1, a Perl script wrapper for httperf [94] version 0.8, with the

180
same testbed in Figure 6-38 that we used for server process handoff tests. We run

autobench client on the client2 machine and apache web server on the server1 and

server2 machines. We run delegate on the proxy machine to evenly distribute the

connections from the autobench client to the two apache servers. The client1 machine

is not used. We perform two scalability tests, one is scalability relative to the

number of simultaneous connections and the other is scalability relative to the rate

of new connections, for three different test configurations: Vanilla, MOVE1, and

MOVE2. The Vanilla configuration is a stock LINUX system without MOVE loaded

into the kernel. The MOVE1 and MOVE2 are configurations with MOVE loaded.

On MOVE1, no connections are migrated and hence only connection virtualization

is performed; on MOVE2, all connections are migrated and hence both connection

virtualization and virtual-physical mapping are performed.

6.2.1 Number of simultaneous connections

For scalability test relative to the number of simultaneous connections, a number

of connections are opened and the same number of requests are sent through each

connection. Each request asks for a file of size 4KBytes which is locally available on

each server, i.e., no NFS is involved. The total number of requests over all connec-

tions remains a constant of 1048576 (220) for each test run. For our testbed, this

roughly translates into 5 minutes for each test run. We used HTTP 1.1 persistent

connection in this test in order to be able to measure migrated connections for the

MOVE2 configuration.

Figure 6-55 shows the throughput test. From the figure, MOVE1 has about at most

181
Figure 6-55. Throughput vs. number of connections

Figure 6-56. Latency vs. number of connections

 105

 110

 115

 120

 125

 130

 16 32 64 128 256 512 1024

T
hr

ou
gh

tp
ut

 (
M

bi
ts

/s
)

Simultaneous connections

Vanilla

 105

 110

 115

 120

 125

 130

 16 32 64 128 256 512 1024

T
hr

ou
gh

tp
ut

 (
M

bi
ts

/s
)

Simultaneous connections

MOVE1

 105

 110

 115

 120

 125

 130

 16 32 64 128 256 512 1024

T
hr

ou
gh

tp
ut

 (
M

bi
ts

/s
)

Simultaneous connections

MOVE2

 0

 10

 20

 30

 40

 50

 16 32 64 128 256 512 1024

La
te

nc
y

(m
s)

Simultaneous connections

MOVE2

 0

 10

 20

 30

 40

 50

 16 32 64 128 256 512 1024

La
te

nc
y

(m
s)

Simultaneous connections

MOVE1

 0

 10

 20

 30

 40

 50

 16 32 64 128 256 512 1024

La
te

nc
y

(m
s)

Simultaneous connections

Vanilla

182
1.1Mbits/second overhead over Vanilla, and MOVE2 has about at most 1.8Mbits/

second overhead over Vanilla. Figure 6-56 shows the latency test, in which MOVE1

has about at most 0.8ms overhead over Vanilla and MOVE2 has about at most

1.1ms overhead over Vanilla. However, the important thing to note is that, for both

MOVE1 and MOVE2, the throughput and latency overhead do not increase after

the proxy has been overloaded at around 256 simultaneous connections.

6.2.2 Rate of new connections

For scalability relative to the rate of new connections, connections are generated at

certain rate and the rate remains constant for 5 minutes. Each connection sends 300

requests, each asking for a file of size 4Kbytes available locally on each server. So

again no NFS is involved. Note that for this test, we do not measure for the MOVE2

configuration since each connection doesn’t last long enough to be migrated.

Figure 6-57 shows that the throughput overhead of MOVE1 over Vanilla is at most

about 5Mbits/second. Figure 6-58 shows that the latency overhead of MOVE1

over Vanilla is at most about 4.4ms. Again note that both throughput and latency

overhead do not increase after the proxy has been overloaded at the rate of around

128 connections per second.

6.3 Connection Virtualization and Mapping
Overhead

We measure the virtualization and mapping overhead of the CELL abstraction

employed by MOVE. The overhead is measured using a micro benchmark pro-

183
Figure 6-57. Throughput vs. rate of connections

Figure 6-58. Latency vs. rate of connections

 30

 40

 50

 60

 70

 80

 90

 100

 110

 32 64 128 256 512 1024

T
hr

ou
gh

tp
ut

 (
M

bi
ts

/s
)

Rate (Connections/s)

Vanilla

 30

 40

 50

 60

 70

 80

 90

 100

 110

 32 64 128 256 512 1024

T
hr

ou
gh

tp
ut

 (
M

bi
ts

/s
)

Rate (Connections/s)

MOVE1

 80

 90

 100

 110

 120

 130

 140

 32 64 128 256 512 1024

La
te

nc
y

(m
s)

Rate (Connections/s)

MOVE1

 80

 90

 100

 110

 120

 130

 140

 32 64 128 256 512 1024

La
te

nc
y

(m
s)

Rate (Connections/s)

Vanilla

184
gram netperf [72] version 2.2pl4 on two types of systems. One system, which we call

the laptop system, consists of a pair of IBM ThinkPad 770 laptops, each with a

233MHz Pentium CPU, 160MB RAM, and an 100Mbits LINKSYS PCM200 ethernet

PCCard. The laptop system represents a system with low computing power. The

other system, which we call the server system, consists of a pair of rack mounted

IBM Netfinity 4500R servers, each with dual 933MHz Pentium III CPU, 512MB

RAM, and an 1Gbits Intel Pro/1000MT ethernet NIC. The server system represents

a system with high computing power. All machines are running LINUX kernel

version 2.4.20. The two systems are illustrated in Figure 6-59. For both systems, we

run netperf client and server and measure network I/O in terms of throughput,

latency, CPU utilization, and connection setup for the same three different config-

urations, Vanilla, MOVE1, and MOVE2, that we used in the scalability tests in

Section 6.2.

6.3.1 Throughput

The throughput experiment simply measures the throughput achieved when

sending messages of varying sizes as fast as possible from the client to the server.

Figure 6-60 and Figure 6-61 show the throughput overhead for the two systems we

Figure 6-59. MOVE virtualization and mapping overhead testbed

(a) laptop system (b) server system

netperf
client

netperf
server

233MHz CPU
160MB RAM

233MHz CPU
160MB RAM

dual 933MHz CPU
512MB RAM

dual 933MHz CPU
512MB RAM

100Mbits 1Gbits

netperf
server

netperf
client

185
tested, each with three configurations. We can see that in both the laptop and server

systems, MOVE1 performs nearly identically to Vanilla. In the laptop system,

throughput overhead is about 0.45Mbits/second, while in the server system, the

overhead is about 1.3Mbits/second. This also shows that the overhead due to the

exchanging of Diffie-Hellman public key and connection label is rather insignifi-

cant. MOVE2 shows the throughput overhead due to the virtual-physical map-

ping, i.e., address translation and interface redirection, which is at most around

3.3Mbits/second in the laptop system, and 11.8Mbits/second in the server system.

6.3.2 Latency

The latency experiment measures the inverse of the transaction rate, where a trans-

action is the exchange of a request message of size 128 bytes and a reply message

Figure 6-60. Throughput overhead, laptop system

 30

 40

 50

 60

 70

 80

 90

 32 64 128 256 512 1024 2048 4096

T
hr

ou
gh

tp
ut

 (
M

bi
ts

/s
)

Message size (bytes)

Vanilla

 30

 40

 50

 60

 70

 80

 90

 32 64 128 256 512 1024 2048 4096

T
hr

ou
gh

tp
ut

 (
M

bi
ts

/s
)

Message size (bytes)

MOVE1

 30

 40

 50

 60

 70

 80

 90

 32 64 128 256 512 1024 2048 4096

T
hr

ou
gh

tp
ut

 (
M

bi
ts

/s
)

Message size (bytes)

MOVE2

186
of varying sizes between the client and the server over a single connection.

Figure 6-62 and Figure 6-63 show the latency overhead for the two systems we

tested, each with three configurations. The results bear the same characteristic as

that for the throughput overhead. Performances for Vanilla and MOVE1 are again

rather indistinguishable, with a latency overhead of about 7.4 microseconds in the

laptop system and 6.7 microseconds in the server system. Latency overhead due to

the virtual-physical mapping in MOVE2 can be observed to be at most around 34.1

microseconds in the laptop system and 32.5 microseconds in the server system.

Note that, in the server system, there is a strange drop of latency above the reply

message size of 128 bytes. We determine that this unusual behavior is due to a

problem with the LINUX device driver for the Intel Pro/1000MT NIC that was

Figure 6-61. Throughput overhead, server system

 100

 200

 300

 400

 500

 600

 700

 800

 900

 32 64 128 256 512 1024 2048 4096

T
hr

ou
gh

tp
ut

 (
M

bi
ts

/s
)

Message size (bytes)

Vanilla

 100

 200

 300

 400

 500

 600

 700

 800

 900

 32 64 128 256 512 1024 2048 4096

T
hr

ou
gh

tp
ut

 (
M

bi
ts

/s
)

Message size (bytes)

MOVE1

 100

 200

 300

 400

 500

 600

 700

 800

 900

 32 64 128 256 512 1024 2048 4096

T
hr

ou
gh

tp
ut

 (
M

bi
ts

/s
)

Message size (bytes)

MOVE2

187
Figure 6-62. Latency overhead, laptop system

Figure 6-63. Latency overhead, server system

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 32 64 128 256 512 1024 2048 4096

R
ou

nd
 tr

ip
 ti

m
e

(u
s)

Message size (bytes)

MOVE2

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 32 64 128 256 512 1024 2048 4096

R
ou

nd
 tr

ip
 ti

m
e

(u
s)

Message size (bytes)

MOVE1

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 32 64 128 256 512 1024 2048 4096

R
ou

nd
 tr

ip
 ti

m
e

(u
s)

Message size (bytes)

Vanilla

 200

 250

 300

 350

 400

 450

 500

 550

 32 64 128 256 512 1024 2048 4096

R
ou

nd
 tr

ip
 ti

m
e

(u
s)

Message size (bytes)

MOVE2

 200

 250

 300

 350

 400

 450

 500

 550

 32 64 128 256 512 1024 2048 4096

R
ou

nd
 tr

ip
 ti

m
e

(u
s)

Message size (bytes)

MOVE1

 200

 250

 300

 350

 400

 450

 500

 550

 32 64 128 256 512 1024 2048 4096

R
ou

nd
 tr

ip
 ti

m
e

(u
s)

Message size (bytes)

Vanilla

188
used. While the behavior is unusual, it does not affect the key result shown, which

is the small relative performance difference between using stock LINUX and

MOVE.

6.3.3 CPU utilization

Figure 6-64 and Figure 6-65 show the CPU utilization overhead measured from the

throughput test on the server; results on the client are similar and omitted. We can

see that for both the laptop and the server systems, MOVE1 performs virtually the

same as Vanilla, with a CPU utilization overhead of about 331.2 microseconds/

Mbits in the laptop system and 39.8 microseconds/Mbits in the server system. The

CPU utilization overhead due to virtual-physical mapping in MOVE2 is at most

around 1814.4 microseconds/Mbits in the laptop system and 145 microseconds/

Mbits in the server system.

Figure 6-66 and Figure 6-67 show the CPU utilization overhead measured from the

latency test on the server; results on the client are similar and omitted. For both the

laptop and the server systems, MOVE1 again performs virtually the same as Vanilla,

with a CPU utilization overhead of about 4.7 microseconds per transaction in the

laptop system and 0.5 microseconds per transaction in the server system. The CPU

utilization overhead due to virtual-physical mapping in MOVE2 is at most around

17.1 microseconds per transaction in the laptop system and 2.1 microseconds per

transaction in the server system.

189
Figure 6-64. Throughput test CPU utilization overhead, laptop system

Figure 6-65. Throughput test CPU utilization overhead, server system

 10

 15

 20

 25

 30

 35

 32 64 128 256 512 1024 2048 4096

C
P

U
 u

til
iz

at
io

n
(m

s/
M

bi
ts

)

Message size (bytes)

MOVE2

 10

 15

 20

 25

 30

 35

 32 64 128 256 512 1024 2048 4096

C
P

U
 u

til
iz

at
io

n
(m

s/
M

bi
ts

)

Message size (bytes)

MOVE1

 10

 15

 20

 25

 30

 35

 32 64 128 256 512 1024 2048 4096

C
P

U
 u

til
iz

at
io

n
(m

s/
M

bi
ts

)

Message size (bytes)

Vanilla

 1

 2

 3

 4

 5

 6

 32 64 128 256 512 1024 2048 4096

C
P

U
 u

til
iz

at
io

n
(m

s/
M

bi
ts

)

Message size (bytes)

MOVE2

 1

 2

 3

 4

 5

 6

 32 64 128 256 512 1024 2048 4096

C
P

U
 u

til
iz

at
io

n
(m

s/
M

bi
ts

)

Message size (bytes)

MOVE1

 1

 2

 3

 4

 5

 6

 32 64 128 256 512 1024 2048 4096

C
P

U
 u

til
iz

at
io

n
(m

s/
M

bi
ts

)

Message size (bytes)

Vanilla

190
Figure 6-66. Latency test CPU utilization overhead, laptop system

Figure 6-67. Latency test CPU utilization overhead, server system

 100

 150

 200

 250

 300

 350

 400

 32 64 128 256 512 1024 2048 4096

C
P

U
 u

til
iz

at
io

n
(u

s/
tr

an
sa

ct
io

n)

Message size (bytes)

MOVE2

 100

 150

 200

 250

 300

 350

 400

 32 64 128 256 512 1024 2048 4096

C
P

U
 u

til
iz

at
io

n
(u

s/
tr

an
sa

ct
io

n)

Message size (bytes)

MOVE1

 100

 150

 200

 250

 300

 350

 400

 32 64 128 256 512 1024 2048 4096

C
P

U
 u

til
iz

at
io

n
(u

s/
tr

an
sa

ct
io

n)

Message size (bytes)

Vanilla

 15

 20

 25

 30

 35

 40

 45

 32 64 128 256 512 1024 2048 4096

C
P

U
 u

til
iz

at
io

n
(u

s/
tr

an
sa

ct
io

n)

Message size (bytes)

MOVE2

 15

 20

 25

 30

 35

 40

 45

 32 64 128 256 512 1024 2048 4096

C
P

U
 u

til
iz

at
io

n
(u

s/
tr

an
sa

ct
io

n)

Message size (bytes)

MOVE1

 15

 20

 25

 30

 35

 40

 45

 32 64 128 256 512 1024 2048 4096

C
P

U
 u

til
iz

at
io

n
(u

s/
tr

an
sa

ct
io

n)

Message size (bytes)

Vanilla

191
6.3.4 Connection setup

The connection setup experiment is the same as the latency experiment except that

a new connection is used for every request/response transaction. This experiment

simulates the interaction between a client and a server in which many short-lived

connections are opened and closed. Figure 6-68 and Figure 6-69 show the TCP con-

nection setup overhead for Vanilla and MOVE1 in the two systems we tested. Note

that since connection setup occurs before migration, there is no mapping overhead

associated with connection setup, therefore this measurement is not applicable to

MOVE2. This is the test that measures the overhead of exchanging Diffie-Hellman

public key and connection label. From the figure we can see that the connection

setup overhead is at most around 26.2 transactions per second in the laptop system

and 19 transactions per second in the server system. In the server system, due to the

same Intel Pro/1000MT NIC LINUX driver problem as that in the latency test, we

also see a strange increase of connection rate above the reply message size of 128

bytes.

6.3.5 Overhead in proxy-based environments

We finally repeat the micro benchmark for measuring virtualization and mapping

overhead for proxy-based environments using the same testbed in Figure 6-38 that

we used for server process handoff tests. We run netperf client on the client2

machine and netperf server on the server2 machine. We run delegate on the proxy

machine and it forwards all connections from the netperf client to the netperf server.

Client1 and server1 machines are not used in this test.

192
Figure 6-68. TCP connection setup overhead, laptop system

Figure 6-69. TCP connection setup overhead, server system

 350

 400

 450

 500

 550

 600

 650

 700

 750

 32 64 128 256 512 1024 2048 4096

C
on

ne
ct

io
n

se
tu

p
(t

ra
ns

ac
tio

ns
/s

)

Message size (bytes)

Vanilla

 350

 400

 450

 500

 550

 600

 650

 700

 750

 32 64 128 256 512 1024 2048 4096

C
on

ne
ct

io
n

se
tu

p
(t

ra
ns

ac
tio

ns
/s

)

Message size (bytes)

MOVE1

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 32 64 128 256 512 1024 2048 4096

C
on

ne
ct

io
n

se
tu

p
(t

ra
ns

ac
tio

ns
/s

)

Message size (bytes)

Vanilla

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 32 64 128 256 512 1024 2048 4096

C
on

ne
ct

io
n

se
tu

p
(t

ra
ns

ac
tio

ns
/s

)

Message size (bytes)

MOVE1

193
Figure 6-70 shows the throughput overhead for the three configurations, Vanilla,

MOVE1, and MOVE2. We can see that MOVE1 performs very close to Vanilla, with

an overhead of about 1.4Mbits/second. MOVE2 shows the throughput overhead

due to the virtual-physical mapping, which is around 10Mbits/second.

Figure 6-71 shows the latency overhead for the three configurations. The results

bear the same characteristic as that for the throughput overhead. Performance dif-

ference between Vanilla and MOVE1 is about 9.4 microseconds; while latency due

to the virtual-physical mapping in MOVE2 can be observed to be around 40 micro-

seconds. Note the similar drop of latency above the reply message size of 128 bytes

we also observed in the server system in Section 6.3.2.

Figure 6-72 and Figure 6-73 show the CPU utilization overhead measured from

Figure 6-70. Throughput overhead

 100

 150

 200

 250

 300

 350

 400

 450

 500

 32 64 128 256 512 1024 2048 4096

T
hr

ou
gh

tp
ut

 (
M

bi
ts

/s
)

Message size (bytes)

Vanilla

 100

 150

 200

 250

 300

 350

 400

 450

 500

 32 64 128 256 512 1024 2048 4096

T
hr

ou
gh

tp
ut

 (
M

bi
ts

/s
)

Message size (bytes)

MOVE1

 100

 150

 200

 250

 300

 350

 400

 450

 500

 32 64 128 256 512 1024 2048 4096

T
hr

ou
gh

tp
ut

 (
M

bi
ts

/s
)

Message size (bytes)

MOVE2

194
both the throughput and the latency tests. From the throughput test, we can see

that MOVE1 again performed very close to Vanilla, with an overhead of about 44

microseconds/Mbits; and the CPU utilization overhead due to virtual-physical

mapping in MOVE2 is around 150 microseconds/Mbits. From the latency test, we

can observe that the CPU overhead due to virtualization in MOVE1 is about 0.3

microseconds per transaction; and the CPU utilization overhead due to virtual-

physical mapping in MOVE2 is fewer than 2 microseconds per transaction.

Figure 6-74 shows the TCP connection setup overhead for Vanilla and MOVE1.

Note again that since connection setup occurs before migration, there is no virtual-

physical mapping overhead associated with connection setup, therefore this mea-

surement is not applicable to MOVE2. From the figure we can see that the over-

Figure 6-71. Latency overhead

 400

 500

 600

 700

 800

 900

 1000

 32 64 128 256 512 1024 2048 4096

R
ou

nd
 tr

ip
 ti

m
e

(u
s)

Message size (bytes)

MOVE2

 400

 500

 600

 700

 800

 900

 1000

 32 64 128 256 512 1024 2048 4096

R
ou

nd
 tr

ip
 ti

m
e

(u
s)

Message size (bytes)

MOVE1

 400

 500

 600

 700

 800

 900

 1000

 32 64 128 256 512 1024 2048 4096

R
ou

nd
 tr

ip
 ti

m
e

(u
s)

Message size (bytes)

Vanila

195
Figure 6-72. CPU utilization overhead, throughput test

Figure 6-73. CPU utilization overhead, latency test

 1000

 2000

 3000

 4000

 5000

 6000

 32 64 128 256 512 1024 2048 4096

C
P

U
 u

til
iz

at
io

n
(u

s/
M

bi
ts

)

Message size (bytes)

MOVE2

 1000

 2000

 3000

 4000

 5000

 6000

 32 64 128 256 512 1024 2048 4096

C
P

U
 u

til
iz

at
io

n
(u

s/
M

bi
ts

)

Message size (bytes)

MOVE1

 1000

 2000

 3000

 4000

 5000

 6000

 32 64 128 256 512 1024 2048 4096

C
P

U
 u

til
iz

at
io

n
(u

s/
M

bi
ts

)

Message size (bytes)

Vanilla

 20

 25

 30

 35

 40

 45

 50

 32 64 128 256 512 1024 2048 4096

C
P

U
 u

til
iz

at
io

n
(u

s/
tr

an
sa

ct
io

n)

Message size (bytes)

MOVE2

 20

 25

 30

 35

 40

 45

 50

 32 64 128 256 512 1024 2048 4096

C
P

U
 u

til
iz

at
io

n
(u

s/
tr

an
sa

ct
io

n)

Message size (bytes)

MOVE1

 20

 25

 30

 35

 40

 45

 50

 32 64 128 256 512 1024 2048 4096

C
P

U
 u

til
iz

at
io

n
(u

s/
tr

an
sa

ct
io

n)

Message size (bytes)

Vanilla

196
head is fewer than 10 transactions per second. Note the similar increase of

transaction rate above the reply message size of 128 bytes we also observed in the

server system in Section 6.3.4.

6.4 Host and Service Location Mechanism Studies

We present our empirical studies of DDNS and SRV RR for their suitability as

mobile host and service location mechanisms.

6.4.1 Empirical DDNS studies

The first study we conduct is to find out the TTL of name records provided by

some service providers who offer DDNS for free; since the TTL determines how

long a host name to IP address mapping can be cached and therefore limits the fre-

Figure 6-74. TCP connection setup overhead

 350

 400

 450

 500

 550

 600

 650

 700

 32 64 128 256 512 1024 2048 4096

C
on

ne
ct

io
n

se
tu

p
(t

ra
ns

ac
tio

ns
/s

)

Message size (bytes)

Vanilla

 350

 400

 450

 500

 550

 600

 650

 700

 32 64 128 256 512 1024 2048 4096

C
on

ne
ct

io
n

se
tu

p
(t

ra
ns

ac
tio

ns
/s

)

Message size (bytes)

MOVE1

197
quency a host or service can migrate. We sign up with several free DDNS provid-

ers and our findings are shown in Table 6-2. We see that it’s possible to have TTLs

as low as 1 minute, which means that a mobile host or service can migrate as often

as once every minute. We deem it adequate for most applications.

We then study if TTLs lower than 60 seconds will be honored by DNS servers and

applications. To do this, we setup our own named [11] version 9.2.1 DNS server and

domain move.cs.columbia.edu as a child of the Columbia Computer Science Depart-

ment DNS server. Our named DNS server run on a Dell Dimension XPS R400 with

a 800MHz Pentium II CPU, 256MB RAM, and an 100Mbits 3Com 3c905B ethernet

NIC. We create name records such as foo.move.cs.columbia.edu on our DNS

server with TTLs set to 5 seconds or 0 seconds (no caching allowed) and use a suite

of popular network applications to resolve these names. The applications we use

for our studies are listed in Table 6-3. All the applications can resolve the updated

names according to the TTL setting. That is, with TTL=5 seconds, an update of the

host name to IP address mapping is reflected to the applications after 5 seconds;

and with TTL=0 second, an update is instantly reflected. For GUI based web

DDNS provider Name record TTL (seconds)

2mydns.org 60

dyndns.org 60

no-ip.org 60

blrf.net 300

myip.org 300

afraid.org 3600

Table 6-2. Name record TTL of some DDNS providers

198
browsers, we do have to restart the browser for it to correctly resolve the names;

simply pressing the “reload” button does not resolve the correct names since GUI

web browsers typically cache a page (independent of DNS caching) for a variable

amount of time, typically on the order of minutes.

6.4.2 Transparent SRV RR lookup measurements

Because no DDNS service providers support SRV RR lookup and update, we used

our own DNS server that we use for the DDNS TTL tests for the SRV RR related

tests as well. On the client side, we use our transparent SRV RR lookup mechanism

described in Section 5.6 in Chapter 5 with those applications in Table 6-3 that we

use for the DDNS TTL test. Again, all the applications can reach their services on

the correct host after the services are migrated and their corresponding SRV RR are

updated on our DNS server. Similar to the DDNS TTL tests in the previous section,

GUI web browsers need to be restarted to resolve the SRV RR to the correct host.

We also measure the performance overhead of the socket calls that are intercepted.

We compare the execution time, the time between when the function is entered

and when the function is exited, of the original socket calls with that of our version.

Category Application

remote login telnet, ssh

file transfer ftp

email pine, evolution, thunderbird

web browser lynx, netscape, mozilla, opera, firebird

media player mplayer, realplay, xmms

Table 6-3. Applications used for DDNS TTL test

199
The measurements are performed on an IBM ThinkPad T770 with a 233MHz Pen-

tium CPU, 160MB RAM, and an 100MBits LINKSYS PCM200 PCCard. The results

are shown in Table 6-4. We can see that our gethostbyname/getaddrinfo, getpeer-

name calls incur a very small amount of overhead. For connect, the overhead in a

LAN is fairly large, about 6ms; but this overhead stays constant in the WAN case.

The overhead is due to two trips to the local DNS server, one for SRV RR lookup,

one for current host name lookup returned by the SRV RR.

6.5 Summary

We have presented in this chapter various performance measurements, using both

application benchmarks and micro benchmarks, for our MOVE prototype imple-

mentation to demonstrate its feasibility. We showed that, with a variety of appli-

cations, endpoint migration mechanisms, network connectivity configurations,

and transport protocols, MOVE’s handoff protocol H2O imposes minimal impact

on the end-to-end connectivity perceived by the transport protocols and applica-

tions. Our scalability tests showed that MOVE virtualization and mapping over-

head stay constant with increased number of simultaneous connections or rate of

socket call original (ms) intercepted (ms)

gethostbyname 2.28 2.31

getaddrinfo 74.55 77.18

connect

LAN 0.47 6.49

WAN 95.41 101.59

getpeername 0.0086 0.0096

Table 6-4. Execution overhead of intercepted socket calls

200
new connections. We showed that MOVE’s virtualization overhead for stationary

connections is essentially negligible; and for migrated connections MOVE’s vir-

tual-physical mapping overhead is also very low. We finally presented our empir-

ical studies on the suitability of DDNS, along with the SRV RR, as the mechanism

for mobile host and service location.

201
7Related Work

This thesis has touched upon a few aspects of the broad mobile computing area

where many prior arts exist. These aspects include: mobile communication, hand-

off, service availability, and process migration. We survey these work in this chap-

ter. We first present, in Table 7-1, a summary of the difference between MOVE and

the prior arts, whose main deficiencies are indicated by the shaded cells in the

table. We then present more detailed account of each aspect in the rest of the chap-

ter.

7.1 Mobile Communication Architectures

A variety of approaches have been taken in previous work in providing commu-

nication mobility in current IP data networks. These approaches often work at a

particular layer in the protocol stack and can be loosely classified as network layer

solutions, transport layer solutions, application layer solutions, and split connec-

tion solutions. Despite the seemingly large variation of the mechanisms employed

by these approaches, their fundamental differences can be traced back to the very

mechanism that they use to address the key technical problems we described in

Chapter 2: state inconsistency, conflict, and synchronization. In the comparison

below, we first describe the general characteristics of each class of the solutions,

followed by a more detailed look at each individual solutions within the class.

202
Transparent Non-transparent

MOVE

Network layer
Transport

layer
Application

layer
Split

connectionMobileIP
MobileIP w/

handoff
extensions

Others

Fine-grain
and

unlimited
mobility

Fine-grain
migration

Yes No No No Yes Yes Yes

Process
migration
integration

Yes No No No No
Limiteda

or No

a. ROCKS/RACKS [139] supports checkpointing/restarting MPI based applications

No

Unlimited
mobility

Yes Yes Yes Yes Yes Yes No

Work across
NAT

Yes Limitedb

b. With RFC3519 extension [85], only works from no NAT to NAT

Limited No Yes or No No No

Secure and
flexible

migration

Migration
security

pre-com-
puted DH

IPsec IPsec
IPsec
or No

on-the-fly
DH

or No

on-the-fly
DH

or No

SOCKS
or No

Suspension/
resumption

Yes No No No No
Limitedc

or No

c. ROCKS/RACKS can prevent TCP from timing out but not applications

No

Easy
deploy-

ment

New infra-
structure

No Yes Yes Yes No No Yes

Backward
compatibility

Yes Yes Yes Yes Yes Yes Yes

Transport
change

No No No No Yes No Nod

d. While I-TCP [34] doesn’t modify TCP, it violates TCP end-to-end semantics

Transport
dependency

No No No No Yes Yes Yes

High
perfor-
mance

Connection
setup

overhead
Low Low Low

Low
to

High

Low
to

High
High

Low
to

High
Pre-move

I/O
overhead

Low Low Low
Low

to
Low+

Low High Lowe

e. Consider connection between mobile endpoint and MSR (mobility support router, for I-TCP)/proxy (for
MSOCKS [89]) only; same for post-move I/O overhead

Post-move
I/O

overhead
Low+

Low+
to

High

Low+
to

High
Low+ Low High Low

Handoff
latency

0.5 RTTf

f. RTT: round trip time between mobile endpoint and stationary endpoint or between mobile endpoint and home
agent (for MobileIP [71][104])

O(RTT)

intra-domain:
O(rttg)

inter-domain:
O(RTT)

g. rtt: round trip time between mobile endpoint and MAP (mobility anchor point, for handoff extension architec-
tures) or between client and proxy (for MSOCKS)

O(RTT) 1.5 or 2 RTT > 1.5 RTT

2.5 rtt
or

0.3-1.4
seconds

Table 7-1. Comparison of MOVE and other mobility solutions

203
7.1.1 Network layer solutions

Network layer solutions preserve connection states at both transport-and-above

layers and network-and-below layers across migration. Therefore they address the

inconsistency problem in a way similar to MOVE. However, their “virtual

namespace” is only provided to the entire host rather than individual connections.

Therefore they can only provide migration at the granularity of an entire host

rather than individual connections. Network layer solutions must also deal with

state conflict in the transport layer due to address and port reuse; and individual

solutions differ in the way they address this problem. None of the existing network

layer solutions addresses the cross address space synchronization problem, with

the exception of MobileIP, to which an extension has been proposed to partially

address the problem. Existing network layer solutions either do not address secu-

rity problem or rely on IPsec. And with the exception of MobileIP, none has pre-

sented studies on its handoff behavior.

MobileIP is the most well-known network layer mobility mechanism; recent ver-

sions [71][104] have consolidated various improvements to the original proposals

[38][70][103]. MobileIP supports its “virtual namespace” by assigning each host a

“home” IP address that is carried along with the host wherever it moves. It

resolves the conflict problem by requiring that the assignment of the home IP

address is permanent and non-reusable, which needs a global infrastructure. The

main problem with MobileIP, however, is the use of the home IP address for both

locating and tracking the host, which are two different issues. As a result, it man-

dates the requirement of additional network infrastructures (i.e., home/foreign

204
agents), which history has shown to be extremely difficult to deploy, even when

there is no need for them. For example, the most common mobile hosts today are

client machines that are never used as server machines, which means there was

never a problem of locating them; the mobility problem in this case is entirely just

the tracking problem. And we’ve shown that you don’t need any new network

infrastructure for tracking. The coupling of locating and tracking also results the

“triangle routing” (aka dog-leg routing) problem, which can be addressed [105]

but it adds even more complexity to the architecture. [85] proposes an extension to

partially address the synchronization problem in the case a mobile host moves

from a public network without a NAT to a private network behind a NAT. But the

solution requires more infrastructure support and has unresolved security issues.

MobileIP’s handoff performance is generally considered inadequate due to the

need for the mobile host to interact with the home agent on every move; its security

mechanism in the absence of IPsec, called return routability procedure, also adds

to infrastructure complexity and handoff delay.Therefore a large body of work has

been proposed to improve its handoff performance, which we discuss in the next

section.

A few other network layer solutions that use network address virtualization have

been previously considered [66][131][132][136]. [131][132] supports its “virtual

namespace” with a constant virtual IP (VIP) address that is set to be the initial

physical IP address of a host in its native network. However, they did not address

the conflict problem. [131][132] also employs a more complex virtual-physical

mapping mechanism that requires network infrastructure support and host OS

205
kernel changes. [66] describes a way to implement a MobileIP equivalent service

using its redirection mechanism. It shows how new connections are redirected but

does not prescribe a way to migrate existing connections. The same per host per-

manent home IP address “virtual namespace” is assumed to avoid the conflict. [66]

requires extra round trip delays to determine virtual-physical mapping for all con-

nection setup, regardless of wether a machine moves or not. [66] rewrites TCP

stack values which requires TCP/IP stack changes and makes it dependent on not

only TCP but also the TCP implementation as well. [136] employs reserved E-class

IP addresses as the VIP for its “virtual namespace”. This avoids conflict since the

E-class addresses are assumed to be never used as hosts’ physical IP addresses.

However, the limited number of usable E-class addresses causes a few problems:

(1) extra round trip delays to negotiate VIPs for all connection setup, regardless of

whether a machine moves or not; (2) possibility of conflict between VIPs since

there are more machines then the number of VIPs. [136] by default doesn’t address

this issue but rather rely on the low possibility of the conflict happening. It pro-

vides an option to reserve a static physical IP as the VIP to avoid the conflict, which

is equivalent to MobileIP’s permanent home IP address approach; and (3) com-

plexity of managing VIPs such as selection and garbage collection policies. None

of these approaches addresses the synchronization problem and presents studies

of their handoff behavior. Among them, only [136] considers security issues that

arise due to host mobility; it assumes IPsec which is not yet widely deployed.

ROAM [142] is a host mobility approach using a peer-to-peer overlay network

called i3. Communications on i3 are commenced with a rendezvous-based abstrac-

206
tion where all packets are of the form (id, data) and the id is location independent.

While the overlay network possesses interesting properties pertinent to mobility,

ROAM suffers from some of the same problems that MobileIP does. First ROAM

requires the deployment of i3 servers to form the overlay. Second, similar to

MobileIP’s home address, the id in i3 is used not only just for locating a mobile

host, but also for routing packets to the mobile host. The i3 overlay therefore has

the same problem of coupling the issues of host locating and connection tracking.

The efficiency of ROAM to support i3-unaware legacy applications is likely to

suffer because to transmit a packet, it must be converted from IP address

namespace to the i3 id namespace, routed on the overlay, and then converted back

from i3 id namespace to IP address space. The authors have suggested that one can

potentially use i3 only for control traffic (e.g., exchanging new IP addresses when

hosts move) but leave data traffic for the underlying physical network in order to

reduce the overhead. However, doing so also reduces the functionality of the

entire i3 overlay down to the equivalent of a DDNS.

[96] proposes an interesting approach that exploits the similarity between mobility

and multicasting. Unfortunately, a scalable multicast infrastructure does not yet

exist today.

7.1.2 Transport layer solutions

Transport layer solutions do not preserve all connection states at transport layer,

therefore the migration is no longer transparent to the transport protocols. As we

pointed out in Chapter 2, state inconsistency, conflict, and synchronization prob-

207
lems do not apply to non-transparent migration solutions. Instead, the mobility

functions are provided by modifying the transport protocol, TCP in this case, itself.

TCP-R [58], Migrate [121][122] and M-TCP [128] are transport layer solutions that

“re-synchronize” some of the TCP states (e.g., tuple, sequence number, etc.) at the

new location by modifying TCP on both endpoints. As a result, TCP-R, Migrate,

and M-TCP cannot be used with existing unmodified transport protocol stack

implementations. M-TCP also requires server application (the endpoint that

moves) change.

TCP-R describes two security modes, called optimistic and pessimistic approach.

The optimistic approach relies on TCP sequence number for rudimentary protec-

tion therefore is insecure. The pessimistic approach uses public key encryption and

the keys are exchanged at connection setup time, similar to the H2O Diffie-Hell-

man key exchange. However, the keys are exchanged using TCP options therefore

it supports TCP only; there are also no details given for the approach. The security

mechanism of Migrate is based on Elliptic Curve Diffie-Hellman key exchange but

the computation of secret key is performed per connection at connection setup

time, which results in high connection setup overhead. A connection certificate is

mentioned in M-TCP but no discussion on its use for security.

TCP-R and Migrate require 1.5 RTT for connection handoff while M-TCP requires

2 RTT. Although TCP-R is capable of individual connection handoff, it is designed

in the context of host migration and compared against MobileIP. Therefore, no

process migration is mentioned in TCP-R. Neither Migrate nor M-TCP is inte-

208
grated with process migration either. They rather assume that an “identical” pro-

cess already exists on the target host. This necessarily restricts them to

“transactional” type of applications where the application states for processing

individual transactions are easily duplicated. For example, an HTTP connection

through which a file is being requested can be migrated by simply recreating the

transport connection states at the “identical” process on the target host without

migrating any application states, as long as the same file is also available on the

target host.

Among the three solutions, only Migrate can work across NAT boundaries.

Emerging transport protocols such as SCTP (Stream Control Transmission Proto-

col) [127] have mobility-savvy features such as support for multihoming, which

allow an endpoint to use multiple IP addresses for a connection. An SCTP exten-

sion described in [126] further allows an endpoint to dynamically add and delete

IP addresses associated with a connection, therefore making SCTP a mobility

enabled transport protocol [114]. This is indeed a welcome sign that new transport

protocols have started to take mobility into consideration. Current SCTP mobility

support, however, has a few limitations:

• New IP addresses can be added only through an existing connection,

which means that the mobile endpoint must have simultaneous connec-

tions to the stationary endpoint from both the old and the new IP

addresses. In a network such as WiFi where one interface can only be asso-

ciated with one access point at a time, this requires the mobile endpoint

209
have at least two interfaces for mobility support.

• Since only IP addresses, not port numbers, can be dynamically changed for

a connection, SCTP mobility support cannot work across NAPT.

• SCTP mobility support does not address the security problem itself, but

rather leave it up to IPsec.

Note that MOVE can also readily take advantage of multihoming by transparently

migrating connection(s) from one interface to another as we’ve shown in

Section 6.1.1 in Chapter 6 when we migrated a connection between a WAN and a

LAN.

7.1.3 Application layer solutions

Application layer solutions do not preserve any connection states at transport

layer and therefore are also non-transparent migration solutions for which state

inconsistency, conflict, and synchronization problems do not apply, as we pointed

out in Chapter 2. Unlike transport layer solutions, however, the mobility functions

are provided not by modifying the transport protocols themselves but rather by

emulating the migration through closing the old connection and opening a new

one.

All application layer solutions, such as [98][109][139][141], are based on introduc-

ing a “shim” layer, generally a socket library wrapper, between the application

and the transport protocol (again TCP) to emulate the migration. Because in-flight

data, those that have been acknowledged by TCP but not yet delivered to the

application, can be lost due to closing the old connection, these solutions must

210
employ double-buffering and go-back-N (or similar) mechanisms to recover lost

in-flight data. These mechanisms essentially duplicate many of TCP’s functions

and create substantial network I/O performance overhead [139], not only for

migrated connections, but also for stationary connections as well.

Of these solutions, [141] and [109] do not address migration security issues. [98]

mentions a “seed” for migration authentication but no details are given. Only [139]

provides security protection for migrating connections, which is based on the

Diffie-Hellman key exchange. Like Migrate, it computes the shared secret key per

connection at connection setup time and has high connection setup overhead.

While none of these solutions presented studies of their handoff behavior, one can

infer that they will require at least 1.5 RTT in order to open a new connection. The

go-back-N for recovering lost in-flight data and authentication (if provided) will

add additional handoff delay.

[139] is integrated with MPICH [64] and supports checkpointing/restarting con-

nections for MPI [13] based applications. [141], [109], [98] are not integrated with

process migration. In addition, [98] is a pure Java [62] based socket library and sup-

ports connection migration for Java applications only.

Lastly, none of these solutions, or application layer solutions in general, can work

across NAT boundaries. This is because application layer solutions rely on the abil-

ity of the mobile endpoint, after it moves, to establish a new connection to the sta-

tionary endpoint. However, if the stationary endpoint is behind a NAT device,

211
which masquerades the IP address and port number of the stationary endpoint,

establishing a new connection is not always possible. For example, the stationary

endpoint may be a client behind a NAT device which initiates a connection to a

mobile server; after the server moves, it cannot connect back to the client due to the

NAT device.

7.1.4 Split connection solutions

I-TCP [34] splits a TCP connection between a mobile host (MH), which is assumed

to be on a wireless network, and a fixed host (FH), which is assumed to be on a

wired network, into two connections using a mobile support router (MSR), which

is a special base station with I-TCP support. The split is such that it’s transparent

to the FH but not transparent to the MH; much like the way NAT works. The split

of a connection offers two advantages:

• It separates TCP performance characteristics such as flow control and con-

gestion control on the wireless link from those on the wired link. The sepa-

ration is desirable because it allows separate control on the two vastly

different type of links. For example, a different version of TCP that is spe-

cially tuned for the wireless link such as [35][41] or even a non-TCP trans-

port protocol can be used between the MH and the MSR to improve the

performance of the overall connection.

• It allows the MSR to hide the movement of the MH from the FH by trans-

ferring TCP states and socket buffers of the MSR-FH connection to a new

MSR and reestablishing a new MH-MSR connection after the MH moves.

212
I-TCP, however, has a few serious drawbacks. First, it needs network infrastruc-

ture support for the MSR. Second, the MSR breaks the end-to-end TCP acknowl-

edgement semantics because it separates acknowledgements for the wireless MH-

MSR part and the wired MSR-FH part of the connection, i.e., the MSR acknowl-

edges packets sent from the FH to the MH before delivering them to the MH. As a

result, the MSR must buffer packets for the MH and can easily run out of buffer

space since the FH has no idea that it’s talking to a slow wireless MH. In other

words, the split connection is a double-edged sword. Third, every time the MH

changes the MSR, TCP states and socket buffers must be transparently transferred

to the new MSR. This is a rather complex task and requires careful kernel design

and networking code modification on the MSR. As shown in [34], transferring

large socket buffers (32KB) can take as long as 1.5 seconds, which severely impacts

its handoff performance. Note that large sockets buffers are needed to prevent the

MSR from running out of buffer space. Finally, I-TCP does not address migration

security and process migration issues, and is limited to client mobility only.

MSOCKS [89] is another split connection solution which is based on a proxy utiliz-

ing the TCP Splice [88] technique. A proxy transparently splices a single TCP con-

nection between a client and a server. It handles the disconnecting and

reconnecting of the client-proxy half while maintaining the proxy-server half

intact in the face of client migration. MSOCKS can be classified as transport layer

solution since TCP Splice is TCP specific. MSOCKS can also be classified as an

application layer solution. Because the client-proxy half connection is “migrated”

by closing the old one and opening a new one, the same way application layer

213
solutions “migrate” a connection. MSOCKS library must emulate the migration to

the client and the proxy must emulate the migration to the server. Therefore,

MSOCKS suffers from the same problems as those with application layer solu-

tions. Indeed, one can think of MSOCKS as another form of application layer solu-

tion, where the proxy plays the role of the socket library wrapper for the server.

Comparing to the socket library wrappers, the advantage of MSOCKS is that it

doesn’t have to touch the server. However, it requires kernel change on the proxy

and supports only client mobility. The scope of client mobility is also restricted to

the same proxy. MSOCKS relies on SOCKS [84] for its security and requires 2.5

RTT between the client and the proxy for handoff delay.

7.1.5 Summary

To summarize and as a comparison, MOVE is a transparent migration architec-

ture, similar to network layer solutions. Unlike network layer solutions, however,

MOVE’s virtual namespace extends to individual connections therefore MOVE

provides migration at the granularity of individual connections yet still remains

transport-independent. MOVE addresses state inconsistency, conflict, and syn-

chronization problems through a light-weight virtualization, privatization, and

labeling mechanism that requires no explicit management of virtual address space,

and incurs no delay to connection setup and no mapping when connections do not

move. MOVE handoff is secure and its delay is 0.5 RTT, i.e., a single one-way trip

between the two communication endpoints. MOVE is integrated with a general

purpose process migration mechanism that supports migration of legacy applica-

tions running on commodity OS without requiring changes to either the applica-

214
tions or the OS. To some extent, one may classify MOVE as a multi-layer solution

since the mechanisms for supporting the CELL namespace abstraction and H2O

handoff protocol happen at multiple layers, as illustrated in Figure 5-1 in

Chapter 5.

7.2 Handoff Mechanisms

Numerous approaches have been proposed to provide better handoff support for

the original MobileIP. These work follow the same general idea: introduce a MAP

(mobility anchor point) that is close to the mobile host (MH) so that traffic can be

redirected more quickly without involving the home agent (HA) when the MH

moves within the same micro-mobility domain under the MAP.

[51][69][82][123][137] are direct extension to the MobileIP, while [42][46][110]

define their own micro-mobility domain with proprietary routing protocols. We

give a brief description of these approaches. We note that all the approaches fall

back to MobileIP when the MH moves across MAPs.

7.2.1 Extensions to MobileIP

Low Latency Handoffs in MobileIPv4 [51] assumes the availability of an “advance

notice” from layer 2 before the current link is dropped; it also assumes the new for-

eign agent (FA) is known before the handoff. It suggests three ways for low-latency

layer 3 handoff. The first is called pre-registration, which registers the MH with the

new FA (nFA) through the old FA (oFA) before the layer 2 handoff. The second is

called post-registration, which sets up a tunnel between the oFA and the nFA to

215
forward traffic to the MH after it has moved the nFA but not yet registered. The

third combines both methods one and two. It performs the advance registration

and tunnel setup in parallel. If pre-registration can be completed before the layer

2 handoff, no forwarding is necessary; otherwise, traffic for the MH is forwarded

as specified in the post-registration method.

Fast Handovers for MobileIPv6 (FHMIPv6) [82] is essentially the low latency

handoffs for MobileIPv4, except that it always use the third method above even

when pre-registration is successful so the nFA can buffer in-flight packets tunneled

to it by the oFA during MH's layer 2 handoff. It also provides a simple way to

handle the case when the “advance notice” from layer 2 and the nFA are not avail-

able before the layer 2 handoff.

Hierarchical MobileIPv6 mobility management (HMIPv6) [123] organizes FAs into

a tree hierarchy and assigns each MH with two Care-of Addresses (CoA): a

regional CoA (RCoA) and an on-link CoA (LCoA). This allows an MH to perform

a “regional registration” [67] with the “crossover” FA, the lowest common ances-

tor of the oFA and the nFA. Essentially, the crossover FA, functioning as the MAP,

becomes the “local HA” for the MH which uses the RCoA as the “local home

address” for the MH and performs binding between the RCoA and the LCoA. The

original HA performs binding between the home address (HoA) and the RCoA.

When the MH moves within a domain under the same MAP, no binding update

by the HA is necessary since the RCoA does not change. This way, the registration

traffic is confined within a local domain, eliminating the delay of having to register

216
with a distant HA every time the MH moves.

S-MIP [69] combines HMIPv6 and FHMIPv6, adding a movement tracking compo-

nent that is not covered by FHMIPv6 and a hybrid handoff mechanism that is loss-

less. Movement tracking is done by adding a Decision Engine (DE) in the network

that maintains, through periodical feedback from access routers, a global view of

the connection states of any mobile devices in the domain, as well as their move-

ment pattern. The hybrid handoff mechanism is termed as “mobile node initiated

but network determined” since supposedly the MH has the best idea of when to

move and the network has the best idea of where to move. It relies on simultaneous

binding and knowledge of the nFA to allow packets to be bi-casted to both the oFA

and the nFA to prevent packet loss. However, as with all bi-cast schemes, it must

handle the packet duplicate and reordering problem created by the two separate

packet streaming to the MH: one is forwarded via the oFA, the other is directly

routed to the nFA. The proposed Synchronized-Packet-Simulcast (SPS) scheme

assumes some type of sequencing capability of access routers. This capability is

achieved by marking packets with a special bit and having the access routers main-

tain two separate buffers for the marked and unmarked packets.

[137] is the only approach that actually tries to make as little change to standard

MobileIP as possible. Unfortunately, their approach still requires adding a special

layer 2 bridge to connect the two WiFi networks between which an MH moves. By

default, the bridge does not forward traffic between the two networks since they

are two different layer 3 networks. Once an MH moves from one network to the

217
other, the bridge will “snoop” packets destined for the MH on the old network and

forward them to the new network. The bridge essentially functions as a hardware

tunnel between the oFA and nFA during the period of standard Mobile IP handoff.

It of course will only work in a broadcast network such as WiFi. And all networks

the MH will potentially visit must be connected by the special bridge.

7.2.2 Domain-based solutions

HAWAII [110], Cellular IP [42], and EMA [46] all share the same basic architecture

design, know as the domain-based architecture that separates the notion of micro-

mobility and macro-mobility. Each approach defines its own domain and provides

specialized routing and handoff signaling support for micro-mobility within the

domain. They all assume standard MobileIP for the macro-mobility across

domains. Their differences only lie in the details of how a path to an MH is setup

and the handoff procedure.

Within a HAWAII domain, traditional IP routers are extended with mobility sup-

port functions that handle specialized control messages to setup host-based routes

to MHs. A hierarchical structure of routers similar to that of HMIPv6 is employed

so path setup messages only travel as far up in the hierarchy as to the closest cross-

over router. Two path setup schemes are proposed. In the forwarding path setup

scheme, old base-station (oBS) forwards traffic to the new base-station (nBS) until

the crossover router starts to divert traffic directly to the nBS. In the non-forward-

ing path setup scheme, the crossover router simply diverts traffic (once it receives

the path setup control message) either by unicast to the nBS (if the MH is able to

218
communicate with multiple base-stations during handoff) or by bi-cast to both the

oBS and the nBS (if otherwise).

Within a Cellular IP domain, IP routers are replaced by special base-stations using

a hop-by-hop routing scheme that resembles to the layer 2 spanning-tree packet

forwarding scheme. The domain gateway periodically flood the network with a

beacon so the base-stations can build a spanning tree rooted at the gateway. Base-

stations maintain soft state routing cache to MHs by observing traffic from the

MHs to reduce explicit control messages. A special route-update packet is used by

MHs to immediately refresh the routing cache of upstream base-stations after it

moves. Two handoff procedures are described. In the Hard Handoff, the MN

simply sends a route-update packet to refresh the routing cache in the routers

between the nBS and the crossover router. In the Semisoft Handoff, it’s assumed

the MH is able to communicate with the nBS before losing connection to the oBS.

The MH will send a route-update message to the nBS before handoff so the nBS can

start the process of refresh routing cache towards the crossover router before the

MH arrives.

Within an EMA domain, a new routing algorithm called TORA (Temporally-

Ordered Routing Algorithm) is proposed that supports both prefix-based routing

for stationary base-stations and host-based routing for MH. The details of TORA

and how it is used to support handoff is presented in [46]. Two handoff proce-

dures, break-before-make (BBM) and make-before-break (MBB), are considered. In

both cases, a temporary tunnel between the oBS and nBS is attempted before the

219
MH breaks its connection to the oBS and the tunnel is torn down (if it was created)

after the MH makes its connection to the nBS. The tunnel is not really needed in

the case of MBB but is attempted anyway as a backup.

To summarize, existing solutions designed to improve MobileIP handoff perfor-

mance all require introducing complex functions in the network infrastructure.

Figure 7-1. Visual handoff comparison

MH

MH
MH

MHMH

MH

MHMH

MHMH

Internet

Crossover Mobile Router

Internet

HA

Internet

move

HA

CH

FA
FA

move

CH

FA
FA

(a) MobileIP without routing optimization (b) MobileIP with routing optimization

Internet

move

CH

HA

Gateway FA

move

CH

HA

(c) hierarchical MobileIP (with fast handover) (d) domain-based handoff

Internet

move

CH

(e) H2O handoff

data traffic

control traffic

control traffic (fast handover)

MAP (colored in red)

FA
FA

MR
MR

220
H2O, on the other hand, functions end-to-end completely within the communica-

tion endpoints. We present a visual comparison of these handoff solutions and

H2O in Figure 7-1. Note that the overlapping of data connection and control con-

nection in H2O illustrates the in-band signaling of H2O.

7.2.3 Others

[129] describes a domain-based handoff scheme in which the MAP multicasts traf-

fic to the base-station where the MH is currently connected, as well as all the neigh-

boring base-stations; although only the base-station where the MH is currently

connected actively forwards packets to the MH using unicast. The idea is to pre-

load neighboring base-stations with packets destined for the MH so that if it moves

to any one of them, there will be a few packets buffered at the base-station for the

MH therefore reducing packet loss and handoff delay.

FASTMIP [53] describes a domain-based handoff scheme in which the MH and all

base-stations are equiped with a GPS (global positioning system) device. By

making use of the position information, the base-station where the MH is currently

connected can estimate the direction in which the MH is traveling and send dupli-

cate packets destined for the MH to several perspective base-stations that the MH

is likely to connect next.

7.3 High Service Availability Mechanisms

Although relatively little attention has been paid to minimizing service disruption

due to a scheduled server maintenance, such as applying patches or upgrading

221
system software/hardware, much research effort [26][27][29][80][90][99][138][140]

has been put into providing TCP failover in server clusters in order to minimize

the downtime due to unexpected failure. Special TCP handoff mechanisms

[31][101][102][120][130] have also been proposed for web server clusters in order

to improve their performance and scalability. We briefly survey these work in this

section.

7.3.1 Fault tolerance with TCP failover

Most TCP failover mechanisms to date focus on failover of TCP connection states

and require TCP stack and/or application change on the server. Another impor-

tant aspect of fault tolerance, failover of server application states for arbitrary non-

deterministic applications, remains an open issue.

FT-TCP (Fault-Tolerant TCP) [29][138] instruments a wrapper both above (called

north-side wrap, NSW) and below (called south-side wrap, SSW) the server TCP

stack. The wrapper intercepts, modifies, and logs packets on their way in and out

of the TCP stack. The wrapper manipulates TCP sequence numbers to deal with

the output commit problem [52] and to allow rollback recovery of server TCP

states from the log. Early FT-TCP work [29] assumes an external mechanism to

recovery application states. Later FT-TCP work [138] adapts it to “hot backup” sys-

tems using primary-back [39] and “cold backup” systems with message logging

[52]. While FT-TCP is client transparent and avoids modifying server TCP stack,

handling server application nondeterminism and keeping the replicas identical to

the primary, however, remains an unresolved issue. [138] modifies two popular

222
server applications, Darwin streaming server and Samba file server, to show the

feasibility of FT-TCP with some applications.

ST-TCP (Server fault-Tolerant TCP) [90] is based on the primary-backup protocol.

It maintains an active backup server at all times to allow fast failover. An ST-TCP

backup server uses ethernet tapping, originally presented in [99], to learn the com-

plete packet exchange between the client and the primary server. While ST-TCP is

client transparent and ethernet tapping incurs low performance overhead during

fault-free operation, ST-TCP requires modifying server TCP stack in order to syn-

chronize the TCP states on the primary and backup server. For synchronizing

server application states, ST-TCP assumes that either the application is completely

deterministic therefore identical application states on the backup server can be

derived from the tapped packet stream, or a leader/follower consistency protocol

such as [37] is available for nondeterministic applications.

[80] describes a mechanism very similar to ST-TCP but claims to have faster

failover time (no comparison is given). Backup servers in [80] use promiscuous

mode of their NIC to receives all packets exchanged between the client and the pri-

mary server. [80] is also client transparent but requires modifying server TCP

stack. [80] assumes that server applications are deterministic.

[26][27] describes a fault-tolerant web service that can provide fault-tolerance for

HTTP requests being processed at the time of server failure. It assumes a standard

standby back system with message logging. Unlike FT-TCP, however, [26][27] logs

at the granularity of HTTP requests rather than TCP packets, which allows it to

223
recovery in progress requests. But this also limits [26][27] to HTTP only. The log-

ging mechanism of [26][27] deals with the output commit problem by placing the

backup server before the primary server, i.e., a client HTTP request passes through

the backup server first, which ensures that a copy of the request is saved before

passing it onto the primary server. [26][27] also implicitly assumes that the server

application, a web server in this case, is deterministic and its states are completely

determined by the sequence of HTTP requests.

[87] proposes another HTTP specific fault tolerant system for web server clusters.

It places a lot of functions on the frontend switch which makes it susceptible to a

single point of failure. [87] pre-establishes several persistent HTTP [55] connec-

tions between the frontend switch and the backend servers. A client’s connection

to the switch is then spliced with one of the pre-established switch-server connec-

tions to create one seamless client-server connection. Requests for static contents

can be redirected to a different server in case of failure by simply splicing the

client-switch connection to another idle persistent switch-server connection. To

support requests for dynamic contents, [87] uses the switch to cache the reply and

only forward it to the client when the entire content has been stored. [87] also sup-

ports session based requests, which requires the ability to recover intermediate

session states from the failed server. This is achieved by keeping a backup server

that snoops packets for the primary server using the primary server’s IP address

as an alias. In addition, the server application (apache) is modified to support a pro-

prietary protocol between the primary and the backup server to ensure that

requests and replies are logged before they are posted to the client and the data-

224
base server. [87] implicitly assumes that the server application is deterministic.

[140] describes a connection failover mechanism for web server clusters in which

a frontend dispatches client requests to backend servers, which are organized into

a ring. Each backend server is also a backup server for a fixed number n of its pre-

decessor servers; the paper considers the case of n=1. [140] implements its own

protocol called BTCP (Backup TCP) to replace TCP for backup server functions. It’s

main purpose is for the backup server to derive TCP states on the primary server

by passively observing the packets sent from the client to the primary server,

which are also forwarded to the backup server by the frontend. While this

approach alleviates the need for explicit synchronization between the primary

server and the backup server, it also has a few drawbacks. Since the backup server

only sees the incoming packets, certain important information on the primary

server is not available, such as when the primary server sends FIN or RST to ter-

minate or abort a connection. The solution adopted by [140] is to use a timeout.

Connection failover is achieved by converting the passive TCP states maintained

by BTCP on the backup server to regular TCP states, and reissuing the last request

before primary server failure on the backup server. This approach, however, has a

few drawbacks. It requires the server application to be stateless, i.e., no application

states are required on the backup server to serve the request. This necessarily limits

the type of applications to simple request/reply transactions such as serving static

web page. It also requires the server application to be idempotent; and it’s not

entirely transparent to the client since the failed (and restarted) request may have

already sent some data back to the client.

225
7.3.2 Performance and scalability with TCP handoff

TCP handoff is a mechanism designed specifically for the widely used web server

clusters [43], typically consist of a frond-end dispatcher and a group of backend

servers, to support client transparent content-aware request distribution, with the

benefits of smart load balancing, cache affinity, etc. TCP handoff in this context

deals with transferring TCP connection states only. Server applications are explic-

itly assumed to be stateless, i.e., no application states beyond those trivially repli-

cated ones such as static web page are needed in order to serve a request.

Depending on the particular approach, the handoff can happen between the fron-

tend dispatcher and the backend server, or among backend server themselves.

Most approaches require modifying server TCP stack; some also require modify-

ing server applications.

LARD [31][101] is one of the early system proposed for content-aware request dis-

tribution, with the focus on improving performance by exploiting content locality.

In order to support content-aware dispatching at the frontend, the frontend must

establish a TCP connection prior to dispatching a request. To reduce the load on

the frontend, once the target backend server is chosen, the TCP connection states

on the frontend are handed off to the chosen server, which can then reply directly

to the client. LARD modifies the TCP stack on both the frontend dispatcher and the

backend server to support the handoff, e.g., creating a new connection on the

target server without going through a regular 3-way handshake. Early work [101]

supports single handoff from the frontend to the backend at connection setup time.

Later work [31] extends handoff support to persistent HTTP/1.1 and allows a con-

226
nection to be handed off from one backend server to another at any time using

backend forwarding. [130] describes an implementation of the TCP handoff with

backend forwarding based on STREAMS TCP/IP in HP-UX11.0.

Socket cloning [120] describes a handoff mechanism similar to LARD. It modifies

both the server application and TCP stack to clone both the socket states and trans-

port states of a connection from one server to another. After cloning, the original

server forwards incoming packets to the cloned server, while outgoing packets go

from the cloned server to the client directly. To avoid explicit state synchronization

between the original and the cloned server, additional mechanism is introduced on

the original server to derive implicit synchronization by observing the acknowl-

edgements from the client.

KNITS [102] proposes a TCP handoff mechanism in which content-aware request

dispatching is performed at the backend server. The frontend dispatcher in KNITS

is a layer-4 switch that sprays a request to a designated backend server using

simple layer-4 information. The designated server parses the request content and

may handoff the request to another optimal server if necessary. Unlike LARD,

handoff in KNITS is not achieve by backend forwarding from the designated

server to the optimal server. Instead, the designated server informs the frontend

switch about the handoff, which then redirects further requests directly to the opti-

mal server without going through the designated server. The redirection is trans-

parent to the client and the optimal server but requires all traffic between the

backend servers go through the frontend switch. KNITS uses an application proxy

227
on the backend servers to avoid directly modifying the server applications.

Half-pipe anchoring [81] advocates a backend handoff scheme in which a dedi-

cated backend server performs layer-7 switching and hands off requests to an

appropriate optimal server. The terms “control pipe” and “data pipe” are used to

refer to the connection from the client to the dedicated server and the connection

from the optimal server to the client, respectively. The main idea of splitting the

two “half-pipes” between the dedicated and the optimal server is to relax the

requirement of performing layer-7 switching on optimal servers therefore allow-

ing heterogeneous cluster of special optimal servers. Handoff between the dedi-

cated and the optimal server is coordinated by modifying their TCP stack to

support a proprietary “split-stack” protocol.

7.4 Process Migration Systems

Process migration is also a well traveled area with a large body of prior work and

a variety of approaches proposed, such as special purpose OSes, user-level migra-

tion, language and middleware support, etc. We briefly survey these approaches.

Interested readers are referred to the more in-depth presentation of [93].

7.4.1 Special purpose OSes

Several research OSes have been developed specifically with process migration

support in mind, such as Accent [111], Amoeba [95], Charlotte [32], Chorus [116],

MOSIX [36], Sprite [49], and V [45]. These are distributed OSes with a single system

image across a cluster of machines. Process migration is supported by careful

228
kernel design to provide a global namespace and location-independent execution.

While suitable for a small cluster of machines, these solutions require new OSes or

substantial changes to existing ones, therefore limiting their general purpose usage

and deployment. The single system image design also hinders their usage in clus-

ter environments where each machine is independent, which has become increas-

ingly common. Finally, these solutions typically handle certain process states such

as IPC, open files, and system calls by forwarding requests to a home machine on

which the migrated process originated. This leaves undesirable dependency on the

home machine since if the home machine fails the migrated process on another

machine will fail as well.

7.4.2 User-level migration

User-level migration mechanisms that do not require special purpose OSes and

can run on unmodified commercial OSes, such as CoCheck [108], Condor [86], lib-

ckpt [106], and MPVM [44], have been proposed. However, providing transparent

process migration without kernel support such as those mentioned in the previous

section is much more challenging. Therefore, these solutions are primarily tar-

geted for long-running “well-behaved” applications that do not pose significant

OS requirements and use only a limited set of system calls. For example, these

applications cannot use common OS services such as IPC. These restrictions

severely limit the kinds of applications that can be migrated.

7.4.3 Language and middleware support

Mobile objects and mobile agents are another form of migration. These systems

229
provide programming languages and middleware toolkits so that programmers

can explicitly incorporate migration capability into their applications. Examples of

these systems include Abacus [30], Emerald [74], Globus [57], Legion [63], Rover

[73], and Telescript [21]. While language constructs provide a high-level abstrac-

tion for defining and encapsulating application states so that they can be easily

migrated, these solutions require applications to be (re)written using the new pro-

gramming languages or toolkits. Therefore, they can not migrate legacy applica-

tions.

7.4.4 OS virtualization

Virtualization at OS level has recently been proposed in [100][118] as a mechanism

for supporting process migration. [118] introduces a capsule abstraction that pro-

vides a virtual private namespace to a group of processes that can be migrated as

a unit. However, implementation of capsule requires extensive OS changes. [100]

is our choice of process migration mechanism to enable the fine-grain connection

migration capability of MOVE. We have combined the Pod abstraction of [100]

with our CELL abstraction to create a unified migration abstraction, called zPod,

for both process and connection states.

7.4.5 Virtual machine monitors

Virtualization at machine hardware level, a technique commonly known as virtual

machine monitors (VMM) [22][40][60][135], has long been recognized as an impor-

tant technology for supporting resource partitioning and multiplexing, and soft-

ware isolation and portability. Since the virtual machine encapsulates an entire OS

230
environment, it can be used to support process migration by migrating the entire

OS environment from one machine to another assuming sufficient similarity in the

underlying machine systems. For example, VMotion [23] from VMware [22] can

migrate a live VM between two co-located machine through dedicated fast (giga-

bit) network. However, since VMMs operate below the OS, they cannot take

advantage of OS specific mechanisms to reduce migration cost. All applications to

be migrated must be running in the VMM and be migrated all together, which has

high migration cost in terms of suspension/resumption time and image size as

shown in [100].

Finally, we point out that no previous process migration mechanisms support

migration of open network connections.

231
8Conclusion

We have presented in this thesis a novel mobile communication architecture,

MOVE, that solves key technical problems necessary for supporting the mobile

communication needs of existing and emerging network applications. We have

focused our attention on specific aspects of mobility problems that lack adequate

support in current network and system infrastructures. In particular, we focused

on the mobility of the end-to-end communication between two endpoints rather

than the mobility of endpoints themselves. We further focused on the problem of

tracking the mobile end-to-end communication rather than the problem of locating

the mobile endpoints. To that end, we have made the following contributions in

this thesis:

• We have identified the functional requirements of the network and system

infrastructures needed for supporting general purpose mobile communica-

tions, which include: easy deployment, fine-grain and unlimited mobility,

secure and flexible migration, and low performance overhead. We have

also identified fundamental problems that must be resolved in order to

meet these requirements, which are: state inconsistency, state conflict, and

cross address space state synchronization problems.

• We have developed new concepts and mechanisms to solve these funda-

mental problems. In particular, we have developed the CELL namespace

232
abstraction, which provides a virtual, private, and labeled namespace for

individual connections, to cleanly and uniformly address the three funda-

mental problems. We have also developed light-weight and efficient mech-

anisms, such as per-connection virtual network interface, lazy assignment,

and connection label, etc. to support our CELL namespace abstraction.

• We have developed a new handoff protocol and security mechanism to

enable fast and secure migration of end-to-end connections. In particular,

our H2O handoff signaling protocol resonates the fundamental end-to-end

tenet [117] with the key observation that the cost of introducing additional

complexity in the network layer to reduce packet loss does not necessarily

translate into end-to-end benefit. Our security mechanism is based the

well-known Diffie-Hellman protocol with key observations to mitigate the

overhead of expensive key computation. Combining the CELL virtual-

physical mapping, H2O handoff signaling, and our security mechanism,

MOVE can migrate connections securely in just one packet in a single one-

way trip from the mobile endpoint to the stationary endpoint. We have

also developed a migration helper mechanism to support connection

migration through suspension/resumption with potentially extended

period of disconnection time.

• We have seamlessly integrated our MOVE connection migration mecha-

nisms with the Zap process migration mechanisms through a unifying

zPod abstraction, which provides a virtual and private namespace for both

connection states and process states. We have demonstrated the power of

233
combining the two in a proxy-based server cluster environment to enable

zero service disruption for arbitrary stateful applications during server

maintenance, without introducing additional cluster configuration and

management complexity.

• We have designed and implemented a prototype of our MOVE architecture

on a commodity OS platform, i.e., LINUX x86. We have shown that all

MOVE functions can be implemented completely within the endpoints and

without requiring any change to existing network infrastructure, OS, and

applications. We have also shown that all MOVE functions are backward

compatible and can interoperate with existing network infrastructure, OS,

and applications.

• We have evaluated our MOVE prototype and shown the performance of

our MOVE prototype. We demonstrated that MOVE’s handoff has very lit-

tle impact on the network connectivity perceived by the transport proto-

cols and applications. We showed that MOVE has no negative impact on

the system’s scalability. We also showed that MOVE’s virtualization and

virtual-physical mapping functions introduce very low network I/O per-

formance overhead before and after connections are migrated.

With the rapid increase of ubiquitous mobile computing devices and universal

network connectivity, there is a pressing need for developing new networking

functionality to support the mobile communication needs of the applications.

While we have no doubt that future networking infrastructure, protocols, and

applications will be increasingly mobility-savvy, existing ones will continue to

234
function for many years to come. Therefore, developing and deploying new net-

working functions is often a long and enduring process. Nevertheless, we believe

our work in this thesis is a step forward towards the new global pervasive mobile

and network computing era. We also hope that our work in this thesis can give

insight on how such new networking functionality can be developed and

deployed while allowing existing legacy applications to take advantage of the tre-

mendous benefits offered by the coming reality of ubiquitous mobile computing

and communication.

Despite our best intentions, this thesis alone cannot address all the issues of an area

as broad as general purpose mobile communication. We discuss several issues that

we would have liked to but did not have the manpower to address, and that we

intend to pursue further in the future. These issues are listed in the order of their

importance in our option, with the most important one first:

• Generalization of MOVE mechanisms. At a more abstract level, MOVE can

be considered as a transport layer tunneling mechanism, in similar spirit to

tunneling mechanisms at other layers such as network layer tunneling

(VPNs) and link layer tunneling (VLANs). Besides supporting mobility by

essentially tunneling one connection inside another, this fine-grain trans-

port level tunneling can potentially have many other ramifications. As one

brain-storming example, one can associate semantics with the connection

label therefore allowing migrated and stationary connections to be discrim-

inated with different security and QoS metric, etc.

• Further process migration development. While the focus of this thesis is on

235
connection migration rather than process migration, we fully recognize

that process migration is one of the essential ingredients for truly fine-

grain connection migration. This thesis has touched upon a few issues of

process migration from the same virtual private namespace point of view

as that we used for connection migration. However, process migration is

also a very broad area with many open issues and warrants significant

research itself.

• Simultaneous move of both endpoints. While mobile endpoints today are

mostly on the client side, we’ve also seen the need for server side mobility

to support high service availability. In addition, peer-to-peer networks are

becoming increasingly popular. Therefore, the chance of both endpoints

are mobile is rather high in the future. While MOVE does not restrict which

endpoint of a connection can move, it does assume that only one endpoint

moves at a time. This restriction is necessary so that the mobile endpoint

can trivially locate the stationary endpoint. If the stationary endpoint also

moves, there needs to be a mechanism for the two endpoints to locate each

other after they move simultaneously. One simple solution could be for

both endpoints to use a directory service such as DDNS to locate each

other whenever they move; this approach however requires infrastructure

support. An alternative could be to use a proxy at each location where the

mobile endpoints have visited to keep track of the mobile endpoints; this

approach does not require infrastructure support but have the downside of

leaving states behind.

236
• More in-depth study of location services. While we have chosen DDNS

and conducted studies for its suitability as MOVE’s mobile host and ser-

vice location mechanism, we feel that a single directory service may not be

the answer for all possible application types and scenarios. For example,

DDNS is a semantically simple name-to-value mapping directory service.

For some applications, a more semantically rich type of directory service

such as X.500 [6] that supports attribute-based retrieval may be more bene-

ficial. Also depending on the scale of the application, a local scale directory

service such as LDAP (Light-weight Directory Access Protocol) [134] or

SLP (Service Location Protocol) [68] may be more appropriate.

237
Bibliography

[1] Apache HTTP Server Project. http://www.apache.org

[2] Cisco’s PIX Firewall Series and Stateful Firewall Security, White Paper, Cisco
Systems, Inc., 1997.

[3] Darwin Streaming Server. http://developer.apple.com/darwin

[4] DeleGate. http://www.delegate.org

[5] DES modes of operation, NBS FIPS PUB 81, National Bureau of Standards,
U.S. Department of Commerce, 1980.

[6] The Directory, Part 1: Overview of Concepts, Models and Services, CCITT Draft
Recommendation X.500/ISO DIS 9594-1, CCITT/ISO, December 1988.

[7] Foundry ServerIron Switch Installation and Configuration Guide, Foundry Net-
works Inc., June 2003.

[8] GNU wget. http://www.gnu.org/software/wget/

[9] IEEE Standards for Local and Metropolitan Area Networks: Virtual Bridged Local
Area Networks, 802.1Q, 2003 EDITION, IEEE, 2003.

[10] IMT-2000 DS-CDMA System, ARIB STD-T63, Association of Radio Indus-
tries and Businesses, September 2002.

[11] Internet Systems Consortium Inc. http://www.isc.org/

[12] lftp. http://lftp.yar.ru/

[13] Message Passing Interface Forum. http://www.mpi-forum.org/

[14] MPlayer. http://www.mplayerhq.hu/

[15] openRTSP. http://www.live.com/openRTSP/

[16] Resonate Central Dispatch: In-Depth and Technical, White Paper, Resonate Inc.,
October 2001.

[17] Specification of the Bluetooth System, version 1.2, Bluetooth Special Interest
Group, November 2003.

[18] Stateful Inspection Technology, White Paper, Check Point Software Technolo-
gies Ltd., 2004.

[19] The tcpdump project. http://sourceforge.net/projects/tcpdump/

[20] tcptrace. http://jarok.cs.ohiou.edu/software/tcptrace/tcptrace.html

[21] Telescript Technology: Mobile Agents, General Magic, 1996.

[22] VMware Inc. http://www.vmware.com

[23] VMware VirtualCenter User's Manual, version 1.0, VMware Inc.

238
[24] vsftpd. http://vsftpd.beasts.org/

[25] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifi-
cations, IEEE Standard 802.11, The Institute of Electrical and Electronics
Engineers, Inc., 1999.

[26] N. Aghdaie and Y. Tamir, Client-Transparent Fault-Tolerant Web Service, Pro-
ceedings of the 20th IEEE International Performance, Computing, and
Communications Conference, Phoenix, AZ, April 2001.

[27] N. Aghdaie and Y. Tamir, Implementation and Evaluation of Transparent Fault-
Tolerant Web Serivce with Kernel-Level Support, Proceedings of the IEEE Inter-
national Conference on Computer Communications and Networks, Miami,
FL, October 2002.

[28] P. Almquist, Type of Service in the Internet Protocol Suite, RFC1349, IETF, July
1992.

[29] L. Alvisi, T. C. Bressoud, A. El-Khashab, K. Marzullo, and Z. Zagorodnov,
Wrapping Server-Side TCP to Mask Connection Failures, Proceedings of IEEE
InfoCom, Anchorage, Alaska, April 2001.

[30] K. Amiri, D. Petrou, G. Ganger, and G. Gibson, Dynamic Function Placement
in Active Storage Clusters, Technical Report CMU-CS-99-140, School of Com-
puter Science, Carnegie Mellon University, June 1999.

[31] M. Aron, P. Druschel, and W. Zwaenepoel, Efficient Support for P-HTTP in
Cluster-Based Web Servers, Proceedings of the 1999 Annual Usenix Technical
Conference, Monterey, CA, June 1999.

[32] Y. Artsy, Y. Chang, and R. Finkel, Interprocess Communication in Charlotte,
IEEE Software:22-28, January 1987.

[33] F. Baker, Requirements for IP Version 4 Routers, RFC1812, Cisco Systems, June
1995.

[34] A. Bakre and B. R. Badrinath, Handoff and System Support for Indirect TCP/IP,
Proceedings of Second Usenix Symp. on Mobile and Location-Independent
Computing, April 1995.

[35] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz, Improving TCP/IP Per-
formance over Wireless Networks, Proceedings of 1st ACM International Con-
ference on Mobile Computing and Networking (MobiCom), Berkeley, CA,
November 1995.

[36] A. Barak and R. Wheeler, MOSIX: An Integrated Multiprocessor UNIX, Pro-
ceedings of the USENIX Winter 1989 Technical Conference, pp. 101-112, San
Diego, CA, February 1989.

[37] P. Barret, A. Hilborne, P. Bond, P. V. D. Seaton, L. Rodrigues, and N. Speirs,
The Delta-4 Extra Performance Architecture (XPA), Proceedings of 20th IEEE
Symposium on Fault-Tolerant Systems, 1990.

239
[38] P. Bhagwat and C. Perkins, A Mobile Networking System based on Internet Pro-
tocol (IP), Proceedings of USENIX Symposium on Mobile and Location
Independent Computing, pp. 69-82, Cambridge, MA, August 1993.

[39] N. Budhiraja, K. Marzullo, F. Schneider, and S. Toueg, Primary-backup Pro-
tocols: Lower Bounds and Optimal Implementations, Proceedings of 3rd IFIP
Conference on Dependable Computing for Critical Applications, Sicily,
Italy, September 1992.

[40] E. Bugnion, S. Devine, and M. Rosenblum, Disco: running commodity operat-
ing systems on scalable multiprocessors, Proceedings of the Sixteenth ACM
Symposium on Operating Systems Principles, Saint-Malo, France, October
1997.

[41] R. Caceres and L. Iftode, Improving the Performance of Reliable Transport Pro-
tocols in Mobile Computing Environments, IEEE Selected Areas in Communi-
cations, 13(5):850-857, June 1994.

[42] A. T. Campbell, J. Gomez, S. Kim, Z. Turanyi, C. Y. Wan, and A. G. Valko,
Design, Implementation and Evaluation of Cellular IP, IEEE Personal Commu-
nications, Special Issue on IP-based Mobile Telecommunications Networks,
June/July 2000.

[43] V. Cardellini, E. Casalicchio, M. Colajanni, and P. S. Yu, The State of the Art
in Locally Distributed Web-Server Systems, ACM Computing Surveys,
34(2):263-311, June 2002.

[44] J. Casas, D. L. Clark, R. Conuru, S. W. Otto, R. M. Prouty, and J. Walpole,
MPVM: A Migration Transparent Version of PVM, Computing Systems,
8(2):171-216, 1995.

[45] D. Cheriton, The V Distributed System, Communications of the ACM,
31(3):314-333, March 1988.

[46] M. S. Corson and A. O'Neill, An Approach to Fixed/Mobile Converged Routing,
Technical Report, TR-2000-5, Institute for Systems Research, University of
Maryland, 2000.

[47] S. Deering, Host Extensions for IP Multicasting, RFC1112, IETF, August 1989.

[48] W. Diffie and M. Hellman, New Directions in Cryptography, IEEE Transac-
tions on Information Theory, 22(6):644-654, November 1976.

[49] F. Douglis and J. Ousterhout, Transparent Process Migration: Design Alterna-
tives and the Sprite Implementation, Software - Practice and Experience,
21(8):757-785, August 1991.

[50] D. Eastlake and P. Jones, US Secure Hash Algorithm 1 (SHA1), RFC3174, IETF,
September 2001.

240
[51] K. El-Malki, P. R. Calhoun, T. Hiller, J. Kempf, P. J. McCann, A. Singh, H.
Soliman, and S. Thalanany, Low Latency Handoffs in Mobile IPv4, draft-ietf-
mobileip-lowlatency-handoffs-v4-05.txt, IETF, June 2003.

[52] E. Elnozahy, L. Alvisi, Y. Wang, and D. Johnson, A survey of rollback-recovery
protocols in message passing systems, ACM Computing Surveys, 34(3):375-
408, 2002.

[53] M. Ergen, S. Coleri, B. Dundar, R. Jain, A. Puri, and P. Varaiya, Application
of GPS to Mobile IP and Routing in Wireless Networks, Proceedings of IEEE
Semiannual Vehicular Technology Conference, Vancouver, Canada, Sep-
tember 2002.

[54] A. Festag, Optimization of Handover Performance by Link Layer Triggers in IP-
Based Networks: Parameters, Protocol Extensions and APIs for implementation,
Technical Report TKN-02-014, Telecommunication Networks Group, Tech-
nical University Berlin, August 2002.

[55] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee, Hypertext
Transfer Protocol -- HTTP/1.1, RFC2068, IETF, January 1997.

[56] N. A. Fikouras, A. J. Könsgen, and C. Görg, Accelerating Mobile IP Hand-offs
through Link-layer Information, Proceedings of the International Multiconfer-
ence on Measurement, Modelling, and Evaluation of Computer-Communi-
cation Systems, Aachen, Germany, September 2001.

[57] I. Foster and C. Kesselman, Globus: A Metacomputing Infrastructure Toolkit,
Proceedings of the Workshop on Environments and Tools for Parallel Sci-
entific Computing, Lyon, France, August 1996.

[58] D. Funato, K. Yasuda, and H. Tokuda, TCP-R: TCP mobility support for con-
tinuous operation, IEEE International Conference on Network Protocols, pp.
229-236, Atlanta, GA, October 1997.

[59] B. Gleeson, A. Lin, J. Heinanen, G. Armitage, and A. Malis, A Framework for
IP Based Virtual Private Networks, RFC2764, IETF, February 2000.

[60] R. P. Goldberg, Survey of virtual machine research, IEEE Computer Magazine,
7(6):34-45, 1974.

[61] D. M. Gordon, A survey of fast exponentiation methods, Journal of Algorithms,
27(1):129-146, April 1998.

[62] J. Gosling, B. Joy, and G. Steele, The Java Language Specification, Addison-
Wesley Publishing Company, Inc., 1996.

[63] A. Grimshaw and W. Wulf, The Legion Vision of a Worldwide Virtual Com-
puter, Communications of the ACM, 40(1):39-45, January 1997.

[64] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, A High-Performance, Portable
Implementation of the MPI Message Passing Interface Standard, Parallel Com-
puting, 22(6), September 1996.

241
[65] A. Gulbrandsen, P. Vixie, and L. Esibov, A DNS RR for specifying the location
of services (DNS SRV), RFC2782, IETF, February 2000.

[66] S. Gupta and A. L. N. Reddy, A Client Oriented, IP Level Redirection Mecha-
nism, Proceedings of IEEE INFOCOM'99, pp. 1461-1469, March 1999.

[67] E. Gustafsson, A. Jonsson, and C. Perkins, Mobile IP Regional Registration,
Internet draft, draft-ietfmobileip-reg-tunnel-06.txt, IETF, March 2002.

[68] E. Guttman, C. Perkins, J. Veizades, and M. Day, Service Location Protocol,
Version 2, RFC2608, IETF, June 1999.

[69] R. Hsieh, Z. G. Zhou, and A. Seneviratne, S-MIP: A Seamless Handoff Archi-
tecture for Mobile IP, Infocom'03, San Francisco, March 2003.

[70] J. Ioannidis, D. Duchamp, and G. Q. Maguire, IP-based Protocols for Mobile
Internetworking, Proceedings of ACM SIGCOMM, pp. 235-245, 1991.

[71] D. B. Johnson and C. Perkins, Mobility Support in IPv6, draft-ietf-mobileip-
ipv6-16.txt, IETF, March 2002.

[72] R. Jones, Netperf: a Network Performance Benchmark, Information Networks
Division, Hewlett-Packard Company, February 1996. http://www.net-
perf.org/netperf/NetperfPage.html

[73] A. D. Joseph, J. A. Tauber, and M. F. Kaashoek, Mobile Computing with the
Rover Toolkit, IEEE Transactions on Computers, 46(3):337-352, March 1997.

[74] E. Jul, Migration of Light-weight Processes in Emerald, IEEE Technical Commit-
tee on Operating Systems Newsletter, 3(1):20-23, 1989.

[75] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, DNS Performance and the Effec-
tiveness of Caching, IEEE/ACM Transaction on Networking, 10(5), October
2002.

[76] S. Kent, IP Authentication Header, Internet Draft, draft-ietf-ipsec-rfc2402bis-
07.txt, IETF, March 2004.

[77] S. Kent, IP Encapsulating Security Payload (ESP), Internet Draft, draft-ietf-
ipsec-esp-v3-08.txt, IETF, March 2004.

[78] S. Kent and K. Seo, Security Architecture for the Internet Protocol, draft-ietf-
ipsec-rfc2401bis-03.txt, IETF, September 2004.

[79] T. J. Killian, Processes as Files, Proceedings of USENIX Summer Conference,
pp. 203-207, Salt Lake City, UT, June 1984.

[80] R. Koch, S. Hortikar, L. Moser, and P. Melliar-Smith, Transparent TCP Con-
nection Failover, Proceedings of DSN, San Francisco, CA, June 2003.

[81] R. Kokku, R. Rajamoni, L. Alvisi, and H. Vin, Half-Pipe Anchoring: An Effi-
cient Technique for Multiple Connection Handoff, Proceedings of the 10th Inter-
national Conference on Network Protocols, Paris, France, November 2002.

242
[82] R. Koodli, Fast Handovers for Mobile IPv6, draft-ietf-mobileip-fast-mipv6-
06.txt, IETF, March 2003.

[83] H. Krawczyk, M. Bellare, and R. Canetti, HMAC: Keyed-Hashing for Message
Authentication, RFC 2104, IETF, February 1997.

[84] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones, SOCKS Proto-
col Version 5, RFC1928, IETF, March 1996.

[85] H. Levkowetz and S. Vaarala, Mobile IP Traversal of Network Address Transla-
tion (NAT) Devices, RFC3519, IETF, April 2003.

[86] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny, Checkpoint and Migra-
tion of UNIX Processes in the Condor Distributed Processing System, Technical
Report #1346, University of Wisconsin Madison Computer Sciences, April
1997.

[87] M. Y. Luo and C. S. Yang, Constructing Zero-loss Web Services, Proceedings
of IEEE InfoCom, Anchorage, AK, April 2001.

[88] D. Maltz and P. Bhagwat, TCP splicing for application layer proxy performance,
IBM Research Report 21139 (Computer Science/Mathematics), IBM
Research Division, March 1998.

[89] D. A. Maltz and P. Bhagwat, MSOCKS: An Architecture for Transport Layer
Mobility, Proceedings of the IEEE INFOCOM'98, pp. 1037-1045, San Fran-
cisco, CA, 1998.

[90] M. Marwah, S. Mishra, and C. Fetzer, TCP Server Fault Tolerance Using Con-
nection Migration to a Backup Server, Proceedings of DSN, San Francisco, CA,
June 2003.

[91] U. Maurer, Towards the equivalence of breaking the Diffie-Hellman protocol and
computing discrete logarithms, Advances in Cryptology, 839(271-281, 1994.

[92] J. Midgley, Autobench. http://www.xenoclast.org/autobench/

[93] D. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler, and Z. Songnian, Pro-
cess Migration, HPL-1999-21, HP Laboratories Palo Alto, February 1999.

[94] D. Mosberger and T. Jin, httperf: A tool for measuring web server performance,
ACM First Workshop on Internet Server Performance, pp. 59-67, Madison,
WI, June 1998.

[95] S. J. Mullender, G. v. Rossum, A. S. Tanenbaum, R. v. Renesse, and H. v. Sta-
veren, Amoeba – A Distributed Operating System for the 1990s, IEEE Computer,
23(5):44-53, May 1990.

[96] J. Mysore and V. Bharghavan, A New Multicasting-Based Architecture for
Internet Host Mobility, Proceedings of ACM Mobicom, September 1997.

243
[97] K. Nichols, S. Blake, F. Baker, and D. Black, Definition of the Differentiated Ser-
vices Field (DS Field) in the IPv4 and IPv6 Headers, RFC2474, IETF, December
1998.

[98] T. Okoshi, M. Mochizuki, Y. Tobe, and H. Tokuda, MobileSocket: Toward
Continuous Operation for Java Applications, IEEE IC3N'99, Boston, MA, Octo-
ber 1999.

[99] M. Orgiyan and C. Fetzer, Tapping TCP Streams, Proceedings of the IEEE
International Symposium on Network Computing and Applications
(NCA), Boston, MA, February 2002.

[100] S. Osman, D. Subhraveti, G. Su, and J. Nieh, The Design and Implementation
of Zap: A System for Migrating Computing Environments, Proceedings of the
Fifth Symposium on Operating Systems Design and Implementation (OSDI
2002), pp. 361-376, Boston, MA, December 2002.

[101] V. Pai, M. Aron, G. BAnga, M. Svendsen, P. Drushel, W. Zwaenepoel, and
E. Nahum, Locality-Aware Request Distribution in Cluster-Based Network Serv-
ers, Proceedings of the 8th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, San Jose, CA,
October 1998.

[102] A. Papathanasiou and E. V. Hensbergen, KNITS: Switch-based Connection
Hand-off, IEEE InfoCom, New York, NY, June 2002.

[103] C. Perkins, IP Mobility Support, RFC2002, IETF, October 1996.

[104] C. Perkins, IP Mobility Support for IPv4, revised, draft-ietf-mobileip-rfc2002-
bis-08.txt, Internet Draft, September 2001.

[105] C. Perkins and D. B. Johnson, Route Optimization in Mobile IP, draft-ietf-
mobileip-optim-11.txt, Internet Draft, September 2001.

[106] J. S. Plank, M. Beck, G. Kingsley, and K. Li, Libckpt: Transparent Checkpointing
under Unix, Proceedings of Usenix Winter 1995 Technical Conference, pp.
213-223, New Orleans, LA, January 1995.

[107] J. Postel, INTERNET PROTOCOL, RFC791, Information Sciences Institute,
University of Southern California, September 1981.

[108] J. Pruyne and M. Livny, Managing Checkpoints for Parallel Programs, 2nd
Workshop on Job Scheduling Strategies for Parallel Processing (In Conjunc-
tion with IPPS '96), Honolulu, Hawaii, April 1996.

[109] X. Qu, J. X. Yu, and R. P. Brent, A Mobile TCP Socket, International Confer-
ence on Software Engineering (SE97), San Francisco, CA, November 1997.

[110] R. Ramjee, T. L. Porta, S. Thuel, and K. Varadhan, HAWAII: A Domain-Based
Approach for Supporting Mobility in Wide-Area Wireless Networks, IEEE Inter-
national Conference on Network Protocols, Toronto, Canada, October 1999.

244
[111] R. Rashid and G. Robertson, Accent: a Communication Oriented Network Oper-
ating System Kernel, Proceedings of the 8th Symposium on Operating
System Principles, pp. 64–75, December 1984.

[112] P. Reinbold and O. Bonaventure, IP micro-mobility protocols, IEEE Commu-
nications Surveys and Tutorials, 2003.

[113] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. deGroot, and E. Lear, Address
Allocation for Private Internets, RFC1918, IETF, February 1996.

[114] M. Riegel and M. Tuexen, Mobile SCTP, draft-riegel-tuexen-mobile-sctp-
03.txt, IETF, August 2003.

[115] R. Rivest, The MD5 Message-Digest Algorithm, RFC1321, IETF, April 1992.

[116] M. Rozier, V. Abrossimov, F. Armand, M. Gien, M. Guillemont, F. Her-
mann, and C. Kaiser, Chorus (Overview of the Chorus Distributed Operating
System), Proceedings of the USENIX Workshop on Micro-Kernels and other
Kernel Architectures, Seattle, WA, April 1992.

[117] J. H. Saltzer, D. P. Reed, and D. D. Clark, End-To-End Arguments in System
Design, ACM Transactions on Computer Systems, 2(4):277-288, 1984.

[118] B. K. Schmidt, Supporting Ubiquitous Computing with Stateless Consoles and
Computation Caches, Ph.D Thesis, Computer Science Department, Stanford
University, August 2000.

[119] J. Silva, J. Carreira, H. Madeira, D. Costa, and F. Moreira, Experimental
Assessment of Parallel Systems, Proceedings of the 26th International Sympo-
sium on Fault-Tolerant Computing, pp. 415-424, June 1996.

[120] Y. F. Sit, C. L. Wang, and F. Lau, Socket Cloning for Cluster-Based Web Server,
Proceedings of IEEE 4th International Conference on Cluster Computing,
Chicago, IL, September 2002.

[121] A. C. Snoeren, D. G. Andersen, and H. Balakrishnan, Fine-Grained Failover
Using Connection Migration, Proceeding of the Third Annual USENIX Sym-
posium on Internet Technologies and Systems (USITS), Cambridge, MA,
March 2001.

[122] A. C. Snoeren and H. Balakrishnan, An End-to-End Approach to Host Mobility,
Proceedings of 6th International Conference on Mobile Computing and
Networking (MobiCom'00), Boston, MA, August 2000.

[123] H. Soliman, C. Castelluccia, K. El-Malki, and L. Bellier, Hierarchical Mobile
IPv6 mobility management (HMIPv6), draft-ietf-mobileip-hmipv6-08.txt,
IETF, June 2003.

[124] L. Spitzner, Understanding the FW-1 State Table, November, 2000. http://
www.spitzner.net/fwtable.html

[125] P. Srisuresh and M. Holdrege, IP Network Address Translator (NAT) Terminol-
ogy and Considerations, RFC2663, IETF, August 1999.

245
[126] R. Stewart, M. Ramalho, Q. Xie, M. Tuexen, I. Rytina, M. Belinchon, and P.
Conrad, Stream Control Transmission Protocol (SCTP) Dynamic Address Recon-
figuration, draft-ietf-tsvwg-addip-sctp-08.txt, IETF, September 2003.

[127] R. Stewart, et al., Stream Control Transmission Protocol, RFC2960, IETF, Octo-
ber 2000.

[128] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode, Migratory TCP: Highly avail-
able internet services using connection migration, Proceedings of ICDCS, pp.
17-26, 2002.

[129] C. L. Tan, S. Pink, and K. M. Lye, A Fast Handoff Scheme for Wireless Networks,
Proceedings of the 2nd ACM Interntational Workshop on Wireless Mobile
Multimedia, pp. 83-90, Seattle, WA, 1999.

[130] W. Tang, L. Cherkasova, L. Russell, and M. W. Mutka, Modular TCP Handoff
Design in STREAMS-Based TCP/IP Implementation, Proceedings of the 1st
International Conference on Networking (ICN), Colmar, France, July 2001.

[131] F. Teraoka, K. Uehara, H. Sunahara, and J. Murai, VIP: A Protocol Providing
Host Mobility, Communications of the ACM, 37(8), August 1994.

[132] F. Teraoka, Y. Yokote, and M. Tokoro, A Network Architecture Providing Host
Migration Transparency, Proceedings of ACM SIGCOMM, September 1991.

[133] P. Vixie, S. Thomson, Y. Rekhter, and J. Bound, Dynamic Updates in the
Domain Name System (DNS UPDATE), RFC2136, IETF, April 1997.

[134] M. Wahl, T. Howes, and S. Kille, Lightweight Directory Access Protocol (v3),
RFC2251, IETF, December 1997.

[135] A. Whitaker, M. Shaw, and S. Gribble, Denali: Lightweight virtual machines for
distributed and networked applications, Proceedings of the USENIX Technical
Conference, Monterey, CA, June 2002.

[136] P. Yalagandula, A. Garg, M. Dahlin, L. Alvisi, and H. Vin, Transparent
Mobility with Minimal Infrastructure, Technical Report 01-30, University of
Texas at Austin, June 2001.

[137] H. Yokota, A. Idoue, T. Hasegawa, and T. Kato, Link Layer Assisted Mobile IP
Fast Handoff Method over Wireless LAN Networks, MobiCom'02, Atlanta, GA,
September 2002.

[138] D. Zagorodnov, K. Marzullo, L. Alvisi, and T. C. Bressoud, Engineering
Fault-Tolerant TCP/IP Servers Using FT-TCP, Proceedings of DSN, San Fran-
cisco, CA, June 2003.

[139] V. C. Zandy and B. P. Miller, Reliable Network Connections, Proceedings of
8th ACM International Conference on Mobile Computing and Networking
(Mobicom '02), pp. 95-106, Atlanta, GA, September 2002.

246
[140] R. Zhang, T. F. Abdelzaher, and J. A. Stankovic, Efficient TCP Connection
Failover in Web Server Clusters, Proceedings of IEEE InfoCom, Hong Kong,
March 2004.

[141] Y. Zhang and S. Dao, A “Persistent Connection” Model for Mobile and Distrib-
uted Systems, 4th International Conference on Computer Communications
and Networks (ICCCN), Las Vegas, NV, September 1995.

[142] S. Zhuang, K. Lai, I. Stoica, R. Katz, and S. Shenker, Host Mobility using an
Internet Indirection Infrastructure, First International Conference on Mobile
Systems, Applications, and Services (ACM/USENIX Mobisys), San Fran-
cisco, CA, May 2003.

	MOVE: Mobility with Persistent Network Connections
	Gong Su
	Table of Contents
	Chapter 1 Introduction 1
	Chapter 2 CELL Namespace Abstraction 12
	Chapter 3 H2O Handoff Signaling Protocol 52
	Chapter 4 High Service Availability Support 93
	Chapter 5 Design and Implementation 110
	Chapter 6 Performance Measurements 129
	Chapter 7 Related Work 201
	Chapter 8 Conclusion 231

	List of Figures
	List of Tables
	Acknowledgements

	1 Introduction
	1.1 Background and Motivation
	1.2 Thesis Contribution
	1.3 Thesis Focus Area
	1.4 Thesis Overview

	2 CELL Namespace Abstraction
	2.1 Non-transparent vs Transparent Migration
	2.2 Key Problems of Connection Migration
	2.2.1 Inconsistency between network layer and transport layer
	2.2.2 Conflict in transport layer
	2.2.3 Cross address space synchronization in transport layer

	2.3 The CELL Namespace Abstraction
	2.3.1 Virtualize network addresses
	2.3.2 Privatize transport identifications
	2.3.3 Label end-to-end connections
	2.3.4 Map between virtual and physical namespace

	2.4 Other Architectural Issues
	2.4.1 Host and service location
	2.4.1.1 Host location
	2.4.1.2 Service location

	2.4.2 Connection-less transport protocol support
	2.4.3 Application location-awareness
	2.4.4 Compatibility with IPsec

	2.5 Summary

	3 H2O Handoff Signaling Protocol
	3.1 Handoff Related Issues
	3.1.1 Layer 2 handoff vs. layer 3 handoff
	3.1.2 Hand off detection vs. handoff execution

	3.2 H2O Handoff Signaling Protocol
	3.2.1 In-band vs. out-of-band signaling
	3.2.2 H2O protocol operation
	3.2.3 Interaction with existing network security constructs
	3.2.3.1 SPI firewall traversal
	3.2.3.2 VPN traversal

	3.2.4 Migration security
	3.2.4.1 H2O security mechanism
	3.2.4.2 DH protocol and HMAC algorithm

	3.3 H2O Protocol Analysis
	3.3.1 No advance notice
	3.3.2 Advance notice without simultaneous connectivity
	3.3.3 Advance notice with simultaneous connectivity
	3.3.4 Intra-domain handoff

	3.4 Suspension/Resumption with Migration Helpers
	3.5 Summary

	4 High Service Availability Support
	4.1 Motivation
	4.2 Example High Service Availability Scenario
	4.3 The zPod Abstraction
	4.4 zPod Migration
	4.4.1 General server clusters
	4.4.2 Different types of proxies
	4.4.3 Single subnet of servers

	4.5 Summary

	5 Design and Implementation
	5.1 Functional Design Overview
	5.2 Security Module
	5.3 Migration Module
	5.3.1 Handoff process
	5.3.2 Suspension and resumption process

	5.4 Mapping Module
	5.5 System Call Interception
	5.6 Transparent SRV RR Lookup Support
	5.7 Summary

	6 Performance Measurements
	6.1 Handoff Performance
	6.1.1 Client handoff with machine migration
	6.1.1.1 Handoff on a WAN, DDTª10ms, 200ms, and 4s
	6.1.1.2 Handoff on a LAN, DDTª30ms and 3s
	6.1.1.3 Handoff from a WAN to LAN, DDTª100ms and 2s
	6.1.1.4 Handoff from a LAN to WAN, DDTª100ms and 2s

	6.1.2 Client handoff with VMware migration
	6.1.2.1 Handoff from a WAN to LAN, DDTª8s
	6.1.2.2 Handoff from a LAN to WAN, DDTª11s

	6.1.3 Server handoff with process migration
	6.1.3.1 Handoff with a WAN client, DDTª2s
	6.1.3.2 Handoff with a LAN client, DDTª2s

	6.1.4 Handoff “ping-pong” stress test
	6.1.5 Handoff for connection-less transport protocols
	6.1.6 Migrate popular real world applications

	6.2 Scalability Tests
	6.2.1 Number of simultaneous connections
	6.2.2 Rate of new connections

	6.3 Connection Virtualization and Mapping Overhead
	6.3.1 Throughput
	6.3.2 Latency
	6.3.3 CPU utilization
	6.3.4 Connection setup
	6.3.5 Overhead in proxy-based environments

	6.4 Host and Service Location Mechanism Studies
	6.4.1 Empirical DDNS studies
	6.4.2 Transparent SRV RR lookup measurements

	6.5 Summary

	7 Related Work
	7.1 Mobile Communication Architectures
	7.1.1 Network layer solutions
	7.1.2 Transport layer solutions
	7.1.3 Application layer solutions
	7.1.4 Split connection solutions
	7.1.5 Summary

	7.2 Handoff Mechanisms
	7.2.1 Extensions to MobileIP
	7.2.2 Domain-based solutions
	7.2.3 Others

	7.3 High Service Availability Mechanisms
	7.3.1 Fault tolerance with TCP failover
	7.3.2 Performance and scalability with TCP handoff

	7.4 Process Migration Systems
	7.4.1 Special purpose OSes
	7.4.2 User-level migration
	7.4.3 Language and middleware support
	7.4.4 OS virtualization
	7.4.5 Virtual machine monitors

	8 Conclusion
	Bibliography

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

