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Detection of focal changes in human cortical thickness:
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Subtle but progressive variations in human cortical thickness have
been associated with the initial phases of prevalent neurological and
psychiatric conditions. But slight changes in cortical thickness at
preclinical stages are typically masked by effects of the Gaussian kernel
smoothing on the cortical surface shape descriptors. Here we present
the first study aimed at detecting changes in human cortical thickness
maps by applying soft-thresholding to multiresolution spherical
wavelet coefficients. In order to make Gaussian and wavelet smoothing
methods comparable, the trade-off between sensitivity and specificity
was optimized to detect simulated thickness changes in various cortical
areas of healthy elderly subjects. Results revealed a better sensitivity—
specificity trade-off when using wavelet-based methods as compared to
Gaussian smoothing in both the whole neocortex (p<10~") and cortical
region-based statistical analyses (p<10~7), which was mainly due to
the higher specificity obtained with the wavelet approach. The lower
smoothing introduced by wavelets and their adaptive properties may
account for the enhanced specificity and sensitivity when compared
with Gaussian spatial filters. These results strongly support the use of
spherical wavelet methods to detect subtle variations in cortical
thickness maps, which may be crucial in better understanding the
course of neuronal loss in normal aging and in finding early markers of
cortical degeneration.
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Introduction

The anatomical integrity of cortical networks distributed within
and across different cortical structures leads to integration and
segregation patterns of neural activity at various spatiotemporal
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scales, which have been postulated as potential mechanisms un-
derlying the emergence of higher cognitive functions and motor
acts (Uhlhaas and Singer, 2006). Focal but progressive neuronal
death causes irreversible changes in functional organization of
the human neocortex which may explain slight cognitive impair-
ments associated with age or with different pathological condi-
tions. Therefore, the identification of subtle morphological changes
using non invasive in vivo techniques is critical to link mild
cognitive decline with the preclinical stages of several neurological
diseases characterized by cortical neurodegeneration.

Geometrically, the cerebral cortex is a thin, folded sheet of grey
matter with a considerable variability in size, location, and extent
of the sulci and gyri in humans (Amunts et al., 2002). Modern
imaging technologies in combination with remarkable develop-
ments in computational neuroanatomy techniques have made pos-
sible the in vivo detection and quantification of changes in the
neocortex (Duncan et al., 2004; Good et al., 2001; Thompson et al.,
2004, 2007). Among descriptors, differences in cortical thickness
seem to be one of the most reliable markers of structural changes in
cortical morphology, which is mainly supported by the fact that
excessive cortical expansion is not accompanied by comparable
increases in cortical thickness during development or throughout
evolution (Rakic, 1988).

Furthermore, there is growing evidence that regional disease-
related patterns of cortical thickness not only are associated with
cognitive deterioration in normal aging (Fjell et al., 2006), but also
in neurological and psychiatric populations (Makris et al., 2007;
Butman and Floeter, 2007; Biega et al., 2006; Lyoo et al., 2006;
Preul et al., 2005). For instance, Singh et al. (2006) reported
cortical thinning of different brain structures involving the frontal,
parietal and medial temporal lobes in patients with mild cognitive
impairment as compared to controls. In patients who later con-
verted to Alzheimer's disease, a thinning of the entire cortex with
significant extension into the lateral temporal lobe was quantita-
tively determined (Thompson et al., 2001; Lerch et al., 2005; Singh
et al., 2006). This specific pattern of changes in cortical thickness
characterizing early stages of Alzheimer's disease differs from the


mailto:jlcanlor@upo.es
http://dx.doi.org/10.1016/j.neuroimage.2008.03.022

J.L. Bernal-Rusiel et al. / Neurolmage 41 (2008) 1278-1292 1279

one found in multiple sclerosis, where cortical thinning was espe-
cially evident in the anterior cingulate cortex, the insula and
transverse temporal gyrus, and areas of association cortex (Charil
et al., 2007; Sailer et al., 2003). The selective thinning within the
temporal and prefrontal cortices observed in schizophrenia patients
has been further attributed to the neuropsychological deficits of this
psychiatric disorder in a variety of cognitive domains (Kuperberg
et al., 2003). Patients with bipolar disorder have also shown de-
creased thickness in different structures of prefrontal cortex (orbi-
tofrontal, dorsolateral and cingulate regions), supporting both the
disruption hypothesis of prefrontal and anterior cingulate cortex,
and the uncontrolled emotions characteristic of this type of depres-
sive illness (Lyoo et al., 2006). On the other hand, Shaw et al.
(2006) recently established a longitudinal pattern of prefrontal
cortex thinning, comprising critical regions associated with atten-
tional networks, which may be useful in characterizing and/or
predicting clinical outcome in children suffering from attention-
deficit/hyperactivity disorders.

Statistical testing of changes in cortical thickness maps obtained
with computational neuroanatomy methods requires spatial smooth-
ness of the data. Spatial smoothing has the ability to i) increase the
signal to noise ratio by removing the high-frequency noise from
cortical thickness measures, and to ii) enhance the validity of
parametric statistical tests by reducing between-subject differences
and the effective number of comparisons in the cortical surface.
Unfortunately, spatial smoothing can also result in a noticeable
decrease in specificity. The width of the Gaussian kernel is an
important parameter in determining the trade-off between precision
and reliability of the smoothed thickness maps. Thus, narrower
kernels will leave unnecessary noise in the data, whereas wider
kernels will blur the exact location of the cortical change (Hagler
etal., 2006). The output result of the Gaussian blurring may severely
reduce the submillimeter precision of thickness measurements as
well as the necessary level of accuracy to localize small cortical
atrophies associated with neurological and psychiatric dysfunction.

In the last few years, a growing number of studies have tested
statistical parametric maps in the wavelet domain (Bullmore et al.,
2003). The multiresolution representation of data provided by the
wavelet transform seems well suited to feature detection problems,
especially if the size of the feature is unknown a priori (Nenadic and
Burdick, 2005; Daubechies and Teschke, 2005; Antoine et al.,
2002). Among other advantages, the wavelet transform preserves
spatial edges better than, for example, the Fourier transform. These
edges are typically raised on the images due to sharp transitions
between small and relatively high voxel values. These salient
features are better codified by wavelet transforms because they
control the extent of both frequency and spatial scales, unlike the
infinite spatial extent of the cosines and sines of the Fourier
transform. For example, a wavelet transform well spatially localized
near the edges is able to capture the high-frequency changes while
retaining much less information on those uniform parts of the image
that mainly contain low-frequency components. Therefore, given an
appropriate basis, the wavelet transform approximately concentrates
the power into a smaller number of coefficients, which makes it
especially attractive to reduce complex images to their most relevant
features (Mallat, 1999; Daubechies, 1992). In summary, wavelet
transforms adapt surface changes at different scales and spatial lo-
cations (Kavitha and Ramakrishnan, 2005; Laine, 2000; Cesar and
Costa, 1998), overcoming the above-mentioned drawbacks derived
from the traditional monoresolution Gaussian filters. Wavelet-based
smoothing approaches have been previously used in context of

functional magnetic resonance imaging (fMRI) studies, resulting in
a general increase of sensitivity and specificity after controlling the
proportion of false positives that stem from the multiple comparison
tests (Van de Ville et al., 2006; Fadili and Bullmore, 2004; Wink and
Roerdink, 2004).

Given that human cortical hemispheres can be modeled as a
convoluted surface with spherical topology, the cortical surface can
be mapped onto a parameterized sphere to establish a spherical
coordinate system (Fischl et al., 1999a; Van Essen et al., 1998).
Multiscale shape representations of cortical surfaces have recently
been introduced by applying spherical wavelets. Results from these
studies suggest that spherical wavelets improve the approximation
of cerebral surfaces by capturing finer shape details within different
cortical and subcortical structures (Yu et al., 2007; Nain et al.,
2007). But no studies have systematically evaluated variations in
cortical thickness using spherical wavelets. Wavelet-based smooth-
ing methods are expected to enhance the trade-off between sen-
sitivity and specificity when compared with the Gaussian kernel
filter typically used to smooth statistical parametric maps.

Here we present the first study aimed at detecting changes in
cortical thickness maps by applying spherical wavelets to the de-
scription of the human neocortex. Obtained results were compared
with Gaussian kernel smoothing in a series of thickness statistical
parametric maps using the false discovery rate (FDR) as an
alternative solution to the problem of multiple comparisons. The
performance of the two smoothing methods was evaluated by
simulating different levels of thinning in various cortical areas of
healthy elderly subjects.

Materials and methods
Subjects

A total of 70 non-demented subjects (aged 60-96 yr, 53 women)
extracted from the OASIS database were selected for the present
study. Inclusion criteria consisted of Mini-Mental State Examination
(MMSE) of >29 (high level of functioning), and Clinical Dementia
Ratings (CDR) of 0 (no dementia). Participants were split into two
groups of 35 subjects (control and experimental). Gender and age
were balanced between these two groups (Control: 75+8.04 yr;
Experimental: 75+9.77 yr).

Image acquisition

Four high-resolution structural T1-weighted magnetization-
prepared rapid gradient echo (MP-RAGE) images were acquired
in the same session on a 1.5-T Vision™ scanner (Siemens, Erlangen,
Germany). MP-RAGE parameters were empirically optimized for
grey/white contrast (repetition time=9.7 ms, echo time=4 ms, flip
angle=10°, inversion time=20 ms, delay time=200 ms, 256 X256
[T mmx1 mm] in-plane resolution, 128 sagittal 1.25 mm slices
without gaps, time per acquisition=6.6 min).

Thickness map computation

For each subject, the four MP-RAGE volumes were averaged after
motion correction to generate a single volume with a better signal to
noise ratio. Construction of the cortical surface was performed with
the Freesurfer software that provides a set of tools for analysis and
visualization of brain imaging data (http:/surfer.nmr.mgh.harvard.
edu/). Non uniformity correction (intensity normalization) and skull
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stripping algorithms were applied to the images prior to white matter
segmentation. Segmentation was further refined and cut to generate a
single connected mass of each cerebral hemisphere. The surface of the
labeled white matter of each hemisphere was then tessellated with a
triangular mesh to obtain the grey/white surface. This surface was first
deformed outwards to the location in the volume with highest
intensity contrast between the grey matter and the cerebrospinal fluid
and, later, it was refined to generate the pial surface. White matter-
based deformation methods have provided accurate representations of
the cortical shape without requiring additional measures to force the
surface into the depth of the cerebral sulci (Dale et al., 1999).

Given the non Euclidian intrinsic geometry of cortical surfaces,
spherical mapping of cortical thickness maps was used to bring the
cortical thickness manifold onto a spherical coordinate system for
which a suitable parameterization, surface registration and basis
were previously provided (Fischl et al., 1999a; Van Essen et al.,
1998). Cortical surfaces were constrained to have a spherical
topology by applying an automatic topology correction algorithm.
This algorithm first transformed the inflated surface to a parametric
surface with spherical coordinates, then corrected its topology, and
finally performed the backward transforms (Fischl et al., 2001).
The surfaces mapped onto a sphere with minimal metric distortion
were registered to the spherical coordinate system with a spherical
template by non-linearly aligning each individual cortical folding
pattern with the average folding pattern (Fischl et al., 1999b). This
procedure ensures that every vertex on the individual surface has a
unique coordinate that belongs to the same anatomofunctional
cortical area on the average surface.

Once highly accurate models of both grey/white and pial
surfaces were obtained, the cortical thickness map was generated
as follows: For each point on the grey/white surface, the shortest

Pial surface

Grey/white matter
segmentation

Spherical mapping
of cortical folding

distance to the pial surface was first computed. Next, for each point
on the pial surface, the shortest distance to the grey/white surface
was calculated. The thickness at each vertex was set at the average
of these two values (Fischl and Dale, 2000). Thickness values were
then calculated in the native brains rather than in the Talairach
space to increase the power of statistical tests (Ad-Dab'bagh et al.,
2005). Only left hemisphere cortical thickness maps were con-
sidered in the present study. In order to obtain the thickness map of
each subject on the same coordinate system, every thickness map
was resampled to a standard template surface (Desikan et al., 2006)
using the non-linear spherical registration algorithm (Fischl et al.,
1999b). After resampling, all the thickness maps showed an
identical number of vertices, and each vertex had the same sphe-
rical coordinates across subjects. Fig. 1 summarizes the processing
steps followed in the present study.

Simulated changes in cortical thickness

In order to determine differences in sensitivity and specificity
between the Gaussian smoothing and spherical wavelets at detecting
cortical atrophies, a range of variable thinning was artificially in-
troduced into different cortical regions of the experimental group
(N=35). Importantly, the anatomical regions chosen for the present
simulation study were shown to decrease in thickness from normal
aging to mild cognitive impairment, as well as in the progression to
Alzheimer's disease (Singh et al., 2006). Thus, synthetic thinning
was introduced in four cortical regions: entorhinal cortex (Brod-
mann's area 28), medial orbitofrontal cortex (Brodmann's area 11),
inferior temporal lobe (Brodmann's area 20) and the medial part of
the temporal lobe (Brodmann's area 21). Cortical parcellation was
computed by subdividing the human cerebral cortex into standard

Gaussian
smoothing

Cortical thickness ‘
on inflated surface |

Spherical map of
cortical thickness

397

Cortical thickness
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Wavelet
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Fig. 1. Flow chart showing the main image processing steps used in the present study. Extraction of cortical surface was performed automatically on the T1-MRI
scans of 70 healthy elderly subjects (synthetic changes in cortical thickness were introduced in 35 of them). Cortical folding patterns were registered in the
spherical coordinate system by aligning each individual cortical folding pattern with the average folding pattern, allowing mapping and smoothing of the cortical
thickness pattern on the sphere with different smoothing approaches (Gaussian versus spherical wavelets). Values of the colormap bars introduced in the last two

columns are expressed in mm.
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gyral-based neuroanatomical regions (Desikan et al., 2006). For
each of these areas, we randomly selected five regions of interest
(ROIs) with different sizes (at about 20, 30, 40, 50, and 60 cm?) in
the spherical surface template. This template is represented by a
seven order icosahedron with a total surface of 12,565 cm? (163,842
vertices). Each ROI size was determined by adding the area of all
triangle faces within the same ROI. The area of each triangle was
computed with the Heron's formula by using the spherical co-
ordinates of its vertices. However, a fixed area on the template
surface does not guarantee a fixed number of vertices. Although the
same number of triangles was used to generate the different ROIs,
the number of shared vertices depended on the spatial distribution of
such triangles. Thus, the total number of vertices is not only
determined by the area size but also by the shape of the modified
area. Table 1 shows the four selected ROIs and the corresponding
number of vertices affected by the subsequent thickness reduction.

A statistical collateral effect of introducing the same thinning
percent within a ROI across different subjects is the significant
decrease of the intersubject variability inside that specific ROL
Consequently, small Gaussian kernels always will provide a better
sensitivity—specificity trade-off than larger kernels. In order to
illustrate the classical increase of the trade-off up to a point from
which it decreases again, intersubject variability was artificially
increased for each vertex inside the whole Brodmann's areas
mentioned above after resampling the individual surfaces to the
spherical template surface. For the experimental group, mean
cortical thickness was artificially decreased by 5% to 15%. To get
this overall percent of change, a certain percent of change (pg) was
introduced at the same vertex of eight randomly selected subjects
for every vertex within each Brodmann's area by applying the
following formula:

35
P8~ P35

8
where p;s represents the overall percent of thinning. For example,
introducing an overall 10% of cortical thinning at one particular
vertex of the experimental group would require that cortical
thickness at that vertex be reduced by 43.7% in any eight of the
thirty-five experimental subjects.

Synthetic changes in cortical thickness were then obtained by
further reducing the thickness values within the ROIs across the 35
experimental subjects. From every noisy thickness map, 5 new
maps were obtained by artificially reducing the thickness values of
each ROI by 5%, 10%, 15%, 20%, and 25% for every subject. The
mean thickness reduction (in mm) modified for each ROI size is
shown in Table 2.

The twenty-five maps resulting from combining the five thick-
ness reductions and the five ROIs selected for every subject (N=35)

Table 1
ROI size and number of vertices modified within each ROI
Change ROIs
. 2
size (.cm’) Inferior Medial Entorhinal Medial
temporal temporal orbitofrontal
20 205 227 228 225
30 318 262 266 261
40 414 353 403 308
50 468 327 393 441
60 474 588 482 459

Table 2
Mean cortical thinning (mm) across subjects over all the vertices in each of
the ROIs in different cortical regions

Percent of thickness reduction

ROI size 5% 10% 15% 20% 25%

Cortical
regions

Inferior temporal
20 (cm?) 0.46 0.60 0.81 1.82 1.04
30 (cm?) 0.47 0.49 0.68 0.77 0.88
40 (cm?) 0.39 0.43 0.57 0.68 0.74
50 (em?) 0.49 0.66 0.72 0.79 1.02
60 ( cm?) 0.41 0.54 0.63 0.76 0.81

Medial temporal
20 ( cm?) 0.63 0.59 0.80 0.93 1.08
30 (em?) 0.53 0.60 0.80 0.88 0.98
40 (cm?) 0.52 0.68 0.79 0.92 0.97
50 (cm?) 0.49 0.64 0.76 0.83 0.95
60 (cm?) 0.49 0.53 0.7 0.88 1.01

Entorhinal
20 ( cn’) 0.44 0.61 0.64 0.74 0.91
30 (em?) 0.51 0.57 0.67 0.90 0.97
40 ( sz) 0.60 0.61 0.72 0.86 1.01
50 (cm?) 0.51 0.62 0.78 0.85 0.97
60 ( sz) 0.52 0.68 0.77 0.89 0.95

Medial orbitofrontal
20 (cm?) 0.30 0.41 0.43 0.47 0.56
30 ( sz) 0.35 0.41 0.49 0.55 0.60
40 (cm?) 0.33 0.42 0.46 0.56 0.67
50 ( sz) 0.32 0.44 0.48 0.58 0.66
60 (cm?) 0.37 0.43 0.51 0.62 0.64

were compared with the maps generated for the control group
(N=35) which included no synthetic changes either in cortical
thickness or intersubject variability.

Application of Gaussian kernel smoothing to cortical
thickness maps

The Gaussian smoothing operator has been classically used to
remove unnecessary details and high-frequency noise from bio-
medical images (e.g., Hagler et al., 2006; Petersson et al., 1999).
The Gaussian kernel smoothing of the signal f{x) in n-dimension
with full width at half maximum (FWHM)=4(In2)"¢ is defined as
the convolution of the n-dimensional Gaussian kernel G(x,f) with
signal f(x), i.e. F(x,f)=f*G(x;t). The convoluted signal F is the
solution of a diffusion equation dF/dt = L[F] with the initial
condition F(x,0)=f(x) and the n-dimensional Euclidean Laplacian
L. The generalization of the Laplace operator L to an arbitrary
Riemannian curved surface is called the Laplace—Beltrami ope-
rator, and the resulting surface Gaussian kernel smoothing is
known as diffusion smoothing (Chung et al., 2003). This gene-
ralization takes into account the geodesic surface and acts as a low-
pass isotropic spatial frequency filter on the manifold. As a result,
the resolution and sensitivity provided by the diffusion smoothing
is higher as compared with the 3D volumetric smoothing.

The implementation of Gaussian smoothing filters in Freesurfer
is based on the iterative nearest-neighbor averaging procedure
which simulates the solution of the linear diffusion equation on the
surface mesh. In this procedure, the width of the kernel determines
the total number of iterations (Han et al., 2006).
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There is evidence that variability declines and sensitivity im-
proves with increasing FWHM up to a point, after which both
variability and sensitivity decline again (Lerch and Evans, 2005). In
the present simulation study the FWHM of the surface smoothing
kernel was varied for the whole brain (global-based statistical
analyses) and for each cortical region (local-based statistical ana-
lyses) in order to select the ones which showed an optimal trade-off
between sensitivity and the consequent lost in specificity across the
estimated statistical parametric maps.

Application of wavelet sofi-thresholding algorithms to spherical
cortical thickness maps

The wavelet transform provides local information about the
spatial scales of an image (Laine, 2000). The salient information is
compressed in a few wavelet coefficients which represent the most
relevant image features. This compression is crucial in wavelet-
based denoising schemes because white noise is distributed over
the whole set of coefficients. Consequently, the wavelet transform
may be used to produce smoothed estimations of a map (Mallat,
1989). Classical constructions have been restricted to simple do-
mains such as intervals and rectangles. However, wavelet con-
structions for scalar functions can also be defined on the sphere
(Antoine et al., 2001; Wiaux et al., 2005), enabling the wavelet-
based analysis of spherical data. Therefore, spherical wavelets
are completely defined on the sphere and obtained by translation
(rotation) and scaling of a mother wavelet.

Spherical wavelets were discretized on equiangular spherical
grids. These grids have been used to build the Spherical Harmonic
Transform (SHT) on the 2-sphere(S2) (Driscoll and Healy, 1994),
which later served to construct the Spherical Continuous Wavelet
transform (Antoine et al., 2001; Wiaux et al., 2005). Equiangular
grids are defined as:

2m+ 1)n nm
0= {(eimy(Pin)ESz:gim = %#’m = E};m,neTiE{kENi k<2B;},

the bandwidth being {B,2N,icZ}. Any function f<L?(S?) of
bandwidth B; can be sampled without loss of information on this
grid.

Spherical cortical thickness maps of the left-brain hemisphere
were resampled from the icosahedron to equiangular grids using
standard nearest-neighbor interpolation based on Delaunay trian-
gulations (Watson, 1992). As both the number of rows and co-
lumns for the equiangular grids must be a power of two, grids of
10240 x1024¢ and 20480 x2048¢ were used because they con-
stitute the best trade-off between grid resolution and computational
time for the transformations.

Cortical thickness maps in both control and experimental
subjects were filtered by using a pyramidal decomposition based
on axis-symmetric Spherical Discrete Wavelet Frames (SDWF)
(Wiaux et al., 2007). This analysis represents an evolution of the
wavelet formalism developed by Antoine and Vandergheynst (1999)
and Wiaux et al. (2005). In this new transformation, a dyadic
discretization is adopted for the scales of dilation in harmonic space
on 8. Unlike previous definitions of dilations in harmonic space
(McEwen et al., 2006), the new formalism provides control on
evolution of the filter localization properties in real space (Wiaux
et al., 2007).

Spherical Convolution (SC) of two functions living on 87 is
defined as the point wise product between the Spherical Harmonic

Coefficients (SHCs) of one function and the SHCs of the other.
The SDWF transformation for a signal with bandwidth B and with
filters sampled on the corresponding grid in the harmonic space
follows the steps below:

i) Wavelet coefficient generation in harmonic space. At the first
decomposition level, the detail (high-frequency) and approx-
imation (low-frequency) wavelet coefficients are obtained
after performing the SC of the original signal and the
corresponding high- and low-pass filters, respectively. For the
approximation coefficients, only the SHCs corresponding to
frequencies lower than B/2 are maintained. The filters are
downsampled at each j decomposition level by taking only
their odd samples. Then, the SC of the approximation
coefficients at level j— 1 and the downsampled high- and low-
pass filters provide the detail and approximation coefficients
at level j, respectively. For the latter, only the SHCs that
correspond to frequencies lower than B/2/ are preserved.

i) Transformation of wavelet coefficients into real space. The
inverse SHT of both approximation coefficients at the last
decomposition level and detail coefficients at all decom-
position levels is computed to transform them into real space.
This transformation is possible because the wavelet coeffi-
cients also live on S for spherical axis-symmetric filters (as
opposed to axis-asymmetric filters).

iil) Signal reconstruction from wavelet coefficients in harmonic
space proceeds through the same operations as decomposi-
tion, but in reverse order. In other words, the reconstruction
is achieved by recursively doubling the frequency resolution
of the approximation wavelet coefficients in harmonic space
(padding the higher frequencies with zeros) and computing
SC with the corresponding up sampled versions of the low-
pass filter. This procedure generates the low-frequency
components of the signal at each decomposition level.
Additionally, SC of the detail wavelet coefficients and the
corresponding up sampled high-pass filter are computed to
generate the high-frequency components. Both components
are added at each step to generate an approximation signal in
harmonic space at each level.

iv) Transformation of the approximation signal into real space.
The inverse SHT of the approximation signal at the last step
is computed to get the signal into real space. The original
signal can be recovered when wavelet coefficients are not
modified.

Similar invertible filter banks have been proposed in Yeo et al.
(2006), but they used stereographic dilation directly in real space.
Nevertheless, this kind of dilation makes it difficult to control the
localization properties of wavelets (and wavelet coefficients) in
harmonic space because the effect on the SHCs of the dilated
function is not analytical.

In particular, the scale discretized axis-symmetric filters
employed in the present study are related in harmonic space by
equations:

A0

=——'— (low — pass filter)

¢*(27')

G*> =1—H* (high — pass filter)
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where ¢ is a scale discretized scaling function of a positive real
variable / and is given in harmonic space by:

—1
) P 12k

PU=e"y

-
£ k!

The variable / represents the overall frequencies on the sphere
(Wiaux et al., 2007) whereas the value of the oscillation factor P
controls the shape of the filters. Scale discretized scaling function
can be obtained from a continuous wavelet provided that it fulfils
the specific conditions established in Wiaux et al. (2007).

To get a smoothed approximation of the signal, we used a non-
linear denoising technique based on translation of multiresolution
spherical wavelet coefficients towards zero by applying a threshold
value (soft-thresholding) (Donoho, 1995). Soft-thresholding pro-
vides considerable noise reduction without greatly impairing the
spatial resolution of the denoised function.

The maximum allowed decomposition levels were introduced
in the SDWF transformation, 7 for the grids of 10240 x 1024¢ and
8 for the grids of 204860 x2048¢.

The first decomposition level contained the real space wavelet
coefficients of the finest scale and were the same size as the
original signal. The number of columns and rows of the grids are
reduced by half across subsequent levels until 8 x8 at the last
coarsest level, which contain the approximation wavelet coeffi-
cients. Further reduction of the grids is not allowed by the SHT
implementation (Healy et al., 2003) because it requires bandwidth
greater than or equal to 4 for transformation of the signal.

The denoising procedure based on wavelet soft-thresholding
not only smoothes but also preserves quite well the shape of the
signal. Indeed, the reconstructed function is at least as smooth as
the estimated one; and the estimator comes nearly as close in mean
square to the estimated function as any measurable estimator can
come, over every one of a wide range of smoothness classes. These
two properties, mathematically proven by Donoho (1995), make
the denoising procedure quite suitable for our purposes.

The value of the threshold for the soft-thresholding procedure
was obtained by reshaping the matrix of the wavelet coefficients
at the finest scale on a one-dimensional vector c. After that, the
threshold value was computed as follows:

:median(abs(c)) 2 log (n)

thr
0.6745

where n represents the length of vector c. In our case, n was equal
to 1024 for the grids of 10240x1024¢ and 2048 for the
204860 %x2048¢ grids. Donoho and Johnstone (1994) demonstrated
that these universal thresholds have a robust noise level estimator
in the wavelet space. Additionally, they have also reported that the
wavelet-based signal estimator has a minimax error asymptotically
close to that of the optimal unknown thresholding rule.

Like the Gaussian smoothing, an optimal filter was obtained for
the whole brain (global-based statistical analyses) and for each
cortical region (local-based statistical analyses) by varying three
parameters of the filtering process with wavelets. These parameters
include i) the oscillation factor which controls the shape of the
filters; ii) the dilation factor which scales the initial support
(dilation) of the filters in harmonic space (and therefore in the real
space); and iii) the number of the finest decomposition levels at
which the thresholding procedure is applied.

Determining optimal Gaussian and wavelet filters

There is a classical trade-off between enhancing sensitivity by
increasing smoothness of the statistical parametric maps and the
consequent loss in specificity and image resolution (Lerch et al.,
2005; Han et al., 2006; Singh et al., 2006). We followed the standard
definitions of sensitivity [#true positives/(#true positives +#false
negatives)] and specificity [#true negatives/ (#true negatives +#false
positives)], while the optimal Gaussian and wavelet filters were
operationally defined as those ensuing from the best trade-off
between sensitivity and specificity across the 25 statistical para-
metric maps resulting from the simulation study. This trade-off was
estimated with the equation r=mean(sensitivity;* specificity;),
where i=1...25. Optimal filters were first established for the
global-based statistical analyses considering the whole cerebral
cortex and, then, for local-based statistical analyses considering each
of the four cortical regions separately.

Measuring the intersubject variability in cortical thickness

One of the principal aims of biomedical image smoothing is to
reduce the intersubject variability for subsequent statistical ana-
lyses. Indeed, Han et al. (2006) found that variability in cortical
thickness measurements became smaller as the kernel size of the
Gaussian filter increased (see also Chung et al., 2005). We com-
pared the intersubject variability yielded by the two methods
(Gaussian smoothing versus spherical wavelets) in order to deter-
mine whether this error source might partially explain differences
at detecting variations in cortical thickness. For the global effects,
intersubject variability was obtained by averaging the standard
deviations in all vertices of the cortical thickness maps (left hemi-
sphere) from control and experimental groups separately, after they
were resampled on the template surface. Since variability is not
uniform across the cortex (Lerch and Evans, 2005), we further
computed the intersubject variability for those four specific cortical
regions where the simulated ROIs were introduced (local effects).

Statistical analysis

Generation of thickness statistical parametric maps was ac-
complished by means of a mass vertex-based analysis using the
univariate general linear model at each cortical vertex. The goal was
to test for the null hypothesis of no group differences on the cortical
thickness at each cortical vertex. The value of the Fisher's F statistic
was used for this purpose. Multiple comparisons were corrected
using the false discovery rate (FDR) correction (Genovese et al.,
2002) at 0.01 level of significance. This correction procedure en-
sured that, on the average, only 1% of the surviving results were
statistically false positives, whereas those remaining stemmed from
the spatial smoothing process. An FDR threshold was then deter-
mined from the observed p-value distribution. There is evidence that
FDR is independent of hypothesis testing and the smoothing method
(Wink and Roerdink, 2004). Comparisons between different
smoothing methods were then possible using the same FDR. This
procedure is extremely simple to implement and has been previously
employed in exploratory studies using cortical thickness analysis
(Singh et al., 2006; Lerch et al., 2005; Lerch and Evans, 2005).

Sensitivity, specificity and the trade-off between these two
measurements provided by the optimal filters after applying global
FDR thresholding to thickness statistical parametric maps were
evaluated with one-way analyses of variance (ANOVAs) with
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repeated measures. These models only included the smoothing
method (Gaussian, wavelet transform on grids of 10242, wavelet
transform on grids of 2048%) as the within-subject factor. In the
case of the local FDR thresholding, a two-way ANOVA was
applied to the cortical region (inferior temporal lobe, medial tem-
poral lobe, entorhinal cortex and medial orbitofrontal cortex)
included as an additional within-subject factor. Mauchly's W was
computed to check for violations of the sphericity assumption.
When Mauchly's ¥ test was significant, the Greenhouse—Geisser
correction was applied (and the epsilon index was reported).
Homogeneity of variance was evaluated with the Levene's test. The
Tukey test was performed for post-hoc comparisons.

Finally, the number of subjects per group required in order to
detect significant changes in cortical thickness maps smoothed
with the wavelet-based procedure at the optimal setting was
determined by a power analysis.

Results
Optimal smoothing filters for the Gaussian and wavelet approximation

As shown in Fig. 2A, increasing the kernel size improved the
trade-off between sensitivity and specificity up to a point. The best
trade-off was found at 14 mm FWHM for the whole cerebral
cortex. The optimal kernel size decreased when the FDR threshold
was locally computed for each cortical region separately (Fig. 2B).
For the middle and inferior regions of the temporal lobe as well as
for the medial orbitofrontal cortex, the optimal kernel size was
2 mm while for the entorhinal cortex the trade-off increased up to a
blurring kernel of 10 mm.

In the case of the wavelet-based method, three different para-
meters were manipulated: the oscillation and dilation factors, and
the number of the finest decomposition levels at which the thres-
holding procedure was applied. The best results were always
obtained with an oscillation factor of 1. In this particular case, the
low-pass filter becomes Gaussian whereas the wavelet associated
with the high-pass filter becomes a difference of Gaussians. The
other two parameters varied depending on the smoothing required
to get an optimal wavelet filter able to compete with the optimal
empirically determined Gaussian kernel. Thus, for narrow Gaus-
sian kernels the optimal wavelet filters showed smaller dilation
factors and fewer numbers of threshold-finest decomposition levels
as compared to relatively wide kernels. In addition, increasing the
resolution of the equiangular grid from 1024% to 2048> samples
resulted in improved results. This grid shift also increased the
dilation factor required for the corresponding optimal filter. Indeed,
the dilation factors for the best global wavelet filters were 6 and 11
for the grids of 1024 and 2048 samples, respectively. For the
local analyses, the optimal dilation factors varied from 4 to 5
except for the entorhinal cortex which increased from 5 to 7 for the
grids of 1024 and 2048 samples, respectively. The number of
threshold-finest levels was set to 3 at the global level and also at
the local level, in particular for the entorhinal cortex, but it was
reduced to 1 for the remaining regions.

Gaussian spatial filter versus wavelet-based smoothing:
computational times and qualitative evaluation

Both smoothing approaches to cortical thickness maps were
computed in Dell™ workstations with 4 Intel Xeon™ Dual Core
processors, 2.66 GHz each, 16.0 GB of RAM, using MATLAB® v.
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Fig. 2. Sensitivity—specificity trade-off for different kernel sizes and dif-
ferent wavelet transforms on equiangular grids of 1024” (low grid, LG) and
2048 (high grid, HG). A. Trade-off for the global-based analysis. Note that
optimal values of trade-off were obtained for the Gaussian 14 mm FWHM
(within a square) and for the wavelet transforms with an oscillation factor of
1 and dilation factors of 6 and 11 for the LG and HG, respectively. The
number of threshold-finest levels was set to 3. B. Trade-off for the local-
based analysis. The best trade-off was found for the Gaussian filter of 2 mm
FWHM in all Brodmann’s areas except in the entorhinal cortex, whose
kernel width was set to 10 mm. In the case of the wavelet-based method, the
best trade-off in the entorhinal cortex was obtained with dilation factors of 5
and 7 while in the remaining areas it decreased to 4 and 5 for LG and HG,
respectively. The number of threshold-finest levels were set to 3 for
entorhinal cortex, but it was reduced to 1 for the remaining regions.

7.3 under Linux Centos4 X86-64 bits. Application of the spherical
wavelet-based smoothing method per subject took about 37 s for
grids of 1024 and about 4.1 min for grids of 20482, This time
included the resampling of the icosahedron thickness surface to the
equiangular grid, computation of the SDWF transformation, thres-
holding of coefficients, inverse transformation, and resampling to
the original surface. On the other hand, the computation time for
the Gaussian kernel smoothing increased with the FWHM. For
example, the local optimal Gaussian filter of 2 mm FWHM re-
quired about 0.3 s while wider kernels of 10 and 14 mm took
around 10 and 20 s, respectively. In spite of the obvious time
differences between the two smoothing methods, the spherical
wavelet approach seems to provide an excellent trade-off between
computational time and image resolution when group comparisons
are planned.

Fig. 3 shows the cortical thickness maps of one experimental
subject on the sphere (horizontal top panel) and the inflated cortical
surface (horizontal bottom panel) in the original thickness map (left
column) and after smoothing with the local optimal 10 mm Gaus-
sian kernel (middle column) as well as the corresponding optimal
wavelet filter on a grid of 20487 (right column) for the entorhinal
cortex. These filters illustrate well the expected differences be-
tween the two smoothing methods. Indeed, note that the wavelet-
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Fig. 3. Representation of the cortical thickness maps obtained from one control subject (female, 74 yr) before and after smoothing the original image (left column)
with a Gaussian filter of 10 mm (middle column) and a wavelet filter with dilation factor of 7 (right column) on a grid of 2048°. Both filters are the corresponding
optimal settings for the entorhinal cortex. Spherical (upper panel) and inflated surface representations (bottom panel) of the cortical thickness map are displayed.

Values of the colormap bars are expressed in mm.

based filter preserved the edges of the original signal better as
compared to the Gaussian spatial filter. These properties will
increase the reliability at detecting changes in cortical thickness in
cross-sectional studies.

Intersubject variability

Estimation of sensitivity and specificity is heavily dependent on
the degree of intersubject variability. The smoothing process not
only reduces the noise from the raw thickness maps but also
decreases the intersubject variability. The mean standard deviations
computed on the cortical thickness at all cortical vertices across
subjects before and after applying different filters are shown in
Table 3 for both control and experimental groups. Changes in
intersubject variability were analyzed in a two-way mixed ANOVA
with the smoothing method (Gaussian and wavelet) as the within-
subject factor and group (control versus experimental) as the
between-subject factor. These analyses were performed for grids of
1024% and 20482, separately. Differences between smoothing me-

Table 3

thods were significant [F(2,28)=52.82; p<10>; e=.54]. Pair-wise
comparisons revealed that the smallest values of intersubject var-
iability were provided by the Gaussian filter (M=.353, SE=.033) as
compared with the 1024* (M=.361, SE=.032, p<.005) and 2048*
(M=.394, SE=.036, p<107) wavelet grids. There was no dif-
ference between the control and experimental group. The fact that
wavelets often provided higher intersubject variability values dis-
cards intersubject variability as a possible explanation for any bene-
fit of the adaptive wavelet filtering over the Gaussian smoothing.

Effects of whole-brain FDR thresholds on cortical thinning detection

Before introducing any synthetic change in cortical thickness,
the two groups of subjects (NV=35) were compared for this feature
to ensure that no bias was accidentally introduced. As expected, no
differences between groups were found, for neither Gaussian nor
for wavelet-based smoothing. This conclusion was derived from
the fact that the same values were obtained for the FDR threshold
and the maxima significance on the thickness statistical parametric

Mean of the standard deviations computed at the vertices across the control/experimental thickness maps before and after smoothing with the optimal Gaussian

kernels and wavelets for global and local FDR thresholding

Threshold Smoothing filter Global Inferior temporal Medial temporal Entorhinal Medial orbitofrontal
No filter before synthetic changes .509/.497 .670/.656 .544/.548 .739/.718 .592/.571
No filter after synthetic changes® /.506 /.768 /.693 /.870 /.649
Global FDR thresholding
G-14 mm .202/.193 .258/.226 213/.175 .326/.322 .226/.193
W-1-6 (1024%) .215/.205 .276/.245 .224/.190 .342/.339 241/.207
W-1-11 (20487 .225/.215 .289/.259 .235/.204 .356/.361 .252/.218
Local FDR thresholding
G-2 mm .580/.522 A75/.442 .380/.363° .506/.442
W-1-4 (10247) .580/.525 A74/.447 371/.361° .506/.443
W-1-5 (20487) .617/.592 .504/.518 433/.430° .542/.497

* Synthetic changes were only included in the experimental group.
® Gaussian FWHM of 10 mm, W-1-5 (1024%), W-1-7 (2048>).
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Fig. 4. Effects of global thresholding on sensitivity of cortical thickness
analyses for different thinning percents (top panel) and different ROI sizes
(bottom panel) after applying a Gaussian filter of 14 mm FWHM and

wavelet transforms with dilation factors of 6 and 11 for equiangular grids of
1024% and 2048, respectively.

maps (p=.0017 for the Gaussian kernel of 14 mm, p=.0016 for the
wavelet on a grid of 1024 and p=.0013 for the wavelet on a grid
of 2048°).

To determine if the wavelet approach was more efficient as
compared to the Gaussian smoothing at correctly identifying changes
in cortical thickness, the sensitivity yielded by the Gaussian filter and
the two wavelet filters (grids of 1024> and 2048) was computed
across 25 thickness statistical parametric maps (5 ROI sizes x 5 levels
of thickness reduction). Although both the Gaussian and wavelet-
based filters were highly accurate at detecting cortical thinning, the
wavelet transform applied on the 2048 grid showed a slightly, but
significantly higher sensitivity (p<.003) when compared with
wavelets applied on 1024> grids and Gaussian smoothing. As shown
in Fig. 4, all three filters increased their sensitivity as cortical thinning
became more pronounced and as the ROI's size became larger.

Like sensitivity, the wavelet smoothing methods applied to
different grid sizes were statistically more specific than the Gaussian
smoothing (p<10~2*). In fact, the wavelet transform on the larger
grid yielded 46% fewer false positives than the Gaussian filter. This
difference was limited to 6% when the wavelet was applied on a grid
of 1024%. In our study, false positives not only included the statistical
false positive vertices but also those generated in the smoothing
process.

Results shown in Fig. 5 illustrate the decrease of specificity as the
cortical thinning and ROI size increased. False positive vertices were
found both inside and outside those regions artificially modified in
the present study. We estimated the slopes of the lines that best fit the
specificity values reported for each cortical thickness reduction and
total modified area (resulting from adding the areas of the four
cortical regions for each ROI size). In particular, specificity
decreased at a higher rate for the Gaussian spatial procedure with
the increase of cortical thinning. The difference between the two
methods was statistically corroborated by computing the fitness for
the values of the slopes again and considering the resulting second
order slope as a measure of the specificity degradation acceleration
(right inferior panel of Fig. 5).

The one-way ANOVA also revealed a significant effect of the
smoothing on sensitivity—specificity trade-off [F(2,48)=23.19;
p<10"7]. The optimum trade-off was provided by the 2048
wavelet grid (p<10~%), and as for sensitivity and specificity, its
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Fig. 5. Effects of thickness reduction on specificity for each ROI size after applying a Gaussian filter of 14 mm FWHM and wavelet transforms with dilation
factors of order 6 and 11 for equiangular grids of 10247 and 20487, respectively. The right inferior panel shows the fitness of the second order slopes regression
resulting from line fit of specificity computed for each ROI size within the four Brodmann’s areas.
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performance increased with the cortical thinning and size of the
ROL

The higher sensitivity and specificity of the wavelet smoothing
method (for a grid of 2048%) relative to the Gaussian spatial filter
(14 mm FHWM) is also illustrated in Fig. 6, which shows the
difference image after subtracting the statistical parametric maps
yielded by the Gaussian (Fig. 6B) and wavelet filters (Fig. 6C)
from the original image, when the ROI size was 20 cm® and
cortical thickness decreased by 20% at the four cortical regions
selected for this study. In this particular statistic parametric map,
the two filters provided the same amount of true positives in all
cortical regions (100% in inferior and medial temporal lobe, and
97% in medial orbitofrontal cortex) except in the entorhinal cortex,
where the wavelet transform detected 16% more true modified
vertices than the Gaussian filter. The wavelet reduced the amount
of false positives detected from 8795 to 7777. Note that this
reduction was particularly evident in entorhinal cortex and medial
temporal lobe.

Effects of local FDR thresholds on cortical thinning detection

Progressive focal cortical atrophies appear in degenerative
conditions characterizing different neurological and/or psychiatric
disorders (Whitwell et al., 2007; Sailer et al., 2003; Didic et al.,
1999). In these cases, changes in cortical thickness should be
explored by applying local thresholding to thickness statistical
parametric maps. Global thresholding procedures inherent in the
FDR estimator do not consider cross-regional variations in the
distribution of the uncorrected p-values. Regardless of whether a
specific cortical region shows high or low intersubject variability
and population differences, the same threshold value will be

Middle
temporal

Entorhinal

M True positives

M False positives

applied to all cortical regions. Consequently, global thresholding
procedures might result in a high occurrence of false positives.
Thus, if a cortical region with high intersubject and/or inter-
population variability is used in determining the global threshold
level, thinning in a region with low variability will be masked by
the high global threshold level, and therefore will go undetected.
Conversely, if a region with low variability is used for establishing
the global threshold level, thinning free regions with high levels of
intersubject and/or inter-population variability will produce a high
rate of false positives. Therefore, local thresholding procedures are
supposed to increase the smoothing process specificity when
applied to cortical thickness maps. Indeed, differences between
global and local FDR thresholds can be seen by comparing results
shown in Figs. 6 and 7 for a ROI of 20 cm® and 20% of cortical
thinning. In this particular case, the local FDR thresholding
reduced the amount of false positives by 80% as compared with the
global FDR. When local FDR thresholds were computed for each
cortical region, the wavelet transform reduced, on the average, the
amount of false positives by 10%. This reduction reached 24% in
the inferior temporal lobe and 8.6% in the entorhinal cortex.

The wavelet-based smoothing method not only showed a better
trade-off [F(2,48)=53.27; p<1079; £=.76], but also an improve-
ment in sensitivity [F(2,48)=16.27, p<10~*; ¢=.67] and specifi-
city [F(2,48)=37.4; p<10™®; £=.64] as compared to the Gaussian
spatial filter. Differences in the sensitivity—specificity trade-off
varied depending on the cortical region as inferred from the
significant interaction effect [F(6,144)=2.92; p<.04; e=.53].
Specifically, the wavelet transform for the larger grid always
yielded a better trade-off than the Gaussian filter. The higher
specificity provided by the former was mainly responsible for this
improvement. For example, the Gaussian smoothing detected 3%
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Fig. 6. True positives, false positives and true negatives yielded by the optimal filters within four Brodmann’s areas after applying global FDR thresholding to
thickness statistical parametric maps for a ROI size of 20 cm? and a 20% of simulated cortical thinning from the original signal. A. Simulated ROIs on the inflated
surface. B. Results provided by the Gaussian spatial filter (FWHM= 14 mm). C. Results provided by the wavelet filter on an equiangular grid of 2048 (dilation

factor=11).
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Fig. 7. True positives, false positives and true negatives yielded by the optimal filters within four Brodmann’s areas after applying local FDR thresholding to
thickness statistical parametric maps for a ROI size of 20 cm? and a 20% of simulated cortical thinning from the original signal. A. Simulated ROIs on the inflated
surface. B. Results provided by the Gaussian spatial filter. The width of the kernel was set to 2 mm for all cortical regions except for entorhinal cortex which was
set to 10 mm. C. Results provided by the wavelet filter on an equiangular grid of 2048* with dilation factors of order 7 for entorhinal cortex and order 5 for the

remaining cortical regions.

less true positives and 24% more false positives in the inferior
temporal lobe than the wavelet-based method. When the wavelet
transform was applied on grids of 1024%, the better sensitivity—
specificity trade-off was restricted to the inferior area of the
temporal lobe (p<.03) and the entorhinal cortex (p<.001), also due
to its higher specificity (p<10~'* and p<.009, respectively). These
results are illustrated in Fig. 8.

Power analysis

We conducted power calculations in order to determine how
many subjects are needed to detect global and local changes in
cortical thickness when wavelet-based smoothing is applied. The
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Fig. 8. Effects of local thresholding on the sensitivity—specificity trade-off in
the four Brodmann’s areas after applying optimal Gaussian and wavelet
filters on equiangular grids of 1024% and 2048°.

sample size was estimated at a significance level of 0.05 (two-
sided), with a statistical power of 0.9, and for a different percent of
thickness reduction (effect size). Only sample size estimated results
for a ROI size of 60 cm? are presented because results for the
remaining ROI sizes were similar. Table 4 shows sample size
estimates based on the estimated thickness measurement variability
(standard deviation of measurement error).

As expected, the number of subjects per group necessary to
detect global and local changes decreased as the cortical thinning
increased. It is worth noting that changes affecting the entorhinal
cortex demanded a relatively higher number of subjects to detect
cortical atrophy as compared to the remaining cortical regions.
Likewise, detection of cortical thinning in the whole cortex re-
quired quite a high number of subjects, a minimum of threefold
more subjects than detection of local changes. Thus, caution is

Table 4

Calculation of the sample sizes (subjects per group) required to detect
(significance level at 0.05, two-sided, statistical power of 0.9) global and
local thickness difference effects under various conditions of thickness
reduction when using optimal wavelet smoothing

Thinning STD Percent of cortical thickness reduction
5% 10% 15% 20% 25%
Global 0.083 160 152 146 128 124
Inferior temporal 0.183 16 16 16 14 14
Medial temporal 0.154 16 16 14 12 12
Entorhinal 0.310 44 28 24 20 18
Medial orbitofrontal 0.169 20 18 16 16 16
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required when interpreting mean global cortical thinning if the
sample size is not large enough.

Discussion

The present study compares the sensitivity and specificity of
two different smoothing methods to detect synthetic changes in
human cortical thickness. Wavelet-based methods revealed a better
sensitivity—specificity trade-off when compared to Gaussian
smoothing in both the whole neocortex and cortical region-based
statistical analyses, which was mainly due to the higher specificity
obtained with the wavelet approach. All together, these results
suggest that spherical wavelets represent a reliable alternative to
Gaussian spatial filtering at detecting changes in cortical thickness
in cross-sectional studies.

Results revealed that the wavelet-based method was more
accurate at identifying changes in cortical thickness than Gaussian
smoothing. Thus, spherical wavelets were more sensitive (more true
positive results) and specific (less probability of false positive
results) at detecting small cortical atrophies than the traditional
approach based on spatial Gaussian filters. Among the wavelet
methods evaluated, the one with a larger equiangular grid (20487)
always improved the trade-off between sensitivity and specificity.
This was possible because the increase in size of equiangular grid
provided a larger bandwidth to represent the cortical surface
variations which, in turn, lead to more precise spherical harmonic
transform of the data (Wiaux et al.,, 2007). Interestingly, the
enhanced performance of the wavelet filter relative to Gaussian
smoothing was especially remarkable for the ROI size of 20 cm?,
even for cortical thickness reductions as small as 5% (M=0.46 mm),
which might be of clinical interest in the early diagnosis and follow-
up of neurodegenerative disorders characterized by progressive
focal cortical atrophies (Whitwell et al., 2007; Rosas et al., 2005;
Sailer et al., 2003; Didic et al., 1999).

Differences in accurate detection between the adaptive wavelet
filtering and the Gaussian method increased in the local-based
statistical analyses, mainly due to changes in specificity. It is
noteworthy to mention that the higher specificity of the wavelet
over the Gaussian smoothing cannot be attributed to a lack of
sensitivity of the former because the wavelet procedure always
produced more true positives. Changes in intersubject variability
can also be ruled out as a possible explanation for the better
sensitivity and specificity of the wavelet-based methods over the
traditional Gaussian smoothing. In fact, the mean standard
deviations either were similar for both procedures or were larger
for the wavelet method. Alternatively, the smaller number of false
positives detected by the wavelet filter could be due to the less
smoothing effect introduced in the statistic parametric maps. In
agreement with this idea, Wink and Roerdink (2004) found that the
less smoothing wavelet-based methods applied to functional MRI
data generated less false positives than Gaussian smoothing or
wavelet-based methods with a larger smoothing effect.

In the current study, FDR was used to correct for multiple
comparisons. It is known that FDR control is more advantageous
than family-wise error control methods (e.g., Gaussian's random
field theory), especially when the percentage of vertices affected by
change is high relative to the whole surface. In such cases,
sensitivity is kept quite high while the number of false positives is
kept relatively low in comparison to the overall surface.
Accordingly, we found that the trade-off between sensitivity and
specificity increased with the ROI size and cortical thinning

regardless of the smoothing procedure. Therefore, FDR is limited
at detecting focal changes because it uses the amount of signal
contained in the whole surface to set its threshold. To overcome
this constraint, regional FDR control has recently been proposed as
improving the power of the analysis (Langers et al., 2007).
Alternatively, other approaches for correcting multiple compar-
isons could be used (Hagler et al., 2006). For example, an accurate
approach would be to perform simulations under the null hypo-
thesis to determine how often the value of a statistic from the ‘true’
analysis is exceeded. This frequency is then interpreted as a
corrected p-value. This approach would considerably increase both
computational demands and calculation time, which is especially
important in our study, where a large number of thickness sta-
tistical parametric maps were tested.

Interestingly, wavelets were especially accurate at identifying
thickness reductions within the inferior temporal lobe, one of the
cortical structures whose pattern of thinning seems to differentiate
between Alzheimer's disease and frontotemporal dementia (Du
et al., 2007). Also, a significant thinning of inferior temporal gyrus
has been reported to distinguish between healthy elderly and mild
cognitive impairment, this gyrus being the region with the highest
percent of atrophy when mild cognitive impairment and Alzhei-
mer's disease populations were compared (Singh et al., 20006).
Furthermore, wavelets provided a better sensitivity—specificity
trade-off than traditional Gaussian smoothing at detecting cortical
thinning within the entorhinal cortex. The volume of this structure
has been reported to differentiate subjects with memory difficulty
but not dementia from those destined to develop dementia with
84% accuracy (Killiany et al., 2002).

Considerable efforts have been made in the last decade to
quantify changes in shape descriptors of different human brain
structures by using distinct computational neuroanatomy ap-
proaches (Jang et al., 2006; Chung et al., 2003; Thompson et al.,
2001, 2004; Fischl and Dale, 2000; Van Essen et al., 1998). Most of
these techniques smooth the original cortical surfaces with Gaussian
spatial filters in order to decrease the high-frequency noise and
enhance the robustness of the parametric statistic tests at extracting
shape features based on group comparisons. The main disadvantage
of this pre-processing step is its reduced ability to localize focal
changes in complex surfaces (e.g., neocortex) because it blurs the
boundaries of the anatomical changes. The suppression of
apparently undersized details in brain images has motivated the
search for new methods able to preserve the main features of the
original images for group comparisons. Within this framework,
previous fMRI studies have already pointed out the wavelet
approach as an excellent alternative to the Gaussian smoothing
(Van de Ville et al., 2006, 2007, Wink and Roerdink, 2004).
Nevertheless, those methods are 3D volume-based analyses and, to
our knowledge, no prior study has compared surface-based wavelets
and Gaussian smoothing on brain images. Surface-based methods
take into account the geodesic surface and therefore can provide
more accurate results than the volume-based ones (Thompson et al.,
2004).

There have been previous attempts to smooth shape descriptors
of human cerebral cortex using heat kernel smoothing on the unit
sphere, and spherical harmonics for data modeling (Chung, 2006).
This approach was later improved by weighting the spherical
harmonics (Chung et al., 2006). The weighted spherical harmonic
representation is the finite least square approximation to the
solution of the isotropic heat diffusion on the unit sphere. This
approach provides a better estimator of the local and detailed
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features of the signal as compared to the classical spherical
harmonics. However, it is not as adaptive as the wavelet shrinkage
denoising. The wavelet-based method has been theoretically
proven to be nearly optimal regarding the spatial adaptation when
global and local smoothness are unknown (Donoho, 1995; Donoho
and Johnstone, 1994). To the best of our knowledge, no alternative
estimation procedure performs better without knowing a priori the
smoothness class of the signal. Even though our wavelet
smoothing approach does not use spherical orthonormal basis
(which is crucial in the wavelet shrinkage denoising mathematical
framework) but just as an overcomplete representation, it could
enhance adaptation. Shrinkage is also possible with redundant
representations if the smooth underlying signal has a sparse
representation with respect to the used frames. Likewise, wavelet
filters do not require assumptions about the nature of the signal and
they allow discontinuities and spatial variation (Donoho, 1995;
Donoho and Johnstone, 1994).

Recent studies have confirmed the above-mentioned advan-
tages of spherical wavelets in shape analysis of different brain
structures. Thus, Yu et al. (2007) studied the pattern of shape
variations in cortical features within normal population by applying
discrete biorthogonal spherical wavelet transformation to cortical
surfaces and separated principal component analysis to each scale
of correlated spherical wavelet coefficients, in comparison with a
decomposition of cortical surface using a spherical harmonic basis
function approach. These authors found that the spherical wavelet
transformation was able to detect locations of specific shape
variations in non-demented elderly people more accurately, as well
as tracking the development of cortical surface folding pattern in
newborns. Determining shape variations at multiple scales using
spherical wavelet transformation can also improve the segmenta-
tion of subcortical structures. Thus, Nain et al. (2007) applied the
same spherical wavelet functions as Yu et al. (2007) to the
automatic segmentation of human caudate nucleus and hippocam-
pus, two regions of interest in the study of schizophrenia. This
wavelet shape-based analysis approach significantly improved the
approximation of shapes relative to the point distribution model,
which tends to over smooth data. Additionally, spherical wavelets
performed better than the active shape model algorithm at
capturing finer shape details during the automatic segmentation
process of both brain structures.

One potential field of application of spherical wavelet-based
cortical thickness analysis would be the early diagnosis of
neurodegenerative conditions. This procedure might be useful at
establishing a link between preclinical symptoms and local ana-
tomical changes in neurological disorders with different etiology.
In support of this proposal, there is increasing evidence that focal
atrophies are associated with the onset and/or preclinical stages of
different neurodegenerative conditions. For instance, the initial
clinical symptoms of multiple sclerosis are correlated with cortical
grey matter loss in affected regions, which seems to be independent
of white matter pathology (Calabrese et al., 2007). It has also been
found that focal thinning of grey matter affects different cortical
regions during the course of the disease (Sailer et al., 2003).
Further evidence has shown a strong correlation between focal
cortical degeneration and cognitive performance impairment du-
ring the motor preclinical stages of Huntington disease, calling
attention to the critical role of cortical damage in the pathophy-
siology and clinical expression of the disease (Rosas et al., 2005).
Finally, different patterns of cortical atrophy underlie distinct
subtypes of mild cognitive impairment, hallmark of some prevalent

neurodegenerative diseases (Seo et al., 2007; Bell-McGinty et al.,
2005). All together, these findings suggest that determining the
spatiotemporal course of subtle thickness variations in both healthy
aging and preclinical conditions will provide important insight into
better tracking of the neuronal loss route during normal aging and
to find early markers of cortical lesions in prevalent neurodegen-
erative diseases.
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