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Abstract

A new Markov chain Monte Carlo method for the Bayesian analysis of finite mixture distributions

with an unknown number of components is presented. The sampler is characterized by a state space

consisting only of the number of components and the latent allocation variables. Its main advantage

is that it can be used, with minimal changes, for mixtures of components from any parametric

family, under the assumption that the component parameters can be integrated out of the model

analytically. Artificial and real data sets are used to illustrate the method and mixtures of univariate

normals, of multivariate normals and of uniform distributions are explicitly considered. Issues of

label switching, when parameter inference is of interest, are addressed in a post-processing stage.

Keywords: Classification; Label switching; Markov chain Monte Carlo; Multivariate normal mixtures;

Mixtures of uniforms; Normal mixtures.

∗Address for correspondence: Agostino Nobile, Department of Statistics, University of Glasgow, Glasgow

G12 8QW, U.K.

Email: agostino@stats.gla.ac.uk

1



1 Introduction

Finite mixture distributions are receiving increasing interest as a way of modelling population het-

erogeneity and, to a larger extent, as a means of relaxing distributional assumptions. Monographs

on finite mixtures include, among others, Titterington et al. (1985) and McLachlan and Peel (2000).

Böhning and Seidel (2003) is a recent review with emphasis on nonparametric maximum likelihood,

while Marin et al. (2005) is an introduction from a Bayesian perspective. Although statistical finite

mixtures date as far back as Newcomb (1886) and Pearson (1894), their widespread use was for long

prevented by the difficulties associated with their estimation. A major breakthrough occurred with

the appearance of the EM algorithm of Dempster et al. (1977), and the associated idea of explic-

itly representing, by means of latent allocation variables, the mixture components generating each

observation. The very same idea plays a central role in the Bayesian approach using Markov chain

Monte Carlo methods, such as the Gibbs sampler of Diebolt and Robert (1994). Inference about

the number of components in the mixture has been more difficult, see Böhning and Seidel (2003)

for a brief summary and pointers to the non-Bayesian literature. Within the Bayesian approach, a

definite advance has been the application by Richardson and Green (1997) of the reversible jump

MCMC method of Green (1995), which allowed one to sample from the joint posterior distribution

of all the parameters, including the number k of components. Beside Richardson and Green (1997),

other researchers have studied methods to estimate the posterior distribution of k. Some of them

(Nobile 1994 and 2005, Roeder and Wasserman 1997) have provided estimates of the marginal like-

lihoods of k components, then used Bayes theorem to obtain the posterior of k. Others (Phillips

and Smith 1996, Stephens 2000a) have derived MCMC methods that share with Richardson and

Green’s the idea of running a sampler on a composite model, so that the posterior of k can be

estimated by the relative frequency with which each model is visited during the simulation. Some

other authors (Carlin and Chib 1995, Chib 1995, Raftery 1996) preferred to avoid placing a prior

distribution on k, instead, they estimated the marginal likelihoods of k components and possibly

used Bayes factors to test k vs. k + 1 components. Mengersen and Robert (1996) too employed a

testing approach, however, they relied on the Kullback–Leibler divergence as a measure of distance

between mixtures with k and k + 1 components. Representations of the marginal likelihoods for k

components have been derived by Nobile (1994, 2004) and Ishwaran et al. (2001).
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Most authors within the Bayesian approach have devised posterior sampling schemes to draw

from the joint distribution of mixture parameters and allocations. Only a few, among which

Nobile (1994), Casella et al. (2000), Steele et al. (2003), have preferred to work in terms of the

allocation variables only, after analytically integrating the parameters out of the model. The present

paper belongs to this thread and presents a new MCMC sampler, which we call the allocation

sampler, that makes draws from the joint posterior distribution of the number of components and

the allocation variables. The main advantage of this approach is that the sampler remains essentially

the same, irrespective of the data dimensionality and of the family of mixture components. In

contrast, the reversible jump method of Richardson and Green (1997) requires the invention of

“good” jumping moves, to apply it to a new family of mixtures; this has slowed its application to

mixtures of multivariate normal distributions, however, see Dellaportas and Papageorgiou (2003).

The allocation sampler consists of several moves, some of which change the number of com-

ponents k. We illustrate its performance with real and artificial data, reporting examples of pos-

terior inference for k, for the mixture parameters and for future observables. Meaningful para-

metric inference in mixture models requires to tackle the label switching problem, see Celeux et

al. (2000), Stephens (2000b), Frühwirth-Schnatter (2001). To this purpose, we adapt a proposal of

Stephens (2000b) to the situation where only a sample of the allocations is available.

2 The model

We assume that random variables x1, . . . , xn are independent and identically distributed with den-

sity (with respect to some underlying measure)

f(x|k, λ, θ) =

k
∑

j=1

λjqj(x|θj), (1)

where λj > 0, j = 1, . . . , k and
∑k

j=1 λj = 1. Several parameters enter in the finite mixture (1): the

number of components k, the mixture weights λ = (λ1, . . . , λk) and the components’ parameters

θ = (θ1, . . . , θk). In this paper we regard all these parameters as unknowns. We also assume that

the mixture components qj belong to the same parametric family. As an aside on notation, we

will use q for mixture component densities, π for priors and posteriors, p for (prior and posterior)

predictives and f for all other densities.
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A useful way of thinking of model (1) is as follows: each observation has probability λj of arising

from component j in the mixture. More precisely, let gi be the index or label of the component

that generated xi; the latent vector g = (g1, . . . , gn)> is called the allocation vector. We assume

that the gi’s are conditionally independent given k and λ with Pr[gi = j|k, λ] = λj, so that

f(g|k, λ) =

k
∏

j=1

λ
nj

j (2)

where nj is the number of observations allocated by g to component j: nj = card{Aj} and Aj =

{i : gi = j}. Conditional on g, the density of xi is qgi
and

f(x|k, λ, θ, g) =
n

∏

i=1

qgi
(xi|θgi

). (3)

Integrating the density in equation (3) with respect to the conditional distribution of g given in (2)

produces the finite mixture (1).

The specification of a Bayesian finite mixture model requires prior distributions on k, λ and

θ. We use as prior on k the Poi(1) distribution restricted to 1 < k ≤ kmax, in the examples

in this paper we used kmax = 50. Other authors have used priors on k proportional to Poisson

distributions: Phillips and Smith (1996) with mean 3, Stephens (2000a) with means 1, 3 and 6.

For a justification of the Poi(1) prior on k, see Nobile (2005). Conditional on k, the weights λ are

assumed to have a Dir(α1, . . . , αk) distribution, where the α’s are positive constants. Independent

priors are assigned to the parameters in θ:

π(θ|k, φ) =

k
∏

j=1

πj(θj|φj), (4)

where φj is a possibly empty set of hyperparameters and φ = {φ1, . . . , φk}.

As already mentioned, the distinguishing feature of our approach is that it uses a model where

the mixture weights λ and the parameters θ have been integrated out. Integrating the density (2)

with respect to the Dir(α1, . . . , αk) distribution of the weights gives

f(g|k) =
Γ(α0)

Γ(α0 + n)

k
∏

j=1

Γ(αj + nj)

Γ(αj)
, (5)

where α0 =
∑k

j=1 αj .

We assume that the independent priors on the θj’s are chosen in a way that these parameters can

also be integrated out analytically from expression (3), as will be the case if priors πj(θj|φj) which
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are conjugate to the distributions qj(x|θj) are employed. Multiplying (3) by (4) and integrating

with respect to θ yields

f(x|k, g, φ) =
k

∏

j=1

pj(x
j |φj) (6)

where

pj(x
j |φj) =

∫

∏

i∈Aj

qj(xi|θj)πj(θj|φj) dθj (7)

is the marginal density of the observations xj = {xi : i ∈ Aj} allocated to component j, after

integrating with respect to the prior of θj, and pj(x
j|φj) = 1 if Aj = ∅.

Before proceeding we make some remarks about the hyperparameters (αj , φj), j = 1, . . . , k.

We assume that the hyperparameters of the j-th component are the same for all values of k ≥

j. This assumption ensures that the family of mixture models we entertain is nested and the

corresponding marginal likelihoods are related, see Nobile (2004). One important special case

occurs when αj = α1, φj = φ1, j = 1, . . . , k, so that the prior is symmetric with respect to a

permutation of the components’ labels. We refer to this situation as the symmetric case and on

occasion, to emphasize that it is not assumed, we will use the term asymmetric case. Clearly,

if any information distinguishing the components is available, it should be incorporated in the

prior distribution of the θ’s and λ’s. We only provide some suggestions for prior specification

in the symmetric case. The weights hyperparameters α1, . . . , αk are treated as fixed constants;

αj = α1 = 1 is the most common choice, corresponding to a uniform distribution on the simplex

of weights, and we have adopted it here. Experimentation has shown that not only parametric

inference, but also inference about the number of components may be very sensitive to changes

in some of the components’ hyperparameters φj. This is the reason why we have listed φ to the

right of the conditioning bar in formulae (4) and (6). Nobile (2005) contains an example of marked

sensitivity of the posterior of k to changes in φ, for mixtures of univariate normal distributions. He

proposes to adopt an empirical Bayes approach, where some components of the φj ’s are fixed using

basic features of the data, while others are estimated using a posterior sample from a preliminary

MCMC run conducted with a hyperprior on φ. That approach is adopted and extended in the

present paper, details are in Sections 2.1 and 2.2.

The allocation sampler, to be discussed in Section 3, aims at sampling from the joint posterior
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distribution of k and g:

π(k, g|x, φ) ∝ f(k, g, x|φ) = π(k)f(g|k)f(x|k, g, φ) (8)

where f(g|k) and f(x|k, g, φ) are given by formulae (5) and (6). If a hyperprior is placed on φ, an

additional Metropolis-Hastings move is used to update φ given k, g and x. Before discussing the

allocation sampler, we illustrate how the model specialises to the cases of univariate and multivariate

normal components. More details on these, as well as on the cases of Poisson and Exponential

components, can be found in Nobile (1994, Chapter 2). We also consider mixtures of uniforms, as

an example of a situation where conjugate priors πj(θj |φj) are not available.

2.1 Mixtures of univariate normals

If the mixture components are univariate normals, then qgi
(xi|θgi

) in (3) is the density N(xi|mgi
, r−1

gi
)

of a normal distribution with mean mgi
and variance r−1

gi
. The priors πj(θj|φj) in (4) are the

usual conjugate priors for (mj , rj): rj ∼ Ga(γj , δj) and mj|rj ∼ N(µj , {τjrj}
−1), so that φj =

(µj , τj, γj , δj). Given k and g, the marginal distribution of the data allocated to the j-th compo-

nent is given by

pj(x
j |φj) = π−nj/2

[

τj

τj + nj

]1/2 Γ(γj + {nj/2})

Γ(γj)
·

(2δj)
γj







2δj +
∑

i∈Aj

(xi − xj)
2 +

τjnj

τj + nj
(xj − µj)

2







−(γj+{nj/2})

where xj = (1/nj)
∑

i∈Aj
xi. As for the hyperparameters, we assume a symmetric prior and follow

the approach of Nobile (2005). The overall mean µ1 is fixed to a round value close to the sample

mean x. The prior predictive distribution is t with 2γ1 degrees of freedom, we use γ1 = 2 to have

a prior predictive with relatively thick tails, but finite second moments. Independent priors are

placed on the other two hyperparameters, with (1 + τ1)
−1 ∼ Un(0, 1) and δ1 ∼ Un(0, δU ) where

δU = (γ1−1)s2
x and s2

x is the sample variance. Draws from a preliminary run of the sampler are used

to make boxplots of the marginal posterior distributions of τ1 and δ1 conditional on k. Estimates

τ̂1 and δ̂1 are computed using medians of the posterior draws, but keeping only the draws that

correspond to values of k after a rough leveling off of the medians has occurred. These estimates

are then used as the values of τ1 and δ1 in subsequent runs.
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2.2 Mixtures of multivariate normals

For b-variate normal components, the densities qgi
(xi|θgi

) in (3) are Nb(xi|mgi
, r−1

gi
), where now mgi

and rgi
denote the mean vector and precision matrix (inverse covariance) of the multivariate normal.

Conjugate priors are placed on the pairs (mj , rj), with rj ∼ Wb(νj , ξj), a Wishart distribution with

νj degrees of freedom and precision matrix ξj, while mj|rj ∼ Nb(µj , {τjrj}
−1), with µj a b-vector

and τj a positive real number. The hyperparameters for component j are φj = {µj , τj, νj , ξj}. The

marginal density of the data allocated to component j, given k and g, is

pj(x
j |φj) = π−bnj/2

[

τj

τj + nj

]b/2 b
∏

s=1

Γ({νj + nj + 1 − s}/2)

Γ({νj + 1 − s}/2)
|ξj |

νj/2 ·

∣

∣

∣

∣

∣

∣

ξj +
∑

i∈Aj

(xi − xj)(xi − xj)
> +

τjnj

τj + nj
(xj − µj)(xj − µj)

>

∣

∣

∣

∣

∣

∣

−(νj+nj)/2

where xj is the sample mean vector of the observations allocated to component j. A symmetric

prior is assumed and we set µ1 = x, the sample mean vector. The prior predictive distribution is

multivariate t with ν1 − b + 1 degrees of freedom, which when set equal to 4 yields ν1 = b + 3. For

the remaining hyperparameters τ1 and ξ1, we assume that ξ1 is diagonal, then apply a procedure

similar to the one employed for univariate normal components.

2.3 Mixtures of uniforms

Mixtures of uniform distributions Un(a, b) are not identifiable, not even up to a permutation of

the components’ labels (Titterington et al., 1985, page 36). However, this does not prevent their

use for density estimation, only inference about the components’ parameters. Assume that the

densities qgi
(xi|θgi

) in (3) are Un(xi|agi
, bgi

) and let (aj , bj), j = 1, . . . , k, be a priori independent

with densities πj(aj , bj) = 1/(2φ2
j ), −φj < aj < bj < φj , where φj = φ is a positive constant.

Also assume, for simplicity, that the data contains no ties. Then, a straightforward but tedious

computation shows that, conditional on k and g, the marginal density of the data allocated to
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component j is

pj(x
j |φ) =











































1
2φ2

»

(xj

(nj )
−xj

(1)
)−nj+2−(xj

(nj )
+φ)−nj+2−(φ−xj

(1)
)−nj+2+(2φ)−nj+2

–

(nj−1)(nj−2) nj > 2

1
2φ2

[

log
(φ−xj

(1)
)(φ+xj

(2)
)

2φ(xj

(2)
−xj

(1)
)

]

nj = 2

1
2φ2

[

xj
1 log

φ−xj
1

φ+xj
1

+ φ log (2φ)2

(φ−xj
1)(φ+xj

1)

]

nj = 1

(9)

where xj
(i) denotes the i-th order statistic of xj. The constant φ is determined using a variant of the

procedure used for univariate normal components, with prior distribution φ−1 ∼ Un(0, 1/maxi |xi|).

3 The allocation sampler

This section discusses how to sample from the joint posterior distribution of k and g given in

(8). If a hyperprior distribution is placed on φ, an additional Metropolis-Hastings move is needed

to update φ. Otherwise, the sampler we use runs on k and g only and comprises two types of

moves: moves that do not affect the number of components and moves that change it; each sweep

of the allocation sampler begins with a random selection of the move to be performed. The first

type of moves consists of (i) Gibbs sampling on the components of g, (ii) two Metropolis-Hastings

moves to simultaneously change several allocations and (iii) a Metropolis-Hastings move on the

component labels. Moves akin to (i) and (iii) were used by Nobile (1994). A relabelling move was

also employed by Frühwirth-Schnatter (2001) in her permutation sampler, but it affected λ and θ,

beside g. The second type of moves consists of an ejection/absorption Metropolis-Hastings move:

either a mixture component is absorbed into another one or, the reverse move, a component ejects

another component. These moves are similar in spirit to the reversible jump moves of Richardson

and Green (1997). In fact one can think of the allocation sampler as a version of reversible jump

on a state space consisting of k and g only, so that the transitions occur between discrete spaces

with different number of elements, rather than spaces of varying dimensions. We prefer to use the

terms ejection and absorption, rather than split and combine, since they convey asymmetric roles

for the components involved, we found this helpful in devising the moves.
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3.1 Moves that do not change the number of components

These moves keep k at its current value and update only g.

3.1.1 Gibbs sampling of g

The first move is a systematic sweep Gibbs sampler on the components of g, from g1 to gn. To

sample gi we need its full conditional distribution. This can be easily computed by first evaluating

k times the joint density f(k, g, x|φ), with gi = 1, . . . , k and all the other quantities at their current

values, then renormalizing the resulting values. In fact, only k − 1 evaluations are necessary, since

f(k, g, x|φ) at the current g is already known. Also, changing the current gi to the other k − 1

possible values only affects two terms in (5) and (6), so the computation time increases linearly

with k.

This Gibbs sampler changes only one entry of g at a time, so one can expect very strong serial

dependence of the sampled g’s, especially for moderate to large sample sizes n. Therefore, it makes

sense to also have moves that attempt to change several entries of g simultaneously. This is easily

accomplished by means of the Metropolis-Hastings algorithm, the details are in Section 3.1.2.

3.1.2 Metropolis-Hastings moves on g

In the first move, two components, say j1 and j2, are randomly selected among the k available. A

draw p1 is made from the Beta(αj1 , αj2) distribution, then each observation in components j1 and

j2 is re-allocated to component j1 with probability p1 or to component j2 with probability 1 − p1.

The result is a candidate allocation g ′ which is accepted with probability min{1, R}, where

R =
f(k, g′, x|φ)

f(k, g, x|φ)

P (g′→g)

P (g→g′)
(10)

and P (g → g′) is the probability of proposing the candidate g ′ when the current state is g. One

can show, see the Appendix, that P (g ′ → g)/P (g → g′) = f(g|k)/f(g′|k), so that the Metropolis-

Hastings acceptance probability ratio in (10) reduces to

R =
f(x|k, g′, φ)

f(x|k, g, φ)
. (11)

The computation of f(x|k, g′, φ) only involves a change in two terms in the product (6).
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The second move selects a group of observations currently allocated to some component, say j,

and attempts to re-allocate them to another component, say j ′. In detail, j and j ′ are randomly

drawn from the k components. If nj = 0 the move fails outright. Otherwise, m is drawn from a

discrete uniform distribution on {1, . . . , nj}. Then, m observations are randomly selected among

the nj in component j and moved to component j ′. This results in a candidate g′ which is accepted

with probability min{1, R}, where R is given by (10). In this move, however, the proposal ratio

can be easily shown to be

P (g′→g)

P (g→g′)
=

nj

nj′ + m

nj! nj′ !

(nj − m)! (nj′ + m)!
.

Again, computing f(k, g′, x|φ) requires only a change of two terms in (5) and (6).

3.1.3 Metropolis-Hastings move on the labels

Conditional on k, there are k! allocation vectors g which partition the data x into k non-empty

groups in the same way, only differing in the assignment of labels to the groups (for simplicity

we disregard the possibility of empty components). Thus to each g with high posterior probability

there correspond other k!−1 g’s, obtained by permuting the component labels, also relatively likely

a posteriori. In fact, in the symmetric case, all the k! g’s have the same posterior probability. The

Gibbs and Metropolis-Hastings moves described above, will only move slowly from one region of

high posterior probability to another, let alone visit all the k! regions in a typical length simulation

run. This may or may not be a serious problem. Obviously, a problem arises in the asymmetric case,

since there the labelling currently visited by the sampler may not be the one that best matches

the prior to the groups in the data. For these reasons, we also employ a Metropolis-Hastings

relabelling move. Given the current state g, a candidate state g ′ is generated by randomly selecting

two components and exchanging their labels. As the proposal kernel is symmetric, the candidate

g′ is accepted with probability min{1, f(k, g ′, x|φ)/f(k, g, x|φ)}. We perform this relabelling move

only in the asymmetric case, where information distinguishing the components is incorporated in

the prior. If parameter inference is of interest, labels are re-assigned for the symmetric case in a

post-processing stage, after the sample has been collected, see Section 4.6.
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3.2 Moves that change the number of components

This section describes the moves that change the number of components in the mixture. They

consist of a Metropolis-Hastings pair of moves: a component ejects another component and, in the

reverse move, a component absorbs another component.

Assume that the current state is {k, g} and let kmax be the maximum allowed number of

mixture components. An ejection move is attempted with probability pe
k, where pe

k = 1/2, k =

2, . . . , kmax − 1, pe
1 = 1 and pe

kmax
= 0, otherwise an absorption move is attempted. Suppose that

an ejection is attempted and denote the candidate state by {k ′, g′} with k′ = k + 1. The candidate

is accepted as the next state according to the usual Metropolis-Hastings acceptance probability

min{1, R}, where

R =
f(k′, g′, x|φ)

f(k, g, x|φ)

P ({k′, g′}→{k, g})

P ({k, g}→{k′ , g′})
. (12)

In the reverse move, an attempted absorption from {k ′, g′} to {k, g} is accepted with probability

min{1, 1/R}, with R as given in (12).

We have yet to describe how g′ is proposed and how the proposal probabilities in (12) are

computed. The procedure to form a proposal is slightly different between the asymmetric and

symmetric cases, although the proposal probabilities do not change. We discuss the asymmetric

case first. In an ejection move, with current state {k, g}, one of the k mixture components, say

j1, is randomly selected as the ejecting component, while the ejected component is assigned label

j2 = k + 1. A draw pE is made from a Beta(a, a) distribution and each observation currently

allocated to the ejecting component is randomly re-allocated with probability pE to component

j2 and with probability 1 − pE to component j1. The parameter a can have a critical effect on

the performance of the sampler. We choose it to ensure that empty components j2 are proposed

relatively often (see the Appendix for the details). This provided reasonably good results in our

experiments. If ñj1 and ñj2 are the numbers of observations re-allocated to components j1 and j2,

then the probability of the resulting allocation, after integrating with respect to the distribution of

pE, is Γ(2a)Γ(a + ñj1)Γ(a + ñj2)/ {Γ(a)Γ(a)Γ(2a + nj1)}. Therefore, when at {k, g}, the candidate

{k′, g′} is proposed with probability

P ({k, g}→{k′, g′}) = pe
k

1

k

Γ(2a)

Γ(a)Γ(a)

Γ(a + ñj1)Γ(a + ñj2)

Γ(2a + nj1)
. (13)
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In the reverse absorption move, the absorbed component has label j2 = k′ = k + 1, while the

absorbing component is randomly selected from the remaining k components. All the observa-

tions currently allocated to component j2 are re-allocated to component j1. Hence the proposal

probability is

P ({k′, g′}→{k, g}) = (1 − pe
k)

1

k
. (14)

Therefore, the ratio of proposal probabilities in (12) is

P ({k′, g′}→{k, g})

P ({k, g}→{k′ , g′})
=

1 − pe
k

pe
k

Γ(a)Γ(a)

Γ(2a)

Γ(2a + nj1)

Γ(a + ñj1)Γ(a + ñj2)
. (15)

The computation of f(k′, g′, x|φ) in (12) again requires the change of only two terms in (5) and (6).

In the symmetric case we can improve mixing by randomly selecting both the absorbing and

the absorbed components. Reversibility then requires that the ejected component in an ejection

should be any of the resulting k+1 components. This is easily achieved by including in the ejection

move a swap between the label j2 = k + 1 of the ejected component and the label of a randomly

selected component, including the ejected itself. As a result, the proposal probabilities in (13) and

(14) are both multiplied by 1/(k + 1) and their ratio remains as given in (15).

We conclude this discussion with a remark about implementation. If the absorbed component

is randomly selected, a successful absorption can create a gap in the sequence of components. The

gap could be easily filled, by moving into it the last component or by decreasing by one all the labels

of the components greater than the absorbed one. These adjustments, however, are unnecessary,

since in the symmetric case the labels are just place-holders. Therefore, we prefer to save some

computation time, by allowing gaps in the sequence of labels to arise, while storing in an additional

vector the information about which components are currently in the mixture.

3.3 Some examples with artificial data

As an illustration of the performance of the allocation sampler, we applied it to samples of size

50, 200, 500 and 2000 from a few mixtures of univariate normals, displayed in Figure 1. In order

to improve comparability, the samples were not randomly drawn, instead they were obtained by

evaluating the quantile function of the mixture on a grid in (0, 1). The model and prior were as

detailed in Section 2.1. For each sample a preliminary run was made with random τ and δ, consisting
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Figure 1: Density functions of some mixtures of univariate normal distributions. (a) N(0, 1),

(b) 1

2
N(0, 1) + 1

2
N(6, 1), (c) 1

2
N(0, 1) + 1

2
N(3, 1), (d) 2

3
N(0, 1) + 1

3
N(2.5, 1), (e) 1

2
N(0, 1) + 1

2
N(0, 7−2),

(f)
∑4

j=1

1

4
N(1.6{j − 1}, 1), (g) 6

12
N(0, 1) + 3

12
N(4, 22) + 1

12
N(−5, 2−2) + 1

12
N(2.5, 4−2) + 1

12
N(7, 52),

(h)
∑

6

j=1

1

6
N(j(j − 2), j2).

of 500,000 sweeps, plus 10,000 sweeps of burn-in, with a thinning of ∆ = 10, i.e. only 1 draw every

10 was kept. The preliminary run was used to estimate τ and δ as detailed in Section 2.1 and also

to select a thinning value ∆ likely to achieve a lag 1 autocorrelation of about 0.7 in the sampled k’s.

The following runs comprised 10, 000∆ sweeps, plus 1, 000∆ sweeps of burn-in. Five independent

runs of the sampler were made for each sample. Summaries of the estimated posteriors of k with

relative standard deviations are reported in Table 1. For all mixtures, the posterior probability of

the true number of components increases with the size n of the sample. For mixtures (a)-(e) the

value of k with highest posterior mass is always equal to the true k, except for mixture (d) with

n = 50. Mixtures (f), (g) and (h) are trickier, however, as n increases, the mode of π(k|x) tends

to move towards the true k. In the case of mixture (g) the modal and true k coincide by n = 500,

while for mixtures (f) and (h) they still differ even with n = 2000.

The sampler was coded in Fortran, when possible the programs of Nobile (1994) were adapted.

Simulation times on a PC with a 2.6 GHz 32-bit processor ranged between a few seconds for
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Sample size

Mixture 50 200 500 2000

k π(k|x) s.d. k π(k|x) s.d. k π(k|x) s.d. k π(k|x) s.d.

(a) 1 .557 .015 1 .644 .009 1 .726 .015 1 .805 .010
ktrue : 1 2 .296 .004 2 .250 .007 2 .207 .006 2 .164 .007

3 .110 .008 3 .080 .008 3 .053 .009 3 .027 .005
1 .000 .000 1 .000 .000 1 .000 .000 1 .000 .000

(b) 2 .740 .010 2 .785 .009 2 .842 .008 2 .905 .005
ktrue : 2 3 .214 .007 3 .184 .009 3 .139 .010 3 .087 .003

4 .041 .005 4 .028 .001 4 .017 .002 4 .007 .002
1 .198 .012 1 .001 .002 1 .000 .000 1 .000 .000

(c) 2 .473 .008 2 .607 .011 2 .645 .011 2 .774 .009
ktrue : 2 3 .235 .005 3 .292 .010 3 .270 .007 3 .193 .007

4 .073 .004 4 .080 .006 4 .071 .006 4 .030 .003

1 .386 .008 1 .022 .007 1 .000 .000 1 .000 .000

(d) 2 .379 .007 2 .576 .009 2 .596 .008 2 .666 .010
ktrue : 2 3 .169 .005 3 .287 .006 3 .290 .008 3 .260 .009

4 .050 .004 4 .090 .005 4 .088 .003 4 .063 .004
1 .000 .000 1 .000 .000 1 .000 .000 1 .000 .000

(e) 2 .600 .005 2 .614 .008 2 .615 .006 2 .628 .008
ktrue : 2 3 .292 .005 3 .294 .008 3 .297 .005 3 .289 .007

4 .086 .003 4 .076 .005 4 .075 .003 4 .071 .006

1 .449 .011 1 .075 .015 1 .000 .000 1 .000 .000

(f) 2 .348 .011 2 .557 .008 2 .600 .008 2 .255 .018

ktrue : 4 3 .148 .001 3 .271 .005 3 .297 .004 3 .488 .012
4 .044 .003 4 .076 .005 4 .083 .005 4 .199 .008
5 .010 .002 5 .017 .002 5 .017 .002 5 .048 .003
1 .144 .004 1 .000 .000 1 .000 .000 1 .000 .000

2 .439 .005 2 .000 .000 2 .000 .000 2 .000 .000
(g) 3 .283 .002 3 .015 .003 3 .000 .000 3 .000 .000

ktrue : 5 4 .103 .006 4 .416 .007 4 .038 .006 4 .000 .000

5 .025 .002 5 .377 .006 5 .508 .011 5 .697 .012
6 .005 .001 6 .146 .004 6 .321 .009 6 .240 .009
7 .001 .000 7 .037 .002 7 .106 .005 7 .054 .003
1 .001 .000 1 .000 .000 1 .000 .000 1 .000 .000

2 .546 .011 2 .037 .004 2 .000 .000 2 .000 .000

(h) 3 .330 .009 3 .565 .009 3 .441 .014 3 .012 .007

ktrue : 6 4 .099 .002 4 .299 .005 4 .397 .009 4 .649 .010
5 .020 .002 5 .082 .002 5 .130 .004 5 .269 .008
6 .003 .001 6 .015 .002 6 .028 .004 6 .059 .006

Table 1: Posterior probabilities of selected values of k for representative samples of sizes 50, 200, 500
and 2000 from the mixtures displayed in Figure 1. Probability π(k|x) is the average of five estimates from
independent runs of the allocation sampler, s.d. is the standard deviation of the five estimates. Modal values

are enclosed in a box.
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mixture (a) with n = 50 and about 7 hours for mixture (g) with n = 2000. For each mixture,

average time per sweep increased roughly linearly with n. However, samples of larger size usually

required larger thinning values ∆ (which varied between 10 and 400) and this affected computation

times considerably. Figure 2 provides an idea of the mixing of the allocation sampler, using the

settings discussed above.
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Figure 2: Sampled values of k for mixture (f) in Figure 1 with sample size n = 2000, in the first of five

independent runs: (a) jittered time series plot of k; (b) Estimate of π(k|x) across the simulation run. The

number of sweeps on the x-axis should be multiplied by the thinning constant, in this instance ∆ = 320.

Although these examples concerned mixtures of univariate normals only, we believe the results

to be indicative of the performance of the sampler for mixtures of other distributions too. As we

mentioned earlier, the family of mixture components affects the sampler only through the form of

the densities pj(x
j|φj) in formula (6).

4 Parameter and predictive posterior distributions

Parameter inference in finite mixture models is somewhat problematic. To begin with, the number

of parameters can be very large, so they lose their appeal as a convenient summary of the features

of a model. Moreover, inference about the components’ weights and parameters makes little sense

unless it is carried out conditionally on the number of mixture components. A further complication

is that the mixture likelihood is invariant to permutations of the component labels. Nonetheless,

posterior distributions of the parameters still play an important role, at the very least as a route
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to the computation of posterior predictive distributions of future observables.

4.1 Posterior distributions

Given k and g, the prior independence between λ and θ, as well as between the θj’s, is preserved a

posteriori. Conditional on k and g, the posterior distribution of the weights is Dirichlet:

λ|k, g, x ∼ Dir(α1 + n1, . . . , αk + nk). (16)

For the components parameters θ one has:

π(θ|k, g, x, φ) =
k

∏

j=1

πj(θj|x
j , φj), (17)

where πj(θj |x
j, φj) denotes the posterior of θj given that g allocates xj to component j. In general,

this distribution can be written as

πj(θj|x
j , φj) =

πj(θj|φj)
∏

i∈Aj
qj(xi|θj)

pj(xj |φj)
(18)

where the normalizing constants pj(x
j |φj) were defined in (7). If conjugate priors πj(θj|φj) are used,

the factors in (17) take the simple form πj(θj |x
j, φj) = πj(θj |φ

′
j), where φ′

j is the updated value of

the hyperparameter, according to the relevant rule for the family of distributions in question.

Marginal posterior distributions unconditional on g are obtained by averaging (16) and (17)

with respect to the posterior of g:

λ|k, x ∼
∑

g

π(g|k, x)Dir(α1 + n1, . . . , αk + nk),

π(θ|k, x, φ) =
∑

g

π(g|k, x)
k

∏

j=1

πj(θj|x
j , φj).

Of course, marginally the prior independence is lost. Estimates of π(λ|k, x) and π(θ|k, x, φ) can

be produced using the output from the allocation sampler, by averaging (16) and (17) over the

sampled g’s, corresponding to a given value of k.

In the symmetric case, no information distinguishing the components is present in the prior.

Since the likelihood (1) is also invariant with respect to a permutation of the components labels,

so is the posterior. Thus, there is one common marginal posterior distribution for all the λj ’s

and one common marginal posterior for all the θj’s. In this case, meaningful parametric inference
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requires the adoption of a particular ordering of the labels. This must be enforced either during

the simulation or in a post-processing stage, since MCMC samplers typically wander between label

orderings, the so-called label switching phenomenon. We return to this topic and our proposed

solution in Section 4.6.

4.2 Predictive distributions

The posterior predictive distribution of a future observation xn+1 can be easily computed as follows.

Conditional on k, λ, θ, g and x the future observable xn+1 is independent of the past data x and

has density as in (1):

f(xn+1|k, λ, θ, g, x, φ) =

k
∑

j=1

λjqj(xn+1|θj).

Integrating this density with respect to the joint distribution of λ and θ given k, g and x (see

Nobile 1994, page 28, for the details) yields

f(xn+1|k, g, x, φ) =
k

∑

j=1

αj + nj

α0 + n
pj(xn+1|x

j , φj) (19)

where

pj(xn+1|x
j, φj) =

∫

qj(xn+1|θj)πj(θj|x
j , φj)d θj (20)

is the posterior predictive density of xn+1 according to component j. Finally, the posterior predic-

tive of xn+1 is obtained by averaging (19) with respect to the joint posterior distribution of k and

g:

p(xn+1|x, φ) =
∑

k,g

π(k, g|x, φ)

k
∑

j=1

αj + nj

α0 + n
pj(xn+1|x

j , φj).

To condition on a certain number of components k, the average should instead be taken with respect

to π(g|k, x, φ). An estimate of p(xn+1|x, φ) can be easily produced from the output of the allocation

sampler, by taking the average of the right hand side of formula (19) over the sampled pairs {k, g}.

A simpler expression is available for the posterior predictives pj(xn+1|x
j, φj). Substituting (18)

in (20) gives

pj(xn+1|x
j , φj) =

1

pj(xj |φj)

∫

∏

i∈Aj∪{n+1}

qj(xi|θj)πj(θj |φj) dθj

=
pj(x̃

j |φj)

pj(xj |φj)
(21)
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where x̃j denotes the vector xj augmented with xn+1: x̃j = {xi : i ∈ Aj ∪ {n + 1}} and we used

formula (7). If conjugate priors are used, then πj(θj |x
j, φj) = πj(θj|φ

′
j) and substituting this in

(20) yields

pj(xn+1|x
j , φj) =

∫

qj(xn+1|θj)πj(θj|φ
′
j)d θj

= pj(xn+1|φ
′
j)

where, again, we used (7).

4.3 Mixtures of univariate normals

For univariate normal components and the prior described in Section 2.1, the posteriors πj(θj |x
j , φj)

in (17) are as follows: rj |g, x ∼ Ga(γ ′
j , δ

′
j) and mj |rj , g, x ∼ N(µ′

j , {τ
′
jrj}

−1), where

γ′
j = γj +

nj

2
, δ′j = δj +

1

2

∑

i∈Aj

(xi − xj)
2 +

τjnj

2(τj + nj)
(xj − µj)

2,

τ ′
j = τj + nj, µ′

j =
τjµj + njxj

τj + nj
.

The posterior predictive density pj(xn+1|x
j, φj) is the density of a univariate t distribution with

2γ′
j degrees of freedom, location µ′

j and precision {γ ′
j/δ

′
j}{τ

′
j/(1 + τ ′

j)}.

We provide an illustration using the galaxy data of Roeder (1990). These data consist of

velocity measurements (1000 Km/sec) of 82 galaxies from the Corona Borealis region. Aitkin (2001)

compares likelihood and Bayesian analyses of the data. Two histograms, with different bin widths,

are displayed in Figure 3. Table 2 contains an estimate of π(k|x) obtained using the allocation

sampler. The hyperparameters were determined as discussed in Section 2.1 and had values α = 1,

µ = 20, τ = 0.04, γ = 2, δ = 2. Very little posterior mass is given to numbers of components

k 1 2 3 4 5 6 7 8 9 10

π(k|x) 0.000 0.000 0.086 0.293 0.343 0.200 0.064 0.013 0.002 0.000

s.d. 0.000 0.000 0.007 0.006 0.005 0.006 0.003 0.001 0.000 0.000

Table 2: Posterior distribution of k, galaxy data set, mixtures of normals model with Poi(1) prior on

k, see main text for hyperparameter values. The probability π(k|x) is the average of five estimates from

independent runs of the allocation sampler, s.d. is the standard deviation of the five estimates.
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Figure 3: Histograms and posterior predictive densities for the galaxy data. Panel (a): mixture of normals

model, the thick line is the estimate of the posterior predictive density, the thin lines give 0.005 and 0.995

quantiles of the simulated densities; the histogram bin width is 1. Panel (b): mixture of uniforms model,

the lines have same meaning as in panel (a), the histogram bin width is 2.

outside the range from three to seven, in agreement with the estimate based on marginal likelihoods

given in Nobile (2005). Figure 3(a) displays, as a thick line overlaid on a histogram, an estimate of

the posterior predictive density p(xn+1|x, φ). Also displayed, as thin lines, are the point-wise 0.005

and 0.995 quantiles of the simulated densities f(xn+1|k, g, x, φ). Examples of parametric inference

for these data will be given in Section 4.6.

4.4 Mixtures of multivariate normals

For multivariate normal components with the prior discussed in Section 2.2, the posteriors πj(θj|x
j , φj)

are: rj |g, x ∼ Wb(ν
′
j , ξ

′
j) and mj |rj, g, x ∼ Nb(µ

′
j , {τ

′
jrj}

−1), where

ν ′
j = νj + nj, ξ′j = ξj +

∑

i∈Aj

(xi − xj)(xi − xj)
> +

τjnj

τj + nj
(µj − xj)(µj − xj)

>,

τ ′
j = τj + nj, µ′

j =
τjµj + njxj

τj + nj
.

The posterior predictives pj(xn+1|x
j , φj) are b-variate t distributions with ν ′

j − b + 1 degrees of

freedom, location vectors µ′
j and precision matrix {τ ′

j/(1 + τ ′
j)}(ν

′
j − b + 1)ξ′j

−1.

As an illustration, we fit a mixture of multivariate normals to Fisher’s iris data. The data

consists of measurements in centimetres on four variables (sepal length and width, petal length and
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width) for 50 flowers from each of three species of iris (I. Setosa, I. Versicolor and I. Virginica).

Bivariate scatterplots of the data are displayed in Figure 4. Although the species of each flower
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Figure 4: Posterior predictive distribution, iris data set. Univariate margins (on main diagonal) and

bivariate margins (off-diagonal) of an estimate of the four-dimensional posterior predictive density. In the

bivariate plots, the contour lines are drawn at levels corresponding to 5%, 25%, 75% and 95% of the posterior

probability of the displayed region. Overlaid on the contour plots are bivariate scatterplots of the data, using

the symbols × = Setosa, + = Versicolor, ◦ = Virginica.

is known, this information was not used in fitting the model. Table 3 contains an estimate of

the posterior of the number components. The hyperparameter values used were α = 1, µ =

(5.84, 3.06, 3.76, 1.20)> , τ = 0.065, ν = 7 and ξ = diag(0.55, 0.4, 0.35, 0.1). Most of the posterior
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k 1 2 3 4 5 6

π(k|x) 0.000 0.000 0.598 0.380 0.022 0.001

s.d. 0.000 0.000 0.031 0.030 0.002 0.000

Table 3: Posterior distribution of k, iris data set, mixtures of multivariate normals model with Poi(1) prior

on k, see main text for hyperparameter values. The probability π(k|x) is the average of five estimates from

independent runs of the allocation sampler, s.d. is the standard deviation of the five estimates.

mass is assigned to k = 3 and k = 4, with the actual number of species accounting for about 60%

of the total mass. The posterior predictive density p(xn+1|x, φ) of the iris data is four-dimensional,

Figure 4 displays the univariate and bivariate margins of an estimate computed as detailed in

Section 4.2. Within-sample classification probabilities are readily computed using the sample of

g vectors from the allocation sampler. We condition on the modal number of components k = 3

and, after performing the label permutation procedure discussed in Section 4.6, we plot in Figure 5

the relative frequency with which each observation was allocated to components 1, 2 and 3 in the

course of the simulation run. From the plot it is apparent that all but six observations were most
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Figure 5: Within-sample classification probabilities, iris data set.

often allocated to their correct class. Other summaries, such as the posterior probability that any

given group of observations are allocated to the same component, can also be easily computed from

the output of the allocation sampler.
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4.5 Mixtures of uniforms

Because of the lack of identifiability mentioned at the beginning of Section 2.3, parametric inference

in a mixture of uniforms is, per se, groundless. We derive the posterior distributions of the parame-

ters only as a means to produce the posterior predictive distribution of a future observation. With

the prior and notation as in Section 2.3, the posteriors πj(θj |x
j , φj) are obtained by substituting

in (18) the relevant quantities:

πj(θj|x
j , φj) =

1

pj(xj |φ)

1

2φ2(bj − aj)nj
− φ < aj < xj

(1), xj
(nj)

< bj < φ

where pj(x
j |φ) is given in equation (9). The posterior predictives pj(xn+1|xj , φj) are given by (21),

with both the numerator and denominator evaluated according to (9).

To provide an example, we return to the galaxy data and now fit a mixture of uniforms model,

with φ = 40. An estimate of the posterior predictive density p(xn+1|x, φ) is reported in panel (b)

of Figure 3, overlaid on a histogram of the data. Comparing the two posterior predictive densities

in panels (a) and (b) of Figure 3, one can see that the mixture of uniforms model gives a coarser

representation of the data than the normal mixture. At least in part, this is due to the fact that,

in the mixture of uniforms, the posterior of the number of components favours smaller values of

k, with π(k = 2 or 3|x) ≈ 0.85. Of course, the histograms in Figure 3 were matched to the two

predictive densities on purpose. We should also remark that histogram representations of even

major features of the data, such as the presence of one or two modes in the large central cluster,

are affected not only by the bin width, but also by a simple shift of the bins by a quarter or half

of the width.

4.6 Identifiability and label switching

Finite mixture distributions are not identifiable: the likelihood (1) is invariant to permutations of

the component labels. This lack of identifiability is so basic that a less stringent definition, usu-

ally termed “mixture identifiability”, has become necessary to denote mixtures that are uniquely

decomposable in terms of their components, up to a permutation of the labels, see Titterington

et al. (1985, page 36). If one is only interested in predictive inference, lack of identifiability is of

no concern, as one can evince from the examples in the preceding sections. However, classification
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and parametric inference require an unequivocal assignment of labels to the mixture components.

To show why, let us assume that the prior distribution does not contain any information distin-

guishing the components, so that the posterior is also invariant to permutations of the labels. As

a consequence, the marginal posterior distributions of, say, the component means in a mixture of

normals are all equal. An instance of this can be observed in the plots of the top row of Figure 6,

which display the marginal posterior densities, conditional on k = 3, of the means m1, m2 and m3

in a normal mixture for the galaxy data. These plots were produced by applying the formulae of
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Figure 6: Galaxy data, marginal posterior distributions of the component means m1, m2 and m3 in the

mixture of normals model, conditional on k = 3. The top row of plots displays estimates of the posteriors

based on the raw sample of g vectors from the allocation sampler. Bottom row contains estimates using the

allocation vectors with re-assigned labels.

Section 4.3 to the raw output of the allocation sampler. Since we know the three densities to be

equal, it is reassuring to observe that the three plots display similar features. This occurs because,

throughout the simulation run, mixture components swap labels relatively often, the label switching

phenomenon. Thus, label switching is simply a consequence of the symmetry or near-symmetry of

the mixture posterior, coupled with good mixing behaviour of the MCMC sampler. Nonetheless,

from an inferential point of view, label switching is problematic since it precludes meaningful state-

ments to be made about each component. One way to achieve identifiability consists in imposing
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constraints on the model parameters, either on the θ’s, the λ’s or both. However, this approach

does not always works satisfactorily and the results may depend on the type of constraint chosen, so

other methods have been proposed. We refer to Richardson and Green (1997), Celeux et al. (2000),

Stephens (2000b) and Frühwirth-Schnatter (2001) for further discussion and additional references.

The method we propose in this section fits in the general framework provided by Stephens (2000b).

Our setting is slightly different from the ones examined in the papers mentioned above, since the

parameters are not part of the state space of the allocation sampler. Nevertheless, lack of identifia-

bility and associated label switching persist: a prior invariant to permutations of the labels, coupled

with the likelihood (1), yields densities f(g|k) in (5) and f(x|k, g, φ) in (6) that are invariant to

permutations of the labels in the allocation vector g.

Let π denote a permutation of the integers 1, . . . , k and let πg be the allocation vector obtained

by applying the permutation π to the labels of g: πg = (πg1 , πg2 , . . . , πgn
). Define a distance

between two allocations g and g′ as the number of coordinates where they differ:

D(g, g′) =

n
∑

i=1

I
{

gi 6= g′i
}

.

Let S = {g(t), t = 1, . . . , N} be the sequence of sampled allocation vectors. The aim is to minimise

the sum of all distances between allocations

N−1
∑

t=1

N
∑

s=1

D(π(t)g(t), π(s)g(s))

with respect to the sequence of permutations {π(t), t = 1, . . . , N}. An approximate solution to this

problem can be obtained by replacing it with a sequence of optimisation problems, each involving

a single permutation π(t). These simpler problems are instances of the square assignment problem,

for which we used the algorithm and publicly available code of Carpaneto and Toth (1980). Minor

implementation details apart, the allocations g(t) in S are processed in the order of increasing

number k̃(t) of non-empty components. When re-assigning the labels of g(t), the vector is compared

to the set B(t) of allocations g ∈ S that have already been processed and that have k̃(t) or k̃(t) − 1

non-empty components. A cost matrix is computed with generic element

C(j1, j2) =
∑

g∈B(t)

n
∑

i=1

I{gi 6= j1, g
(t)
i = j2}
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and the square assignment algorithm then returns the permutation π (t) which minimises the total

cost
k̃(t)
∑

j=1

C(j, π
(t)
j ). The allocation vector with re-assigned labels is then equal to π (t)g(t). The plots

in the bottom panels of Figure 6 were produced using the allocations with re-assigned labels, in

that example our procedure manages to isolate the three components very well. For the galaxy

data, post-processing 10,000 allocation vectors took about 9 minutes, compared to about 4 minutes

for the actual sampling, using a thinning constant ∆ = 100.

As another example, we consider the joint marginal posterior distributions, conditional on k = 5,

of means and standard deviations (mj , r
−1/2
j ), j = 1, . . . , 5, in a normal mixture for the galaxy data.

The panels in the top row of Figure 7 contain the densities computed using the raw output of the

allocations sampler. Here too, the plots are very similar, due to label switching, and show five

modes, some more defined than others. The plots in the bottom row use instead the post-processed
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Figure 7: Galaxy data, joint marginal posterior distributions of component means and standard deviations

(mj , r
−1/2

j ), j = 1, . . . , 5, in the mixture of normals model, conditional on k = 5. The top row of plots displays

estimates of the posteriors based on the raw sample of g vectors from the allocation sampler. Bottom row

contains estimates using the allocation vectors with re-assigned labels. The contour lines are drawn at levels

corresponding to 5%, 25%, 75% and 95% of the posterior probability of the displayed region.

allocations. In this example our procedure manages to isolate very well the first four components,

with means at about 10, 20, 23 and 33. The fifth component, which according to the plots in the

top row is much less defined, is displayed in the plot in the bottom right corned. This posterior

has a major mode corresponding to a mean of about 17, however, minor modes with means of 23
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and 20 are still clearly visible.

5 Conclusions

We have proposed a Markov chain Monte Carlo method for the analysis of finite mixtures with

an unknown number of components. The method can be applied, essentially unchanged, to any

parametric family of mixture components, provided that the mixture weights and component pa-

rameters can be integrated out of the model in closed form. This condition is of course satisfied if

natural conjugate priors are used, but it also holds in other cases. The resulting sampler has a state

space which comprises, besides the number of components k, only the allocation vector g, for this

reason we have called it the “allocation sampler”. The sampler contains moves that keep k fixed

and moves that change it, and it can be thought of as a version of the reversible jump algorithm.

We have explicitly considered normal mixtures, mixtures of multivariate normals and mixtures of

uniform distributions and have illustrated the performance of the allocation sampler using artificial

data and two real data sets. Posterior distributions of the parameters and of a future observation

have been derived, estimates based on the sampled allocations are easily computable. We have also

discussed a post-processing technique that re-assigns the labels in the allocations, to overcome a

basic lack of identifiability in the finite mixture model.
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Appendix

A.1 Proposal ratio for first M-H move in Section 3.1.2

The probability of selecting the candidate allocation g ′, after integrating with respect to the distri-

bution of p1, is

P (g→g′) =
Γ(αj1 + αj2)

Γ(αj1)Γ(αj2)

Γ(αj1 + ñj1)Γ(αj2 + ñj2)

Γ(αj1 + αj2 + nj1 + nj2)
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where ñj1 , ñj2 are the numbers of observations re-allocated to components j1 and j2. Therefore,

the ratio of proposal probabilities in (10) is

P (g′→g)

P (g→g′)
=

Γ(αj1 + nj1)Γ(αj2 + nj2)

Γ(αj1 + ñj1)Γ(αj2 + ñj2)
=

f(g|k)

f(g′|k)
.

A.2 Distribution of pE in Section 3.2

We use pE ∼ Beta(a, a) and require a to be such that Pr[ñj2 = 0] = p0/2. Thus, p0 is the

probability of proposing to eject either an empty component or a component that contains all the

observations currently in the ejecting component. In our experiments, setting p0 = 0.2 worked well.

Then

p0

2
=

∫ 1

0
(1 − pE)nj1

Γ(2a)

Γ(a)Γ(a)
pa−1

E (1 − pE)a−1 dpE

=
Γ(2a)

Γ(a)Γ(a)

Γ(a)Γ(a + nj1)

Γ(2a + nj1)
.

resulting in the equation

Γ(2a)

Γ(a)

Γ(a + nj1)

Γ(2a + nj1)
=

p0

2
. (22)

The left hand side equals (1/2) times a product of nj1 − 1 terms, each monotonically decreasing

in a, hence it is monotonic decreasing in a. Therefore (22) can be easily solved numerically, e.g.

using bisection, apart for few small values of nj1 if p0 is too small. Since solving (22) numerically

is relatively time consuming, the equation was solved only for nj1 in a grid of values, equispaced on

the log-scale. These solutions were then stored in the simulation program and, at each stage, the

appropriate value of log a for the current value of log nj1 was determined using linear interpolation

of the solutions for the closest nj1 ’s in the grid.
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