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certain problems, the aim is to �nd any member of a solution set S � X . These problems canalso be easily stated in the above format by making f(x) = 0 for all x�S, and f(x) = 1 for allother elements of X .In most problems of practical interest, the set X is quite large. Consequently, exhaustiveenumeration of elements in X to determine xopt is not feasible. Often, elements of X can beviewed as paths in graphs/trees, the cost function can be de�ned in terms of the cost of the arcs,and the DOP can be formulated in terms of �nding a (minimum cost) solution path in the graphfrom an initial node to a goal node. Branch and bound and dynamic programming methodsuse the structure of these graphs to solve DOPs without searching the set X exhaustively [36].Given that DOP is an NP-hard problem [19], one may argue that there is no point in applyingparallel processing to these problems, as the worst-case run time can never be reduced to apolynomial unless we have an exponential number of processors. However, the average timecomplexity of heuristic search algorithms for many problems is polynomial [74, 82]. Also,there are some heuristic search algorithms which �nd suboptimal solutions in polynomial time(e.g., for certain problems, approximate branch-and-bound algorithms are known to run inpolynomial time[81]). In these cases, parallel processing can signi�cantly increase the size ofsolvable problems. Some applications using search algorithms (e.g. robot motion planning, taskscheduling) require real time solutions. For these applications, parallel processing is perhaps theonly way to obtain acceptable performance. For some problems, optimal solutions are highlydesirable, and can be obtained for moderate sized instances in a reasonable amount of timeusing parallel search techniques (e.g. VLSI oor-plan optimization [5]).Parallel computers containing thousands of processing elements are now commercially available.The cost of these machines is similar to that of large mainframes, but they o�er signi�cantlymore raw computing power. Due to advances in VLSI technology and economy of scale, the costof these machines is expected to go down drastically over the next decade. It may be possibleto construct computers comprising of thousands to millions of processing elements at costsranging from those of high-end workstations to large mainframes. This technology has createdsubstantial interest in exploring the use of parallel processing for search based applications[1, 2, 14, 32, 33, 35, 63, 66, 68, 78, 79].This article provides a survey of parallel algorithms for solving DOPs. Section 2 reviews serialalgorithms for solving DOPs. Section 3 discusses parallel formulations of depth-�rst and best-�rst search algorithms and dynamic programming. Section 4 discusses parallel formulationsand applications of 0/1 integer programming. Section 5 discusses parallel formulations andapplications of the quadratic assignment problem. Section 6 contains concluding remarks.2



2 Sequential Algorithms for Solving Discrete OptimizationProblems.Here we provide a brief overview of sequential search algorithms. For detailed descriptions, see[54, 62, 26].2.1 Depth-First Search Algorithms.Depth-�rst search is a name commonly used for various search techniques for solving DOPs thatperform search as follows. The search begins by expanding the initial node, i.e., by generatingits successors. At each subsequent step, one of the most recently generated nodes is expanded.(In some problems, heuristic information is used to order the successors of an expanded node.This determines the order in which these successors will be visited by the depth-�rst searchmethod.) If this most recently generated node does not have any successors (or if it can bedetermined that the node will not lead to any solutions), then backtracking is done, and amost recently generated node from the remaining (as yet unexpanded) nodes is selected forexpansion. A major advantage of depth-�rst search is that its storage requirement is linear inthe depth of the search space being searched. Following are three search methods that use thedepth-�rst search strategy.Simple Backtracking is a depth-�rst search method that terminates on �nding the �rstsolution. This solution is obviously not guaranteed to be the minimum-cost solution. In thesimple version, no heuristic information is used for ordering the successors of an expanded node(which happen to be at the same depth). In its variant, \Ordered Backtracking", heuristics areused for ordering the successors of an expanded node.Depth-First Branch-and-Bound (DFBB) is a DFS algorithm which searches the wholesearch space exhaustively; i.e., search continues even after �nding the solution path. Whenevera new solution path is found, the current best solution path is updated. Whenever an inferiorpartial solution path (i.e., a partial solution path whose extensions are guaranteed to be worsethan the current best solution path) is generated, it is eliminated.Iterative Deepening A* (IDA*) performs repeated cost-bounded DFS over the searchspace. In each iteration, IDA* keeps on expanding nodes in a depth-�rst fashion until thetotal cost of the selected node reaches a given threshold which is increased for each successiveiteration. The algorithm continues until a goal node is selected for expansion. It might appearthat IDA* performs a lot of redundant work in successive iterations. But for many problems3



of interest, the redundant work is minimal and the algorithm �nds an optimal solution [30].2.2 Best-First Search.Best-�rst search techniques use heuristics to direct search to spaces which are more likely toyield solutions. A*/Best-�rst branch-and-bound search is a commonly used best-�rst searchtechnique. A* makes use of a heuristic evaluation function, f , de�ned over the nodes of thesearch space. For each node n, f(n) gives an estimate of the cost of the optimal solution pathpassing through node n.A* maintains a list of nodes called \OPEN" which holds the nodes which have been generatedbut not expanded. This list is sorted on the basis of the f values of the nodes. The nodeswith the lowest f values are expanded �rst. The main drawback of this scheme is that it runsout of memory very fast since its memory requirement is linear in the size of the search spaceexplored.2.3 Dynamic ProgrammingDynamic programming (DP) is a powerful technique used for solving DOPs. Problems whichcan be solved e�ciently using DP are characterized by the Principle of Optimality de�nedby Bellman [8]. This principle states that an optimal sequence of decisions has the propertythat irrespective of the initial state and decision, the remaining decisions must constitute anoptimal decision sequence with respect to the state resulting from the �rst decision. Manydi�erent formulations of DP have been presented [36, 27, 25].The essence of many DP algorithms lies in computing solutions to the smallest subproblems andstoring the results and using them to compute solution to bigger problems. Thus the solution tothe original problem is constructed in a bottom-up fashion [4]. We will illustrate this algorithmusing the classical example of �nding the multiplication sequence of a sequence of matricesso that the total number of operations (individual multiply / add operations) is minimized[4]. Let the given matrices be represented as M1;M2; ::::;Mn. Also let mij denote the numberof operations required to multiply matrices Mi through Mj in sequence. The DP algorithmproceeds by calculating mij 's as minf(mik +mk+1;j + ri�1rkrj) k i � k < j g, where ri�1; rkare the dimensions of the product of matrices Mi through Mk , and rk; rj are the dimensionsof the product of matrices Mk+1 through Mj . The �rst term, mik, represents the number ofoperations required for multiplying matrices i through k, the second term, mk+1;j representsthe number of operations for multiplying matrices k+1 through j, and the third term, ri�1rkrj ,represents the number of operations required in computing the product of these two matrices.Clearly, if mik and mk+1;j have been precomputed, mij can be computed easily. This processis continued until m1n is computed. The computation is illustrated in Figure 1. Note that4



the total number of distinct multiplication sequences is exponential in n. However, the DPalgorithm has a complexity of O(n3).3 Parallel Formulations3.1 Parallel Depth-First-Search Algorithms.The state space tree to be searched by DFS-based algorithms such as backtracking, IDA*,DFBB etc. can easily be partitioned into smaller parts. These parts can be searched by di�erentprocessors. Searching these parts requires no (e.g., in backtracking and IDA*) or minimal (e.g.,in DFBB) communication. However, for most applications, state-space trees generated by DFStend to be highly irregular, and any static allocation of subtrees to processors is bound to resultin signi�cant load imbalance among processors. The core of any parallel formulation of DFSalgorithms is thus a dynamic load balancing technique which minimizes communication andprocessor idling. A number of load distribution techniques have been developed for parallelDFS [72, 73, 34, 39, 48, 67, 28].A general method for parallelizing DFS is presented in [34, 39]. In this formulation, eachprocessor searches a disjoint part of the search space in a depth-�rst fashion. When a processor�nishes searching its part of the search space, it tries to get an unsearched part of the searchspace from other processors. When a goal is found, all of them quit. If the search space is�nite and has no solutions, then eventually all the processors would run out of work, and the(parallel) search will terminate.Since each processor searches the space in a depth-�rst manner, the (part of) state space to besearched can be e�ciently represented by a stack. The depth of the stack is the depth of thenode being explored currently. Each level of the stack keeps track of the untried alternatives atthat level. Each processor maintains its own local stack on which it executes DFS. When thelocal stack is empty, it takes some of the untried alternatives of another processor's stack. Forshared memory architectures [24], this operation can be performed by simply locking the otherprocessor's stack and picking up a part of its search space. For distributed memory machines[24], this has to be accomplished using messages. The detailed schematic of this process isshown in Figure 2. A processor on running out of work selects a target processor for addressinga work request. On receiving a work request, a processor either responds with a part of itsown work, or a reject message in case it does not have any work. This process continues untilall processors go idle or a solution is found. In such a formulation, all search space is initiallyassigned to one processor and other processors are given null spaces. Subsequently, the searchspace is divided and distributed among various processors.The selection of a target processor for a work request can be done in a number of ways. For5



mmm mmmm
mmm �����@@@@@

eeeee����� BBBBBB����� TTTT����CCCC���� BBBBBB���� bbbbbbbbbbb����������
\\\\\\\\\\\\\

\\\\


































�������������
���

SSSSSSSSSSSSS
SSSSSSSSSSSSS

SS
SSSSSSSSSSSSS

SSSSSSSSSSSSS
SS

JJJJJJJJJJJJJ
JJJJ

�������������
����

@@@@,,,, QQQQQ#####ccccc����of the matrices corresponding to the two incoming arcs.Circles indicate calculation of number of operations required in the multiplication.

m14
m24m13 m34m23m12

m44m33m22m11Figure 1: Dynamic Programming algorithm for �nding optimal multiplication sequence for agiven ordered set of matrices. 6



'& $%'& $%
'& $%
'& $%

@@@@@@@@@@@I�����������	
6

?
6

� -
?

request it for work.Select a processor and Processor idle.Processor active.
Got a reject.Issued a request. Got work.work.Finished available

Service any pending messages.
Do a �xed amount of work.Service any pending messages.

Figure 2: State diagram describing the generic parallel DFS formulation for distributed memoryarchitectures.
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example, two techniques discussed in [34] are random polling and global round robin. In randompolling, a processor is selected at random and the work request is targeted to this processor.In global round robin, a global pointer is maintained at a designated processor. This pointerdetermines the target of a work request. Every time a work request is made, the pointer isread and incremented (modulo the number of processors). Though the global round robinscheme minimizes the total number of work requests for a wide class of problems, accessing theglobal pointer forms a bottleneck [34]. Consequently, when the number of processors increases,its performance degrades. On the other hand, random polling does not su�er from such adrawback. However, on machines that have hardware support for concurrent access to a globalpointer (e.g., the hardware fetch and add [16]), the performance of the global round robinscheme would be better than random polling.When a work transfer is made, work in the donor's stack is split into two stacks one of which isgiven to the requester. In other words, some of the nodes (i.e., alternatives) from the donor'sstack are removed and added to the requester's stack. Figure 3 illustrates the process of splittinga stack into two parts. Intuitively it is ideal to split the stack into two equal pieces. If the workassociated with either of the stacks is too small, the corresponding processor would become idletoo soon.In the above formulation of parallel DFS, a processor requests for work when it becomes idle.An alternate technique is to distribute parts of the search space as they are being generated.For example, every time the successors of a node are generated, they could be sent to selectedprocessors. A number of schemes have been proposed which use such work distribution strate-gies [67, 18, 17]. A major drawback of these schemes is that an interprocessor communicationis required for each node generation. For a detailed discussion on the relative merits of theseschemes, see [34].Parallel Formulations of DFBB. Parallel formulations of DFBB are similar to those ofDFS. The parallel formulation of DFS described above can be applied to DFBB with one minormodi�cation. Now we need to keep all the processors informed of the current best solutionpath. On a shared memory architecture, this can be done by maintaining a global best solutionpath. On a distributed memory architecture, this can be done by allowing each processor tomaintain the current best solution path known to it. Whenever a processor �nds a solutionpath better than the current best known, it broadcasts it to all the other processors whichupdate (if necessary) their current best solution path. Note that if a processor's current bestsolution path is worse than the global best solution path, then it only a�ects the e�ciency ofthe search but not its correctness. Parallel formulations of DFBB have been shown to yieldlinearly increasing speedups for many problems and architectures [5, 6].9



Parallel Formulations of IDA*. There are two approaches to parallelizing IDA*. In oneapproach, di�erent processors work on di�erent iterations of IDA* independently [31, 35]. Thisapproach is not very suitable for �nding optimal solutions. This is because a solution foundby a node on a particular iteration is not provably optimal until all the other processors havealso exhausted search space until that iteration and have not found a better solution. Anotherapproach is to execute each iteration of IDA* via parallel DFS [38, 39, 51]. Since all processorswork with the same cost bound, each processor stores this value locally and performs DFS onits own search space.3.1.1 Speedup Anomalies in Backtracking / DFS.In parallel DFS, the speedup can di�er greatly from one execution to another, as the actual partsof the search space examined by di�erent processors are determined dynamically, and can bedi�erent for di�erent executions. Hence, for some execution sequences the parallel version may�nd a solution by visiting fewer nodes than the sequential version thereby giving superlinearspeedup, whereas for others it may �nd a solution only after visiting more nodes resulting insublinear speedup. It may appear that on the average the speedup would be either linear orsublinear. This phenomenon of speedup greater than P on P processors in isolated executionsof parallel DFS has been reported by many researchers [32, 40, 44, 49, 53] for a variety ofproblems and is referred to by the term speedup anomaly.The average speedup in parallel DFS for two di�erent types of models has been analyzed in[52, 69]. In the �rst model, no heuristic information is available to order the successors of anode. For this model, analysis shows that on the average, the speedup obtained is (i) linearwhen distribution of solutions is uniform, and (ii) superlinear when distribution of solutionsis non-uniform. This model is validated by experiments on synthetic state-space trees model-ing the hackers problem[75], the 15-puzzle problem and the N-Queens problem[23]. (In theseexperiments, serial and parallel DFS do not use any heuristic ordering, and select successorsarbitrarily.) The basic reason for this phenomenon is that parallel search can invest resourcesinto multiple regions of the search frontier concurrently. When the solution density in di�erentregions of the search frontier is nonuniform and these nonuniformities are not known a priori,then sequential search has equal chance of searching a low density region or a high densityregion. On the contrary, parallel search can search all regions at the same time, ensuring fastersuccess rate.In the second model, the search tree contains a small number of solutions and a strong heuristicis available that directs search to regions that contain solutions. There is, however, some prob-ability that the heuristic makes an error and directs search to regions containing no solutions.The work distribution method used for partitioning the tree does not use any heuristic infor-mation. However, each processor searches its own space using the heuristic. For this model,10



analysis shows that the average speedup is at least linear. This may appear surprising since atany given time most of the processors will be searching spaces that are considered unpromis-ing by the heuristic. An intuitive explanation is that for this model, parallel DFS performsmuch better than serial DFS when the heuristic makes an error, and thus compensates for thelost performance in the case in which the heuristic is correct. Results from this model havebeen veri�ed on the parallel formulation of a DFS algorithm, called PODEM, which uses verypowerful heuristics to order the search tree [7].3.2 Parallel Best-First Search.A number of researchers have investigated parallel formulations of A*/B&B algorithms [35,37, 43, 48, 64, 70, 77, 80]. An important component of A*/B&B algorithms is the priorityqueue which is used to maintain the \frontier" (i:e:, unexpanded) nodes of the search graph ina heuristic order. In the sequential A*/B&B algorithm, in each cycle a most promising nodefrom the priority queue is removed and expanded, and the newly generated nodes are added tothe priority queue.In most parallel formulations of A*, di�erent processors concurrently expand di�erent frontiernodes. Conceptually, these formulations di�er in the data structures used to implement thepriority queue of the A* algorithm. In some schemes, a global priority queue is maintained at adesignated processor. In each node expansion cycle, a processor picks up the current best nodefrom this queue, expands it and inserts the successors back into the queue. Clearly, accessingsuch a queue would become a bottleneck for parallel algorithms. Consequently, schemes usingglobal priority queues are suited only for small number of processors. One way to avoid con-tention due to global priority queues is to let each processor have its own local queue. Initially,the search space is statically divided and given to di�erent processors (by expanding some nodesand distributing them to the local queues of di�erent processors). Now all the processors selectand expand nodes simultaneously without causing contention on the shared queue as before. Inthe absence of any communication between individual processors, it is possible that some pro-cessors may work on a good part of the search space, while others may work on bad parts thatwould have been pruned by sequential search. This would lead to redundant node expansionsand poor speedups. Various schemes can be developed to trade o� redundant node expansions,communication overheads and contention to optimize performance.A commonly used technique for implementing distributed queues is to hash every node generatedto a unique processor. As shown in [46] this method ensures a good distribution of promisingnodes among all processors. This technique also allows checking for duplication of nodes whichis required for graph search. For instance, if we are searching for an optimal path through agraph, it might be possible to reach a given vertex in a graph using two di�erent paths. Thus, onreaching any vertex, we �rst check if it has been reached before from any other path in the graph11



to avoid extra search. This is accomplished by hashing the node corresponding to the vertexto a unique processor where node duplications can be checked. Note that node duplicationsneed to be checked only for graph search and not for tree search problems. Hashing techniquesthemselves cause performance degradation as each node generation results in a correspondingcommunication cycle.3.3 Parallel Dynamic Programming.Parallel formulations of DP di�er signi�cantly for di�erent serial DP algorithms. First wediscuss parallel formulations of those DP algorithms in which subproblems can be staticallyorganized into levels such that solution to a subproblem depends only upon the solutions tothe subproblems at preceding levels. For example, consider the optimal matrix multiplicationsequence problem discussed in Section 2.3. As seen in Figure 1, computation for a node dependsonly on the nodes at preceding levels. If there are I nodes at a level, we could assign I=p nodesto each of the p processors. Each processor computes the cost of the nodes assigned to it.This is followed by an all-to-all broadcast during which solution costs of all nodes at thatlevel are made known to all processors. This completes the DP algorithm corresponding toone level. Since each processor has complete information about node costs at preceding levels,no communication is needed other than the all-to-all broadcast. This processor can use nomore processors than the maximum number of nodes at any level. In many applications, itis possible to extract a greater degree of parallelism than the above formulation. The �rsttechnique uses multiple processors to compute the cost of a node (e.g., [25]). In the secondtechnique, processing of nodes at di�erent levels is pipelined. Thus, processing of a node atlevel i does not wait for all nodes at levels below i to be completed. Instead, it waits onlyfor the nodes on which its own processing depends. Kung and Leiserson use this techniqueand present a parallel formulation of the DP algorithm for the matrix multiplication sequenceproblem which can use O(n2) processors and run in O(n) time [22].Not all DP algorithms can, however, be formulated as a multilevel bottom-up tree structure(e.g., see DP algorithms for solving the 0/1 Knapsack problem and the single source shortestpath problem). Parallel formulations of these algorithms have to be specially designed. Forexample, Lee et. al. [42] use the divide-and-conquer strategy for parallelizing the DP algorithmfor the 0/1 knapsack problem on a MIMD distributed memory computer.4 Parallel Integer Linear Programming AlgorithmsIn the next two sections we discuss parallel algorithms for solving the general linear zero-oneand the quadratic assignment problems. Integer linear programming problems appear in manyapplications and are solved, in general, by some branch and bound type algorithm [58], [65].12



In this section, we describe some of the �rst attempts to parallelize these branch and boundalgorithms for integer linear programs.In [3] the 0-1 integer linear program min f(x) = cTxs:t: Ax � b; x 2 f0; 1gn; (1)is considered. We may assume that all cost coe�cients ci are nonnegative (if some ci < 0 thenwe may replace xi by 1 � xi). The branch and bound algorithm (using best-�rst search) forsolving (6) is described by the following steps:1. Let fU be the incumbent which contains the best solution found during the search (initiallyfU is 1). The initial subproblem (all variables are free) is created. A list of activesubproblems is then created and the initial subproblem is inserted into it.2. Select a subproblem from the list of active subproblems whose lower bound is smallest.3. A free variable xk in the selected subproblem is chosen and is used to generate two newsubproblems (corresponding to xk = 0 and xk = 1). The variable xk is now �xed.4. The lower bound of each subproblem is computed usingfL = Xxj �xed cjxj : (2)The feasibility of each constraint is checked using the conditionXxj free max(aij ; 0) � bj � Xxj �xed aijxj ; i = 1; :::; m:Assigning the value of 0 to each free variable in a subproblem is referred to as the "lowerbound completion". At this point the feasibility of the lower bound completion is checkedusing (7) which reduces to checkingXxj �xed aijxj � bi; i = 1; :::; m: (3)5. Delete a subproblem (prune) if any one of the following conditions holds:(a) fL � fU .(b) The subproblem is infeasible. 13



(c) There are no remaining free variables.(d) The lower bound completion is feasible. In this case, the incumbent is replaced bythe lower bound completion if fL < fU , and all subproblems in the list of activesubproblems are deleted if fL � fU .A subproblem that is not deleted is added to the list of active subproblems.6. Repeat steps 2-5 until the list of active subproblems is empty. When the list is empty,the algorithm terminates. The optimal solution is the current incumbent.The simpli�ed "logical model" for the parallel execution of the branch and bound algorithmconsists of:1. A set of N processors.2. Global data that consists of the list of active subproblems and the incumbent. The globaldata is accessible by all processors and it is assumed that no overhead is incurred by aprocessor when it accesses the global data.3. The processors are synchronized into cycles, and each cycle consists of three steps:(a) Each subproblem selects a subproblem from the N subproblems whose lower boundsare the best among all those on the list of active subproblems.(b) Each processor (independently of the other processors) expands its subproblem andperforms lower bound, feasibility, and termination tests on the newly generatedsubproblems.(c) The processors insert the newly created subproblems back on the list of active sub-problems.The processors continue to iterate until the list of active subproblems becomes empty. Thealgorithm then terminates and the solution is stored at the incumbent.Abdelrahman and Mudge [3] propose two parallelization methods on a distributed memorymultiprocessor. The �rst method maintains a centralized list of subproblems (using N slaveprocesses) and a manager (master process). The master process maintains the global data,and the slave processes perform the operations necessary for the expansion of subproblems.The master process selects N subproblems from the list of active subproblems and assigns onesubproblem to each slave process. The N subproblems selected have the best bounds amongthose subproblems in the list of active subproblems. Then each slave process expands its sub-problem generating subproblems and computing the corresponding lower bounds. In addition,14



each slave process performs the tests regarding lower bound, feasibility and termination testson the subproblems it generated. The results are sent back to the master process which insertsthem in the list. The algorithm terminates when the list of active subproblems becomes emptyand all the slave processes are idle.The algorithm has the advantage of expanding subproblems whose bounds are best in theglobal sense (since subproblems that have smaller lower bounds are most likely to lead tosolutions than others that have larger lower bounds). The main disadvantage of this approachis communication cost and the requirement of large memory to maintain the list of activesubproblems.The second method outperforms the �rst by distributing the list of subproblems and balancingthe load among neighboring processors. When all neighboring processors are idle, the algorithm"guesses" to terminate (for details see [3]). The two methods are also capable of incorporat-ing multiple search strategies. Computational results on an NCUBE/six multiprocessor arereported.In [11] a methodology is proposed which uses a collection of workstations connected by anEthernet network as a parallel processor for solving 0-1 linear problems. The algorithm is abased on the branch and cut approach and has been used to solve a set of test problems from[13].5 A Parallel Algorithm for the Quadratic Assignment Prob-lemIn this section we consider one of the most di�cult discrete problems, the quadratic assignmentproblem, and discuss some details on solution techniques using parallel machines [45]. Thequadratic assignment problem (QAP) is a mathematical model arising from many locationproblems in which the cost associated with allocating a facility at a certain location depends,not only on the distances from other facilities, but also on the interaction with other facilities.This model, �rst proposed by Koopmans and Beckmann in 1957 [29], can be stated as thefollowing minimization problem min nXi=1 nXj=1 fijdp(i)p(j);s.t. p 2 �;where n is a positive integer, F = (fij) 2 Rn�n, D = (dij) 2 Rn�n , and � is the set ofpermutations of the set N = f1; :::; ng. 15



In the framework of location problems, the set N represents the set of n locations on which nfacilities are to be allocated. For matrix F , the entries fij ; i; j = 1; :::; n, represent the owsbetween facilities i and j. For matrix D, the entries dij ; i; j = 1; :::; n, represents the distancesbetween locations i and j. The goal then is to assign the facilities to the locations such that thetotal cost is minimal. Besides applications in facility allocation, this model can be applied inmany other applications, including backboard wiring, machine scheduling, ordering interrelateddata on a computer storage device, scheduling of economic lot sizes, and designing typewriterkeyboard [45].Next, we discuss a parallel exact algorithms for the QAP. Roucairol [12] �rst proposed a parallelbranch-and-bound algorithm for solving the QAP and implemented the algorithm on a CRAYXMP/48. However her computational results were not very satisfactory and only problems ofsizes � 12 were solved. As a comparison, Pardalos and Crouse [57] proposed a more e�cientbranch-and-bound algorithm. The discussion in the rest of this section is based on [57].The exact algorithm presented below is of the branch-and-bound type [57], [61]. The term"solution" and "permutation" are used interchangeably in our discussion.The algorithm consists of three steps. In the �rst step, the algorithm computes an initial bestknown upper bound (BKUB) and sets up an initial branch-and-bound search tree, The initialbest known upper bound is computed by using the heuristic algorithm described in [10]. Thenthe initial search tree consists of n� (n� 1) nodes storing partial permutations p de�ned byp(1) = i; p(2) = j; for i; j = 1; 2; : : : ; n and i 6= j;i.e., those permutations whose �rst two assignments are �xed. The tree is organized in the formof a heap keyed by the lower bounds (LWRBND) associated with the partial permutations storedin the tree. The root of the tree has the maximum key value. For each partial permutation(solution) in the heap, the corresponding subproblem is the QAP with part of the facilitiesbeing allocated.In the second step, the four procedures of the branch-and-bound (selection, branching, elimi-nation, and termination [76]) are used as follows:1. The selection procedure simply selects the partial permutation stored in the root of theheap.2. The branching procedure splits the selected partial permutation into two new partialpermutations. One partial permutation, denoted pi, includes an additional assignmentand the other, denoted pe, excludes that assignment.3. The elimination procedure examines the newly formed partial permutations. The newpartial permutation pe is returned to the heap if it does not exclude all possible remaining16



assignments. If pi is a complete permutation, its objective function is evaluated andcompared against the current BKUB, which is updated accordingly. Otherwise, a newlower bound is computed for pi and if this bound is higher than the BKUB, pi is discarded.This process is repeated until the heap is empty.4. The termination test checks to see if the heap is empty.Note that in the selection procedure, since the partial permutation at the root is generallycloser to being a complete permutation, it is thus a promising candidate for reducing theBKUB. Furthermore, the partial permutation at the root has the highest lower bound amongthe lower bounds of the partial permutations stored in the tree. It can be discarded early inthe search process, hence keeping the height of the heap small. This is very important sincethe solution space is extremely large even if the size of the problem is moderate.In the �nal step, the best permutation(s) found is taken as the global optimal permutation(s).The algorithm can be described as follows.Algorithm 1: An Exact Algorithm for the QAPInput: n, matrices F;D of size n� n.Output: Optimal permutations for the QAP.1. Find an initial value of the BKUB and create an initial heap of n � (n � 1) partialpermutations.2. While the heap is not empty, do the following2.1. Take the root o� the heap, choose another assignment from those still available (notalready excluded).2.2. Create two partial permutations: pe that excludes the assignment, and pi that in-cludes the assignment.2.3. Insert pe into the heap unless it excludes all possible assignments.2.4. If pi is a complete assignment, then evaluate the objective function for the QAPcorresponding to pi and update the BKUB accordingly.2.5. Otherwise, compare the lower bound (LWRBND) for pi with BKUB; if LWRBND> BKUB then discard pi else insert pi into the heap.3. Print the best permutation(s) found as the optimal permutation(s) p and stop.17



For the parallel version of the algorithm, we assume there are a total number of P processorsavailable. One way to parallelize the sequential branch-and-bound algorithm is to use the simpleidea of having all P processors accessing the heap in parallel. In practice, this approach willresult in a signi�cant amount of overhead in accessing the heap concurrently. Another approachis to simply divide the heap into P disjoint sub-heaps and assign one for each processor. Aftereach processor �nishes its heap, the suboptimal solutions of the processors are collected and theglobal optimal solution(s) can be found. This approach generally introduces a balanced loadamong the processors, and it was used in our study. The parallel algorithm can be describedas followsAlgorithm 2: A Parallel Exact Algorithm for the QAPInput: n, matrices F;D of size n� n.Output: Optimal permutations for the QAP.1. Find an initial value of the BKUB and create a heap of the n� (n� 1) partial solutions.Divide the heap into P sub-heaps, one for each processor.2. For each processor, execute step 2 of Algorithm 1 in parallel.3. Collect all the suboptimal solution(s) from the P processors, print the best solution(s)found as the optimal solution(s) p, and stop.The above parallel algorithm was coded in PARALLEL FORTRAN to run on the IBM ES/3090-600S VF computer, that has 6 identical processors capable of processing independent tasks. Inour experiment, we used all 6 processors. Given the 6 processors, the parallel algorithm dividesthe initial tree of n � (n � 1) nodes into 6 sub-heap of n � (n� 1)=6 nodes each. Hence, eachprocessor has its own heap to process. Then, 6 parallel tasks are dispatched for �nding optimalsolutions within their respective sub-heap. This procedure not only balances the load amongall processors, but also keeps the processors busy to the fullest extent. The shared variableBKUB is updated in a critical section (using the LOCK and UNLOCK facility). The matricesF;D are shared data. Since they are accessed only by reading, they are not locked in a criticalsection. The heaps of the processors are not shared among them. The Gilmore-Lawler lowerbound [20, 41] is used here as the lower bound of a partial permutation. If the given problemhas multiple optimal solutions, the algorithm �nds all the optimal solutions.18



The algorithm is evaluated with two classes of test problems. The �rst set of problems includethe NUGENT collection of the QAP [55]. The other set of test problems, denoted PALU-BETSKES, are generated by the algorithm described in [50, 56].The NUGENT set of test problems is one of the most widely used in the literature and canbe used to test both heuristic and exact algorithms for the QAP. For our study, test problemsof sizes n = 5; 6; 7; 8; 12; 15; 20, and 30 are used. For problems of sizes 20 and 30, optimalsolutions can not be obtained in a reasonable amount of CPU time (due to this di�culty, theexact algorithm was not run on these two cases).The PALUBETSKES set of test problems are generated according to the test problem generator,which outputs test problems with known optimal solutions, as reported in [50, 56]. The testproblem generator contains two positive integer parameters, z and w. A random variable witha uniform distribution in (0; 1) is used also in the generator. For our experiments, seven testproblems are created with sizes n = 10; 11; 12; 13; 14; 15, and 16, with z = 9; w = 5. Theoptimal objective function value for a test problem generated here is dependent on n and z andis independent of the value of w. Thus, the generated test problems with the same value forthe parameter z have the same optimal objective function value for each �xed n.The computational results are designed to test the e�ciency of the parallel algorithm in termsof its speed-up ratios. For our experiments, all 6 processors of the machine are used. For theparallel exact algorithm, each test problem in both sets of test problems is executed 5 timesand the computational results reported here are the average over the 5 executions. When thereare multiple optimal permutations, all of them are printed by the algorithm. The results arepresented in tables 1 and 2. Note that in the following tables, all CPU times are in seconds.The speed-up ratio of a parallel algorithm is computed by dividing the cumulative CPU timeby the wall time (elapsed time) of the parallel algorithm.Alg. Cumulative Speedn Optimal Best CPU Wall upValue Value Time Time Ratio5 50 50 0.11 0.38 0.296 86 86 0.12 0.37 0.327 148 148 0.15 0.40 0.388 214 214 0.31 0.51 0.6112 578 578 27.58 8.71 3.1715 1150 1150 1587.30 430.91 3.68Table 1: Parallel Algorithm - NUGENT Test Problems19



Alg. Cumulative Speedn Optimal Best CPU Wall upValue Value Time Time Ratio10 1890 1890 0.61 0.65 0.9411 3960 3960 47.29 11.60 4.0812 2772 2772 247.27 51.20 4.8313 6552 6552 982.33 263.52 3.7314 4914 4914 324.47 89.31 3.6315 5040 5040 12872.65 2580.74 4.9916 5760 5760 12543.98 2340.38 5.36Table 2: Parallel Algorithm - PALUBETSKES Test ProblemsAs we can see from the above tables, the parallel exact algorithm has a good speed-up ratiofor test problems of sizes larger than 12. For smaller size problems, the parallel algorithmis not as e�cient. Details and additional computational results can be found in [57], [45].Regarding computational results for solving more general problems such as the quadratic zero-one programming problem (using distributed and shared memory machines) can be found in[59] and [60].6 Concluding Remarks.Extensive work has been done on development of parallel formulations of search algorithms forsolving DOPs. Many of these formulations have been implemented for solving abstract andpractical problems on commercially available parallel computers. For example, Kumar et. al.present parallel formulations of depth-�rst search, depth-�rst branch-and-bound, IDA*, and A*algorithms. They experimentally evaluate them in the context of problems such as optimizingoorplan of a VLSI chip [5], generating test patterns for combinatorial circuits [7] and tautologyveri�cation [34, 21, 6] on various machines including a 1024 processor nCUBE2, 128 processorIntel Hypercube, Symult 2010, a 128 processor BBN ButteryTM , and a network of 16 SUNTMworkstations. Bixby [9] presents a parallel branch and cut algorithm for solving the symmetrictraveling salesman problem. He also presents solutions of the LP relaxations of airline crew-scheduling models. Miller et. al. [47] present parallel formulations of the branch and boundtechnique for solving the asymmetric traveling salesman problem on heterogeneous networkcomputer architectures. Roucairol [71] presents parallel branch and bound formulations forshared memory computers and uses these to solve the Multiknapsack and Quadratic assignmentproblems. Lee et. al. [42] demonstrate experimentally that it is possible to obtain linear speedupfor large instances of the 0/1 knapsack problem, using a divide-and-conquer DP algorithm,provided enough memory is available. Dantas et. al. [15] use vectorized formulations of DP20
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