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SUMMARY

Human adenoviruses (HAdVs) are an important cause of infec-
tions in both immunocompetent and immunocompromised in-
dividuals, and they continue to provide clinical challenges per-
taining to diagnostics and treatment. The growing number of
HAdV types identified by genomic analysis, as well as the im-
proved understanding of the sites of viral persistence and reacti-
vation, requires continuous adaptions of diagnostic approaches to
facilitate timely detection and monitoring of HAdV infections. In
view of the clinical relevance of life-threatening HAdV diseases in
the immunocompromised setting, there is an urgent need for
highly effective treatment modalities lacking major side effects.
The present review summarizes the recent progress in the under-
standing and management of HAdV infections.

INTRODUCTION

Since their first isolation from adenoid tissue over 60 years ago
(1), human adenoviruses (HAdVs) (adénos, gland) have pro-

vided continuous challenges in a variety of clinical settings. In

addition to their well-established role as infectious agents, adeno-
viral genomes were also shown to contain potent oncogenes, and
the ability of certain types of the virus to induce tumor growth has
been demonstrated in different mammalian animal models (2–4).
Despite a number of studies addressing the possible role of HAdVs
in human malignant disease, their putative oncogenicity in hu-
mans has remained enigmatic (5–7). Investigations of adenovirus
biology have led to Nobel Prize-winning discoveries in mRNA
splicing and to important progress in the understanding of anti-
gen presentation to T cells (8). Moreover, the ability of adenovi-
ruses to infect many cell types facilitated their exploitation as vec-
tors for gene delivery to generate new tools for innovative
treatments of important diseases, such as cancer and cardiovascu-
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lar disorders (9–13). Hence, adenoviruses are highly versatile or-
ganisms with a broad spectrum of clinical roles and applications.

HAdVs were initially isolated mainly from military recruits
with acute febrile respiratory disease and were subsequently asso-
ciated with a number of clinical manifestations, including gastro-
enteritis, hepatitis, keratoconjunctivitis, meningoencephalitis,
cystitis, upper and lower respiratory tract infections, and myocar-
ditis, but also with noninflammatory conditions, such as obesity
(14–21). HAdV infections are readily transmittable and, in some
instances, highly contagious. Although the clinical courses are
usually mild and self-limiting, infections may cause local out-
breaks with severe courses, occasionally leading to a lethal out-
come even in immunocompetent individuals (22–26). However,
adenoviruses play a particularly important role in patients with
strongly impaired immune responses, in whom viral disease is
associated with high morbidity and mortality, and infections in
this setting are an important focus of the present review. Progress
in molecular detection methods has rendered the detection, typ-
ing, and monitoring of adenoviral infections readily applicable in
the clinical routine, and the tools required for risk assessment and
timely diagnosis of invasive infection are available. However, ef-
fective treatment of HAdV-related diseases in immunocompro-
mised patients still poses great challenges.

NOMENCLATURE AND TYPING OF HUMAN ADENOVIRUSES

General Description, Structural Proteins, and Genomic
Structure

HAdVs are nonenveloped viruses with a diameter of 70 to 100 nm.
The external protein shell of the virus is icosahedral (eikosí, twen-
ty; hédra, seat), with 20 triangular faces, 30 edges, and 12 vertices,
and this symmetry is made up in large parts by the major virus
protein, hexon. The viral capsid is composed of 252 capsomeres
(capsa, box; méros, portion), including 240 hexons and 12 pen-
tons. Five penton base proteins form individual capsomeres at the
12 vertices, where each capsomere supports a trimeric fiber pro-
tein of variable size projecting from the vertex of the capsid. The
fiber protein contains three structural domains: the tail, the shaft,
and the knob. The tail domain is the binding site for the penton
base. The shaft domain shows various lengths between HAdV
types, resulting in different flexibilities of the fiber and differences
in the interaction with host cell integrins. The fiber knob domain,
located at the distal, C-terminal end of the protein, binds the virus
to the primary host cell receptor (27–30). Most adenoviruses bind
to the classical adenovirus receptor CAR (coxsackie adenovirus
receptor), but some use the membrane cofactor CD46 and/or the
cell adhesion protein desmoglein 2 (DSG2) as an attachment re-
ceptor (27–29).

Minor capsid proteins IIIa, VI, VIII, and IX confer stability to
the hexon shell and the entire virion and play roles in events oc-
curring after internalization, such as endosome penetration, tran-
scriptional activation, and nuclear reorganization (protein IX)
(31, 32). Additional proteins in the core of the capsid (proteins V,
VII, and X and terminal protein) interact with the viral DNA, e.g.,
by facilitating transportation into the nucleus of the infected cell
(protein V) (30, 33).

HAdVs are double-stranded, linear DNA viruses displaying ge-
nome sizes ranging from 34 to more than 37 kb and carrying some
40 genes (33, 34). All HAdVs share a similar organization of the
genome, which is divided into early, intermediate, and late regions

corresponding to the infectious cycle of the virus and reflecting the
transcription patterns. The early region of the genome includes
four transcript families, termed E1 to E4, which are required for
viral replication. The E3 transcription unit, which is highly diver-
gent between HAdV species, also encodes proteins modulating the
host immune response. The intermediate genes are represented by
two transcripts, termed IX and IVa2, and the late region contains
five transcript families, referred to as L1 to L5, which are involved
in the production of mature virions. Moreover, the genomes dis-
play inverted terminal repeat (ITR) regions at the 3= and 5= ends
that contain conserved sequence motifs and serve as origins of
viral replication. Furthermore, depending on the HAdV type, the
genomes display one or two noncoding virus-associated (VA)
RNA genes involved in translational regulation, and one of them
(VA RNAI) can act as a microRNA (miRNA) (30, 35).

Phylogeny and Human Adenoviral Species

Together with other mammalian adenoviruses, HAdVs are classi-
fied into the genus Mastadenovirus (mastós, breast) and are further
parsed into seven species, termed A to G, with further subdivision
of species B into subspecies B1 and B2 (33, 36–40). Species desig-
nation depends on several of the following characteristics: phylo-
genetic distance (�5 to 15%, based primarily on distance matrix
analysis of the DNA polymerase amino acid sequence), genome
organization (characteristically in the E3 region), nucleotide com-
position (G�C%), oncogenicity in rodents, host range, cross-
neutralization, ability to recombine, number of VA RNA genes,
and hemagglutination (33). More than 30 simian adenoviruses
(SAdVs) display sequence identitites to their human counterparts
to such an extent that they have also been included in the taxon-
omy of human adenoviruses, within species B, C, E, and G (33).
Previously, HAdVs were identified, characterized, and classified
by serum neutralization (SN) and hemagglutination inhibition
(HI) assays, but more recently, genomic and bioinformatic anal-
yses of the entire viral genome have superseded serological meth-
ods for the typing of novel viruses (36–42). The viruses belonging
to individual HAdV species display high similarity to each other at
the nucleotide level and do not commonly recombine with mem-
bers of other species. The grouping into different species reflects,
in part, the general cell tropism of the viruses and the resulting
diseases and symptoms. Examples of common associations of in-
dividual HAdV species with infections at specific locations include
gastroenteritis (HAdV-F and -G), pneumonia (HAdV-B, -C, and -E),
hepatitis (HAdV-C), meningoencephalitis (HAdV-A, -B, and -D),
cystitis (HAdV-B), and keratoconjunctivitis (HAdV-B and -D), but
other HAdV species may also occur at the indicated sites of infection
(30, 36, 43).

(Sero)typing of Human Adenoviruses

HAdV subtyping below the species level by SN and HI assays led to
the identification of 51 serotypes (Table 1). The hypervariable
loops (L1 and L2) of the hexon protein form the SN epitope and
are the main determinants of serologic reactivity, while the fiber
protein is responsible for HI typing and is a major determinant of
tropism. The combination of the SN and HI tests facilitates more
complete virus identification than that with either method alone
(30).

The first HAdV identified on the basis of genetic analysis was
also classified as a novel species (HAdV-G) and received the chro-
nological number 52 (36). Because all subsequently identified
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novel HAdVs were detected and characterized using computa-
tional analyses of genomic data (Table 1), it has been agreed to
replace the term “serotype” by “type,” and criteria for the assign-
ment of new types have been established (41, 42).

Present Controversies in HAdV Typing

There seems to be broad agreement that DNA sequence informa-
tion should be exploited for HAdV typing, but differing views on
the required extent of sequencing and the future role of serological
methods have been presented. Some researchers take the stance
that type definition should be based on the sequence of the major
capsid protein, hexon, as the primary identifier, and that only
strains carrying novel hexon genes should be considered “candi-
date new types,” because the hexon contains the major neutraliz-
ing epitope frequently targeted in molecular diagnosis (42). The
designations of natural or engineered intertypic recombinant
HAdVs should include the identity of the hexon gene (H) and also
that of the fiber gene (F). These designations should replace those
resulting from SN and HI assays, because published data support
a strong correlation between identities established by sequence
analyses of hexon and fiber and those determined by SN and HI
assays, respectively (42). The extent of sequences required for con-
sideration of a new candidate type is under evaluation but should
not exceed the complete hexon and fiber knob or complete fiber
gene sequence. The data should be integrated with the established
immunotyping scheme, and serology should continue to be used
in order to characterize the antigenic phenotypes. Some authors
have expressed concern that the designation of new types by se-
quential numbers according to the order in which novel genome
sequences are reported will likely lead to a large increase in their
number (42).

In contrast, a proposal published by members of the adenovirus
research community states that HAdVs should be identified, char-
acterized, typed, and consecutively numbered on the basis of com-
plete genome sequence analyses rather than by serological meth-
ods (41). Due to the power of novel genetic and bioinformatic
tools, a paradigm shift in recognizing and naming HAdVs is
needed. Recombination is an accepted feature of HAdV evolution,
and recombinants will be classified as novel types provided that
there are sufficient genomic, biological, or pathogenic differences
from related types.

Serology can suggest possible recombinant viruses as intertypic
strains by revealing conflicting results between SN and HI assays
that are indicative of two different HAdV types. However, these
methods cannot completely characterize the newly identified vi-

rus. Serologic determinants represent less than 5 to 6% of the total
viral genome and thus can scarcely be regarded as adequate for full
characterization of new HAdVs in the era of genomics (30). Re-
cent data suggest that serologic and genomic analyses do not al-
ways correlate, and serotyping alone can provide misleading re-
sults (44, 45). Nevertheless, SN and HI testing should continue to
be used as an additional criterion in order to comply with the
current definitions of the International Committee on Taxonomy
of Viruses (ICTV) (41). Recently, the full-genome sequencing of
every prototype HAdV strain was completed, including a typing
algorithm that includes the sequences supporting serological fea-
tures (8). It is therefore conceivable that it will be possible to
impute serologic test results by computing genomic sequence
data, thus possibly obviating and replacing SN and HI assays.

Current Status of HAdV Types and Evolution of Human
Adenoviruses

To date, 67 HAdV types have been published, and additional types
are already in the pipeline. As outlined in Table 1, HAdV types 1 to
51 were characterized by serotyping, while the remaining types,
identified since 2007, were detected and described by genomic and
bioinformatic analyses (36, 46).

Homologous recombination (HR) and mutation are important
evolutionary processes driving genetic variation within HAdV ge-
nomes (34). They are favored by the immune pressure of the host
and by environmental bottlenecks. In HAdV species B, mutations
seem to play a more important role, whereas among the largest
HAdV species, species D, homologous recombination is the pre-
dominant mechanism contributing to genomic diversity (34). HR
of tumorigenic adenoviruses in vitro was already documented in
the 1970s (47, 48) and was shown to occur predominantly be-
tween HAdV types belonging to the same species, within regions
of high sequence homology (30). The recent availability of whole-
genome sequencing and bioinformatics has permitted the de-
scription of recombination events within genomes of HAdV spe-
cies A, B, and D, particularly within the penton base, hexon, and
fiber genes (37, 49–51). The requirements for recombination
events appear to include coinfection of individual cells with at
least two different adenoviruses displaying very similar nucleotide
sequences at the recombination hot spots in the genome, as well as
long-term viral persistence in the host (52, 53). The emergence of
new HAdV-D types in patients with AIDS indicates a role of mul-
tiple persisting viruses under impaired immune surveillance (34,
54). HAdV-D genomes seem to recombine more frequently than
other human adenoviral species, and several of the currently more
than 40 HAdV-D types apparently emerged via recombination
between hexon and fiber coding regions (34). The majority of
novel HAdV types identified by genomic analysis belong to species
D, and they were shown to include sequences derived from mul-
tiple other types from the same species. For example, HAdV-D53
resulted from recombination in the penton, hexon, and fiber re-
gions of HAdV-D22, -D37, and -D8, respectively. Similarly,
HAdV-D67 was identified as a recombinant between HAdV-D9,
-D25, -D26, -D33, and -D46 (46, 55). Recent data provide evi-
dence for the occurrence of recombination between different
HAdV species, and even between HAdVs and SAdVs (56, 57).
Computational analysis of HAdV-E4, the only representative of
species E, indicated that this virus is of zoonotic origin and evolved
through two interspecies recombination events with lateral partial
gene transfer. HAdV-E4 contains 97% of a SAdV-E26-like ge-

TABLE 1 Current spectrum of published human adenovirusesa

Species Types (serotypes/genotypes)

A 12, 18, 31, 61
B 3, 7, 11, 14, 16, 21, 34, 35, 50, 55, 66
C 1, 2, 5, 6, 57
D 8–10, 13, 15, 17, 19, 20, 22–30, 32, 33, 36–39,

42–49, 51, 53, 54, 56, 58-60, 63-67
E 4
F 40, 41
G 52
a The HAdV species (A to G) and types (1 to 67) belonging to individual species are
indicated. While types 1 to 51 were identified by serotyping, all subsequently identified
types, indicated in italics (types 52 to 67), were identified by genomic sequencing and
computational analysis.
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nome chassis with a hexon containing the L1 and L2 regions from
a HAdV-B16-like virus, which may provide compatibility with the
new host (57). Adaptation of the virus to the new host could also
be related to the acquirement of an NF-1 binding site motif, which
is required for efficient viral replication, in a further recombina-
tion event.

Molecular evolution of HAdVs by homologous recombination
can result in new viruses displaying different tissue tropisms and
increased virulence. An improved knowledge of homologous re-
combination might facilitate the prediction of potential emerging
HAdV types. In addition to their role in the evolution of novel
HAdV types, it is important to understand the recombination
mechanisms if adenoviral vectors are to be used in human pa-
tients, who might coincidentally be infected with a wild-type vi-
rus. Moreover, the occurrence of viral recombinants with lateral
DNA and epitope transfers between HAdVs and SAdVs must be
borne in mind when chimpanzee adenoviruses are considered as
vectors for gene delivery in human patients to exploit the lack of
immunoreactivity to these viruses.

PATHOGENESIS AND IMMUNITY

Prevalence of HAdV Species and Types

Most HAdV species appear to circulate globally, but predominant
types differ between countries or geographic regions, and they
change over time (58–60). Transmission of new strains across
continents may occur and lead to replacement of hitherto domi-
nant HAdV types (61). The adenoviruses most commonly re-
ported to be associated with human disease worldwide are HAdV-
C1, -C2, -C5, -B3, -B7, -B21, -E4, and -F41 (20, 62–66). In
immunocompromised patients in the transplant setting, some of
the most commonly reported adenovirus types include HAdV-
C1, -C2, -C5, -A12, -A31, -B3, -B11, -B16, -B34, and -B35, with a
strong predominance of species C in most instances (67–70). For
example, in the transplant unit of St. Anna Children’s Hospital,
Vienna, Austria, HAdV species C accounts for about 80% of all
adenoviral infections observed, and similar numbers were also
reported from other transplant centers in different geographic
regions (43, 69, 71–73). Sequential or concomitant coinfections
with different adenoviruses from the same or different species are
quite commonly observed in both the immunocompetent and
immunocompromised patient settings (74–76) and may thus play
a role in the generation of recombinant HAdV types.

Transmission

Infections in the immunocompetent host are typically caused by
exposure to infected individuals via inhalation of aerosolized
droplets or direct conjunctival inoculation, but transmission may
also occur by fecal-oral spread, including contact with recre-
ational freshwater or tap water, infected tissue, airflow filters, or
environmental surfaces (77–81). The stability of the virus at low
pH is a matter of debate, but HAdVs are resistant to gastric and
biliary secretions and can therefore be detected at high levels in
feces (82). Moreover, HAdVs can retain their infectious properties
even after several weeks in moisture-free environments, and be-
cause they are nonenveloped viruses, they are resistant to many
disinfectants. Treatment of surfaces with alcohol solutions (85 to
95%) for at least 2 min or with sodium hypochlorite for 10 min is
effective at inactivating the virus (83). Efficient decontamination
of surfaces is of paramount importance, particularly in transplant

and intensive care units, to prevent this mode of transmission in
immunosuppressed patients (84). Although exogenous infection
by nosocomial or community acquisition in the inpatient setting
is a rather rare cause of HAdV-related diseases, outbreaks of in-
fections on hematology or transplant wards as well as in eye clin-
ics, resulting in closures, have been documented (19, 85, 86, 87).

Tissue Tropism

The general affinity of HAdV species for individual tissues is out-
lined above, but in particular, members of the largest species, spe-
cies D, show great variability in their tropisms, with growth in
tissues ranging from ocular to gastrointestinal (GI) and respira-
tory tissues (37, 88). The basis of tissue tropism is still not well
established. Adenoviral keratoconjunctivitis, which is a major
cause of ocular morbidity, is most commonly caused by represen-
tatives of species D, including types 8, 19, and 37, but also by
HAdV-E4, -C5, -B3, -B7, -B11, and -B14 (20). Gastrointestinal
manifestations are mainly associated with HAdV-F40 and -F41,
but HAdV-G52 and different members of species D, including
some of the most recently identified types (types 65 and 67), have
also been observed (20, 36, 43, 46, 89). Respiratory tract involve-
ment has been associated mainly with HAdV-B3, -B7, -B16, -B21,
and -E4 and various members of species C (43, 90). These exam-
ples indicate that certain adenoviruses have strong tropisms for
specific tissues, but the same clinical manifestations can be caused
by other HAdV types and species, thus requiring diagnostic
screening methods with broad specificity.

Primary Infection and Persistence

Following HAdV transmission, the incubation period ranges from
2 days to 2 weeks, depending on the viral type and mechanism of
acquisition, and the spectrum of clinical manifestations is broad
(20). The majority of HAdV infections occur at a young age, and
epidemics have been documented for both healthy children and
adults in closed or crowded settings, including particularly mili-
tary recruits (91–93). Vaccination programs for U.S. military
trainees, covering the most commonly occurring HAdV types
(types 4 and 7), were discontinued many years ago and were re-
cently resumed with a newly available FDA-approved live oral
vaccine against these two HAdV types. The vaccine comes as two
tablets to be taken at the same time and is compatible with con-
comitant performance of other vaccinations. It is recommended
by the Department of Defense for enlisted soldiers entering basic
training but may also be encouraged for other military personnel
at high risk for adenovirus infection. The vaccine is reported to
prevent illness caused by these two virus types, with an efficacy of
99.3% (95% confidence interval [CI], 96.0 to 99.9%; P � 0.001),
and the virus isolation rates fell dramatically after reinitiation of
the vaccination program (94, 95). Updates on the vaccine are
available at the website of the Centers for Disease Control and
Prevention (www.cdc.gov/vaccines). Most HAdV epidemics in
immunocompetent individuals are observed in winter and early
spring, but infections in immunocompromised patients occur
throughout the year (96, 97). Epidemiological data indicate that
the majority of primary HAdV infections occur during the first 5
years of life, due to the lack of humoral immunity. In children,
HAdV infections account for up to 15% of upper respiratory tract
and about 5% of lower respiratory tract inflammatory diseases
(98). In immunocompetent individuals, the infections are mostly
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mild and self-limiting, but severe and even fatal courses have been
reported (26, 99, 100).

Owing to their genetic heterogeneity, HAdVs diplay broad tis-
sue tropism and can infect several cell types. Not surprisingly,
therefore, currently available evidence indicates that they can per-
sist in a latent state in a variety of susceptible cells following pri-
mary infection. Latency is characterized by expression of viral pro-
teins by the host cell without replication of a complete virus. A
latent form of adenovirus infection was shown to persist in ton-
sillar lymphocytes in nearly 80% of children investigated, and the
number of adenoviral genomes per lymphoid cell apparently de-
clines with age (101–103). Moreover, latent HAdV infections were
described to occur in intestinal T lymphocytes and in lung epithe-
lial cells, where they seem to play a role in the pathogenesis of
obstructive airway disease (104). Other sites of HAdV persistence
have also been suggested, but the experimental evidence is limited
(105–107).

Previous observations indicated that the central nervous system
is apparently a sanctuary for adenoviral persistence (5), and recent
findings revealed that the entire GI tract is a common location of
HAdV persistence in children (unpublished data). Evasion from
immune surveillance is a prerequisite for the establishment of per-
sistent infections in permissive cells and tissues. Immune escape of
adenoviruses can be mediated by different mechanisms. Specific
viral proteins can block responses to anti-inflammatory and cyto-
lytic cytokines, intrinsic cellular apoptosis, and innate and adap-
tive cellular immune responses (108, 109). Moreover, the viral
protein E3 can downregulate major histocompatibility complex
(MHC) class I molecules, thereby affecting antigen presentation
and reducing T-cell attack of the infected cells (110–112).

Immune Responses to Adenoviral Infection

Similar to other viruses, HAdV is controlled by innate and adap-
tive immune responses (113). Rapid secretion of antiviral cyto-
kines, such as gamma interferon (IFN-�), tumor necrosis factor
(TNF), interleukin-1 (IL-1), IL-2, and macrophage inflammatory
protein, is triggered by HAdV and targets different steps in the
viral life cycle, thereby limiting the amplification and spread of the
virus. Moreover, innate effector cells, particularly natural killer
cells, which can destroy virus-infected cells in a nonspecific fash-
ion, are recruited and activated (104, 113). The effect of infection-
induced cytokines is counteracted by viral products, such as the
HAdV-encoded E1B 55-kDa protein. This protein mediates tran-
scriptional repression of IFN-inducible genes, thereby facilitating
viral replication (114).

In addition to providing the first line of defense, the innate
immune system supports proliferation and differentiation of the
adaptive immune response mediated by T and B cells. The gener-
ation of HAdV-specific T cells facilitates lysis of infected cells by a
perforin-dependent mechanism (115). Although the large num-
ber of existing HAdV types implies that the expression of antigens
that represent potential T-cell targets can be expected to be highly
polymorphic, T cells raised against HAdV, including the CD4 and
CD8 subsets, were shown to display cross-reactivity with different
adenoviral species (116). These observations indicate that such T
cells recognize conserved sequences of amino acid residues from a
structural protein of HAdV (117). Indeed, one of the most impor-
tant, immunodominant T-cell targets is the adenoviral hexon pro-
tein, which contains generic antigenic components common to all
adenoviral species (118). Hence, exposure to adenoviruses during

childhood and the ensuing generation of cross-reactive cytotoxic
T cells are believed to lead to broad HAdV immunity in adults
(119–121). Healthy individuals usually carry HAdV-specific T
cells, which can be identified by various methods, such as gamma
interferon secretion assays, cytokine flow cytometry, or detection
of MHC class I multimers (118, 122, 123). The absence of HAdV-
specific T cells has a negative impact on the course of HAdV in-
fections, and conversely, reconstitution of the HAdV-specific T-
cell response correlates with viral clearance (122, 124). The finding
that many CD4- or CD8-restricted hexon epitopes are shared
among different HAdV species and types suggests that T cells with
such specificities can be protective against most, if not all, human
adenonoviruses, and this fact can be exploited for vaccine-based
or adoptive T-cell transfer immunotherapy for treating infections
by these viruses, as outlined below.

De Novo Infection and Viral Reactivation in Transplant
Recipients

In the allogeneic transplantation setting, adenoviral complica-
tions can arise from de novo infection or reactivation of persistent
endogenous HAdV. Exogenous infection can occur by virus trans-
mission from the donor via the graft or from the environment
(125, 126). The occurrence of outbreaks on transplant wards dem-
onstrates the role of environmental sources in HAdV spread (86;
unpublished observations). However, endogenous reactivation of
persistent HAdV appears to be the predominant cause of HAdV-
associated disease in severely immunocompromised patients.
This notion is supported by the absence of a seasonal pattern of
infections in this setting and the finding that the HAdV strain
detected prior to allogeneic hematopoietic stem cell transplanta-
tion (allo-HSCT) is generally identical to the strain isolated during
the posttransplant period (126, 127). The presence of high neu-
tralizing antibody titers against specific HAdV types before allo-
HSCT permitted prediction of reactivation and viral disease
caused by the same HAdV type (126). Detection of HAdV DNA in
feces or nasopharyngeal aspirates of the recipient prior to HSCT
has been reported as a risk factor for viral dissemination after
HSCT (69, 128). Although HAdV reactivation in the immuno-
compromised setting could conceivably occur at different sites,
observations in pediatric allo-HSCT recipients made over a period
of more than 15 years suggest that viral proliferation preceding
invasive infection almost invariably occurs in the GI tract (69, 71).
The monitoring of viral loads in serial stool samples during the
posttransplant period therefore permits timely assessment of im-
pending disseminated disease (69), as outlined below.

RISK FACTORS, INCIDENCE, AND CLINICAL
MANIFESTATIONS OF INVASIVE HAdV INFECTION IN
IMMUNOCOMPROMISED PATIENTS

Risk Factors

Major factors conferring a high risk of invasive HAdV infection
and disseminated disease include allogeneic stem cell (or organ)
transplantation and any severe immunosuppression with a lack of
cellular antiadenoviral activity. More specifically, the most prom-
inent risk factors include allogeneic transplantations with in vivo
and/or ex vivo T-cell depletion, grafts from unrelated donors or
cord blood, treatment with the anti-CD52 antibody alemtuzumab
(Campath) or anti-thymocyte globulin (ATG), and the presence
of graft-versus-host disease (GvHD) grades III and IV associated
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with the use of immunosuppressive agents (129–136). Addition-
ally, severe lymphopenia, with CD3� cell counts of �300 per �l
peripheral blood (PB), and an absence of HAdV-specific T cells
play an important role in the development of viral disease (122,
124, 137–141). In contrast to the case with allo-HSCT recipients, a
donor-positive and recipient-negative HAdV serostatus appears
to be a risk factor for a severe course of infection in patients un-
dergoing solid organ transplantation (43, 142, 143).

Incidence of HAdV Infections in Immunocompromised
Adult and Pediatric Patients

In individuals with various congenital immunodeficiencies, par-
ticularly severe combined immunodeficiency (SCID) syndrome,
severe and recurrent pulmonary HAdV infections, and even lethal
disseminated disease, are not uncommon (20, 144), with reported
fatality rates reaching up to 55% (43). In contrast, life-threatening
disease currently appears to be relatively rare in acquired immu-
nodeficiency associated with HIV infection (145, 146), where
HAdV infections are mostly associated with acute diarrhea only
(147). Other clinical manifestations in this setting have become
rather exceptional (148, 149), which is attributable to the avail-
ability of highly effective antiretroviral treatment strategies (150).
Before the era of effective antiretroviral therapy, a number of au-
thors reported severe and fatal cases in patients with HIV/AIDS,
associated with pneumonia, hepatitis, nephritis, meningoenceph-
alitis, and disseminated disease (151, 152).

For patients undergoing chemotherapy for malignant diseases,
respiratory infections caused by HAdV have been documented
during phases of neutropenia, and lethal HAdV disease has been
reported for children receiving chemotherapy for acute lympho-
blastic leukemia and adults treated with alemtuzumab (153, 154).
In solid organ transplant (SOT) recipients, HAdV infections can
be asymptomatic, but prolonged and severe courses affecting
morbidity, graft loss, and mortality may occur (155, 156). Infec-
tions can be acquired de novo or via reactivation of latent virus
from the recipient or the transplanted organ (157). The occur-
rence of adenoviremia has been reported to be less than 10% of
adult patients after kidney, heart, or liver transplantation; al-
though the symptoms of HAdV infection are usually mild, and
invasive infection does not correlate with organ rejection (157),
severe and even fatal courses have also been described (158, 159).
Studies in patients undergoing lung transplantation showed that
pulmonary infection with HAdV can correlate with significantly
elevated rates of rejection, bronchiolitis obliterans, and mortality
(160–162). In line with the epidemiology of HAdV infections,
detection of this virus appears to be more common in pediatric
SOT recipients (155, 163), with reported rates of HAdV infection
ranging from 3.5% to 38% after liver transplantation (164, 165),
from 7% to 50% after lung and heart transplantation (166–168),
and from 4% to 57% after intestinal or multivisceral transplanta-
tion (169, 170). In children after small bowel transplantation, bi-
opsy specimens often revealed the presence of HAdV, but the
occurrence of virus-related disease seemed to correlate primarily
with the intensity of immunosuppressive treatment (170).

In the autologous HSCT setting, HAdV infections seem to be a
rare event (171), while allogeneic HSCT represents a major risk
factor. In allo-HSCT recipients, young age was shown to confer an
elevated risk of HAdV infection (127), and life-threatening disease
was invariably associated with adenoviremia (or, more precisely,
HAdV DNAemia, because detection is generally based on PCR-

based analysis) (71, 172). The incidences of HAdV DNAemia re-
ported for pediatric allo-HSCT recipients range from 6% to 42%
(127, 173). In the adult allo-HSCT setting, the incidences of
HAdV DNAemia are apparently lower, ranging from 3% to 15%
(174, 175).

Definitions of Adenoviral Infection and Disease

In the past, different groups have proposed definitions of localized
and disseminated adenovirus infection as well as probable and
proven/definite adenovirus disease based on various technical ap-
proaches to virus detection (69, 176–178). Owing to the fact that
highly sensitive techniques, based primarily on PCR, have become
the gold standard for the detection and monitoring of HAdV in-
fections, the European Conference on Infections in Leukemia
(ECIL) recently recommended the following definitions (143): (i)
local infection—positive HAdV PCR, virus isolation, or antigen
detection in biopsy material or fluids other than peripheral blood;
(ii) systemic (invasive) infection—positive HAdV PCR (viremia/
DNAemia), virus isolation, or antigen detection in peripheral
blood; (iii) probable disease—HAdV infection plus correspond-
ing symptoms and signs without histological confirmation; and
(iv) proven disease—HAdV infection plus corresponding symp-
toms related to the infection, with histological confirmation of
HAdV infection in the appropriate location.

Moreover, in previous studies, intestinal adenovirus disease was
defined as reproducible detection of HAdV in stool specimens at
levels detectable and quantifiable by real-time PCR, together with
enteritis and in the absence of other infections or GvHD, while
the mere presence of HAdV in stool was regarded as virus shed-
ding only. Disseminated HAdV disease was defined as disease
with multiple-organ involvement (e.g., hepatitis, encephalitis,
and retinitis) in the presence of two or more HAdV-positive
PCR assays for peripheral blood and other sites tested (e.g.,
cerebrospinal fluid, bronchoalveolar lavage [BAL] fluid, respi-
ratory secretions, or urine), in the absence of other identifiable
causes. HAdV-associated death was defined as multiple-organ
failure in the presence of increasing or persisting adenoviral
loads in peripheral blood, in association with AdV detection
from multiple other sites (69, 71).

Clinical Presentations and Outcomes of HAdV Infections in
Solid Organ and Allogeneic Stem Cell Transplant Recipients

The most common occurrence of HAdV disease is observed be-
tween 2 and 3 months posttransplantation, and the first symp-
toms include fever, enteritis, elevated liver enzymes, and second-
ary pancytopenia (82). In SOT recipients, the transplanted organ
is often the primary site of HAdV-related disease. Clinical mani-
festations reported for patients receiving lung, liver, kidney, or
small bowel transplants include pneumonia, hepatitis, nephritis,
hemorrhagic cystitis, enteritis, and disseminated disease (97). The
manifestations tend to be more severe in pediatric transplant pop-
ulations, with reported mortality rates occasionally exceeding
50% (179), and surveillance of HAdV loads in peripheral blood
may be instrumental for identifying patients requiring antiviral
treatment to prevent fatal disease (159, 164, 180). In adult patients
undergoing SOT, the incidence of viremia is lower, and the pres-
ence of HAdV is often transient and self-limited, with asymptom-
atic clinical courses. Routine surveillance of HAdV by PCR there-
fore does not seem to be indicated for adult organ transplant
recipients (157, 181).
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Data on HAdV infections in the hematopoietic stem cell trans-
plantation setting are far more abundant. In allo-HSCT recipi-
ents, the spectrum of HAdV-associated diseases can range from
mild gastroenteric or respiratory symptoms to severe manifesta-
tions, including hemorrhagic enteritis or cystitis, pneumonia,
hepatitis, nephritis, encephalitis, myocarditis, and, occasionally,
concomitant involvement of several organs, which may lead to a
lethal outcome by multiorgan failure (69, 182, 183). Postmortem
investigation of the affected organs, including the liver in partic-
ular, reveals massive replication of the virus, with lysis of the in-
fected cells and release of viral particles into peripheral blood
(184), underlining the diagnostic relevance of viremia. In a study
performed at our institution in the pediatric allo-HSCT setting,
transplant-related mortality associated with HAdV reached 6% of
the entire patient cohort investigated (69, 71), but fatal disease
attributable to HAdV infection has been reported in up to 50% of
patients with DNAemia (69, 133). The majority of transplant-
related deaths attributable to HAdV infection occur within the
first 100 days posttransplantation (69).

It is important to emphasize that the occurrence and overall
mortality of HAdV infections are apparently lower in adult pa-
tients undergoing allo-HSCT (�1%) but can also be very high in
the presence of HAdV DNAemia (133, 175, 185). A fatal outcome
is particularly frequent in cases of DNAemia associated with dis-
seminated disease, with reported lethality rates reaching up to 60
to 80% for both children and adults (69, 71, 131, 186).

Previous observations indicate that the clinical courses of inva-
sive HAdV infection in children undergoing allo-HSCT can be
fulminant, with a fatal outcome within a few days after onset of the
first clinical symptoms of viral disease (69). Timely start of treat-
ment is important for successful control of HAdV infections in
immunocompromised patients, but an immediate availability of
effective therapeutic strategies is still limited. Rapid and reliable
diagnosis of impending HAdV disease is therefore of paramount
importance.

Predictive Value of Viremia and HAdV Proliferation in the
Gastrointestinal Tract

Since spread of the virus into peripheral blood is a characteristic
sign of disseminated HAdV disease and viral load values corre-
spond to the severity of organ pathology (187), quantitative mon-
itoring in plasma or serum has become an essential screening tool
after allo-HSCT. Additionally, there is growing evidence that
HAdV detection and surveillance of virus proliferation kinetics in
stool provide early information on impending invasive infection
and HAdV disease (69, 188, 189). Viral persistence in the GI tract
and shedding of HAdV into feces are common findings which, in
previous experience, occur in more than one-third of pediatric
patients after allo-HSCT and may not necessarily be associated
with clinical symptoms of intestinal infection (69). Detection and
quantitative surveillance of HAdV in serial stool samples revealed
two distinct patterns indicating the risk of invasive infection. Pa-
tients displaying very slow or absent proliferation kinetics in serial
analyses, with maximum HAdV loads below 106 virus copies per
gram of stool, apparently have a very low risk of adenoviremia. In
contrast, patients showing rapid proliferation, exceeding the
threshold of 106 virus copies per gram and sometimes revealing
extremely high viral loads of �1011 copies per gram, have a very
high risk of experiencing viremia and disseminated disease. In a
study performed at our center, viremia occurred in more than

70% of pediatric patients with these findings, whereas none of the
individuals with maximum viral loads below the indicated thresh-
old experienced invasive HAdV infection (69). These observations
were recently confirmed by other groups (188, 189) and are ex-
pected to have important implications for future diagnostic and
treatment strategies.

DIAGNOSIS AND MONITORING

Diagnostic Screening

Conventional approaches to HAdV detection in affected samples,
such as peripheral blood, stool, urine, BAL fluid, nasopharyngeal
aspirates, or swabs, include primarily immunofluorescence stain-
ing for antigen detection and viral culture (43, 97, 190, 191). How-
ever, due to the limited sensitivity and, in case of viral culture,
rather long time to readout, these methods have largely been sup-
planted in routine clinical diagnostics by molecular screening ap-
proaches generally relying on PCR-based techniques (71, 97, 192).
Owing to the superior sensitivity and specificity of molecular tests,
facilitating equally effective detection of all HAdV types in any
diagnostic material, PCR assays have become a standard screening
tool (143).

Despite the predominance of certain HAdV species in specific
clinical settings, including immunocompromised patients, em-
ployment of broad-spectrum HAdV screening assays is necessary
in order to permit reliable detection, even of rarely occurring
HAdV species and types, with adequate sensitivity (Fig. 1). Several
groups have established such “pan-adenoviral” assays based on
PCR, exploiting the sequence information available at the respec-
tive time points (73, 192–195). HAdV screening assays target con-
served regions within the HAdV genome, most commonly within
the hexon gene, but the inclusion of additional target regions, e.g.,
within the fiber gene, may be required to ensure reliable detection
of all known types with comparable sensitivities (194). Due to the
fact that the spectrum of newly identified HAdV types has been
expanding based on the implementation of genomic analyses, es-
tablished assays need to be updated in order to facilitate reliable
coverage of the entire range of human adenoviruses. Since newly
identified HAdV types generally result from recombination events
within the same or different human-specific species of the virus
(34), the target regions of established PCR assays are preserved in
most instances, thus permitting equally sensitive detection of the
new recombinants. Nevertheless, this issue requires careful atten-
tion, as exemplified by the HAdV screening assay established at
our center in 2005, based on the sequence information accessible
at that time (194). The test was originally demonstrated to cover
all 51 known HAdV (sero)types with comparable detection limits.
Alignment with genomic sequences of all newly published HAdV
types revealed that the current primer-probe combinations of this
real-time PCR assay can be expected to reliably cover nearly all
hitherto identified HAdV types, with two exceptions. The se-
quence of HAdV-A61 revealed a few mismatches in the target
region of the downstream primer, possibly affecting the sensitivity
of detection. This finding required the addition of an appropri-
ately modified primer to the reaction mix, with subsequent con-
firmation of this adaption in vitro. The second exception was
HAdV-G52, which displays the greatest similarity to a simian ad-
enovirus (SAdV-1) and is not reliably covered by the assay. This
example highlights the need to control and adequately adapt es-
tablished diagnostic assays based on newly identified HAdV types
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if the test is expected to serve for “pan-adenoviral” screening. The
availability of complete genomic sequences of all currently known
HAdV types greatly facilitates appropriate modifications of estab-
lished assays and the development of novel tests. The same re-
quirements apply to commercial HAdV assays which are FDA
approved in the United States and/or CE marked in Europe. A
number of such kits have been introduced, including the Adenovi-
rus R-gene kit (bioMérieux, Lyon, France), ELITe MGB kit (ELITech
Group Molecular Diagnostics, Puteaux, France), FilmArray RP kit
(BioFire Diagnostics, Inc., Salt Lake City, UT), eSensor RVP kit
(GenMark Diagnostics, Carlsbad, CA), xTAG RVP Fast and xTAG
RVPv1 kits (Luminex Molecular Diagnostics, Toronto, Canada),
Prodesse ProAdeno� assay (Hologic Gen-Probe, San Diego, CA),
and Anyplex II RV16 kit (Seegene, South Korea), and this list may
not be exhaustive. Most of the indicated kits cover multiple viruses
and are only approved for qualitative analysis of respiratory spec-
imens. Studies comparing the performances of such kits indicated
a particularly high variability for HAdV detection, with inade-
quate identification of certain HAdV types by some of the tests
(196–198). The monitoring of patients in the immunocompro-
mised setting requires tests permitting reliable detection of all po-
tentially relevant HAdV types in different clinical specimens, as
well as accurate quantitative assessment of viral loads. Among the
currently available commercial kits, this requirement appears to
be met by the Adenovirus R-gene kit (199), and possibly the ELITe
MGB kit, although the latter seems to be approved for whole-
blood analysis only.

It is important to note that the lower detection limit for HAdV
detection in clinical specimens, particularly peripheral blood,
should be in the range of 102 virus copies/ml in order to prevent
false-negative test results and to permit early initiation of treat-
ment according to some published guidelines (130).

Relevance of HAdV Detection and Quantification at Specific
Sites

A prospective study of pediatric patients undergoing allo-HSCT,
which focused on screening of HAdV at different sites (specimen
types) including the throat, stool, urine, peripheral blood, and,
occasionally, other locations, revealed that detection of adenovi-
rus at multiple (i.e., more than 2) sites reflects the presence of
invasive infection (71). This observation was in line with earlier
reports (200, 201), but the study revealed that peripheral blood is
the only infection site indicative of a high risk of disseminated
disease. A number of studies provided similar findings (73, 172,
175, 182, 186, 192), rendering peripheral blood the most impor-
tant source for clinical surveillance of HAdV infections in the
immunocompromised setting. The time point of HAdV DNAe-
mia may have prognostic relevance: in studies performed at our
center, patients showing DNAemia before day 100 after allo-
HSCT developed life-threatening disseminated disease in more
than 60% of instances, despite antiadenoviral treatment, whereas
later onset of viremia did not seem to be associated with dissemi-
nated HAdV disease (69, 71).

Interestingly, other reports suggested that HAdV detection in
nasopharyngeal aspirates of children prior to allo-HSCT is a
strong predictor for ensuing adenoviremia and may therefore
provide an indication for postponement of transplantation, if
possible (128, 130). In fact, HAdV may be persistently detectable
in nasopharyngeal secretions in some pediatric patients (202,
203), and these observations therefore require careful consider-
ation.

Despite the clear diagnostic and prognostic relevance of HAdV
DNAemia, only a proportion of high-risk patients with this find-
ing develop overt disease. A number of groups have therefore
attempted to identify virus load levels that could serve as a rational

FIG 1 Adenoviremia with multiple HAdV species. Different HAdV types or species can be detected in peripheral blood and/or other sites, both concomitantly
and sequentially. The example displayed shows a rare constellation of invasive infection, associated with HAdV species E, F, and occasionally B, during the
posttransplantation course (x axis) of a pediatric patient (86, 269). This observation highlights the fact that very unusual findings are possible, which must be
accounted for by the implementation of appropriate diagnostic techniques for HAdV detection and monitoring. The y axis indicates the virus copy number per
ml of blood determined by real-time PCR.
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basis for the start of preemptive antiviral treatment. However, the
thresholds suggested by different authors are highly divergent,
ranging from 102 (in individuals with high risk) to �106 copies/ml
(130, 135, 172, 175, 186, 204, 205), and it is difficult therefore to
draw generally applicable conclusions. Moreover, the measured
absolute values are, at least to some extent, dependent on the
individual technique used, and in the absence of appropriate in-
terlaboratory standardization, the values cannot readily be ad-
opted by or exchanged between centers. Other authors have
shown that rapidly rising viral loads are detectable in peripheral
blood prior to the onset of clinical symptoms of HAdV disease,
suggesting that the monitoring of viral titer kinetics may be a more
readily applicable parameter (71, 180). Moreover, in addition to
facilitating prediction of HAdV-related disease, surveillance of HAdV
titer kinetics in peripheral blood is also instrumental for assessment of
the response to therapy (69, 130, 206). In previous studies, a decrease
in viral load of at least 1 log within 2 to 3 weeks of antiviral treatment
was regarded as a minimum requirement for an adequate response
(69, 71), but there are no generally accepted guidelines for diagnostic
definitions of response at this time.

The relevance of HAdV proliferation kinetics and peak load
levels in stool specimens from pediatric allo-HSCT recipients for
risk assessment of invasive infection has already been indicated
(see above). Since the timely initiation of antiviral therapy appears
to be critical in this setting and starting treatment upon detection
of HAdV viremia may be too late in a number of instances (69, 71,
207), it is essential to identify the earliest possible time points for
rational initiation of therapy. In view of the high risk of invasive
infection and disseminated disease in children displaying rapid
HAdV proliferation kinetics in serial stool specimens, with peak
levels exceeding 106 virus copies/g, systematic screening of intes-
tinal excretions should be part of the diagnostic routine during the
posttransplantation period. The median time span between detec-
tion of HAdV loads in stool exceeding the indicated threshold and
the first appearance of the virus in peripheral blood was 11 days
(69), thus providing a rational window of opportunity for early
start of therapy, with the aim of preventing invasive infection (Fig.
2). Based on the available data and experience in the pediatric
allo-HSCT setting, an algorithm for diagnosis and treatment of
HAdV infections has been established (Fig. 3).

Adenovirus Typing

Identification of adenoviruses at the levels of species, (sero)types,
and even strains is relevant for epidemiological studies and for
precise documentation of nosocomial outbreaks. For the selection
of optimal treatment, HAdV typing is currently of lesser impor-
tance because, with the exception of ribavirin (see below), avail-
able therapeutic strategies are independent of the HAdV species
present. However, in view of the fact that different HAdV species
and types may occur contemporaneously or sequentially in indi-
vidual patients (52, 53, 72, 107, 208), typing may permit a better
understanding of the dynamics and evolution of HAdV infection
(Fig. 4).

Typing was traditionally performed by serological methods
(209), but these approaches have mostly been replaced by molec-
ular techniques based on PCR amplification of specific target re-
gions coupled with different detection formats, such as fragment
length analysis, hybridization to species-specific probes, or se-
quencing (210–215). Molecular typing methods are more rapid
and readily applicable and can provide better discriminatory ca-
pacity. Owing to the decreasing costs of next-generation sequenc-
ing (NGS) approaches, whole-genome analysis (36) may become
the method of choice for detailed HAdV typing in the foreseeable
future, even in the routine diagnostic setting.

Diagnostic Recommendations as a Basis for Preemptive
Treatment

In adult organ transplant recipients, asymptomatic viremia is ap-
parently common (�22%), and the risk of progression to adeno-
viral disease in the presence of HAdV DNAemia with or without
specific cutoff values for viral loads remains unknown (156). Rou-
tine screening for HAdV is therefore not recommended at present,
although adenovirus infections in this setting can be severe
and affect morbidity, mortality, and graft survival, particularly in
young children (156).

According to the most recent ECIL guidelines for patients un-
dergoing chemotherapy or autologous HSCT, monitoring is rec-
ommended only in cases of clinical suspicion of HAdV infection
or disease (143). For allo-HSCT recipients, the ECIL recommends
HAdV monitoring only for patients displaying at least one of the

FIG 2 Temporal correlation between intestinal HAdV infection and viremia. The median time span between the observation of rapidly rising HAdV copy
numbers in serial stool specimens (blue line), exceeding the threshold of 106 virus copies per gram of stool (left arrow), and the first detection of viremia (right
arrow; red line) was 11 days (69), providing a rational basis for early start of treatment.
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risk factors for HAdV disease (see above); in these instances,
quantitative PCR monitoring of peripheral blood should be per-
formed at weekly or shorter intervals until adequate immune re-
constitution is established (143). Although the fact that molecular
monitoring of viral loads in serial stool specimens can facilitate
early detection of impending invasive HAdV infection is acknowl-
edged by the ECIL, it has not been included in the current diag-
nostic guidelines because the level of available evidence was not
deemed sufficient. Hence, detection of viremia (DNAemia) in the
presence of at least one risk factor is presently the indication for
initiation of preemptive antiviral treatment according to the ECIL
criteria.

Somewhat older guidelines for preventing infectious complica-
tions in HSCT recipients, published on behalf of the Center for
International Blood and Marrow Transplant Research (CIBMTR)
and a consortium of several other societies, recommend weekly
monitoring of peripheral blood for active HAdV infections by
PCR during the first 6 months posttransplantation or the duration
of severe immunosuppression/lymphopenia only for patients dis-
playing the highest risk for adenoviral disease (216). This subset of
patients includes individuals with refractory GvHD, recipients of
T-cell-depleted stem cell grafts, haploidentical transplants, or um-
bilical cord transplants, and patients treated with anti-T-cell anti-
bodies. However, these guidelines do not provide any critical

FIG 3 Algorithm for diagnosis and treatment of HAdV infections. This algorithm was established based on the insights provided by studies performed at our
center (69). It is important, however, that the indicated absolute threshold value of 106 virus copies/g of stool may be dependent on the specific real-time
quantitative PCR (RQ-PCR) approach used in our study and may require adjustment when using other quantitative approaches. Initiation of antiviral therapy
at the proposed preinvasive stage may inhibit or slow down proliferation of the virus until recovery of the immune system permits control of the infection. This
approach may be instrumental in preventing life-threatening disseminated HAdV disease in individuals at high risk, while limiting the rate of overtreatment in
patients after allogeneic HSCT. Screening of PB specimens is usually terminated after documentation of stable PCR negativity. However, the risk of relapse after
successful treatment of adenovirus and resolution of HAdV DNAemia may be difficult to assess. Further molecular monitoring should therefore be based on the
individual risk profile. In high-risk situations, continued monitoring of both stool and blood specimens may be warranted. *, high-risk parameters include T-cell
depletion, GvHD (�grade II), other, concomitant viral infections, and CD3� counts of �300/�l PB; **, for patients who are HAdV positive in stool, with �103

virus copies/g after day 28, and do not display any high-risk features, the intervals of testing can be extended further; ***, ribavirin may be indicated only in the
presence of HAdV species C; ****, �1-log reduction of viral load within �2 weeks of treatment. w/o, without. (Reprinted from reference 69 with permission.)
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value for viral loads that should trigger the initiation of therapeu-
tic intervention.

According to another recently established guideline for pre-
emptive treatment in the allo-HSCT setting, published on behalf
of two institutions (Department of Pediatrics, University Utrecht,
Utrecht, Netherlands, and the Center for Cell and Gene Therapy,
Baylor College of Medicine, Houston, TX), weekly quantitative
PCR monitoring of peripheral blood is also recommended, but
the indication for preemptive treatment is linked to the detection
of critical HAdV load levels, which vary depending on the individ-
ual patient risk for severe HAdV infection and an adverse outcome
(130). The thresholds defined as critical range from �102 viral
copies/ml for patients with high-risk features to �103 copies/ml

for patients with intermediate risk and �104 copies/ml for indi-
viduals displaying a low-risk profile. These recommendations
have raised questions pertaining to possible overtreatment, with
associated side effects, when using very low thresholds of viral load
as a basis for preemptive treatment (206). Conversely, other ob-
servations suggest that initiation of treatment upon detection of
viremia at any level might be too late for successful control of the
disease in various instances (69, 71). Diagnostic findings from
serial stool specimens revealing rapid HAdV proliferation, with
peak levels of �106 virus copies/g, could therefore serve as a ratio-
nal basis for an earlier start of preemptive therapy, before the
infection becomes invasive (69) (Fig. 3). However, more clinical
data on the success of preemptive treatment based on the indi-

FIG 4 Course of adenoviremia with switch of HAdV species A to C. (Top) Kinetics of HAdV viremia during the posttransplantation course in a pediatric patient,
revealing the disappearance of DNAemia caused by HAdV species A to below the detection level of real-time PCR, with a recurrence of HAdV positivity for a
different HAdV species in peripheral blood after about 6 weeks of negative PCR findings. (Bottom) The switch observed in peripheral blood was preceded by
corresponding kinetics of HAdV loads in serial stool specimens.
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cated recommendations are needed to provide unequivocal sup-
port for the currently available diagnostic guidelines.

CURRENT TREATMENT MODALITIES

Present recommendations for treatment of HAdV infections fo-
cus on immunocompromised patients, particularly allogeneic
transplant recipients, who apparently carry the greatest risk of
severe and life-threatening clinical courses. The approaches pur-
sued may include prophylaxis, preemptive treatment based on
virus detection prior to onset of clinical symptoms, sometimes
linked to specific thresholds of viral load, or therapeutic (symp-
tomatic) treatment in the presence of virus-related disease. At
present, there is little evidence for a beneficial effect of HAdV
prophylaxis, and the ECIL does not recommend prophylactic an-
tiviral therapy with currently available virustatic drugs (143). For
SOT recipients, the treatment indication for mild or asymptom-
atic HAdV infection is not clear, since prospective studies have
shown that adenoviremia may be present without any clinical
symptoms and may clear spontaneously (157). Some authors
therefore recommend antiviral treatment only for symptomatic
patients (20). In contrast, for patients undergoing allo-HSCT,
preemptive treatment is strongly advocated by all major guide-
lines in order to inhibit or slow down viral replication, with the
aim to prevent overt disease until immune reconstitution from
the allograft permits clearance of the infection (130, 143, 216). The
principal options for preemptive treatment include (i) the taper-
ing of immunosuppressive therapy, which should be performed
whenever possible; (ii) use of antiviral drugs; and (iii) immuno-
therapy in case of failure of the previous lines of treatment.

Antiviral Drugs

Most evidence for the in vivo efficacy of antiviral therapy against
HAdV in the preemptive setting is available for cidofovir (130,
142, 177, 217–221), but the clinical effect of the drug as treatment
for overt viral disease is apparently limited (134, 222). The com-
pound is a nucleotide analog of cytosine that preferentially inhib-
its viral DNA polymerase and viral replication by more efficient
competitive incorporation into DNA (223). Although resistant
mutants have been described in vitro, cidofovir apparently dis-
plays efficacy against all HAdV species (224–226), and it is cur-
rently the primary anti-HAdV agent for preemptive therapy (69,
130, 143). It is used as induction therapy at a dose of 5 mg/kg of
body weight/week for 2 weeks and at 2-week intervals thereafter
(143). Alternatively, a schedule of 1 mg/kg three times a week has
been suggested (130), and the required duration of therapy is
linked to the clinical and molecular response, determined by a
rather individually defined reduction of viral load (69, 130). The
clinical results of preemptive treatment with cidofovir in the con-
text of allo-HSCT are controversial, with some studies reporting
success rates of �70% or more and others reporting rather poor
responses (69, 130, 177, 219, 222, 227, 228). The limitations of
treatment with cidofovir include its low bioavailability and poor
correlation of pharmacologic effects with the prescribed dose
(229). Moreover, cidofovir can display a dose-limiting nephrotox-
icity, and frequent monitoring of renal and tubular function and
concomitant hydration and uroprotection with probenecid are
recommended (97, 130, 143).

Ribavirin is a nucleoside analog of guanosine that displays in
vitro activity against DNA and RNA viruses, and the mechanisms
of action may include inhibition of viral polymerases, viral RNA

capping, and an increased mutation rate in newly synthesized
DNA (230). Analysis of HAdV isolates revealed a consistent sen-
sitivity of all types belonging to species C only (224), and the
evidence for therapeutic efficacy of the compound in vivo is con-
troversial (225, 230–233). Ribavirin is therefore not generally rec-
ommended for treatment of HAdV infections (143, 234). How-
ever, despite the conflicting results on the activity against HAdV in
vivo, the low nephrotoxicity of ribavirin and the documented in
vitro efficacy against HAdV species C may justify its use in specific
clinical situations (235, 236). Oral, intravenous, and aerosol ther-
apies with ribavirin have been used (237–239), and the compound
has been applied at our center, in the pediatric allo-HSCT setting,
at a dose of 20 mg/kg in combination with cidofovir as preemptive
therapy in the presence of infections caused by representatives of
HAdV species C (69). However, the actual clinical benefit of this
treatment remains unclear.

Ganciclovir is a synthetic analog of 2=-deoxyguanosine which
requires phosphorylation to ganciclovir monophosphate by a vi-
ral kinase and, subsequently, formation of ganciclovir diphos-
phate and triphosphate, catalyzed by cellular kinases. Ganciclovir
triphosphate is a competitive inhibitor of dGTP incorporation
into DNA and preferentially inhibits viral rather than cellular
DNA polymerases. Moreover, it is a poor substrate for chain elon-
gation, thereby disrupting viral DNA synthesis. A possible benefit
of ganciclovir against HAdV infections in allo-HSCT recipients
has been suggested (240). However, since adenoviruses (in con-
trast to members of the herpesvirus family) lack viral thymidine
kinase, and cellular kinases are inefficient at phosphorylating the
compound, the anti-HAdV efficacy of ganciclovir is predictably
modest (230). Based on current data, there appears to be no jus-
tification for recommending the use of this drug for HAdV treat-
ment (69, 130, 143).

Among other antiviral agents tested, the pyrophosphate analog
foscarnet was demonstrated to display no activity against HAdV
(230). A relatively recently introduced compound, brincidofovir (1-
O-hexadecyloxypropyl-cidofovir; formerly known as CMX001), is
an orally bioavailable lipid conjugate of cidofovir displaying
substantially less nephrotoxicity than that of the parent drug.
The compound has been employed successfully for treatment
of viral infections in allo-HSCT recipients and other settings
(241–243), but mutations conferring resistance may arise
(244). Preliminary observations on the efficacy against HAdV
showed promising results (245, 246), and clinical development
of the drug is currently ongoing.

Immunotherapy

Measures supporting T-cell immunity play an important role in
the armamentarium against invasive HAdV infections. This is at-
tributable to the current limitations of antiviral chemotherapy
and the evidence that T-cell recovery with reconstitution of
HAdV-specific immune responses is essential for effective clear-
ance of invasive infections. The initial step should therefore in-
clude reduction of immunosuppressive treatment whenever pos-
sible, as indicated above. Moreover, the transfer of HAdV-specific
T cells from the original stem cell donor or third-party donors
may represent the most effective currently available treatment op-
tion (143).

The proportion of HAdV-reactive T cells within the entire lym-
phocyte population of individuals who have been exposed to the
virus is low. Infusion of unselected donor lymphocytes (DLI) can
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still provide antiviral immunity (247), but the potentially high
frequency of alloreactive T cells and the ensuing side effects are
major impediments to this approach (130). The isolation of
HAdV-specific T cells from peripheral blood of the original stem
cell donor has therefore become the method of choice for treat-
ment of HAdV infections in allo-HSCT recipients not responding
to antiviral chemotherapy, and different approaches to the gener-
ation of such cells have been established. Regardless of the HAdV
species the donor has been exposed to, the HAdV-reactive T cells
are expected to be cross-reactive with all HAdV types, because the
hexon, the main constituent of the viral capsid, is the immuno-
dominant T-cell target, containing several epitopes that are con-
served among adenoviruses (116, 248). One of the early successful
attempts of adoptive T-cell transfer was based on the isolation of
donor-derived mononuclear cells, their stimulation ex vivo with
HAdV antigen, and magnetic separation of reactive T cells secret-
ing IFN-�, which included both CD4� and CD8� T cells. The cells
were infused without further in vitro expansion, and the results
indicated that the efficacy of this treatment does not depend on
the dose of infused cells, because even very small numbers of
HAdV-specific donor-derived T cells expanded easily in vivo in
the presence of the constant antigen challenge mediated by the
viral infection (207). The most critical parameter for the success of
treatment was appropriate timing, i.e., early T-cell transfer upon
detection of viremia (207). These observations indicate that rapid
availability of T cells for adoptive transfer, based on methods re-
quiring only short or no in vitro expansion, is essential. Based on
this notion, a number of different approaches to selection of
HAdV-specific T cells have been introduced. The considerable
variety of approaches includes, for example, different types of
MHC multimers facilitating clinical-grade enrichment of HAdV-
specific or multivirus-specific T cells displaying low or absent al-
loreactivity (249, 250). The MHC multimer technology requires
knowledge of immunodominant human leukocyte antigen
(HLA)-restricted peptide epitopes and facilitates the isolation of
antigen-specific CD8� T cells (MHC class I multimers) or CD4�

T cells (MHC class II multimers) of high purity (251). Short-term
in vitro expansion under good manufacturing practice (GMP)
conditions can render adoptive T-cell transfer available in less
than 2 weeks (123, 252–254). In addition to a variety of methods
based on the isolation of HAdV-specific T cells from the original
stem cell donors, several approaches exploiting third-party do-
nors are emerging (141, 255–263). Allogeneic third-party donors
are a particularly important alternative option for cord blood re-
cipients, for patients receiving allografts from HAdV-seronegative
donors, and for solid organ transplantations from cadaveric
donors, where donor blood is not available. Healthy seroposi-
tive individuals have been exploited to generate partially HLA-
matched virus-specific T cells (VSTs) for adoptive immunother-
apy (251). However, clinical implementation of this approach
requires the availability of a large pool of HLA-typed healthy do-
nors, and the use of incompletely HLA-matched T cells bears the
risk of complications resulting from alloreactive side effects (264).
Despite the existing concerns, this approach appears to be feasible,
and current clinical results are encouraging (265). Another re-
cently presented methodology is the generation of VST cell lines
from healthy donors with common HLA polymorphisms (266).
The employment of banked third-party-derived VSTs was dem-
onstrated to represent an additional safe and readily applicable
strategy for rapidly available treatment of severe viral infections in

allo-HSCT recipients (266), thus further expanding the spectrum
of clinical options for effective immunotherapy in immunocom-
promised patients. Although adoptive transfer of HAdV-specific
T cells is currently one of the most promising treatment ap-
proaches for high-risk patient populations, it still needs to be re-
garded as experimental and should only be performed in the con-
text of clinical trials in specialized centers.

SUMMARY AND PERSPECTIVES

Despite the considerable progress in diagnosis and treatment of
adenoviral infections over the past years, a number of relevant
issues remain to be solved. The steadily growing spectrum of
HAdV types emanating from genomic analyses is a challenge for
molecular screening assays. Although newly identified types of the
virus generally result from recombination events between known
HAdV representatives, and the sequences targeted by PCR tests
may be preserved, it is necessary to test and occasionally adapt the
assays to ensure adequate coverage of existing HAdV types. Com-
plete HAdV genome sequences are now available in public data-
bases, thereby permitting at least in silico control of the primers
and probes used to ensure coverage of any newly identified HAdV
type by the assay used. However, in view of the clinical importance
of adenoviral infections, the availability of commercial, regularly
updated diagnostic tests (199, 267) is highly desirable to facilitate
standardized diagnostics under stringent quality control condi-
tions. Commercial assays should permit pan-HAdV screening,
quantification of viral loads, and, ideally, typing at least to the
species level in order to provide a basis for more specifically tar-
geted treatment approaches (251, 268). It is conceivable that easier
access to next-generation sequencing facilities and decreasing
costs of analysis will enable detailed HAdV typing, even in the
routine clinical setting, in the near future.

Current recommendations for adenovirus screening and mon-
itoring as a basis for preemptive treatment in patients at high risk
for HAdV disease are still relatively diverse (69, 130, 143), and
further studies are needed to provide reliable data permitting the
establishment of standardized approaches. Optimized diagnostics
will greatly affect the rational and timely initiation of antiviral
treatment, which was shown to be a prerequisite for successful
therapy. Despite current recommendations for preemptive ad-
ministration of antiviral drugs, unequivocal evidence for a bene-
ficial effect on mortality is still missing, and appropriate prospec-
tive studies are needed. The introduction of novel antiviral agents
can be expected to further improve the efficacy of treatment and to
reduce the toxicity of some commonly prescribed virustatic drugs.
In this regard, the orally bioavailable and less nephrotoxic lipid
ester of cidofovir, brincidofovir, could provide an important im-
provement of current antiviral therapies. Preliminary data from
ongoing studies are promising, and an international therapy trial
with brincidofovir in transplant recipients displaying intestinal
HAdV infection, who have an elevated risk of viremia and dissem-
inated disease (69, 188, 189), is currently in preparation. This
study is expected to provide important evidence for the efficacy of
early preemptive virustatic treatment. Another interesting novel
antiviral compound is ganciclovir triphosphate, which does not
require further phosphorylation by viral kinases and can therefore
be expected to display therapeutic activity against HAdV.

In addition to the favorable properties of new antiviral drugs,
advances in antiviral immunotherapy with adenovirus-specific T
cells offer great potential for further improvement in the preven-
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tion or treatment of HAdV infections. Anti-HAdV T cells gener-
ated by different approaches are cross-reactive with all types of the
virus and can therefore provide broad antiadenoviral immunity. It
is not entirely clear, however, whether an equivalent quality of
immune response to any HAdV type can be expected. It is con-
ceivable that the generation of T cells targeted to individual HAdV
types and mediating specific interactions with type-restricted
epitopes (268), in addition to the broadly shared hexon epitopes,
may elicit more effective immune responses (251). This notion
may warrant careful attention. If the safety, efficacy, and feasibility
of HAdV-specific or multivirus-specific T-cell transfer can be
firmly established, it is reasonable to envision that this treatment
will be employed successfully not only in the settings of preemp-
tive and symptomatic therapy but also as prophylaxis in high-risk
patients to prevent severe viral diseases. The establishment of al-
logeneic T-cell donor registries of HLA-typed healthy donors
tested for the presence of virus-specific T cells could serve as a
rapidly available source for adoptive immunotherapy in immuno-
compromised patients lacking a suitable T-cell donor. Such T-cell
donor registries might provide readily available off-the-shelf
products facilitating rapid initiation of immunotherapy in pa-
tients carrying a high risk of life-threatening viral infections.
Broad availability of banked third-party virus-specific T cells
and/or virus-specific T-cell lines could mark the beginning of a
new era in combatting the threats of viral infections in immuno-
compromised patients in the foreseeable future.
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