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with Q a quiver of type Ãn, D̃n, Ẽ6, Ẽ7, or Ẽ8. Two different kinds of partitions of the module
category can be obtained by using Auslander-Reiten theory, and on the other hand, Gabriel-Roiter
measure approach. We compare these two kinds of partitions and see how the modules are rearranged
according to Gabriel-Roiter measure. We also show that the Gabriel-Roiter submodules can be used
to build orthogonal exceptional pairs for indecomposable preprojective Λ-modules when Λ is of type
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1 Introduction

The Gabriel-Roiter measure has been introduced by Gabriel (under the name ‘Roiter measure’, [7])
in 1973, in order to clarify the induction scheme used by Roiter in his proof of the first Brauer-Thrall
conjecture. Ringel used the Gabriel-Roiter measure as a foundation tool for representation theory
of artin algebras ([12],[13]). So-called Gabriel-Roiter submodules of an indecomposable module
are indecomposable submodules with a certain maximality condition. Gabriel-Roiter submodules
of an indecomposable module Y always exist in case Y is not simple. One of the most interesting
properties is that if Y is an indecomposable non-simple module and X is a Gabriel-Roiter submodule
of Y , then Y/X, the Gabriel-Roiter factor module, is indecomposable ([12],[13]). Therefore, any
indecomposable non-simple module Y is an extension of indecomposable modules.

By using Gabriel-Roiter measure, Ringel obtained a partition of the module category of a
representation-infinite algebra ([12]): The module category consists of take-off part, central part
and landing part. Moreover, he showed that all modules lying in the landing part are preinjective
modules in the sense of Auslander and Smalø ([2]). This naturally leads us to compare the different
kinds of partitions of the module category.

Throughout the paper, we assume that k is an algebraically closed field and Λ is a finite di-
mensional basic connected k-algebra. We denote by modΛ the category of finite dimensional left
Λ-modules and by indΛ the full subcategory of modΛ consisting of indecomposable Λ-modules. Let
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indX = indΛ ∩ X for a full subcategory X of modΛ. We denote by |M | the length of a Λ-module
M . We use the symbol ⊂ to denote proper inclusion. For any two Λ-modules X and Y , Exti(X, Y )
always stands for Exti

Λ(X, Y ) for any i ≥ 0.

If Λ is a representation-infinite hereditary k-algebra, the module category contains preprojective
modules, regular modules and preinjective modules. Ringel’s result implies all landing modules are
preinjective modules. In this note, we shall compare these two kinds of partitions of the module
category of a tame hereditary algebra obtained by using Auslander-Reiten theory and Gabriel-
Roiter measure approach, respectively. We show that all preprojective modules lies in the take-
off part(Theorem 4.4). A direct consequence of this theorem is that a Gabriel-Roiter submodule
of a homogeneous regular module, which is not regular simple, is always given by an irreducible
monomorphism (Corollary 4.5). However, we will see a stronger result which says that for a Gabriel-
Roiter inclusion of homogeneous regular modules H ⊂ H ′, the measure for H ′ is a direct successor
of the measure for H, i.e. there does not exist indecomposable module with Gabriel-Roiter measure
lying in between (Theorem 4.6).

A known interesting application of Gabriel-Roiter submodules is that they can be used to con-
struct orthogonal exceptional pairs for indecomposable modules over representation-directed alge-
bras ([4],[5],[14]). We will extend this result to indecomposable preprojective modules over tame
hereditary algebras of type Ãn,n≥2 and D̃n (Theorem 5.1).

We recall some preliminaries of tame hereditary algebras in section 2. Some definitions and
properties of Gabriel-Roiter measure are presented in section 3. Section 4 is devoted to a discussion
of these two kinds of partitions. In section 5, we will discuss the orthogonal property of a Gabriel-
Roiter inclusion of preprojective modules.

2 Preliminaries

In this section, we present some preliminaries which will be used later on. For details, we refer to
[1], [6], [10]. Let Λ = kQ be a path algebra with the underlying graph of type Ãn, D̃n, or Ẽ6,7,8.
The dimension vector for a Λ-module M is denoted by dim M . We call a module M sincere if
(dim M)i ≥ 1 for each i, and thin if (dim M)i ≤ 1 for each i.

We have a bilinear form 〈a, b〉 = aC−tbt for all a, b ∈ Zn where C is the Cartan matrix and t

denotes the transpose of a matrix. Then given two modules X, Y ∈ modΛ, we have

〈dim X, dim Y 〉 = dim Hom(X, Y )− dim Ext1(X, Y )

We denote by q the quadratic form on Z defined by q(a) = 〈a, a〉. Then q is positive semi-definite
with radical Zδ, that is, q(δ) = 0 and h = rδ for some r ∈ Z whenever q(h) = 0. We list the
underlying graphs of the quivers of tame hereditary algebras and indicate δ for each case.

Ãn : 1 1 · · · 1
==

1
��

==
1

1 1 · · · 1
��

D̃n : 1
==

1

2 2 · · · 2
��

==

1
��

1

Ẽ6 : 1

2

1 2 3 2 1
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Ẽ7 : 2

1 2 3 4 3 2 1

Ẽ8 : 3

2 4 6 5 4 3 2 1

We have a decomposition of the Auslander-Reiten quiver ΓΛ, into the preprojective part P, the
preinjective part I and the regular one R, where R is a sum of stable tubes Tλ of ranks rλ ≥ 1, for
λ ∈ P1(k) = k∪{∞}. A tube of rank 1 is called homogeneous and the ones of rank greater than 1
are called exceptional. Note that Tλ is exceptional for at most three λ ∈ P1(k). For indecomposable
Λ-modules X, Y , if Hom(X, Y ) 6= 0 and X and Y do not belong to the same connected component
of ΓΛ, then X is preprojective or Y is preinjective.

The following proposition is very useful.

Proposition 2.1 ([8]). Assume that Λ is a hereditary algebra and X, Y are indecomposable Λ-
modules with Ext1(Y, X) = 0. Then any non-zero map from X to Y is either injective or surjective.

For each regular component Tλ with rank rλ, let E1, · · · , Erλ
be the indecomposable modules

on the mouth. We call them regular simple modules. Note that δ =
∑rλ

i=1 dim Ei. For each
indecomposable regular module X ∈ Tλ with X � Ei , the middle term of the Auslander-Reiten
sequence 0→τX→M→X→0 has exactly two indecomposable summands such that one irreducible
map to X is surjective and the other one is injective. Recall that a sectional path in the ΓΛ is
a sequence of irreducible maps X1→X2→· · ·→Xm→· · · with Xi � τ(Xi+2) for each i. For any
indecomposable regular module X, we may write X = Ei[r] since there is a unique sectional path of
irreducible monomorphisms Ei = Ei[1]→Ei[2]→· · ·→Ei[r] = X→· · · starting with a regular simple
module Ei for some 1 ≤ i ≤ s. Recall that add Tλ is a serial abelian category and closed under
extension.

The defect of a Λ-module X is defined to be 〈δ,dim X〉 = −〈dim X, δ〉. We thus get a defect
function which is also denoted by δ : δ(X) = 〈δ,dim X〉. It is well-known that an indecomposable
Λ-module X is preprojective, (resp. regular, preinjective) if and only if δ(X) is negative (resp. zero,
positive).

Lemma 2.2 ([3]). Assume that X and Y are indecomposable preprojective modules such that the
defect, δ(X), of X is −1. If 0 6= f ∈ Hom(X, Y ), then f is injective.

Proof. Since Im f is a submodule of Y , it is a preprojective module. We thus have −1 = δ(X) =
δ(Im f)+δ(Ker f). It follows that either δ(Im f) = 0 or δ(Ker f) = 0. But f 6= 0 implies δ(Ker f) = 0.
Therefore, Ker f = 0 and f is injective.

Corollary 2.3. Assume that Λ is of type Ãn.
(1) All non-zero maps between indecomposable preprojective modules are injective and the corre-
sponding factors are regular modules. In particular, all irreducible maps between indecomposable
preprojective modules are monomorphisms.
(2) All non-zero maps between indecomposable preinjective modules are surjective and the corre-
sponding kernels are regular modules. In particular, all irreducible maps between indecomposable
preinjective modules are epimorphisms.

Proof. Note that in this case, all indecomposable preprojective modules are of defect −1. (2) is dual
to (1).
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We now introduce some notations. Assume that Λ is of type D̃n or Ẽ6,7,8. Let Q = (Q0, Q1)
be the ordinary quiver of Λ with Q1 the set of arrows and Q0 the one of vertices, and ΓΛ be the
Auslander-Reiten quiver. Fix a vertex j ∈ Q0, a sectional sequence to j is a sequence of vertices
i1, i2, · · · , is = j such that ik and ik+1 are neighbors each other, i.e. they are connected by an
edge. A sectional sequence to j is complete if i1 is an ending vertex of Q, i.e. a vertex with only
one neighbor in Q. Let Pi be the indecomposable projective module corresponding to i for each
i ∈ Q0. If M = τ−rPj is an indecomposable preprojective module, then we say a sectional path
Xi1→Xi2→· · ·→Xis = M in ΓΛ is complete if τ rkXik

= Pik
and ii, i2, · · · , is = j is a complete

sectional sequence to j. A sectional path X1→X2→· · ·Xs = M to M in ΓΛ is said to be maximal if
any path Y→X1→· · ·Xs = M of irreducible maps is not a sectional path for any Y . Then, a maximal
sectional path X1→X2→· · ·→Xs = M being not complete implies that X1 is projective. For each
indecomposable preprojective module M , we denote by (→M) the subquiver of the Auslander-Reiten
quiver consisting of all maximal sectional paths to M . We say (→M) is complete if each maximal
sectional path to M is complete. We may also define (M→) for a preprojective module M . Similarly,
we have (N→) and (→N) for an indecomposable preinjective module.

3 The Gabriel-Roiter measure

In this section, we assume that Λ is a fixed artin algebra. We first recall some definitions. Let
N1={1, 2, · · · } be the set of natural numbers and P(N1) the set of all subsets of N1. We consider
the set P(N1) as a totally ordered set as follows: If I,J are two different subsets of N1, write I < J

provided the smallest element in (I\J) ∪ (J\I) belongs to J. Also we write I � J provided I ⊂ J

and for all elements a ∈ I, b ∈ J\I, we have a < b. We say that J starts with I provided I = J or
I � J . It is easy to check that:
(1) If I ⊆ J ⊆ N1, then I ≤ J .
(2) If I1 ≤ I2 ≤ I3, and I3 starts with I1, then I2 starts with I1.

For each Λ-module M , we denote by |M | the length of M . Let µ(M) be the maximum of the
sets {|M1|, |M2|, · · · , |Mt|} where M1 ⊂ M2 ⊂ · · · ⊂ Mt is a chain of indecomposable submodules
of M . We call µ(M) the Gabriel-Roiter measure (briefly GR measure) of M . If M is an
indecomposable Λ-module, then a chain of indecomposable submodules M1 ⊂ M2 ⊂ · · · ⊂ Mt = M

with µ(M) = {|M1|, |M2|, · · · |Mt|} is called a Gabriel-Roiter filtration (briefly GR filtration) of
M . We call an inclusion T ⊂ M of indecomposable Λ-modules a Gabriel-Roiter inclusion (briefly
GR inclusion) provided µ(M) = µ(T )∪{|M |}, thus if and only if every proper submodule of M has
Gabriel-Roiter measure at most µ(T ). In this case, we call T a Gabriel-Roiter submodule (briefly,
GR submodule) of M . Note that a chain M1 ⊂ M2 ⊂ · · · ⊂ Mt = M is a GR filtration if and only
if all the inclusions Mi ⊂ Mi+1 are GR inclusions. The factor module of a GR inclusion is called a
Gabriel-Roiter factor (briefly GR factor). A short exact sequence 0−→T

f−→ M
g−→ X−→0 is

called a GR sequence provided f is a GR inclusion.

We obtain the following conclusion from the above concept, which is useful in what will follow:

Lemma 3.1. Let X, Y and Z be Λ-modules.
(1) If X is a proper submodule of Y , then µ(X) ≤ µ(Y ).
(2) Assume that X, Y, Z are indecomposable. If µ(X) < µ(Y ) < µ(Z) and X is a GR submodule of
Z, then |Y | > |Z|.
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The following Main Property of Gabriel-Roiter measure is essentially due to Gabriel ([7]), and
proved by Ringel ([12]) for arbitrary modules.

Main Property (Gabriel). Let X, Y1, · · · ,Yt be indecomposable modules and assume that there
is a monomorphism f : X −→ ⊕t

i=1Yi. Then
(1) µ(X) ≤ max{µ(Yi)}.
(2) If µ(X) = max{µ(Yi)}, then f splits.
(3) If max{µ(Yi)} starts with µ(X), then there is some j such that πjf is injective, where πj :
⊕t

i=1Yi −→ Yj is the canonical projection.

In the following proposition, we collect some basic properties of the GR inclusions which will be
needed in the sequel. We refer to [12] and [5] for a proof.

Proposition 3.2. Let ε : 0−→T
l−→ M

π−→ M/T−→0 be a GR sequence. Then the following
statements hold:
(1) T is a direct summand of all proper submodules of M containing T .
(2) M/T is indecomposable.
(3) Any map to M/T which is not an epimorphism factors through π.
(4) All irreducible maps to M/T are epimorphisms.
(5) If all irreducible maps to M are monomorphisms, then l is an irreducible map.
(6) M/T is a factor module of τ−1T and M/T ∼= τ−1T if and only if ε is an Auslander-Reiten
sequence.

The following proposition will be quite often used in our discussion.

Proposition 3.3. Assume that T is a GR submodule of M . Then there is an irreducible monomor-
phism T→X with X indecomposable and an epimorphism X→M .

Proof. Assume that l : T→M is the inclusion map and T
f=(fi)−→ ⊕r

i=1Xi is a minimal left almost
split map. Then we obtain the following commutative diagram:

T
f=(fi)//

l

��

⊕Xi

g=(gi)||zz
zz

zz
zz

M

Assume that gi is not an epimorphism for any i. The induced monomorphism (gifi) : T→⊕Xi→⊕i

Im gi implies µ(T ) ≤ max{µ(Im gi)} ≤ µ(T ) since T is a GR submodule of Y and Im gi is a proper
submodule of M . By the Main Property, we obtain that the map (gifi) splits, thus (fi) splits. But
f = (fi) is an almost split map. This contradiction implies that there is an index j such that gj

is an epimorphism. Since |X| ≥ |M | > |T |, we obtain that fj is a monomorphism. Now we take
X = Xj .

Remark. We may also require that the composition of the maps T→X→M obtained in the
proposition is a monomorphism. This follows from the fact that the subset consisting of all non-
monomorphisms in Hom(T,M) is a subgroup, see [15] for details.

Now we recall the partition obtained by using Gabriel-Roiter measure approach. As in [12],[13],
we say I ∈ P(N1) is a Gabriel-Roiter measure for Λ if there exists an indecomposable Λ-module M
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with µ(M) = I. A measure I is said to be of finite type if there are only finitely many isomorphism
classes of indecomposable modules with measure I. Let I and J be two measures for Λ, we say J is
a direct successor of I if there is no measure J ′ with I < J ′ < J .

Theorem 3.4 ([12]). Let Λ be a representation infinite artin algebra. Then there are Gabriel-Roiter
measures It, I

t for Λ such that

I1 < I2 < I3 < · · · < I3 < I2 < I1

and such that any other measure J satisfies It < J < It for all t. Moreover, all these measures It

and It are of finite type.

The measures It(It) are called take-off (landing) measures and any other measure is called
a central measure. An indecomposable module M with GR measure I is called a take-off (resp.
central, landing) module if I is a take-off (resp. central, landing) measure. It is easy to see that if
J is the direct successor of I, then I is a take-off (resp. central, landing) measure if and only if so
is J .

In [12], Ringel showed the following proposition:

Proposition 3.5 ([12]). Let Λ be a representation infinite artin algebra. Then all landing modules
are preinjective (in the sense of Auslander and Smalø [2]).

The following is the Successor Lemma in [13]. Note that a GR measure different from I1 may
not have direct predecessor.

Proposition 3.6 ([13]). Any Gabriel-Roiter measure I different from I1 has a direct successor.

4 Comparison of two kinds of partitions for tame hereditary

algebras

Let Λ be a representation infinite hereditary k-algebra. We denote by TΛ, CΛ, LΛ the full subcategory
of take-off modules, central modules and landing modules, respectively. Note that under our con-
vention, they are all collections of indecomposable modules. We denote by PΛ, RΛ, IΛ preprojective
modules, regular modules and preinjective modules, respectively. Then indPΛ (resp. indRΛ, ind IΛ)
is the collection of all indecomposable preprojective (resp. regular, preinjective) modules. We shall
always omit the subscript Λ in the sequel since only one algebra is involved.

Proposition 4.1. Let Λ be a representation infinite hereditary algebra and M be an indecomposable
Λ-module.
(1) If M is a preprojective take-off module, then there exists a natural number n such that µ(τ−iM) >

µ(M) for all i > n.
(2) If M is a preinjective landing module, then there exists a natural number n such that µ(τ iM) <

µ(M) for all i > n.

Proof. We show (1), then (2) is the dual. Assume not, then since M is preprojective, there are
infinitely many indecomposable modules of the form τ−iM such that µ(τ−iM) ≤ µ(M). But M is
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a take-off module implies that only finitely many measures are smaller than µ(M). It follows that
there exist a measure I ≤ µ(M), which is thus a take-off measure, such that there are infinitely
many indecomposable modules with measure I. This is a contradiction since any take-off measure
is of finite type.

Remark. Part (2) of this proposition may not hold if M is preinjective but not a landing
module. For example, we consider the quiver Ã2 (for details see [12],[13]). The landing part consists
of half of the indecomposable preinjective modules, namely, the modules with length 3m+1(m > 0).
The indecomposable preinjective modules of length 3m + 2(m > 0) are central modules. For each
preinjective central module M , there are infinitely many indecomposable preinjective modules of the
form τ iM such that µ(τ iM) > µ(M).

Lemma 4.2 ([9]). Let Λ be a representation infinite hereditary algebra. If X, Y are nonzero pre-
projective Λ-modules, then X is cogenerated by τ−mY for m � 0.

Proposition 4.3. Let Λ be a representation infinite hereditary algebra and X be an indecomposable
preprojective Λ-module. Then

|{Y ∈ indP : µ(Y ) ≤ µ(X)}| < ∞.

Proof. Assume that Pi(i ∈ Q0) are indecomposable projective Λ-modules. Then for each i, there
exists a natural number mi

0 such that X is cogenerated by τ−mPi for all m ≥ mi
0 (Lemma 4.2). Since

there are only finitely many indecomposable projective modules, we may choose m0 = max{mi
0}.

Then X is cogenerated by τ−mP , thus µ(X) < µ(τ−mP ), for each indecomposable projective module
P and m ≥ m0. Therefore, an indecomposable module Y with µ(Y ) ≤ µ(X) satisfies Y = τ−tP

for some indecomposable projective module P and some t ≤ m0. Thus, there are only finitely many
indecomposable preprojective modules with measures smaller than µ(X).

Let Λ be a representation infinite hereditary algebra and P be an indecomposable projective
Λ-module. We call O(P ) = {τ−iP |i ≥ 0} the τ -orbit of P . Baer, see [3], also [9], has called the
orbit O(P ) a mono orbit, provided

• If X ∈ O(P ) is indecomposable and Y is preprojective , then any nonzero homomorphism
f : X→Y is injective.

• If X and Y in O(P ) are indecomposable and f : X→Y is a nonzero (hence a monomorphism),
then the cokernel C of f is regular.

Now assume that Λ = kQ is a tame hereditary algebra. If Pi is an indecomposable projective
module with δ(Pi) = −1, then O(Pi) is a mono-orbit. Namely, assume tht X = τ−tPi and f

is a nonzero map from X to a preprojective module Y . Thus Im f is a preprojective module.
But δ(X) = δ(Im f) + δ(Ker f) and δ(X) = −1 implies Im f = 0 or Ker f = 0. Thus f is a
monomorphism. If Y ∈ O(Pi), then δ(X) = δ(Y ) = −1 and δ(Coker f) = 0. In particular, X

has no preprojective factor module. The same argument shows that any nonzero map from an
indecomposable preprojective module with defect −1 to a regular simple module is either injective
or surjective.
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Dually, we have τ -orbits O(I) for indecomposable injective modules I and can define epi orbits
in a similar way. If Y is an indecomposable preinjective module with defect δ(Y ) = 1, then any
nonzero map from a regular simple module to Y is either injective or surjective.

Note that for a tame hereditary algebras kQ, O(Pi) (O(Ii)) is a mono (an epi) orbit if and only
if −〈δ, Pi〉 = δi = 〈δ, Ii〉 = 1.

Theorem 4.4. Let Λ = kQ be a tame hereditary algebra. Then indP ⊂ T , i.e. every indecomposable
preprojective module lies in the take-off part.

Proof. Since an indecomposable Λ-module X is a take-off module if and only if there are only finitely
many indecomposable modules with GR measure smaller than µ(X), the theorem is a direct conse-
quence of Proposition 4.3 and the following three statements:

(1) Let X be an indecomposable preprojective module. Then

|{Y ∈ indR : Y is an exceptional regular module, µ(Y ) ≤ µ(X)}| < ∞.

(2) Let H1 be a homogeneous regular simple module. Then

|{X ∈ ind I : X is indecomposable, µ(X) < µ(H1)}| < ∞.

(3) Let H be a homogeneous regular module. Then µ(H) > µ(X) for all X ∈ indP.

For the proof of (1), we consider the sectional path Y1→Y2→· · ·→Yn→· · · with Y1 an exceptional
regular simple module in an exceptional tube of rank r. Note that dim Yr = δ and Yn is sincere for
each n ≥ r. It is known that for each n ≥ r, we may get indecomposable preprojective module Pn

which is a proper submodule of Yn such that limn→∞ |Pn| = ∞

For the given X, we may, by Lemma 4.2, obtain a natural number m0 such that X is cogenerated
by the indecomposable modules τ−mP for all indecomposable projective modules P and all m ≥ m0.
Since limn→∞ |Pn| = ∞, we have X is cogenerated by Pn for n large enough. In particular, we have
µ(X) < µ(Pn) < µ(Yn) for n � 0 . Since there are at most 3 exceptional tubes, only finitely many
indecomposable exceptional regular modules have measures smaller than µ(X) for the given X.

To prove (2), we assume that Y is an indecomposable preinjective module with dim Y > δ. If
δ(Y ) = 1, then any nonzero map from H1 to Y is either injective or surjective. If δ(Y ) ≥ 2 (this
occurs when Λ is of type D̃n, or Ẽ6,7,8), we may find an indecomposable module X with defect
δ(X) = 1 (using Proposition 2.1) and there is an injective map from X to Y . In fact we consider
(→Y ) (see section 2 for definition) which is complete since Y is sincere. Take any module X with
defect δ(X) = 1 in (→Y ). It is easy to see that the composition of the sectional path X→· · ·→Y

is injective. As upshot, if Y = τmI is indecomposable with I an injective module and m � 0, that
is, |Y | � |H1|, then we may get an indecomposable module X (= Y if δ(Y ) = 1) with δ(X) = 1,
such that |X| > |H1| and, both Hom(H1, X) and Hom(X, Y ) contain monomorphisms. It follows
that µ(H1) < µ(X) ≤ µ(Y ). Note that only finitely many indecomposable preinjective modules
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have dimension vectors smaller than δ. Therefore, only finitely many indecomposable preinjective
modules have measures smaller than µ(H1).

Finally, we prove (3) by showing that µ(X) < µ(H1) for any indecomposable preprojective module
X and any homogeneous regular simple module H1. We first note that Hom(X, H1) 6= 0 for any
indecomposable preprojective module X and that no indecomposable preprojective (preinjective)
module has length |Hi| = i|δ| where Hi is a homogeneous regular module. In particular, µ(M) 6=
µ(Hi) for any indecomposable module M ∈ indP(ind I). Assume that X is an indecomposable
preprojective module with µ(X) > µ(H1) such that |X| is minimal. Since X is not simple, we take a
GR submodule Y of X which is again preprojective. Thus, µ(Y ) < µ(H1) < µ(X) by the minimality
property of X. We thus have |H1| > |X| (Lemma 3.1). Assume K = ∩f :X→H1Ker f and consider
the short exact sequence 0→K→X

π→ C→0. By construction, Hom(π,H1) is an isomorphism and
C is cogenerated by H1. Since |H1| > |X| ≥ |C|, we obtain that C is preprojective and thus
Ext1(C,H1) = 0. Applying the functor Hom(−,H1), we obtain

0→Hom(C,H1)
Hom(π,H1)−→ Hom(X, H1)−→Hom(K, H1)−→Ext1(C,H1) = 0

Thus we get Hom(K, H1) = 0. Therefore K = 0 and X is cogenerated by H1, and µ(X) < µ(H1).
This is a contradiction.

Remark. (1) Note that there may exist infinitely many exceptional regular take-off modules.
See Ã2, for details we refer to [12],[13].
(2) The last statement in the above theorem implies that the homogeneous modules over tame
hereditary algebras are always central modules.
(3) A length category is said to be of infinite type if there are, up to isomorphism, infinitely many
indecomposable objects. Ringel showed that any cogeneration closed length category which is of infi-
nite type contains a minimal infinite cogeneration closed subcategory ([16]). Thus the preprojective
component of a tame hereditary (concealed) algebras is a minimal cogeneration closed subcategory.
And he shows that any infinite cogeneration closed subcategory of the module category of a tame
hereditary (concealed) algebra always contains all preprojective modules. This yields an alternative
proof of the theorem. But our proof here is direct and use only basic representation theory methods.

Corollary 4.5. Let Λ = kQ be a tame hereditary algebra and |δ| =
∑

j δj where δ is the minimal
radical vector. Let H1 be a homogeneous simple module. Then for each i ≥ 2, the homogeneous
module Hi contains, up to isomorphism, Hi−1 as the unique GR submodule. Therefore, µ(Hi) =
µ(H1) ∪ {2|δ|, 3|δ|, · · · , i|δ|}.

Proof. Note that a GR submodule of Hi with i ≥ 2 is either Hi−1 or a preprojective module. Then
statement (3) in Theorem 4.4 implies the conclusion.

Corollary 4.5 implies that the homogeneous modules behave very well according to Gabriel-Roiter
inclusions, i.e. the GR submodule of a homogeneous module (not regular simple) is always given by
an irreducible monomorphism. Next we will see a stronger consequence which claims that we can
not insert any measure between those of a GR inclusion of homogeneous modules.

Theorem 4.6. Let Λ = kQ be a tame hereditary algebra and H1→H2→H3→· · · be a sectional path
of irreducible monomorphisms starting with a homogeneous regular simple module H1. Then µ(Hi)
is a direct successor of µ(Hi−1) for all i ≥ 2.
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Before we present the proof of the theorem, we first show some interesting lemmas which will be
used in the proof of Theorem 4.6.

Lemma 4.7. Let Λ = kQ be a tame hereditary algebra. Assume that X ∈ ind I \ T is an indecom-
posable module and Y /∈ I is a GR submodule of X with Y = Y1→Y2→· · ·→Yn→· · · a sequence of
irreducible monomorphisms. Then µ(X) > µ(Yi) for all i.

Proof. If Y is preprojective, then all Yi’s are preprojective and µ(X) > µ(Yi) for all i since indP ⊂ T
and X /∈ T . Now we assume that Y is a regular module. Then all Yi’s are regular modules and
the sectional path of irreducible monomorphisms starting with Y is unique. Since Y1 = Y is a GR
submodule of X, there is an epimorphism from Y2 to X (Proposition 3.3). It follows that |Yi| > |X|
for all i ≥ 2. If Y1→Y2 is a GR inclusion, then µ(Y1) < µ(X) < µ(Y2) implies |X| > |Y2| which
is a contradiction. We thus have µ(X) > µ(Y2). If Y1 is not a GR submodule of Y2 (By Corollary
4.5, this only happens when Y is an exceptional regular module), then a GR submodule T of Y2 is
preprojective. Therefore, µ(T ) < µ(X) since X /∈ T . If µ(X) < µ(Y2), then |X| > |Y2|, again a
contradiction. Continuing the induction steps, we get µ(X) > µ(Yi) for all i.

Lemma 4.8. Let Λ = kQ be a tame hereditary algebra. Assume X1→· · ·→Xr→· · · is a sectional
path with X1 an exceptional regular simple module and dim Xr = δ.
(1) For any j ≤ r, if µ(Xj) < µ(H1), then Xj ∈ T ; if µ(Xj) > µ(H1), then µ(Xj) > µ(Hi) for all i.
(2) If µ(Xr) ≥ µ(H1), then µ(Xj) > µ(Hi) for all j > r, i ≥ 1. In this case, Xr→Xr+1→Xr+2→· · ·
is a chain of GR inclusions.
(3) If µ(Xr) < µ(H1), then µ(Xj) < µ(H1) for all j ≥ 1.

Proof. For the proof of (1), we assume that Y is a GR submodule of H1, then Y lies in indP. Suppose
µ(Xj) < µ(H1) with j ≤ r. If µ(Y ) < µ(Xj) < µ(H1), then |Xj | > |H1|. This contradiction shows
µ(Xj) ≤ µ(Y ). In particular, Xj ∈ T since Y ∈ P ⊂ T . If µ(H1) < µ(Xj) < µ(Hs) for some s > 1,
then µ(Xj) starts with µ(H1). It follows that |Xj | > |H1|, again a contradiction since j ≤ r.
For statement (2), we assume that µ(Xr) ≥ µ(H1). Since |Xr+1| < |Xr|+ |δ| = 2|δ|, we have

µ(Xr+1) ≥ µ(Xr) ∪ {|Xr+1|} > µ(Xr) ∪ {2|δ|, · · · , i|δ|} ≥ µ(H1) ∪ {2|δ|, · · · , i|δ|} = µ(Hi)

Therefore, µ(Xj) > µ(Xr+1) > µ(Hi) for all j > r + 1 and i ≥ 1.
Finally, we prove (3) by showing µ(Xr+1) < µ(H1). Then using the same argument, we may show
that µ(Xj) < µ(H1) for all j. If Xr is a GR submodule of Xr+1 and µ(Xr+1) > µ(H1), we have
|H1| > |Xr+1| which contradicts |Xr+1| > |Xr| = |H1|. Thus, µ(Xr+1) < µ(H1). If Xr is not a GR
submodule of Xr+1, we choose a GR submodule T of Xr+1 which will be a preprojective module.
Thus, we have µ(Xr+1) = µ(T ) ∪ {|Xr+1|} < µ(H1) since µ(T ) < µ(H1) and |Xr+1| > |H1|.

Lemma 4.9. Let Λ = kQ be a tame hereditary algebra and H1→H2→· · · be the sectional path
of irreducible monomorphisms with H1 a homogeneous regular simple module. If X ∈ ind I with
µ(X) > µ(H1), then µ(X) > µ(Hi) for all i.

Proof. We assume for a contradiction that µ(X) < µ(Hj) for some j. Since there is no indecom-
posable preinjective module with length s|δ| for all natural number s, there is an index i such that
µ(Hi) < µ(X) < µ(Hi+1). Since Hi is a GR submodule of Hi+1, we obtain that |X| > |Hi+1|.
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Assume T is a GR submodule of X. If µ(T ) < µ(Hi) < µ(X), then |Hi| > |X| since T is
a GR submodule of X. This contradicts |X| > |Hi+1| > |Hi|. Thus µ(Hi) ≤ µ(T ) < µ(X) <

µ(Hi+1) holds and T is not preprojective. Furthermore, T can not be a homogeneous module, since
otherwise, from µ(Hi) ≤ µ(T ) < µ(X) < µ(Hi+1) we deduce that µ(T ) = µ(Hi) and, by Lemma
4.7, µ(X) > µ(Ht) for all t ≥ 0 which contradicts µ(X) < µ(Hi+1). Thus T is either an exceptional
regular module or a preinjective module.

If T is an exceptional regular module, then µ(Hi) ≤ µ(T ) < µ(X) < µ(Hi+1) implies µ(T )
starts with µ(Hi) and thus starts with µ(H1). Therefore, T has a (regular) submodule Y with
µ(Y ) = µ(H1). It follows that there is a sectional path of irreducible monomorphisms

Y1→Y2→· · ·→Yr = Y→· · ·→Yt = T→Yt+1→· · ·

where Y1 is an exceptional regular simple module, r is the rank of the exceptional tube and t ≥ r.
Then Lemma 4.8 shows µ(Yt+1) > µ(Hs) for all s and Lemma 4.7 shows µ(X) > µ(Yt+1). This
contradicts µ(X) < µ(Hi+1).

If T is a preinjective module, then µ(Hi) < µ(T ) < µ(X) < µ(Hi+1) holds. Since |T | < |X|, we
may use induction to obtain a contradiction.

As upshot, we have µ(X) > µ(Hi) for all i.

Proof of Theorem 4.6. Assume that X is an indecomposable Λ-module with µ(H1) ≤ µ(Hi) <

µ(X) < µ(Hi+1). Then we may assume X /∈ I ∪ P by Theorem 4.4 and Lemma 4.9. It follows
that X is an exceptional regular module and is of the form X = E[s] where E is the regular simple
module on a tube of rank r. Now the theorem is a direct consequence of Lemma 4.8.

5 Orthogonal exceptional pairs for type Ãn,n≥2 and D̃n

In this section, we shall give some interesting phenomena for tame hereditary algebra Λ of type
Ãn,n≥2 or D̃n.

Let Λ be a finite dimensional k-algebra. An indecomposable Λ-module X is exceptional if
End(X) = k and Exti(X, X) = 0 for all i > 0. Two modules X, Y are orthogonal if Hom(X, Y ) =
Hom(Y, X) = 0. An orthogonal exceptional pair to an indecomposable module M is a pair of
orthogonal exceptional modules (Y, X) such that there is a short exact sequence 0→Xu→M→Y v→0
with Ext1(X, Y ) = 0. Schofield’s Theorem ([11], [17]) tells us that if Λ is hereditary and M is an
exceptional Λ-module, then there exist orthogonal exceptional pairs to M . But there does not
yet exist a convenient procedure to determine the possible orthogonal exceptional pairs, when an
exceptional module is given. In [4], we have shown that by taking GR submodules, we can construct
orthogonal exceptional pairs for each indecomposable module over a representation-finite hereditary
algebra. This was generalized to representation-directed algebra ([14]).

Our next proposition shows that for indecomposable preprojective modules over tame heredi-
tary algebras of type Ãn,n≥2 or D̃n, we can construct orthogonal exceptional pairs by taking GR
submodules.

Proposition 5.1. Let Λ = kQ be a tame hereditary of type Ãn,n≥2, or type D̃n and M be a non-
simple indecomposable preprojective Λ-module. Then, for each GR submodule T of M , (M/T, T ) is
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an orthogonal exceptional pair to M .

Proof. We first show that if T is a GR submodule of an indecomposable preprojective M , then
dim Hom(T,M) = 1.

We suppose that Λ is of type Ãn with n ≥ 2. In this case, there are no multiple edges in
the Aulsander-Reiten quiver ΓΛ. Note that any map between preprojective modules is a sum of
compositions of irreducible maps, i.e. a sum of paths in ΓΛ. Recall that the GR inclusions of
preprojective modules are irreducible maps since all irreducible maps in preprojective component
are monomorphisms. If dim Hom(T,M) ≥ 2, then there exist another path T→· · ·→N→M of
irreducible maps. But this implies there is a monomorphism from T to N . This contradiction shows
dim Hom(T,M) = 1. Note that any indecomposable preprojective module has,up to isomorphism,
at most 2 GR submodules.

Now we consider D̃n case. We assume that M is an indecomposable preprojective Λ-module with
defect −2. We show that in this case any irreducible map to M is injective. Thus any GR submodule
of M is given by irreducible maps. Therefore M has at most 4 GR submodules. (Note that 4 only

occurs when Λ is of type D̃4). Assume that X
f→ M is an irreducible map. If δ(X) = −1, then f

is a monomorphism. Assume δ(X) = −2 and f is an epimorphism. Then from the exact sequence
0→Ker f→X→M→0 we obtain δ(Ker f) = δ(X) − δ(M) = −2 − (−2) = 0. Thus, Ker f = 0 and
f is a monomorphism. Therefore, all irreducible maps to an indecomposable preprojective module
of defect −2 are monomorphisms. Note that in this case dim Hom(T,M) = 1 and M/T is either a
regular simple module or a preprojective module with defect −1.

Now we assume that M is an indecomposable module with defect −1. Consider the following
full subquiver of the preprojective component.

X1

!!DDD
D

U1

=={{{{
//

!!CCC
C Y // X2

##HHH
H

U2

==zzzz

!!CCC
C X3

JJJ

U3

;;wwww

G
G Xr−2

%%JJJJ

Ur−2

::tttt

$$JJJ
J

Xr−1

##GGG
G

Ur−1

99tttt
//

%%KKK
KK

Z // Xr

!!B
BB

B

Ur

;;vvvv
M

First note that if X1 (or Y, Z) is nonzero, then the unique map from X1 (or Y, Z) to M is a
monomorphism since it has defect −1.

If (→M) is complete, then X1, Y and Z are all non-zero. If T is a GR submodule of M and no
sectional path goes from T to M , then the canonical inclusion factors through X1 ⊕ Y ⊕ Z. Thus
T is isomorphic to one of these summands by the Main Property. In particular, up to isomorphism,
M has at most three GR submodules and for each GR submodule T , we have dim Hom(T,M) = 1
and M/T is regular simple module. If (→M) is not complete, then X1, (or Y , Z) is zero. In case Z

12



is zero, we have Xr is projective. Then a GR submodule T of M is projective and on the sectional
path X1(Y )→X2→· · ·→Xr. Thus dim Hom(T,M) = 1. Now assume Z 6= 0, but one of X1 and
Y , without loss of generality say X1, is zero. Assume T is a GR submodule of M . If T is not on
a sectional path to M , then the canonical inclusion factors through Z ⊕ Y . Thus, T ∼= Z or Y , a
contradiction. It follows that any GR submodule of M is on a sectional path to M . In particular,
dim Hom(T,M) = 1 for any GR submodule T of M . Note that in each case, M has at most 3 GR
submodules.

Now we show that for each GR submodule T of M , (M/T, T ) is an orthogonal exceptional pair.
Note that an indecomposable preprojective module is an exceptional module and there is no map
from regular (preinjective) modules to preprojective modules. Applying the functor Hom(T,−) to
the GR sequence 0→T→M→M/T→0, we obtain

0→Hom(T, T )→Hom(T,M)→Hom(T,M/T )→Ext1(T, T ) = 0

It follows Hom(T,M/T ) = 0 since dim Hom(T, T ) = 1 = dim Hom(T,M). Applying the functor
Hom(−,M/T ) to the GR sequence, we obtain an exact sequence

0 = Hom(T,M/T )→Ext1(M/T, M/T )→Ext1(M,M/T ).

Then last term vanishes since there is a path from M to M/T in modΛ and M is directing. Therefore,
we have Ext1(M/T, M/T ) = 0. This means M/T is an exceptional module, and (M/T, T ) is an
orthogonal exceptional pair to M . We should note that M/T is not a homogeneous module.

We call a GR inclusion a preprojective pair if the modules involved are both preprojective.
The corresponding GR factor of a preprojective pair is called a GR factor of preprojective pair.
The following is an immediate corollary of the proof of the above proposition.

Corollary 5.2. Let Λ be a tame hereditary algebra of type Ãn,n≥2 or D̃n.
(1) There are only finitely many preinjective GR factors of preprojective pairs.
(2) Regular GR factors of preprojective pairs are exceptional.

Proof. For Ãn case, all GR factors of preprojective pairs are regular modules. In the proof of
proposition 5.1, we have seen that, for D̃n type, A GR factor of a preprojective pair is preinjective if
and only if δ(M) = −1 and δ(T ) = −2. From the picture in the proof of the proposition, this only
occurs when there is a monomorphism from Xi to M for some 2 ≤ i ≤ r. But this can not happen
if we take M = τ−tP for some large enough natural number t. Thus, we have only finitely many
choices of such M . This shows (1).

(2) is just the last sentence in the above proof of the theorem.

Acknowledgments. I am grateful to the referee for spotting misprints and inaccuracies.
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