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Abstract

The scaling of technology and the diminishing return of com-
plicated uniprocessors have driven the industry towards multi-
core processors. While multithreaded applications can naturally
leverage the enhanced throughput of multi-core processors, a large
number of important applications are single-threaded, which can-
not automatically harness the potential of multi-core processors.
In this paper, we propose a compiler-driven heterogeneous multi-
core architecture, consisting of tightly-integrated VLIW (Very Long
Instruction Word) and superscalar processors on a single chip, to
automatically boost the performance of single-threaded applica-
tions without compromising the capability to support multithreaded
programs. In the proposed multi-core architecture, while the high-
performance VLIW core is used to run code segments with high
instruction-level parallelism (ILP) extracted by the compiler; the
superscalar core can be exploited to deal with the runtime events
that are typically difficult for the VLIW core to handle, such as L2
cache misses. Our initial experimental results by running the pre-
execution thread on the superscalar core to mitigate the L2 cache
misses of the main thread on the VLIW core indicate that the pro-
posed VLIW/superscalar multi-core processor can automatically
improve the performance of single-threaded general-purpose ap-
plications by up to 40.8%.

1. Introduction

With the diminishing return of complex uniprocessors, com-
puter industry is rapidly moving towards single-chip multi-core
processors or chip multiprocessors (CMP). These multi-core pro-
cessors are typically built by replicating two or more independent
microprocessors (cores) onto a single chip, which are also called
homogeneous multi-core processors in this paper. The major ben-
efits of homogeneous CMPs include reduced design complexity,
reusability, and high throughput. While these multi-core proces-
sors can naturally improve the throughput for multi-programmed
and multithreaded code; the latency of a single-threaded program
(or each thread of multithreaded programs) is not changed. Un-
fortunately, many important applications are written in sequential
programming languages, such as C or C++, which generally as-

sume a single thread execution model. Therefore, these single-
threaded applications cannot benefit directly from these CMPs.
Therefore, it is a necessity to develop techniques for multi-core
processors to reduce the latency of single-threaded applications
while maintaining the advantage of providing higher throughput
for multithreaded software.

Single-threaded applications can benefit from CMPs if the com-
piler can automatically parallelize those applications so that mul-
tiple tasks can run simultaneously on different cores of CMPs.
However, decades of research in parallel compilation has only
yielded limited success [12]. While scientific applications with
regular data accesses and predictable control flow can be success-
fully parallelized [5], compiler-based parallelization of general-
purpose programs with irregular data access patterns and less-
predictable control flow has been much less effective [6]. Re-
searchers then turned to investigate speculative techniques to ex-
tract parallelism more aggressively [7, 8, 9, 10]. Nevertheless,
these techniques generally require significant hardware support
to cope with mis-speculations, which can increase the hardware
complexity of CMPs substantially. Moreover, the success of these
speculative techniques is highly dependent on the aggressiveness
and the accuracy of speculation. While conservative speculative
techniques typically have very limited capability to increase per-
formance beyond what the non-speculative techniques can achieve;
too aggressive speculation may lead to excessive mis-speculations,
which will not only compromise performance, but also waste en-
ergy.

Another approach to achieving both high throughput and low
latency for CMPs is to use the single-ISA heterogeneous multi-
core processors, proposed by Kumar et al. [1]. This single-ISA
heterogeneous multi-core architecture is composed of cores of vary-
ing sizes, performance and complexity, but with the same ISA. In
this architecture, the single-threaded programs can exploit pow-
erful cores (i.e., complex superscalar processors) for achieving
low latency without re-writing or re-compiling the programs. On
the other hand, the multi-programmed or multithreaded applica-
tions can be hosted on many simple cores for higher through-
put. However, to attain the single-threaded performance that is
scalable and comparable to the performance of the state-of-the-art
uniprocessors, the most advanced (and the most complex) unipro-
cessor must be incorporated into the multi-core die. Therefore,
while the single-ISA heterogeneous multi-core design can pro-
vide a near-term solution for balancing latency and throughput,
we believe that in the long run, the single-threaded performance of
CMPs cannot solely rely on the existence and integration of very
powerful and scalable uniprocessors. Instead, our insight is that
the complexity of the complicated single-core or multi-core hard-
ware should be mostly or partly shifted to the compiler in order to
improve both single-threaded and multithreaded performance of
multi-core computing without having to fundamentally re-writing
the applications.
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In this paper, we propose a compiler-friendly multi-ISA het-
erogeneous multi-core architecture (also called the VLIW/superscalar
heterogeneous multi-core architecture, hybrid multi-core proces-
sor, hybrid multiprocessor, hybrid architecture, or heterogeneous-
ISA multi-core architecture in this paper) to enable the compiler to
play a more important role to enhance both the single-threaded and
multithreaded performance for multi-core applications. In con-
trast to single-ISA heterogeneous multi-core processors [1] that
consists of cores with different microarchitecture but the same
architecture, the proposed hybrid multi-core architecture allows
different cores to have not only varying microarchitectures, but
also different architectures (i.e., VLIW and superscalar cores) in
order to achieve the best design tradeoffs between performance
and hardware/software complexity. The proposed hybrid multi-
core architecture can leverage the advanced compiler optimiza-
tions for VLIW processors, while complementing the disadvan-
tages of statically-scheduled VLIW core(s) with the dynamic ca-
pability of superscalar core(s) to automatically boost the perfor-
mance of single-threaded applications without compromising the
flexibility to benefit multithreaded programs. In addition to the
prospective performance benefits, the hybrid architecture can also
exploit the heterogeneous ISAs to potentially reduce energy dissi-
pation by maximizing the utilization of the energy-efficient VLIW
core(s). Moreover, with effective compiler support (also called
hybrid compiler in this paper) and the reuse of existing VLIW
and superscalar design, the proposed hybrid multi-core architec-
ture does not increase the hardware complexity significantly or
compromise the programmability.

The rest of this paper is organized as follows. In Section 2,
we introduce the architecture, compiler support, and the potential
major benefits of the proposed VLIW/superscalar heterogeneous
multi-core processors. Section 3 details the idea of running pre-
execution code on the superscalar core for mitigating the L2 cache
misses of the VLIW core through the shared L2 cache, which is
our first step to exploring the feasibility and the performance po-
tential of the proposed hybrid multi-core architecture. Section 4
explains the evaluation methodology and Section 5 gives the ini-
tial experimental results. The related work is discussed in Section
6. Finally, we make conclusions and show future work direction
in Section 7.

2. The VLIW/Superscalar Heterogeneous Multi-
Core Processor

2.1 Background

Superscalar and VLIW are two major types of ILP processors
1. While superscalar processors employ complex hardware to ex-
tract instruction-level parallelism dynamically, VLIW machines
rely on advanced compilers to discover ILP statically by keep-
ing hardware simple. Consequently, superscalar processors can
transparently increase the performance without re-compiling the
programs. Moreover, superscalar processors have the capability
to efficiently deal with runtime events, such as branch direction
and target address, load latencies (cache hit/miss), and memory
dependencies, which are typically less predictable at the compila-
tion time. In contrast, VLIW processors generally cannot issue in-
structions dynamically 2, thus runtime events such as cache misses
will cause the VLIW pipelines to stall.

9 1Explicit Parallel Instruction Computing (EPIC) is regarded
an important evolution of VLIW architecture, which has also ab-
sorbed many of the best ideas of superscalar processors [11].

9 2There have been some research efforts to enhance dynamic
issue in VLIW machines [45, 46]; however, the major disadvantage
of this approach is that it increases the VLIW hardware complexity
and may compromise the clock cycle time if the rescheduling
hardware is on the critical path.

On the other hand, although the superscalar processors have
the advantage of scheduling instructions dynamically, the scope
of the analysis and the degree of ILP extracted at runtime are
typically limited by the size of the hardware instruction window.
Also, to support dynamic scheduling, the hardware complexity
of superscalar processors has become overwhelming, which may
compromise the clock frequency, as well as increase the design
complexity and cost significantly. By comparison, VLIW ma-
chines can shift major hardware complexity to optimizing com-
pilers, which are capable of analyzing larger scopes of instruc-
tions and transforming the programs to potentially extract higher
ILP. More importantly, because the complex control hardware re-
sponsible for operation decomposition is eliminated from the crit-
ical path, the VLIW processors are able to achieve maximum per-
formance by enabling high clock frequency while still exploiting
available instruction-level parallelism in the code [29]. Further-
more, since the VLIW hardware does not need to re-do the work
done by the compiler (e.g., analyzing data dependences, extract-
ing and scheduling independent instructions), VLIW machines
can perform more energy-efficient computing. Because of these
advantages, VLIW architectures have been increasingly used in
high-performance and power-efficient embedded and DSP proces-
sors [24, 25].

While both VLIW and superscalar processors have their strengths
and weaknesses; with the advent of multi-core computing era, it
becomes feasible and attractive to combine their advantages while
avoiding their respective disadvantages for supporting a variety
of workloads that demand both low latency and high throughput.
Additionally, this heterogeneous-ISA multi-core architecture can
potentially explore larger design space (compared to single-ISA
multi-core) to find better tradeoffs between hardware and software
complexity for multi-core computing.

2.2 Architecture

In this section, we present a high-level overview of the hybrid
multi-core architecture, which is composed of both VLIW core(s)
and superscalar core(s). The goal of this hybrid multi-core archi-
tecture is to leverage and balance both the compiler and hardware
techniques to cooperatively and automatically improve the perfor-
mance of single-threaded applications while maintaining the flex-
ibility to support multithreaded programs. While the proposed ar-
chitecture can contain various number of VLIW and superscalar
processors with different complexity, area, performance, as well
as different interconnections; the extensive design space explo-
ration of the proposed multi-core architecture is out of the scope
of this paper. For simplicity, this paper concentrates on studying
a hybrid dual-core processor, which is composed of a VLIW core
and a superscalar core, as depicted in Figure 1. As we can see
from Figure 1, a given single-threaded program will be analyzed
and automatically parallelized by the compiler before running on
the hybrid multi-core (see subsection 2.4 for detail of the com-
piler support). For a dual-core design, two threads will be created.
The thread with high ILP, regular control flow [14] and predictable
load latencies [15] will be passed to the VLIW core, whose execu-
tion plan is statically determined by the compiler and will be en-
forced by the hardware at run time (note that the VLIW core will
employ interlocks to ensure the correctness of execution [11]). In
contrast, the thread with irregular ILP and unpredictable control
flow or memory access patterns, will run on the superscalar core to
take advantage of its dynamic scheduling capability. Additionally,
speculative threads can also be extracted from the single-threaded
applications. These speculative threads will be bound to the super-
scalar core, which is suitable for supporting the speculative state
and the recovery of mis-speculation, with minimum hardware ex-
tension. Each core of the hybrid multi-core architecture has its
own L1 instruction cache and L1 data cache. A bus-based snoop-
ing protocol is used to maintain coherence among data caches. In
our current design, the VLIW core and the superscalar core com-
municate through a shared unified L2 cache for simplicity. In our
future work, we will also consider customizing the interconnec-
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Figure 1. A high-level overview of the
VLIW/superscalar dual-core architecture.

tions, such as adding a small operand transfer buffer between the
VLIW and superscalar cores for finer-grain inter-core communi-
cations at the cost of increased design complexity. Such a more
tightly-coupled hybrid dual-core will enable the hybrid compiler
to partition threads in a finer granularity to better balance work-
loads for achieving even higher performance (see subsection 2.4
for detail).

2.3 Potential Benefits

The proposed hybrid multi-core architecture allows the VLIW
processor and the superscalar processor to complement each other
for combining their advantages while avoiding their disadvantages.
Qualitatively speaking, the potential benefits include the follow-
ing:

1. Due to the overwhelming complexity of superscalar design
and the relatively narrow scope of runtime analysis, the clock
frequency and the degree of parallelism supported by the
superscalar microprocessors are fundamentally limited. In
the proposed hybrid multi-core architecture, however, the
VLIW core can operate at very aggressive clock rates and
provide a large number of functional units, which can be
used to support threads of higher ILP for better single-threaded
performance, with the assistance of the compiler.

2. Due to the existence of the high-performance VLIW core in
the hybrid architecture, the superscalar core does not need to
be very wide or complicated ,as compared to the largest core
of the single-ISA heterogeneous multi-core architecture [1],
which can improve the energy efficiency of the superscalar
core.

3. Compared with very wide VLIW processors or multi-clustered
VLIW processors, the hybrid multi-core architecture can
exploit the superscalar core to better cope with the run-
time events or speculative operations. This will remove the
burden of VLIW compilers to conservatively analyzing and
transforming the programs, thus enabling more aggressive
compiler optimizations for achieving higher performance.
For instance, if the superscalar core can perfectly prefetch

the data into the shared L2 cache for applications running
on the VLIW core, the VLIW compiler can schedule oper-
ations on the load dependence chain earlier without having
to attempt to statically tolerate the possible L2 misses.

4. Compared with homogeneous or single-ISA heterogeneous
multi-core processors, typically consisting of pure super-
scalar cores, the proposed hybrid multi-core architecture
is more friendly to compilers, making it possible to lever-
age the compiler technology to extract both non-speculative
and speculative threads, as well as multi-grain parallelism
to achieve higher single-threaded performance without in-
creasing the hardware complexity substantially. Compared
with hardware-centric approach, the compiler can perform
large-scope analysis (i.e., procedures or programs), trans-
form the code and data layout to extract more parallelism
at different granularities. In addition, the proposed hybrid
architecture can also exploit the superscalar cores to handle
dynamic events effectively.

5. The hybrid multi-core architecture can also be potentially
more energy efficient than the homogeneous or single-ISA
heterogeneous multi-core architectures; since the work done
by the VLIW compiler does not need to be repeated by
the VLIW hardware. By comparison, the superscalar core
has to perform complicated runtime analysis by hardware
for achieving comparable performance, which is energy-
hungry.

6. The proposed hybrid architecture can also be potentially
very useful for high-performance embedded applications.
In general, VLIW processors are much easier to scale and
customize than superscalars, in that they consist of regular
functional units and register bank components, rather than
the more ad hoc and difficult-to-design superscalar control
units [25]. Therefore, one can exploit domain or applica-
tion specific knowledge to tailor the VLIW core of a hybrid
multi-core processor to maximize the performance per watt.

However, compared with homogeneous or single-ISA hetero-
geneous multi-core processors, the hybrid architecture consists
of processors with different ISAs, which will increase the com-
piler complexity and demand ISA-specific code generations and
optimizations in the backend. Also, another major advantage of
single-ISA heterogeneous multi-core architecture [1] is that it can
enhance single-threaded performance transparently without recom-
pilation, which is indeed required in the hybrid architecture. Nev-
ertheless, we argue that increasing the compiler complexity is the
penalty we need to pay for decreasing the complexity of the multi-
core hardware, unless there are breakthroughs in new multi-core
programming paradigms so that programmers can develop mul-
tithreaded applications with reasonable efforts. Also, with the
prevalence of multi-core processor based computing platforms,
the compilation time may become a less important concern.

2.4 The Proposed Compiler Support

The key to the success of the proposed hybrid multi-core ar-
chitecture is the design and implementation of the hybrid com-
piler that can effectively partition the single-threaded programs
and extract both coarse-grain and fine-grain parallelism. Com-
pared to the single-ISA heterogeneous multi-core architecture [1]
that relies on complex superscalar core to reduce latency, where
compilers only play a limited role, the hybrid architecture is more
friendly to compilers. At the thread-level parallelism (TLP), the
hybrid compiler is aware of the execution bandwidths and fre-
quencies of both the VLIW and superscalar cores, as well as the
inter-core communication latency, based on which the compiler
can extract cooperative threads, either non-speculative or specu-
lative, to harness the full potential of multi-core processors. At
the instruction-level parallelism, while the microarchitecture of
the superscalar core is invisible to the compiler, the architectural
details of the VLIW core, such as the number of functional units,
the latencies of operations, etc., are exposed to the compiler for
exploring high ILP.
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The compiler-friendliness of the hybrid architecture allows the
hybrid compiler to potentially leverage decades of research ef-
forts in VLIW/EPIC compilers, such as IMPACT [33], trimaran
[26] and ORC compiler [47], as well as recent progress in com-
piler support for thread partitioning [2, 34]. More specifically, the
proposed hybrid multi-core architecture enables the construction
of powerful compilers to boost single-threaded performance auto-
matically due to the following factors:

1. Both non-speculative and speculative threads are supported
by the hybrid architecture. While the non-speculative threads
can harness both VLIW and superscalar cores (where the
VLIW core will play a major role), the speculative threads
can be naturally supported by the superscalar core, which
can be used as helper threads (e.g., pre-execution, value
prediction, etc.) [21] to boost the performance of the main
thread.

2. In addition to thread-level parallelism, the hybrid compiler
can take advantage of the high-performance VLIW core to
perform aggressive ILP optimizations, such as software pipelin-
ing [39], trace [40], superblock [41] or hyperblock [42] schedul-
ing to exploit high instruction level parallelism for better
performance. With the support of helper threads on the su-
perscalar core that is tightly integrated with the VLIW core,
these compiler optimizations can be potentially carried out
more aggressively for even higher performance.

3. The compiler, in conjunction with the operating system, can
exploit the heterogeneity of the proposed hybrid multi-core
architecture to improve the performance per watt by match-
ing threads with various properties to different cores that
can execute those threads most energy-efficiently.

More specifically, the backend of the hybrid compiler needs
to incorporate new optimization phases to partition programs into
profitable threads, either speculative or non-speculative, in order
to harness the potential of the hybrid multi-core architecture. We
plan to develop these hybrid multi-core specific optimizations in
two major phases as listed below:

Phase 1: pre-execution thread extraction. Since the memory
wall problem is one of the most significant obstacles to single-
threaded performance, our first optimization is to extract the pre-
execution thread to run on the superscalar core for minimizing the
L2 cache stalls of the VLIW core, which is discussed in detail in
Section 3.

Phase 2: non-speculative thread partitioning. While phase 1
focuses on exploiting speculative threads or helper threads to boost
the performance of the main thread, the second phase will cen-
ter on extracting non-speculative multi-grain parallelism for fur-
ther performance improvement. The hybrid backend compiler can
perform control-flow and data-flow analyses [13] to partition the
source code into two parts: predictable code regions [14, 15] and
unpredictable code regions, where each region can be a set of pro-
cedures, loops or basic blocks [16]. The predictable code regions
comprise the code whose runtime branch behavior [14] and load
latencies [15] are highly predictable by using either static analy-
sis or profiling. These predictable code regions will then be exe-
cuted on the high-performance VLIW core. In contrast, the unpre-
dictable code can be better handled by the superscalar core. After
this initial partitioning, the backend compiler then schedules the
instructions in each region and estimates the execution time by
exploiting the profiling information. Based on the synchroniza-
tion cost and the estimated execution latency, the hybrid compiler
then conducts profitability analysis for the initial partition. If the
workload is not well balanced between the VLIW and superscalar
cores, the initial regions, either predictable or unpredictable, will
be re-partitioned into sub-regions with finer granularities, which
will then be re-scheduled to the other core. At the same time, the
synchronization instructions will be inserted into the sub-regions
to guarantee the correctness. This re-partitioning step continues

until no further benefit can be obtained. Next, for each region or
sub-region (micro-thread) assigned to a specific core, the compiler
will carry out instruction selection specifically for the target core,
and perform ILP optimizations [13], such as instruction schedul-
ing and register allocation, to extract the maximum instruction-
level parallelism supported by the underlying cores. For super-
scalar core(s) in particular, the compiler will focus on placing the
remotely independent instructions physically closer so that they
can be executed in parallel by the superscalar processors at run-
time. When the pre-execution optimization is enabled, the com-
piler also needs to merge the pre-execution instructions and the
non-speculative ILP instructions into a single thread for the super-
scalar core. Due to the significant impact of L2 stalls on the perfor-
mance, the priority will be given to scheduling the pre-execution
instructions as early as possible to minimize the L2 miss stalls.

Currently, we have reached an implementation of phase 1.

3. Initial Quantitative Study: Running the Pre-
execution Thread on the Superscalar Core
to Mitigate L2 Misses for the VLIW Core

The extensive exploration of the hybrid multi-core architec-
tural design space and the hybrid compiler optimization space is
out of the scope of this paper. As the first step, this paper attempts
to investigate the potential of the hybrid dual-core architecture in
a timely fashion by running the compiler-extracted pre-execution
thread on the superscalar core in order to mitigate the L2 cache
misses of the VLIW core. However, it should be noted that the
performance potential of the proposed hybrid multi-core architec-
ture is not limited to the initial work conducted in this paper on
exploiting pre-execution thread only.

Pre-execution is not a new idea. Researchers have studied the
use of pre-execution thread (i.e., helper thread) to improve the per-
formance of the main thread on multithreaded processors [17, 18,
19], as well as on homogeneous chip multiprocessors [20, 21]. By
comparison, this work makes use of the superscalar core to run
the pre-execution thread for minimizing the L2 miss stalls for the
VLIW core, within the framework of the dual multi-core architec-
ture. It should be noted that our preliminary performance evalua-
tion at this stage aims at providing some insights on the feasibility
and the performance potential of the proposed hybrid architecture
in a timely fashion, rather than exploring superior pre-execution
mechanisms than prior work [17, 18, 19].

In general, VLIW processors have very limited capability to
tolerate caches misses, especially for L2 cache misses. Tradi-
tionally, VLIW compilers have to assume that all the load oper-
ations will hit in the L1 cache and schedule load-dependent in-
structions accordingly [15]. However, if the load operations ac-
tually miss in the L1 or even the L2 cache at runtime, the VLIW
instruction pipelines have to be stalled until loads return to guar-
antee the correctness; although there may be some other load-
independent instructions that can be executed during the load stall
cycles. Alternatively, VLIW compilers can assume that all loads
will miss in the runtime; however, this scheme is not feasible for
most applications unless considerable instruction-level parallelism
can be extracted from the programs. Recent research effort in-
dicates that load latencies are predictable for many applications
based on cache profiling [15]. Particularly, a small number of load
operations are responsible for the majority of data cache misses,
which are called delinquent loads. Based on this observation,
Abraham et al. proposed to schedule load-dependent operations
based on the predicted load latencies [15], which is also used in
the programmatic cache hierarchy management of EPIC architec-
tures [11]. While this load-latency-aware scheduling can achieve
better performance than the all-hit scheduling, it may be less suc-
cessful for long load latencies, such as L2 cache misses. The rea-
son is that it requires huge ILP available that is independent on
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the loads, which are very likely on the critical path. Prefetch-
ing can somehow mitigate the cache miss problem; however, data
prefetching is generally less effective for programs with complex
array subscripts and pointer-chasing code. With a tightly-coupled
superscalar core available in the hybrid dual-core processor, pre-
execution can be employed to minimize the L2 cache stalls for
the VLIW core. As a result, the VLIW compiler can schedule in-
structions more aggressively for maximizing performance, with-
out worrying too much about the runtime L2 cache misses. In ad-
dition, this paper studies an approach to combine data prefetching
to minimize L1 cache misses and the pre-execution to decrease
L2 cache misses, which can further improve the single-threaded
performance.

In this paper, we employ cache profiling to identify delinquent
loads. More specifically, we perform simulation to record the
number of stall cycles caused by each static load instruction in the
application, and identify the top L2-cache-missing loads whose
load stall cycles are larger than a pre-set threshold (also called
delinquent loads threshold in this paper). By default, the thresh-
old is set to be 10%, implying that only load operations whose
accumulated stall cycles is more than 10% of the total stall cycles
of the application will be identified as delinquent loads. It should
be noted that this threshold is implemented as a parameter in our
simulator and can be varied for studying sensitivity. Since our
cache profiling experiments have only returned a few delinquent
loads (which is in accord with previous work [15]), we manually
extract the load dependence chains (i.e., the program slice leading
to the memory address calculation) for those delinquent loads by
examining the program dependence graph. We then insert those
instructions into the pre-execution thread, which will be executed
on the superscalar core. In the pre-execution thread, all load op-
erations are converted into non-faulting loads to avoid exceptions.
Moreover, all store operations in the pre-execution thread are re-
moved to ensure the semantic correctness of the main thread on
the VLIW core.

4. Evaluation Methodology

In order to test the idea of cooperative exploitation of pre-
execution thread by heterogeneous cores for improving single-
threaded performance, we try to leverage existing VLIW and su-
perscalar architectures and simulators; although the proposed hy-
brid multi-core architecture is not limited to the initial simulation
framework studied in this paper. More specifically, in our simula-
tion framework, the VLIW core is based on the HPL-PD 1.1 archi-
tecture [22], and the superscalar core is similar to the Alpha 21264
processor [23]. The configurations of these two cores are given in
Table 1. The hybrid compiler is built upon the Trimaran compiler
framework [26], which provides an optimizing backend compiler
(i.e., elcor), an extensible intermediate representation (IR), and a
machine description facility to target different architectures. We
develop a cycle-accurate model of the hybrid dual-core, based on
the integration of the VLIW simulator from Trimaran [26] and the
superscalar simulator – simplescalar [27]. To evaluate the per-
formance potential of the proposed hybrid dual-core architecture,
we select seven single-threaded applications (that can be success-
fully compiled and run on our experimental framework at present)
from SPEC 2000 INT and SPEC 92 FP benchmark suites [28].
The salient behavior of those benchmarks are shown in Table 2.

4.1 Schemes Under Consideration

In our experiments, we study the performance of the following
schemes:

1. Base: This is the scheme that only uses the default VLIW
processor (equivalent to the VLIW core of the hybrid dual-
core processor) to run applications. The default configura-
tion of this VLIW processor is specified in Table 1. It should

Parameter Dual-core Value
Core VLIW Superscalar

Datapath 4IFUs, 2FPUs, 2Ld/Sts, 1BrU 4 Issue
64 registers 64 registers, 80-RUU, 40-LSQ

L1 I-cache 32K, 4-way, 64 byte block 32KB, 1-way, 32 byte blocks
1 cycle latency 1 cycle latency

L1 D-cache 32K, 4-way, 32 byte block 32KB, 1-way, 32 byte blocks
1 cycle latency 1 cycle latency

L2 cache 1MB, 8-way, 64 byte block
10 cycle latency

Memory 100 cycle latency

Table 1. Configuration parameters of simu-
lated hybrid dual-core processor.

Benchmark Source Static Insts Dynamic Cycles L2 Miss Rate
164.gzip SPECint 2000 10369 2282118441 0.02%
176.gcc SPECint 2000 485692 5438711558 1.20%
181.mcf SPECint 2000 3381 19924360712 4.33%

255.vortex SPECint 2000 173611 16180635686 0.15%
256.bzip2 SPECint 2000 9184 12241634512 0.32%

btrix SPECfp 92 1224 14747502 7.10%
vpenta SPECfp 92 781 44034396 2.78%

Table 2. Salient behavior of selected bench-
marks.

be noted that at this stage, our initial performance evalua-
tion aims at providing some insights on the interactions of
the superscalar and VLIW cores to enhance single-threaded
performance. In our future work (after the implementation
of the hybrid compiler), we will provide quantitative perfor-
mance comparison between the proposed architecture and
the base performance of a VLIW processor, a superscalar
processor, and a single-ISA heterogeneous multi-core pro-
cessor [1] with the same area.

2. Pre-execution (P): This is the scheme of the hybrid
dual-core processor, where the superscalar core is exploited
to run the pre-execution thread for reducing the L2 stalls for
the VLIW core.

3. Pre-execution and Prefetch (PP): This scheme
combines the pre-execution scheme with the data prefetch-
ing on the VLIW core.

It should be noted that when we make sensitivity experi-
ments on the delinquent loads threshold, we use the notation
P-T% or PP-T% to represent the P (Pre-execution) scheme
and the PP (Pre-execution and Prefetch) scheme with dif-
ferent thresholds (T). For instance, P-10% means the Pre-
execution scheme with the delinquent loads threshold set to
be 10% (see subsection 5.3 for more information).

5. Experimental Results

5.1 Performance Results of Pre-execution

Our first experiment investigates the potential performance im-
provement of the pre-execution scheme of the hybrid dual-core, as
compared to that of the base scheme (i.e., a single VLIW proces-
sor). As can be seen from Figure 2, the effect of pre-execution
on the single-threaded performance varies greatly for different ap-
plications. More specifically, running the pre-execution thread on
the superscalar core improves the performance of btrix and
181.mcf by 40.8% and 14.1% respectively, since both bench-
marks suffer from the L2 cache misses. On the other hand, there
are almost no performance benefits for other SPEC 2000 INT
benchmarks, including 164.gzip, 176.gcc, 255.vortex
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Figure 2. Execution cycles of pre-execution
only, and a combination of both pre-
execution and prefetching, which are normal-
ized with respect to the base scheme.

and 256.bzip2, since these benchmarks are not memory-intensive,
and the L2 stalls are not the most severe obstacle for high perfor-
mance. We also notice that while vpenta suffers from a moder-
ate L2 miss rate (i.e., 2.78%), pre-execution does not have much
impact on its performance. The reason is that vpenta only con-
tains 2 delinquent loads, which are responsible for 22.3% of the
total L2 stall cycles of the program. In contrast, btrix has 4
delinquent loads, which are responsible for 80.7% of the overall
stall cycles, making the pre-execution more effective to boost the
performance. Overall, we find that within the hybrid multi-core
architecture, the superscalar core can execute the pre-execution
thread to mitigate the L2 cache misses of the main thread running
on the VLIW core for memory-intensive applications, leading to
the improvement of single-threaded performance for these appli-
cations. Moreover, running the pre-execution thread on the su-
perscalar core can also simplify the VLIW instruction scheduling
performed by the compiler, since the pre-execution thread does
not interfere with the thread running on the VLIW core and thus
will not impact the scheduling.

It should be noted that while pre-execution can reduce the L2
stall cycles for some of the single-threaded applications, this is not
the only optimization that can be performed in the hybrid multi-
core architecture for improving single-threaded performance. Ac-
tually, our experiments indicate that the average utilization ratio
of the superscalar functional units is only 4.2%. Therefore, due to
the under-utilization of the superscalar core, there are still plenty
of opportunities to exploit the superscalar core for further perfor-
mance improvement, which will be quantitatively studied in our
future research work. Moreover, in this work we assume that both
the VLIW core and the superscalar core operate on the same clock
frequency. In our future work, we would like to explore the po-
tential of energy savings by varying the speed of the superscalar
core, as it is currently under-utilized.

5.2 Effect of Prefetching

In the hybrid dual-core architecture, the VLIW core and the
superscalar core share the L2 cache. Therefore, running the pre-
execution thread on the superscalar core will have no effect on
the L1 cache misses of the main thread on the VLIW core. In
this paper, we also study the use of prefetching on the VLIW
core to reduce the L1 cache stalls for the main thread, in addi-
tion to mitigating L2 miss stalls through the pre-execution. We
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Figure 3. Execution cycles of base and pre-
execution for 181.mcf with the L2 miss la-
tency varying from 20 cycles to 50, 100, 150
and 200 cycles.

have examined two different hardware-based prefetching policies,
i.e., “prefetch always” and “prefetch on miss”, both of which are
based on one block lookahead (OBL) approach [30]. We find that
“prefetch always” returns better results on average, which is cho-
sen as our default data prefetching policy. Figure 2 compares
the execution cycles of the hybrid dual-core with pre-execution
only and with a combination of pre-execution and prefetching,
which are normalized with respect to the performance of the base
scheme. As can be seen, prefetching can lead to additional per-
formance enhancements for some benchmarks, such as bzip2,
btrix and vpenta, which suffer from L1 data cache misses.
For the rest of the benchmarks, however, there is very limited addi-
tional performance improvements due to prefetching. On average,
a combination of pre-execution and prefetching can improve the
single-threaded performance from 6.9% (of pre-execution only) to
10%.

5.3 Sensitivity Analysis

Since the pre-execution thread is used to mitigate the L2 stalls,
we make experiments to study the sensitivity of the performance to
different L2 cache latencies. Since many SPEC INT 2000 bench-
marks are not memory-intensive, we select a representative bench-
mark (i.e., 181.mcf) for this study, whose result is shown in Fig-
ure 3. To take into account the increasing gap between the proces-
sor speed and the memory speed, as well as recent proposes of pro-
viding hardware crypto support for tampering resistance and secu-
rity [31, 32], which can have negative impact on the critical path
of memory accesses; we vary the L2 miss latency from 20 cycles,
to 50, 100, 150 and 200 cycles. The performance of pre-execution
with different L2 miss latencies are compared in Figure 3. As we
can see, with the increase of the L2 miss latency, the execution
cycle of 181.mcf increases significantly, indicating significant
performance losses. However, by running the pre-execution thread
on the superscalar core, the performance degradation with larger
L2 miss latencies is reduced dramatically. Therefore, in light of
the increasing memory wall problem, the pre-execution scheme
studied in this paper will be an effective approach to boosting per-
formance for future hybrid multi-core processors.

Another important parameter for pre-execution is the number
of delinquent loads extracted from applications, which is con-
trolled by the delinquent loads threshold. By default, the threshold
is set to be 10%. In other words, only the loads that are responsible
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Figure 4. Execution cycles of pre-execution
(P) and a combination of pre-execution and
prefetching (PP) with the delinquent loads thresh-
old varying from 10% to 5%, which are normal-
ized with respect to those of the default VLIW
processor.

for more than 10% of the overall cache stall cycles will be selected
as delinquent loads. While pre-execution can effectively prefetch
data into the L2 cache to reduce the stall cycles for those delin-
quent loads, other load operations can still suffer from L2 cache
misses. Since our experiments indicate that the utilization of the
superscalar core is very low, we can extract pre-execution threads
more aggressively for a larger number of load operations. Thus,
we lower the delinquent loads threshold to 5%, whose perfor-
mance, as well as that of 10%, are presented in Figure 4. As can be
seen from Figure 4, decreasing the delinquent loads threshold has
little impact on the performance of benchmarks from SPEC INT
2000, as very few additional delinquent loads can be extracted.
Moreover, since the execution time of those benchmarks is very
large, those few additional delinquent loads will only have negli-
gible impact on the overall performance. By comparison, we ob-
serve moderate performance improvements for both the P scheme
and the PP scheme for loop-intensive benchmarks (e.g., btrix
and vpenta). The reason is that 2, 2 and 5 additional delinquent
loads are extracted for btrix and vpenta respectively, when
the delinquent loads threshold is reduced to 5%. Therefore, more
L2 cache stalls can be mitigated for those benchmarks.

6. Related Work

While there have been increasing research efforts on multi-core
processors, most of multi-core processors proposed previously are
either homogeneous [3, 4], or heterogeneous in microarchitecture
but are based on a single-ISA [1, 48]. In contrast, this paper pro-
poses a hybrid multi-core architecture by integrating VLIW pro-
cessor(s) with superscalar processor(s), which have different ar-
chitectures. By leveraging compiler techniques, the proposed ar-
chitecture can potentially make better tradeoffs between perfor-
mance and hardware/software complexity. In addition, since the
hybrid multi-core architecture allows different cores to have vary-
ing ISAs, designers will have the flexibility to select appropriate
ISAs tailored for specific application domains, which is particu-
larly important for embedded applications with power, memory
size and cost constraints.

Researchers have also explored implicit (speculative) multi-
threaded processors, such as multiscalar [35] and trace proces-

sor [36] as well as distributed uniprocessors, such as Grid [37]
and RAW processors [38]. While these architectures can also im-
prove serial performance either by hardware or compiler-based
parallelization, they require fundamentally new hardware design
and execution model. In contrast, the hybrid multi-core can reuse
VLIW and superscalar cores to mitigate hardware complexity.

In the domain of embedded systems, however, there are some
heterogeneous dual-core processors typically consisting of a RISC
processor and a DSP, such as TI OMAP5910 [44] or Philips Nex-
peria [44]. In these processors, the RISC processor is used to or-
chestra commands and control, while the DSP is used for computation-
intensive signal processing tasks. Both these two processors [43,
44], however, are designed for specialized domain, i.e., the mo-
bile multimedia applications. By comparison, this paper proposes
a VLIW/superscalar hybrid multi-core architecture for general-
purpose applications.

Recently, IBM introduced the Cell multiprocessor [49]. The
first-generation Cell processor combines a 64-bit Power-Architecture-
compliant Power processor element (PPE) with eight newly archi-
tected synergistic processor elements (SPEs) through a coherent
on-chip element interconnect bus (EIB). Conceptually, the Cell
processor can be considered as a specific type of hybrid multi-
core processors, since the PPE and SPEs have different instruction
sets. However, the Cell SPEs are geared towards single-precision
SIMD computation, and thus rely on the general-purpose PPE to
perform all the normal operations. In contrast, the hybrid multi-
core architecture consists of general-purpose VLIW and super-
scalar processors, and all the cores on the hybrid multiprocessor
can be either used cooperatively for reducing single-threaded la-
tency or used independently and concurrently to support general-
purpose application for higher throughput. Also, the main objec-
tive of the Cell processor is to provide outstanding performance
on game/multimedia applications; while the hybrid multi-core ar-
chitecture is a more broad architecture aiming at achieving both
high throughput and low latency for general-purpose applications.

7. Concluding Remarks and Future Work

This paper presents the VLIW/superscalar heterogeneous multi-
core architecture, which can combine the advantages of both VLIW
and superscalar processors to improve single-threaded performance
while keeping the flexibility to benefit multithreaded applications.
The proposed architecture is friendly to compilers, which can po-
tentially shift part of the hardware complexity to the compiler to
better exploit thread-level parallelism, either non-speculative or
speculative, as well as instruction-level parallelism for improving
single-threaded performance. In contrast, the single-ISA hetero-
geneous multi-core architecture [1] generally relies on a complex
superscalar core to improve single-threaded performance, where
compiler can only play a limited role while the hardware com-
plexity is overwhelming with diminishing return. In addition to
the prospective performance benefits, the proposed hybrid archi-
tecture can also be potentially more energy-efficient if a large frac-
tion of computation can be performed by the VLIW core, since
the work done by the compiler does not need to be repeated by the
VLIW hardware (as compared to pure superscalar cores).

In this paper, our initial quantitative evaluation of this hybrid
multi-core architecture focuses on investigating the performance
potential of a hybrid dual-core processor by running the pre-execution
thread on the superscalar core to mitigate the L2 stalls for the
VLIW core through the shared L2 cache. Our experimental re-
sults demonstrate that for applications suffering from severe L2
cache misses, pre-execution by the superscalar core is very effec-
tive at reducing the L2 cache stalls of the main thread on the VLIW
core, leading to the improvement of single-threaded performance
by up to 40.8%. These preliminary results also indicate that het-
erogeneous processors with different architectures can work coop-
eratively within a multi-core architecture to boost single-threaded
performance effectively.

ACM SIGARCH Computer Architecture News 147 Vol. 35, No. 1, March 2007



Currently, we are implementing the thread partitioning phase
of the hybrid compiler to better harness the potential of the hybrid
multi-core processors. In our future work, we plan to systemati-
cally explore the architectural design space of the VLIW core(s),
the superscalar core(s) and their interconnections for making bet-
ter tradeoffs for the hybrid multi-core architecture. While this pa-
per concentrates on studying a VLIW/superscalar dual-core, we
also intend to investigate the scalability of hybrid multi-cores with
different number of VLIW and superscalar processors. Moreover,
besides the serial and parallel performance, we will consider other
important design constraints, such as power, temperature, area, to
find the optimal design points for this hybrid multi-core architec-
ture.
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