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Abstract— A spatially distributed set of sources is creating data
that must be delivered to a spatially distributed set of sinks. A
network of wireless nodes is responsible for sensing the data at the
sources, transporting them over a wireless channel, and delivering
them to the sinks. The problem is to find the optimal placement
of nodes, so that a minimum number of them is needed.

The critical assumption is made that the network ismassively
dense, i.e., there are so many sources, sinks, and wireless nodes,
that it does not make sense to discuss in terms of microscopic
parameters, such as their individual placements, but rather in
terms of macroscopic parameters, such as their spatial densities.

Assuming a particular interference-limited, capacity-achieving
physical layer, and specifying that nodes only need to transport
the data (and not to sense them at the sources, or deliver
them at the sinks once their location is reached), the optimal
node placement induces a traffic flow that is identical to the
electrostatic field created if the sources and sinks are replaced
by a corresponding distribution of positive and negative charges.

Assuming a general model for the physical layer, and specifying
that nodes must not only transport the data, but also sense
them at the sources and deliver them at the sinks, the optimal
placement of nodes is given by a scalar nonlinear partial
differential equation found by calculus of variations techniques.

The proposed formulation and derived equations can help in
the design of large wireless sensor networks that are deployed
in the most efficient manner, not only avoiding the formation
of bottlenecks, but also striking the optimal balance between
reducing congestion and having the data packets follow short
routes.

Keywords: Capacity, Electrostatics, Node placement, Physical
layer, Wireless ad hoc networks, Sensor networks.

I. I NTRODUCTION

A. Wireless Sensor Networks

Wireless sensor networks are comprised of sensors that
are equipped with wireless transceivers and so are able to
form a wireless network [3]. The sensors use this network to
coordinate their sensing activities, and so enhance their sensing
capabilities, and also to relay the data they sense to specified
data collection locations, typically referred to as data sinks.

These networks differ from generic wireless ad hoc net-
works in that the traffic is not created by the nodes themselves,
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but rather by the environment in which the nodes exist.
Therefore, for some applications, for example the sensing of
temperatures in a planted area, the data that are sensed in
neighboring sensors are correlated — if the nodes coordinate
with their neighbors and compress the data in a distributed
manner, the total amount of traffic that must be received
by the data collectors will be significantly reduced [4], [5].
Another feature of wireless sensor networks is that, in most
applications, it is expected that sensors will be totally im-
mobile. This can significantly simplify the design of the
routing protocols [6], [7]. On the other hand, it is expected
that the sensors will typically be operating using a non-
renewable battery supply, therefore it is critical that they use
their available energy as efficiently as possible [8], [9], [10].

B. Massively Dense Networks

It is envisioned that, in the future, wireless sensor networks
may consist of a large number of nodes, potentially on the
order of many thousands [3]. At first, it may seem that this can
create insurmountable difficulties in their design and analysis.
However, recent work has shown that the large number of
nodes in a network could actually be a blessing in disguise,
as it can allow researchers to make important simplifying
assumptions.

For example, in [11] the authors investigate the asymptotic
behavior of the capacity of a class of two-dimensional random
networks as the number of nodesn approaches infinity, under
a uniform traffic assumption. The authors present a scheme
that achieveswith high probability (w. h. p.), i.e., with
probability approaching1 as n approaches infinity, a rate
of communication equal toc1(n log n)−

1
2 , where c1 is a

multiplicative constant, from each node to its randomly chosen
destination. The authors also show that, with high probability,
the n nodes cannot send data to their destinations with a
per-node rate of communication equal toc2n

− 1
2 , where c2

is a multiplicative constant. These results are based on a
propagation model under which power decays polynomially
with distance, and a given Signal to Interference and Noise
Ratio (SINR) threshold is needed for the successful reception
of a data packet. The results of [11] were recently tightened in
[12], by dropping the logarithm in the expression of the lower
bound, using percolation theory.

More recently, in [13] the author examines amassively
densenetwork, that consists of so many nodes, that it does not
make sense to describe the network in terms of microscopic
quantities, such as the position of an individual node, or the
rate with which it is receiving data, but rather in terms of
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Fig. 1. A set of wireless nodes is deployed in an area to support the sensing,
transport, and delivery of data from a distributed traffic source to a distributed
traffic sink.

macroscopic quantities, such as the spatial density of nodes
d(x, y) at a particular location(x, y), and the total traffic
that goes through this location. In this setting, it is shown
that the minimum-hop route connecting two arbitrary points
is identical to the path followed by a ray of light, traveling
between the two points, if we assume that the network is
substituted by an optically inhomogeneous medium whose
index of refraction equals

√
d(x, y). Therefore, an important

problem in wireless networks can be shown to be a fundamen-
tal and well-understood problem in Optics.

C. Overview of work

In this work we investigate a setting that, to the best of
our knowledge, has not attracted significant research interest
until now. As shown in Fig. 1, we consider an environment in
which there are a spatially distributed set of data sources and a
spatially distributed set of data sinks. We have available a large
number of wireless nodes, to be used for(i) the sensing of the
data, (ii) the transport of the data from the source locations
to the sink locations, and(iii) the delivery of the data to the
sinks once their location is reached.

We are interested in calculating the minimum number of
nodes needed to support the traffic, and the associated place-
ment of nodes that achieves this minimum. In other words,
we are given a task (the transfer of data from the sources
to the sinks) and a set of resources (the wireless nodes),
and we would like to determine what is the minimum of
resources needed, and how this minimum of resources should
be deployed to achieve the task.

Note that a fundamental tradeoff exists: On the one hand,
the traffic must take relatively short routes, so that not many
nodes are needed for each route. On the other hand, it is
important that the traffic is sufficiently spread, to minimize
the effects of interference. These two goals are competing,
and the optimal placement of nodes should strike a balance in
the most favorable way.

As in [13], the assumption is made that the network is
massively dense, i.e., there are so many sources, sinks, and
nodes available, that it is best to describe the network in
terms of macroscopic parameters. In Section II, we define
these parameters in detail.

We first study the problem under two specific assumptions:

(A) Wireless nodes only have to transport the traffic from
the locations of the sources to the locations of the sinks,

and do not need to either sense the traffic at the sources,
or deliver the traffic to the sinks, once it arrives at their
physical locations.

(B) We assume a specific relation between the traffic that can
be transported through a location(x, y), and the node
densityd(x, y) at that location. In particular, the amount
of traffic that can cross a linear segment of incremental
lengthε, centered at(x, y), is at mostε|T(x, y)|max, and1:

|T(x, y)|max = c
√

d(x, y), (1)

wherec is a constant. As discussed in detail in Section III,
this assumption is justified for a physical layer in which
(i) the bandwidth available to the nodes is limited, there-
fore (ii) adjacent transmissions interfere with each other,
and (iii) the nodes in each location share the bandwidth
in the most efficient manner, so that the network locally
operates at its capacity bound. Therefore, the network
behaves locally as the networks studied in [11], [12].

In Section IV we show that, under these two assumptions,
the optimal spatial density of nodes induces a traffic flow
that is identical to the lectrostatic field that will be induced
if the distribution of sources is substituted by an identical
distribution of positive charge, and the distribution of sinks
is substituted by an identical distribution of negative charge.
Many aspects of Electrostatics are shown to have a straightfor-
ward and illuminating interpretation in the context of wireless
sensor networks, notably boundary conditions along the in-
terfaces of different dielectric materials, Thomson’s theorem
on the placement of charges on conductors, and the potential
function.

In Section V we slightly modify the network model of
Section II, and in Section VI we introduce a general physical
layer model, that does not include Assumptions (A) and (B).
In particular, we substitute (1) with:

|T(x, y)|max = F (x, y, d(x, y)), (2)

where F (·) is some arbitrary function. Different choices of
F (·) correspond to different physical layers models. We also
include in our model the fact that nodes must not only transport
the data, but also sense it at the sources and deliver it at the
sinks, once their location is reached.

In Section VII we use calculus of variations to determine the
optimal distribution of nodes, and the traffic flow it induces,
under the general physical layer model of Section VI. The
optimal distribution is given in terms of a scalar partial
differential equation (PDE), which in general is nonlinear. The
results of Section IV are contained in the results of this section
as a special case.

In Section VIII we briefly discuss extensions of our work
that go beyond the scope of this paper. In particular, we
discuss the case of networks with different types of traffic,
the application of our formulation in alternative problems
in wireless sensor networks (such as problems in delay and
energy minimization), and the interpretation of our work as a
more abstract problem in optimal commodity transportation.
In Section IX we present some concluding remarks, and

1Formal definitions ofT andd(x, y) appear in Section II.
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in particular discuss how our results could be used in a
practical setting to optimize the performance of wireless sensor
networks with a modest number of nodes.

II. N ETWORK MODEL

In this section we first introduce three macroscopic quan-
tities: the information density function2 ρ(x, y), the node
density functiond(x, y), and the traffic flow functionT(x, y).
We then derive an equation linkingρ(x, y) andT(x, y).

A. Macroscopic Quantities

We consider the unbounded two dimensionalxy plane, on
which are placed distributed sources and sinks of information.
We model the sources and sinks jointly, by the continuous
information density function ρ(x, y), which is measured
in bps/m2. At locations (x, y) where ρ(x, y) > 0, there
is a distributed data source, such that the rate with which
information is generated within a surface of infinitesimal
area ε, centered at(x, y), is ερ(x, y). At locations where
ρ(x, y) < 0, there is a distributed data sink, such that the
required absorption rate within a surface of infinitesimal area
ε, centered at(x, y), is −ερ(x, y).

We require that the total rate with which sinks must absorb
data is the same as the total rate with which the data is created
at the sources. This requirement translates into the equation∫

ρ(x, y) dS = 0, (3)

where the surface integral is taken over the whole plane.
To facilitate the transfer of information from the sources

to the sinks, we are given a large number of wireless nodes,
that we are free to place anywhere on the plane. Because we
assume the number of nodes to be very large, we will describe
their placement not in terms of their individual positions
which are microscopicquantities, but rather in terms of a
macroscopicquantity, the node density d(x, y), measured
in nodes/m2, and assumed continuous. The total number of
nodes,N , is given by

N =
∫

d(x, y) dS. (4)

We stress that the assumption that the network is massively
dense does not imply that the number of nodesN is infinite,
but rather thatN is very large. A similar situation occurs in
Electromagnetism, where we model the electric charges that
exist in a medium by a density function, without assuming
that the total number of ions or their net electrical charge is
infinite.

In networks, the flow of information is typically described in
terms of the rate with which information arrives at individual
nodes. However, in our setting, we have a massively dense
network, in which the rate of arrival of information in a
particular node is a microscopic quantity. In this setting, we
can best model the flow of traffic in the network in terms of the
traffic flow function T(x, y ), which is a macroscopic quantity.
T(x, y) is a continuous vector function whose magnitude is

2We denote scalars by lower case letters, and vectors by bold capitals.

measured inbps/m. It is defined so that(i) its direction
coincides with the direction of the flow of information at
point (x, y), and (ii) ε|T(x, y)| equals3 the rate with which
information crosses a linear segment of incremental lengthε,
that is centered on(x, y), and is perpendicular toT(x, y).

When viewing a specific location of the network, one
may observe many distinct streams of traffic, possibly along
different directions. However, the fact that the traffic streams
all carry the same type of packets, allows us to combine
them by performing vector addition, and thus abstract the
movement of data at the microscopic level by a simple
macroscopic quantity, the traffic flow function at that location.
Our argument is identical to the argument used to justify
the abstraction of the flow of a liquid in terms of a single
vector function: Microscopically, different molecules of the
liquid will be traveling along different directions and with
different velocities. However, when the liquid is viewed from
an adequate distance, a single dominant traffic direction and
intensity emerge, that can be described jointly in terms of a
flow vector.

B. The divergence of the traffic flow function

Let A0 be a surface on thexy plane, of arbitrary shape.
We will denote its boundary curve by∂A0 and its total area
by |A0|. For information to be conserved, it is necessary that
the rate with which information is created in the area is equal
to the rate with which information is leaving the area through
its boundary∂A0. In other words, the following equality must
hold: ∫

A0

ρ(x, y) dS =
∮

∂A0

[T(x, y) · n̂] ds, (5)

where n̂ is the unit vector normal to the boundary curve
∂A0 at the point(x, y) on ∂A0, and pointing outsideA0,
and the integral on the right hand side is the path integral
of the function[T(x, y) · n̂]. This function represents the rate
(measured inbps

m ) with which information is leavingA at the
point (x, y) of its boundary∂A0.Equation (5) must hold for
any surfaceA0. Therefore, it will also hold for a sequence of
surfacesAk that all include in their interior an arbitrary point
(x0, y0), and are such that their areas|Ak| → 0. Applying (5)
for Ak we have:∫

Ak

ρ(x, y) dS =
∮

∂Ak

[T(x, y) · n̂] ds. (6)

Sinceρ(x, y) is assumed continuous, we have, by a known
theorem of elementary calculus [14], that4∫

Ak

ρ(x, y) dS = ρ(x0, y0)× |Ak|+ o(|Ak|). (7)

Combining (6) and (7), dividing by|Ak|, and taking the
limit with respect tok, we arrive at

ρ(x0, y0) = lim
k→∞

1
|Ak|

∮
∂Ak

[T(x, y) · n̂] ds , ∇ · T(x0, y0).

(8)

3If x is a vector, by|x| we denote its length.
4We write f(x) = o(x) to denote thatlimx→0

f(x)
x

= 0.
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The limit in (8) is defined as thedivergence of the vector
function T, at the point(x0, y0) [15]. The divergence of the
traffic flow function measures the degree with which the traffic
flow increases (when information in injected in the network)
or decreases (when information is removed from the network)
at the particular point(x0, y0). In cartesian coordinates, the
divergence is given by the formula∇·T = ∂Tx

∂x + ∂Ty

∂y , however
its intuitive meaning can best be conveyed by the limit of (8),
which is independent of the choice of the coordinate system.

To summarize, we have showed that

∇ · T = ρ. (9)

Note that there is nothing particular to wireless sensor net-
works, or to communications for that matter, in the derivations
leading to (9). In fact, (9) is a well known equation of
hydrodynamics. In that context,T(x, y) describes the flow of
some liquid, andρ(x, y) is modeling its sources and sinks.

III. B ANDWIDTH -L IMITED CAPACITY-ACHIEVING

PHYSICAL LAYER

In this section, we first specify a particular model for the
capabilities of the nodes at the physical layer. We then proceed
to show that, under this model, the traffic flow must be irrota-
tional. Although the model will be significantly generalized in
subsequent sections, it is worth to study it separately, as it leads
to a particularly simple solution for the optimal placement of
nodes.

A. Physical Layer

We make the assumption that no nodes are needed to sense
the data at the sources, or deliver the data to the sinks once
the data reach their physical locations. For now, the only task
we assign to the nodes is the transport of the data from the
physical locations of the sources to the physical locations of
the sinks.

This assumption is reasonable if there is a secondary net-
work of specialized nodes, exclusively dedicated to the sensing
and delivery of the data. It is also reasonable if the most
challenging task of the nodes is the transport of the data, so
it is acceptable to optimize with respect to this task only, and
then deploy a few extra nodes where needed to handle the
sensing and the delivery tasks.

Let the wireless nodes be communicating over a common
wireless channel of some finite bandwidth. Nodes can either
transmit or receive at the same time. When receiving, a node
is susceptible to thermal noise of powerN , same for all nodes.
When transmitting, a nodeX uses a power levelP , same for
all nodes, and a nodeY at a distance|X−Y | will receive the
signal with powerKP |X − Y |−α, whereK is a normalizing
constant andα > 2. Let{Xk; k ∈ T } be the set of transmitting
nodes at a given time instant. The transmission from nodeXi

to nodeXj is received successfully iff

PK|Xi −Xj |−α

N +
∑

k∈T ,k 6=i PK|Xk −Xj |−α
> β.

This means that a reception is successful iff the Signal to
Interference and Noise Ratio (SINR) is above a given threshold

T (x 0 ,y 0)

Fig. 2. A square of sideε, centered at the point(x0, y0). If the node density
at that point isd(x0, y0), then there areε2d(x0, y0) nodes in the square and,
with high probability, a ‘highway system’ can be constructed that consists of
Θ(ε
p

d(x0, y0)) highways, each relayingk1W bps from the left side to the
right side.

β. All successful transmissions happen with rateW bps,
which we implicitly take to be a function ofβ and the available
bandwidth.

Consider a location(x0, y0) of the network. We would like
to determine how much traffic can pass through that location,
given that the node density there isd(x0, y0). Technically, we
want to establish the maximum value for the norm|T(x0, y0)|.
For this, let us construct a small square of sideε, centered at
(x0, y0), and oriented so that the traffic flow functionT(x0, y0)
is vertical to one of its sides, as shown in Fig. 2. The precise
number and placement of nodes in the square will depend on
how the network is constructed, but a reasonable assumption
is that the nodes are thrown randomly in the square, according
to a spatial Poisson process of intensityd(x0, y0). Therefore,
the expected number of nodes in the square will ben =
ε2d(x0, y0). We need to calculate the maximum volume of
traffic that can be carried into the left edge and out of the
right edge of the square.

This problem was recently studied in [12], where it was
shown (as an intermediate result) that the maximum possible
traffic that can be carried from the left side to the right side
of the square is5 Θ(W

√
n). This is achieved by the use of

a ‘highway system’ that consists ofΘ(
√

n) highways, each
highway consisting ofΘ(

√
n) wireless nodes, and carrying

k1W bps. The constantk1 captures the effects of a node
having to locally share the channel with competing nodes.
The highways are constructed in a manner that ensures that
they can carry their traffic simultaneously, without being
overwhelmed by the interference of each other. As discussed
in the introduction, this result is proved by percolation theory,
and is used in the tightening of a famous previous result by
Gupta and Kumar [11]. It only holds with probability going
to unity asn →∞.

To conclude, for the physical layer we are examining, the

5f(n) = Θ(g(n)) iff k1f(n) ≤ g(n) ≤ k2f(n), for all n > n0, and for
somen0, k1, k2.
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maximum amount of traffic that can cross a linear segment of
lengthε is on the order ofW

√
n = Wε

√
d(x0, y0). Therefore,

a reasonable assumption in this case is that:

|T(x, y)| ≤ |T(x, y)|max = c
√

d(x, y), (10)

for some constantc that is proportional to the available
bandwidth.

Clearly, our discussion does not constitute a proof of (10),
but rather a justification for the use of (10) as a reasonable
model of a more complicated reality.

B. The curl of the traffic flow function

We now show that, under the model of Section III-A, among
all traffic flow functions that satisfy (9), the one that needs
the smallest number of nodes to be supported must also be
irrotational, i.e. its curl must be zero everywhere:

∇× T = 0. (11)

The curl∇ × T of a two dimensionalvector T at a point
(x0, y0) is a scalar function defined as follows:

∇× T , lim
|Ak|→0

∮
∂Ak

T · ds

|Ak|
, (12)

where{Ak} is a sequence of surfaces of vanishing area, that
contain(x0, y0) in their interior, and the integral of the right
hand side is the line integral of the functionT over the curve
∂Ak (which is taken to have a counter-clockwise direction).
Intuitively, the magnitude of the curl at a point(x0, y0) is a
measure of how much circulation around the point(x0, y0)
the functionT has. The circulation is counter-clockwise if the
curl is positive, and clockwise if the circulation is negative.
In cartesian coordinates, the curl of a function is given by
∇ × T = (∂Ty

∂x − ∂Tx

∂y ). A more detailed exposition on curl,
with its generalization in the three dimensions (which is a
vector function) can be found in [15].

We now prove (11), by assuming that it does not hold and
arriving at a contradiction. In particular, suppose that the traffic
flow T0 that needs the minimum number of nodes has a non-
zero curl at some point in space. It follows from (12) that
there is a curveC, of lengthL, along which the line integral
of T0 is non-zero. By choosing a proper direction forC, we
can assume that the line integral is positive:∮

C
T0 · ds = p > 0. (13)

As shown in Fig. 3, we form aroundC a strip S of
infinitesimal and constant widthδ. Becauseδ is infinitesimally
small, the area of the strip can be taken to be|S| = δ × L.

We construct an auxiliary vector functionT1 in the follow-
ing manner: Outside the stripS, T1 = 0. Inside the strip, at a
point (x, y), T1 = −ε̂t, wheret̂ is a unit vector tangential toC,
at the point whereC is closest to the point(x, y), and with the
same direction asC. Therefore, we constructT1 to resemble
the flow of a small quantity of liquid around a closed hose of
impermeable boundaries, which goesagainstthe average flow
of T0 in S. By its physical interpretation, it is clear thatT1

has a zero divergence everywhere. It is also straightforward

C T =- e t

tT

T = 0

T = 0

S

1
0

11

Fig. 3. The setup of the proof that the optimal traffic flow function is
irrotational.

to show this mathematically. Indeed, outside the stripT1 is
identically zero, and inside the strip it can be shown that the
divergence is zero by a direct application of the definition (8).

As the divergence operator is linear, we have:

∇ · (T0 + T1) = ∇ · T0 +∇ · T1 = ρ,

and it suffices to show that the traffic flow function(T0 +T1)
can be supported by fewer nodes. Indeed, letN0 be the total
number of nodes needed to supportT0 andN0+1 be the total
number of nodes needed to supportT0 + T1. We have:

c2(N0 −N0+1)

=
∫

S

(|T0|2 − |T0 + T1|2) dS

=
∫

S

(|T0|2 − |T0|2 − |T1|2 − 2T0 · T1) dS

= −
∫

S

ε2 dS +
∫

S

2εT0 · t̂ dS

= −ε2|S|+ 2εδ

∮
C

T0 · d̂t = −ε2|S|+ 2εδp.

The first equality comes from using (10) with the equality, and
noting that the functionsT0 andT0+T1 differ only within the
surfaceS. The last one comes from applying (13). It follows
that, for a sufficiently small value ofε, the last expression is
positive, and so the traffic flowT0 + T1 can be supported by
a smaller number of nodes than the traffic flowT0. Therefore,
we arrive at a contradiction, so (11) must hold.

IV. A NALOGY WITH ELECTROSTATICS

A. Homogeneous propagation environments

In the previous sections, we proved that the traffic flow
function must satisfy (9) and (11). These equations jointly do
not uniquely specify the traffic flow. Indeed, provided there
is a solutionT0 that satisfies both of them, then so does
T0 +c, wherec is a constant vector. However, by Helmholtz’s
theorem [16], it follows that the solution to (9) and (11) exists
and is uniquely specified if, in addition, we require that the
traffic flow is zero at infinity:T|∞ = 0. Assuming that the
traffic sources and sinks are constraint over a finite region,
this is a reasonable boundary condition to take, as there is no
need for the traffic flow to arrive at the sink by first going to
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Fig. 4. Field lines (in thin black) and lines of constant potential (in thick
gray), in a two dimensional topology consisting of5 positive singular charges
of equal magnitude, and a single singular negative charge of5 times that
magnitude, placed in a homogeneous dielectric.

infinity and back6. To summarize, it follows by Helmholtz’s
theorem that the equations

∇ · T = ρ, ∇× T = 0, T|∞ = 0, (14)

uniquely specify the optimal traffic flow function. Once the
optimal traffic flow is known, by solving the system (14), the
corresponding optimal node density can easily be derived, by
applying (10) with equality.

However, it is a basic fact of electrostatic field theory [16],
that equations (14) also uniquely specify the electric dis-
placementD induced by a two-dimensional electric charge
densityρ(x, y) in a homogeneous dielectric (for example free
space)7. Note that, in homogeneous dielectrics, the electric
displacementD is simply proportional to the electric fieldE,
i.e., D = εrε0E, where ε0 is the permittivity of free space
and εr is the relative permittivity of the dielectric (equal to
1 for the case for free space). Note also that in the charge
densityρ we only count free charges, and not charges that are
induced by the polarization of the dielectric. Therefore, our
optimal placement problem is identical to a standard problem
of Electrostatics, namely the determination of the electric
displacement (equivalently the electric field) in a homogeneous
dielectric, in the presence of a distribution of free electric
charge.

As an example, let us consider the topology of Fig. 4, in
which we have placed in a homogeneous dielectric5 positive
singular charges of equal magnitude around a single singular
negative charge of5 times that magnitude. The induced
electric displacement (and the associated electric field) can
be calculated by using any of a large number of software
tools that are available, either for solving arbitrary PDEs, or

6Note that Helmholtz’s theorem is typically mentioned in a three dimen-
sional setting, however its two dimensional version follows as a special case.

7A two-dimensional density is a density immersed in the two dimensional
space. Equivalently, it could also mean a density immersed in the three
dimensional space that is invariant with respect to thez coordinate. In the
latter case, the electric displacement it induces will also be invariant with
respect to thez coordinate, and with a zeroz-component.

Fig. 5. Field lines (in thin black) and lines of constant potential (in thick
gray), in a two dimensional topology consisting of a singular positive charge
and a linear uniform distribution of negative charge, of equal total magnitude,
placed in a uniform dielectric.

for solving Electrostatics problems in particular. In this, and
the following examples of this section, we use the specialized
software tool of [17]. As is standard in Electrostatics, in the
figure we denote the electric field byfield lines. These are
defined in the following manner: The field line crossing a point
(x, y) is parallel toE(x, y), and the density of field lines at
that point is proportional to the magnitude|E(x, y)|.

The above figure also has an interpretation in the context
of wireless sensor networks. In particular, the field lines show
the optimal packet trajectories in an environment in which
there are5 singular traffic sources of equal magnitude, and
a single, singular traffic sink at the center, collecting all the
created information. As there is a convergence of field lines
towards the central traffic sink, more nodes will be placed
around it, in order to support the large volumes of traffic, in
accordance to condition (10) taken with equality.

As a second example, in Fig. 5 we plot the field lines
in a topology consisting of a singular positive charge, and
a distribution of negative charge, of equal total magnitude,
along a horizontal linear segment. The field lines of the figure
are also the trajectories of packets in a topology where the
positive and the negative charges are substituted with a traffic
source and a traffic sink respectively.

As expected, the optimal node placement induces a traffic
flow that is heaviest in the region between the source and
the sink. The intuitive explanation is that the routes through
this region are the shortest. On the other hand, quite a lot of
traffic will actually travel along much longer routes, some of it
actually arriving to the sink from below. The intuition behind
this result is that, ifall packets use short, more direct routes,
then the congestion in the central region will be so high as to
require a very large number of nodes to be supported, more
than the number of nodes needed if some of the packets take
a longer, but much less congested, route.
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Fig. 6. The boundary between two regions with different node capabilities.

B. Nonhomogeneous propagation environments

Until now it has been assumed that all parts of the wireless
network are equally efficient. This is a reasonable assumption
when the network consists of a set of identical nodes, and
in addition all parts of the environment present a similar
challenge to the network. However, these assumptions may not
always hold. For example, perhaps part of the network may be
in an environment with heavy vegetation, which increases the
attenuation of the signals with distance. As another example,
parts of the bandwidth may not be available everywhere.

Such cases can be modeled by assuming that the coefficient
c appearing in (10) is no longer a constant, but is a function
of the location. In particular, we assume that thexy plane is
partitioned in a number ofpropagation regions Pi, where
i = 1, . . . , p, each associated with a coefficientci, such that
within Pi condition (10) is substituted with:

|T(x, y)| ≤ |T(x, y)|max = cic
√

d(x, y). (15)

We now develop boundary conditions that connect the two
traffic flow vectors across the two sides of the same boundary.
Let us concentrate, with no loss of generality, at a point(x, y)
on the boundary of regionsP1 andP2. As shown in Fig. 6, let
n̂ and t̂ be respectively the normal and tangential unit vectors
of the boundary at(x, y). Also, let T1 and T2 be the traffic
flows at point(x, y), at the two sides of the boundary, which
we decompose as follows:

T1(x, y) = Tn1n̂ + Tt1 t̂, T2(x, y) = Tn2n̂ + Tt2 t̂.

We first develop a boundary condition involving the normal
components of the traffic flow. For this, let us apply (5) on the
perpendicular regionA = abcd, shown in Fig. 6, centered at
(x, y) and with heighth and widthw. The widthw is taken
to be so small, that the boundary appears locally as a straight
line. By taking firsth → 0, (5) becomes:∮

∂A

[T(x, y) · n̂] ds = 0.

As T must be continuous on each side of the boundary, we
have that∮

∂A

[T(x, y) · n̂] ds = [Tn1(x, y)− Tn2(x, y)]w + o(w),

and by dividing byw and takingw → 0, we have that:

Tn1 = Tn2. (16)

Fig. 7. The setting of Fig. 5, in which we have replaced the lower half of
the plane with a dielectric withε1r = 10, and the upper half of the plane is
free space withε2r = 1.

Next, we develop a boundary condition on the tangential
components of the traffic flow. For this, let us consider the two
streams of traffic moving along either side of the boundary.
Since the traffic is optimally distributed, i.e., it uses the
minimum number of wireless nodes, it follows that the moving
of an incremental part of the tangential component of the
traffic from one to the other side can not result to a net change
of the number of nodes needed. Therefore, we must have:

∂Tt1

∂d1
=

∂Tt2

∂d2
,

whered1 andd2 are the node densities on the two sides of the
boundary. Noting thatT 2

n1 + T 2
t1 = c2

1c
2d1 and T 2

n2 + T 2
t2 =

c2
2c

2d2, and using (16), after some straightforward algebra, this
equation becomes:

(c2
2)Tt1 = (c2

1)Tt2. (17)

As is known from elementary Electromagnetics [16], [18],
the boundary conditions (16) and (17) must also be satisfied by
the electric displacementD if the regionsPi contain dielectrics
characterized by relative permittivitiesεi

r = c2
i . In addition,

these boundary conditions, together with the equations (14),
which continue to hold at the interior of the regionsPi,
uniquely specify the electric displacement.

As an example, in Fig. 7 we plot the field lines that are
created by a distribution of free charge similar to that of Fig. 5,
but where we now assume that the lower half of the plane is
occupied by a dielectric withε1r = 10, and the upper half
of the plane is free space withε2r = 1. In the context of
wireless sensor networks, Fig. 7 shows how the optimal packet
trajectories of the network of Fig. 5 would be modified if the
lower half of the plane was modeled by (15) with a factor
c1 =

√
10 and the upper half of the plane was modeled by

(15) with a factorc2 = 1.
The introduction of different propagation regions allows us

to handle the case where there are regions in which no nodes
can be placed. As an example, we may have a situation in
which both the traffic sources and the traffic sinks are placed
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Fig. 8. Field lines (in thin black) and constant potential lines (in thick gray)
created by a positive and a negative charge of equal magnitude, that are placed
inside a dielectric of very large relative permittivity, which is adjacent to free
space.

in a large room, and we are not allowed to place any nodes
outside the floor of the room.

This case can be handled by assuming the existence of a
special propagation regionP0 with a constantc0 << ci, for
all i = 1, . . . , pi. In this case, the cost of placing nodes in that
propagation region is too high, because the physical layer in
that region is very weak, as seen by (15). In the limit when
c0
ci
→ 0, for all i = 1, . . . , p, the optimal traffic pattern, as

determined by solving (14), jointly with (16), (17), avoids
routing any traffic throughP0, unless of course the topology
absolutely requires that packets must pass throughP0. (That
would be the case if, for example, there were sources or sinks
of traffic within P0.)

As an example, in Fig. 8 we have plotted the field lines
created by a positive and a negative charge placed close to
each other within a dielectric of very large relative permittivity,
and close to a linear boundary surface with free space. The
field lines also show the optimal traffic flow in the case when
a point source and a point sink are placed close to the linear
boundary with a region through which no traffic can flow.

C. Traffic sources and sinks with limited mobility

Until now, we have assumed that each location of infinites-
imal size(x, y) is associated with afixed rate of information
creation (or absorption). However, there are situations in which
the placement of data sources and sinks is also subject to
optimization. As an example, let us consider a sensor network
designed to monitor the levels of humidity and temperature
of a large plantation, and forward the measurements to a
large central building. If we assume that a large number of
wireless receivers, connected over high capacity wired links
with a central traffic sink, are placed along the circumference
of the building, then the sensor network should be free to
select which parts of the circumference of the building should
receive how much traffic, in a way that minimizes the number
of wireless nodes that must be deployed.

We model such scenarios by defining a set oft traffic
regions {Ti}, where i = 1, . . . , t. The information density
function ρ is only defined outside the traffic regions, in
∪p

i=1Pi = R2 − ∪t
i=1Ti. Each Ti is associated with an

information rate Qi, measured inbps, which represents the
net amount of sources/sinks that must be placed inTi. We
assume that data can move with no cost insideTi, and we
requireQi to be distributed only on the boundary ofTi, ∂Ti.
Equation (1) is modified as follows:∫

∪p
i=1Pi

ρ(x, y) dS +
t∑

i=1

Qi = 0.

For any distributionD of the information rates{Qi} on the
boundaries of the{Ti}, there is an optimal node distribution,
dD(x, y) that minimizes the number of wireless nodes needed
to support the traffic. A problem that arises naturally, is
to find the optimal distributionDopt of the rates{Qi} on
the boundaries of the{Ti}, whose optimal node distribution
dDopt(x, y) needs the minimum numberN of sensor nodes.
In other words, we have a problem that consists of two
consecutive minimizations.

Let us consider the electrostatic equivalent of the total
number of nodesN :

N =
∫
∪p

i=1Pi

d(x, y) dS =
∫
∪p

i=1Pi

|T|2

c2
i c

2
dS

=
ε0
c2

∫
∪p

i=1Pi

|D|2

ε0εi
r

dS =
2ε0
c2
E .

In the second equality, we use (15). In the third equality,
we move from the networking quantities to their electrostatic
equivalents. In the last equality, we substitute for the electro-
static field energy [16], [18]

E =
1
2

∫
∪p

i=1Pi

E · D dS.

Therefore, the total number of nodes of the networking setting
is mapped to the total energy of the Electrostatics setting, up
to a constant coefficient.

We are now ready to consider the Electrostatics equivalent
of our minimization problem: we have a setting with a fixed
spatial electric charge densityρ(x, y), and a set of regions
{Ti} on which we have placed a set of charges{Qi}. Our
assumption that the chargesQi can move everywhere along
their corresponding regionsTi means that these regions are
conductors. Therefore, the equivalent problem becomes the
calculation of the distribution of electric charge on a set
of surfaces, such that the energy of the electric field,E , is
minimized.

Fortunately, this is exactly the same problem that nature
solves when placing charges on conductors. In particular,
Thomson’s theorem [16], [18] states that charges placed on
conductors distribute themselves so that the energy of the elec-
tric field is minimized. Furthermore, the electric displacement
of the resulting field is uniquely specified by the boundary
condition

D(x, y) · t̂ = 0, (18)
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Fig. 9. Field lines (in thin black) and constant potential lines (in thick gray)
when a singular positive charge is placed over a infinite conducting plane,
infused with a negative charge of the same magnitude.

where(x, y) is any point on the boundary∂Ti of a regionTi,
and t̂ is the unit vector parallel to the boundary∂Ti at point
(x, y), together with the conditions (that follow from Gauss’s
law): ∮

∂T+
i

[D · n̂] dl = Qi, ∀i = 1, . . . ,m. (19)

In the above conditions,̂n is a unit vector normal at each
point of the boundary and pointing outwards, and∂T+

i is a
closed curve that is continuously tangential to the boundary
∂Ti but lies outside ofTi. This complication of taking the
integral along∂T+

i and not along∂Ti is due to the fact that
the functionD is in general discontinuous on∂Ti.

Going back to sensor networks, it follows that the optimal
distribution of traffic sources and sinks should create a traffic
flow similar to the electric field induced by a placement of
charges on a set of conductors, and this fieldT is uniquely
determined by (18) and (19) (substitutingD with T, and taking
ρ to be the information density function and theQi to be
information rates) together with (14), and possibly (16) and
(17).

Both (18) and (19) have simple meanings in the context of
sensor networks, and should have been anticipated. Equation
(18) requires that packets arriving at a traffic region hit
the traffic region vertically. Indeed, if the traffic also has a
tangential component, the packets arrive at the traffic source
using a route that is longer than the absolute necessary, and a
rearranging of theQi at the surface of the region will result to
a traffic that needs fewer nodes to be supported. Equation (19)
simply states that the total net rate with which information is
leaving the traffic regionTi is equal to the net rate with which
we stipulate that information is created inside the region.

As an example, in Fig. 9, we have placed a positive electric
charge within a uniform dielectric and close to the linear
boundary with a conductor infused with a negative electric
charge of the opposite magnitude. In the figure, we have
plotted the electric field, which can be calculated easily for
this topology by the method of images [16]. The above figure
has a dual interpretation in the context of wireless sensor
networks. In particular, it shows the optimal routes that packets
must follow when moving, through a uniform propagation
environment, from a singular source of information to a linear
traffic sink, when there is no particular restriction on how

many packets should be received at each location on the
boundary of the sink.

D. The potential function

In Electrostatics, the electric fieldE can be described in
terms of the scalarpotential function U(·). The two are
related by the equations

E = −∇U,

where∇U denotes the gradient ofU , and

U(A)− U(B) =
∫ B

A

E · ds,

where the line integral is along any curve that starts atA and
ends atB. The differenceU(A)− U(B) denotes the amount
of energy that the field transfers to a positive unit charge as it
moves from pointA to point B. In Figs. 4, 5, 7, 8, and 9 we
have plotted (in thick gray) lines of constant potential. As the
potential is defined as the negative gradient of the electric field,
the lines of constant potential intersect vertically the electric
field lines.

A natural question to ask is the meaning of the potential in
our sensor networks context. For this, we consider a curveC
along the trajectory of a packet stream, starting at a pointA
and ending at a downstream pointB, and possibly crossing
different propagation regions. We have:

U(A)− U(B)

=
∫ B

A

E · ds =
∫ B

A

1
εi
rε0

D · ds =
1
ε0

∫ B

A

1
c2
i

T · ds

=
1
ε0

∫ B

A

1
c2
i

|T|ds =
c

ε0

∫ B

A

1
ci

√
d(x, y) ds.

In the third equality, we moved from Electrostatics variables to
networking variables. The fourth equality comes from noting
that, by its construction, curveC is parallel to T, and the
inner product can be removed. The fifth equality comes from
requiring that (15) holds with equality, so that at each point
the network does not have more nodes than needed, and the
network uses indeed the minimum number of nodes.

Note that
√

d(x, y) ds is the approximate number of hops
that a packet makes in order to traverse an incremental length
ds at a point(x, y) where the node density isd(x, y). Indeed,
if d(x, y)(ds)2 nodes are randomly placed in a square of size
(ds)2, there will be roughly

√
d(x, y)(ds)2 =

√
d(x, y)ds

nodes along each side of the square, and roughly as many
hops will be needed by a packet to traverse the square from
one edge to an opposite edge.

Therefore, if the curveC continuously stays in the same
propagation region, then the differenceU(A)−U(B) is equal
to the number of hops needed to go fromA to B, multiplied by

c
ciε0

. In the general case, whenC crosses multiple propagation
regions, the differenceU(A) − U(B) is a weighted sum of
the hops needed in each region, with the weight for regionPi

equal to c
ciε0

.
We stress that, although we are assuming a massively

dense network, the total number of nodes in the network, and
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consequently the total number of hops to go from pointA
to point B, are both finite, albeit very large. The situation is
very similar to that of Electrostatics, where we approximate the
distribution of charges by a charge density, without assuming
that the actual number of distinct charges is infinite.

We now summarize the findings of this section in the form
of a theorem:

Theorem 1: Let thexy plane be partitioned int traffic
regionsTi, i = 1, . . . , t, each associated with an information
rate Qi, and p propagation regionsPi, i = 1, . . . , p, each
characterized by a coefficientci such that the maximum norm
for the traffic flow is given by:

|T(x, y)| ≤ |T(x, y)|max = cic
√

d(x, y).

Let ρ(x, y) be an information density function, defined every-
where in∪Pi.

The optimal distribution of nodesd(x, y), that minimizes the
number of nodes needed to transport all the traffic, induces
a traffic flow T(x, y) that can be calculated by solving the
differential equations

∇ · T = ρ, ∇× T = 0,

together with the boundary conditions:

T(x, y) → 0, (x, y) ∈ ∪Pi, (x, y) →∞,

T(x, y) · t̂ = 0, (x, y) ∈ ∂Ti,∮
∂T+

i

[T · n̂] ds = Qi,

Ti(x, y) · n̂ = Tj(x, y) · n̂, (x, y) ∈ ∂Pi ∩ ∂Pj ,

c2
jTi(x, y) · t̂ = c2

i Tj(x, y) · t̂, (x, y) ∈ ∂Pi ∩ ∂Pj ,

whereTi(x, y) is the limit of T at (x, y) from within Pi and
∂Pi ∩ ∂Pj is the boundary of the propagation regionsPi and
Pj .

The optimal traffic flow is identical to the electric displace-
ment vectorD that exists if theTi are conductors infused
with chargesQi and the Pi are dielectrics with relative
permittivitiesεi

r = c2
i , infused with a free charge densityρ.

LetU(·) be the potential function of the electrostatic setting.
Let A be a point in any of the propagation regions, and letB
be a location downstream fromA, in the same or another
propagation region. In the network setting,U(A) − U(B)
equals the weighted sum of the hops taken by the packets in
each region, with the weight for regionPi equal to c

ciε0
:

U(A)− U(B) =
c

ε0

∫ B

A

1
ci

√
d(x, y) ds.

In the following sections we will extend Theorem 1 for
the case of a physical layer model that is significantly more
general than the model of (10). As we will see, the optimal
traffic flow resembles an electrostatic field only in the special
case when (10) holds. Before leaving the electrostatic case,
however, it should be noted that a similar, but different,
analogy between wireless networks and Electrostatics has also
been explored, independently, in [6], [7]. In [7] the authors
consider a wireless sensor network consisting of a central
data sink and a large number of sensor nodes forming a

(x,y), d(x,y),T(x,y)

A
C

n (s)ds

s=0

s=L

C(s)

s

(s)b

Fig. 10. The compact regionA where the functionsρ(x, y), ρb(s), d(x, y),
andT(x, y) are specified.

wireless network. The placement of nodes is not subject to
any optimization, The authors are interested in finding energy
efficient routes to the central sink. They propose a quadratic
optimization problem which also leads to the condition that
the traffic must also be irrotational, and so must also resemble
an electrostatic field. In this case, however, the quadratic
optimization problem is not motivated by physical layer con-
siderations, as in our case, but rather is adopted because of
its intuitive appeal. Nevertheless, it leads to important energy
savings. The authors also consider the network equivalents
of dielectric materials and the potential function, but the
analogies they use are different from our own. In [6] the
same authors use a similar approach to suggest a heuristic, but
very intuitive, optimization problem for optimizing the flow
of traffic in a wireless ad hoc network with multiple types of
traffic.

V. NETWORK MODEL-PART II

We now slightly modify the model of Section II, to assume
that all sources, sinks, and wireless nodes exist within a
compact, i.e., closed and bounded, regionA. We parametrize
its boundaryC by its arc lengths, so thatC(s) traces out all
the points in the curve ass goes from0 to L. We denote by
n̂(s) the unitary vector normal toC at the pointC(s), and
pointing outwards.

To model the sources and sinks that exist on the boundary
of the region, we define theboundary information density
function ρb(s), measured inbps/m and assumed continuous.
If ρb(s) > 0, then there is a distributed source of information
located at the boundary pointC(s), such that the rate with
which information is entering the network though an infin-
itesimal arc of lengthds centered at that point isρb(s) ds.
If, however, ρb(s) < 0, then there is a sink of information
located at the boundary pointC(s), such that the rate with
which information is removed from the network through an
infinitesimal arc of lengthds of the boundary, centered at that
point, is−ρb(s) ds. As the total volume of traffic entering the
network must be equal to the total volume of traffic leaving
the network, we substitute (3) with:∫

A

ρ(x, y) dA +
∮

C

ρb(s) ds = 0.
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Fig. 11. A rectangleabcd of infinitesimal size placed insideA, and adjacent
to its boundary around point(x0, y0).

Clearly, an equation is needed that connectsρb(s) with
T(x, y), analogous to (9). To this end, let us consider a point
C(s) = (x0, y0) on the boundary of regionA. As shown in
Fig. 11, we construct a rectangleabcd of infinitesimal size,
that is inside the regionA and touches the boundary at the
segmentab, which includes(x0, y0). The rectangle has width
w and heighth that are so small, that the boundary can be
viewed locally as a straight line. Conservation of data requires
that:∫ b

a

ρb(s) ds +
∫

abcd

ρ(x, y) dA

= −
∫ d

a

[T · t̂] ds−
∫ c

d

[T · n̂] ds +
∫ b

c

[T · t̂] ds.

As the rectangle is very small, this equation can be approx-
imated by:

wρb(x0, y0) + whρ(x0, y0)

' −h[T(x0, y0) · t̂] − w[T(x0, y0) · n̂] + h[T(x0, y0) · t̂].

Dividing by w, and then takingh → 0, we arrive at the
condition:

ρb = −T · n̂, (20)

which must hold at any pointC(s) alongC.

VI. GENERAL PHYSICAL LAYER

In this section, we first revisit and refine the physical
layer model of Section III, and then consider an alternative,
Ultra Wideband (UWB) model. We conclude by unifying the
two models under a general model, which also accounts for
the requirement that nodes must not only transport the data,
but also sense them at the sources, and deliver them at the
destinations once their physical location is reached.

A. Bandwidth Limited Physical Layers

The discussion that motivated (10) critically hinges on the
assumption that a signal that is transmitted with powerP
will be received with powerPKd−α, whered is the traveled
distance. This implies that, asd → 0, the received power
becomes larger than the transmitted power, and in fact ap-
proaches infinity! A more realistic model would be to assume
that the received power is given by a bounded function of the
distance, for example the functionPK(max{d, dmin})−α, for

some appropriately chosen critical distancedmin. In that case,
however, it is intuitively clear that the traffic capabilities of
the network will be dramatically altered. This problem was
examined in [19]. There, it was shown that, as the number
of nodes in a networkn increases, at first the maximum
achievable aggregate throughput that can be carried by the
network increases like

√
n, however after some point the

bounded nature of the power transfer function starts to have an
effect, and for very large values ofn the maximum aggregate
throughput saturates at a constant value. Therefore, a more
accurate macroscopic model for the capabilities of the network
would be:

|T(x, y)| ≤ |T(x, y)|max = k1[d(x, y)]β(d(x,y)), (21)

where now the exponentβ(d(x, y)) is close to 1
2 for small

values ofd(x, y), but converges to0 for d(x, y) → ∞. The
precise form of the exponent functionβ(·) will depend on the
exact law by which power propagates over small distances, but
an investigation towards this direction goes beyond the scope
of this work.

The discussion until now assumed that the nodes can
coordinate optimally to achieve the maximum possible transfer
of traffic. In practice, this is not the case, as nodes have
to operate under media access control (MAC) protocols that
operate suboptimally, particularly as the network becomes
more and more dense. In such a case, the behavior of the
physical layer could be approximated by (21), where now
the exponentβ(·) also models the imperfection of the MAC
protocol used. Such a modeling also goes beyond the scope
of our work.

B. Ultra Wideband Physical Layers

Until now it was assumed that all nodes transmit over a
common wireless channel, interfering with each other’s trans-
missions in the process. This is provably the best that nodes
can do when the total bandwidth available for communications
is limited [11]. Let us now consider the case where the
available bandwidth is very large, ideally infinite. This is the
case of Ultra Wideband (UWB) communications. As UWB
transceivers are very inexpensive and simple to make, and still
have excellent performance, it is expected that in the future
many wireless sensor networks will be using UWB technology.

Since the available bandwidth is infinite, each transmission
can occupy its own portion of the bandwidth, and will only be
hampered by thermal noise. It would seem at first that, with
infinite bandwidth, comes infinite capacity. This is not so, as,
the more bandwidth we use, the greater becomes the power
of the thermal noise. This can be seen by Shannon’s formula
for the additive white Gaussian (AWGN) channel:

C = W log2(1 +
Pr

ηW
) −→

W→∞
(log2 e)

Pr

η
, (22)

whereC is the capacity,W the available bandwidth,η is the
noise spectral density, andPr is the received power. Therefore,
channels that are not bandwidth constrained are necessarily
power constrained.

The capacity of wireless networks under an UWB physical
layer was recently studied in [20]. There, the authors consider
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a setting in whichn nodes are placed on a unit disk, each
node randomly selecting as its destination another node in the
network. Each node transmits with powerP , and a receiver
at a distanced will receive the signal with powerPKd−α.
Receivers are susceptible to thermal noise of spectral densityη,
and each transmission occupies its own bandwidth, which is so
large that the limit of (22) is achieved, and all communication
is with rate (log2 e)PK

ηdα .
In this setting, the authors show that, with probability

going to 1 as the number of nodesn goes to infinity, the
maximum achievable aggregate throughput is8 Θ̃(n

α+1
2 ). This

result is in sharp contrast with the capacity result of Gupta
and Kumar who found that, under limited bandwidth, but an
identical topology and traffic pattern, the maximum achievable
aggregate traffic is onlỹΘ(n

1
2 ) [11]. The gain comes from

having infinite bandwidth. Indeed, as more and more nodes are
placed in the network, the average distance between nearest
neighbors decreases, hence the received power increases. As
there is no interference, this leads to an increase of the capacity
of the links between neighbors, as specified in (22). Therefore,
it is best for nodes to communicate by using multiple hops,
exclusively between neighbors. Even after accounting for the
effects of transmitting the same information multiple times,
the end effect is that the maximum achievable aggregate
throughput can increase very fast with the number of nodes,
as Θ̃(n

α+1
2 ), and this is provably the maximum throughput

that we can squeeze out of the network [20].
The calculations of [20] assume that nodes are placed on a

disk, and the traffic starts and ends at nodes within the disk.
However, the calculations can easily be modified to hold for
the case wheren nodes are placed in a square and the traffic
must be carried from the left edge to the right edge, as in
Fig. 2. Working as in the derivation of (10), we are motivated
to consider the following macroscopic model:

|T(x, y)| ≤ |T(x, y)|max = k2[d(x, y)]
α+1

2 . (23)

The derivation of the capacity bound of [20] critically hinges
on the assumption that a signal transmitted with powerP will
be received by a node at a distanced with power PKd−α.
As discussed in Section VI-A, this is unrealistic for very
small distancesd, as it implies that the received power can be
arbitrarily large; a more realistic model would use a bounded
power transfer function. In addition, we have assumed that
nodes coordinate perfectly to achieve the capacity. In reality,
they will be operating under MAC protocols that may be sub-
optimal, particularly as the node density increases. Therefore,
a more realistic macroscopic model would be that:

|T(x, y)| ≤ |T(x, y)|max = k3[d(x, y)]β(d(x,y)), (24)

where β(d(x, y)) is approximately equal toα+1
2 for small

values ofd(x, y), but decreases asd(x, y) → ∞. The de-
termination of its precise shape goes beyond the scope of this
work.

8The notationf(n) = Θ̃(g(n)) means thatk1(n)f(n) ≤ g(n) ≤
k2(n)f(n), for all n > n0, and k1(n) and k2(n) are rational functions
of log n [20].

C. General Model

The aim of Sections III, VI-A and VI-B was not toprove
(10), (21), (23), and (24). The aim was to only tojustify
them, as reasonable models of a much more complicated and
intractable reality. A more diligent modeler could arrive at
more accurate formulas, that incorporate effects of the physical
layer that we ignored, such as the effects of fading, sleeping
nodes, extraneous interferers, random node placement, or the
effects of network coding, transmitter cooperation, MAC and
routing protocols, etc. Instead of going through the messy
details of more accurate models, and in order to widen the
scope of our work, we will consider the following general
model:

|T(x, y)| ≤ |T(x, y)|max = F (x, y, d(x, y)), (25)

where F (·) is a positive function, strictly increasing with
respect tod(x, y), but apart from that totally arbitrary. Equa-
tions (10), (21), (23), and (24) are special cases of (11).
Note that (25) implicitly assumes that the maximum traffic
will depend on the position(x, y). Therefore, it can model a
non-homogeneous medium. On the other hand, the maximum
norm ofT(x, y) will not depend on its direction, therefore the
medium is implicitly assumed isotropic. An equivalent way of
writing (25) is the following:

d(x, y) ≥ GT (x, y, |T(x, y)|2),

where GT (x, y, ·) is the inverse ofF 2(x, y, ·) with respect
to the third argument, and so is also positive and strictly
increasing.

Until now, we focused on the minimum node density
required to transport the data. However, transporting the data
is only one of the three tasks required of the nodes: the other
two tasks is sensing the data, and also delivering the data to the
sinks, once the data arrive at the physical location of the sinks.
These two tasks are complementary: the first one is essentially
the insertion of traffic in the wireless networks, and the
second is the extraction of the traffic, once the destination has
been reached. Researchers typically concentrate on the sensing
and transport tasks and ignore the delivery task. However,
by the explicit inclusion of the delivery task, we make our
formulation a bit more general, and also more symmetric.

We assume that, in order to support the sensing (or delivery)
at a location(x, y) where the information density function is
ρ(x, y), the node densityd(x, y) must satisfy the requirement:

d(x, y) ≥ GSD(x, y, ρ(x, y)).

Note that the information density function is a given, and not
subject to any optimization. Therefore, the right hand side
can be thought of as only a function of the location(x, y).
The precise shape ofGSD(x, y, ρ(x, y)) will depend on the
sensing/delivering capabilities of the nodes, but it is intuitively
clear thatGSD(x, y, ρ(x, y)) = 0 whenρ(x, y) = 0.

Since the nodes must perform both the transport, and the
sensing/delivery of the data, it follows that the density must
satisfy the following:

d(x, y) ≥ f(GT (x, y, |T(x, y)|2), GSD(x, y, ρ(x, y)))

, G(x, y, |T(x, y)|2), (26)
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where f(·) is some arbitrary function that captures the ca-
pability of the nodes to jointly perform sensing/delivery and
transporting. Specifying this function goes beyond the scope
of this work.

Let G′ be the partial derivative ofG(x, y, |T(x, y)|2) with
respect to the third argument|T(x, y)|2. For any reasonable
physical layer model, the derivative cannot be negative, for any
value of|T(x, y)|2, as this would imply that there is a situation
in which we would need more nodes to carry less traffic.
Furthermore, we make the mildly restricting assumption that
G′ must be strictly positive. Intuitively speaking, it is reason-
able to assume that, the larger the traffic, the more nodes are
needed to support it, even if locally most of the burden on the
nodes comes from sensing/delivering the data. Mathematically
speaking, if there is a range of|T(x, y)|2 for which G′ is
zero, then there will be some areas of the network in which
the optimal traffic flowT(x, y) can not be uniquely defined,
as we can increase the traffic with no extra cost. Technically
speaking, at some point in the derivations of Section VII we
will need to divide withG′, and we need to ensure that it
is always non-zero. The slightly more general case, whereG′

can be zero, can also be studied with our formulation but does
not lead to a tidy solution, therefore we will ignore it.

VII. O PTIMAL NODE PLACEMENT

A. Problem Formulation

In this section we calculate the optimal node distribution
d̂(x, y), that uses the minimum number of nodes and still is
able to sense, transport, and deliver all the traffic, subject to
the conditions (9) and (20), when the minimum required node
density is given by (26). The problem can be written as:

minimize: I =
∫

A
G(x, y, |T(x, y)|2) dS,

subject to:

{
∇ · T(x, y) = ρ(x, y), (x, y) ∈ A,

[T · n̂(s)] = −ρb(s), 0 ≤ s ≤ L.
(27)

The minimization will be performed over all possible traffic
flows T(x, y) that satisfy the constraints.

Note that we are not explicitly considering different propa-
gation regions, as in Section IV-B, but implicitly, through the
dependence of theG(x, y, |T(x, y)|2) on the position(x, y).
Also, we are not allowing any source/sink mobility, in the
form of traffic regions. Our formulation will be extended to
include source/sink mobility in Section VII-F.

B. Calculus of Variations

Let us write T(x, y) = u(x, y)x̂ + v(x, y)ŷ, so that
|T(x, y)|2 = u2(x, y) + v2(x, y). Let us assume that the
minimum of (27) is achieved by an optimal traffic flow
T̂(x, y) = û(x, y)x̂ + v̂(x, y)ŷ. Therefore, the optimal value
of the integralI of (27) is:

Î =
∫

A

G(x, y, û2(x, y) + v̂2(x, y)) dS.

Let the optimal functionŝu(x, y) and v̂(x, y) be perturbed
by small variationsδu and δv, such that the perturbed traffic

T̂ + δT = (û + δu)x̂ + (v̂ + δv)ŷ continues to satisfy the con-
straints of (27). Note that the variations are not incrementally
smallnumbers, but incrementally smallfunctions. By standard
calculus of variations arguments [21], [22], it follows that the
first variation on the integralI should be zero:

δI =
∫

A

(
∂G

∂u
δu +

∂G

∂v
δv

)
dS = 0, (28)

where the partial derivatives are calculated at the points
(x, y, û2(x, y) + v̂2(x, y)). This requirement is analogous to
the requirement that the variation of a functionf(x), when
we move an incremental distancedx from a stationary point
x̂ (which can be a maximum or a minimum), should be of the
order (dx)2, i.e. much smaller than the variation itself.

The perturbed functionŝu+ δu and v̂ + δv must satisfy the
divergence constraint of (27), which for cartesian coordinates
becomes:

∂

∂x
(û + δu) +

∂

∂y
(v̂ + δv) = ρ(x, y).

Since the optimal solution also satisfies the diversity con-
straint, we have that

∂

∂x
û +

∂

∂y
v̂ = ρ(x, y).

Combining the two equations, we arrive at:

∂

∂x
(δu) +

∂

∂y
(δv) = 0,

which must hold at all points(x, y) ∈ A, and all small
variationsδu andδv for which the perturbed function satisfies
the divergence constraint. Therefore, the following equation
must hold, for any scalar, continuously differentiable function
φ(x, y): ∫

A

φ(x, y)
(

∂

∂x
(δu) +

∂

∂y
(δv)

)
dS = 0. (29)

Adding (28) and (29), we arrive at:∫
A

(
∂G

∂u
δu +

∂G

∂v
δv + φ

∂

∂x
(δu) + φ

∂

∂y
(δv)

)
dS

=
∫

A

(
(
∂G

∂u
− ∂φ

∂x
)δu + (

∂G

∂v
− ∂φ

∂y
)δv

)
dS

+
∫

A

(
∂

∂x
(φδu) +

∂

∂y
(φδv)

)
dS = 0. (30)

However, by Green’s Theorem [22], we have that:∫
A

∂

∂x
(φδu) dS =

∮
C

φδu cos ν ds,∫
A

∂

∂y
(φδv) dS =

∮
C

φδv sin ν ds,

where, as shown in Fig. 10,ν is the angle formed between
the positivex-axis and the outward normal vectorn̂(s) at the
point C(s) of the boundaryC of A, and s is the arc length
alongC. Adding the two together, we arrive at:∫

A

(
∂

∂x
(φδu) +

∂

∂y
(φδv)) dS =

∮
C

φ(δu cos ν + δv sin ν) ds.

(31)
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However, (δu cos ν + δv sin ν) is the algebraic value of the
projection of the perturbation traffic on the outward normal
vector n̂ at pointC(s), i.e.,

(δu cos ν + δv sin ν) = [(δT) · n̂](s).

On the other hand, both the optimal traffic flow, and its
perturbation, must satisfy the boundary condition of (27):

T̂ · n̂(s) = −ρb(s),
(T̂ + δT · n̂(s)) = −ρb(s).

By subtracting the two, we have that[(δT) · n̂](s) = 0,
everywhere onC. Therefore, the right hand side of (31) is
0, and using (30) if follows that:∫

A

(
∂G

∂u
− ∂φ

∂x
)δu dS +

∫
A

(
∂G

∂v
− ∂φ

∂y
)δv dS = 0. (32)

The above equation must hold for any small perturbations
δu and δv, and at the same time for any continuously
differentiableφ(x, y). We now require thatφ(x, y) satisfies
∂G
∂v −

∂φ
∂y = 0, therefore (32) becomes∫

A

(
∂G

∂u
− ∂φ

∂x
)δu dS.

This equation must hold forany arbitrary variation δu (as
long as we also defineδv so that the constraints are satisfied).
Clearly, this can only happen if the other factor of the integrand
is identically zero, i.e.,(∂G

∂u −
∂φ
∂x ) = 0.

To conclude, if the integral of (27) is minimized bŷu and
v̂, then û and v̂ must satisfy the system of equations:

∂G

∂u
− ∂φ

∂x
= 0,

∂G

∂v
− ∂φ

∂y
= 0, (33)

together with the constraints of (27).∂G
∂u and ∂G

∂v are calculated
at the points(x, y, û2(x, y) + v̂2(x, y)), and φ(x, y) is a
continuously differentiable scalar function, which from now
on we call thepotential.

C. The Potential Equation

The system (33), together with the divergence constraint
(9), consists of three partial differential equations, of which
two are in general nonlinear. Note that we also have three
unknowns, i.e.,̂u, v̂, and φ. To simplify the notation, from
now on we writeu, v, and T, instead ofû, v̂, and T̂. Note
that |T|2 = u2 + v2.

To simplify the problem, note that we have definedG′ as the
partial derivative ofG(x, y, u2 + v2) with respect to the third
argumentu2+v2. It follows that ∂G

∂u = 2G′u and ∂G
∂v = 2G′v,

therefore the system (33) gives:

2G′(x, y, u2 + v2)T(x, y) = (
∂φ

∂x
x̂ +

∂φ

∂y
ŷ) , ∇φ. (34)

Taking the square of the norm of both sides of (34), we arrive
at:

4(u2 + v2)G′2(x, y, u2 + v2) = |∇φ|2. (35)

In the above equation,u andv appear only throughu2 + v2.
We now make the mild assumption that (35) can be solved
with respect tou2 + v2, and come to the form

u2 + v2 = H(x, y, |∇φ|), (36)

for some properly defined functionH(x, y, |∇φ|). In this case,
(34) can be written as

T(x, y) =
1

2G′(x, y,H(x, y, |∇φ|))
∇φ. (37)

Applying the divergence operator on both sides, and using (9),
we arrive at:

∇ ·
(

∇φ

2G′(x, y, H(x, y, |∇φ|))

)
= ρ. (38)

The above equation, which we will refer to from now on as
thepotential equation, is a scalar partial differential equation
(PDE) with a single unknown, the scalar potential function.
Therefore, it is much easier to handle than the PDE system of
(33) and (9).

Taking the inner product of each side of (37) witĥn,
and using (20), gives the nonlinear boundary condition that
accompanies (38):

1
2G′(x, y, H(x, y, |∇φ|))

[∇φ · n̂(s)] = −ρb(s). (39)

In the special case whereρb(s) = 0, (39) becomes the
Neumann condition[∇φ · n̂(s)] = 0, which is linear.

Using the PDE (38), together with the boundary condition
(39), we can determine the potential function at all points inA.
Then, we can determineu2+v2 from (35), or equivalently (36),
and finally T(x, y) can be determined using (37). Knowing
T(x, y), we can find the optimal node distribution̂d(x, y) by
using (26). The number of nodes needed will simply be its
surface integral overA.

All the steps in this process are trivial, with the exception
of solving the PDE (38), together with the boundary condition
(39), which is highly non-trivial. Indeed, there is no general
method for solving nonlinear PDEs analytically, and in the
vast majority of settings the solution can only be calculated
numerically.

Before moving to the study of a special case, we mention
that our potential equation (38) can be thought of as a
generalization of the linear scalar PDE (24) of [7]. As already
mentioned, [7] studies a formulation related to our own. Due
to its special form, Equation (24) of [7] was shown using
straightforward arguments, and without reverting to calculus
of variations.

D. Special case:F (x, y, d(x, y)) = Kdβ(x, y), GSD ≡ 0
As a special case, let us assume thatF (x, y, d(x, y)) =

Kdβ(x, y). Therefore, (25) becomes:

|T(x, y)| ≤ |T(x, y)|max = Kdβ(x, y). (40)

As the maximum norm does not depend on the position(x, y),
this model corresponds to a homogeneous medium. Note that
(10) and (23) are special cases of (40). In addition, we set
GSD ≡ 0, and we takeG(x, y, |T(x, y)|2) of (26) to be

G(x, y, |T(x, y)|2) =
1

K
1
β

[
|T(x, y)|2

] 1
2β .

Therefore

G′(x, y, |T(x, y)|2) =
1

2βK
1
β

[
|T(x, y)|2

] 1
2β−1

.
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Fig. 12. Optimal traffic flow (denoted by arrows) and contours of constant
potential, for the physical layer of Section VII-D, withβ = 3

8
.

Fig. 13. Optimal traffic flow (denoted by arrows) and contours of constant
potential, for the physical layer of Section VII-D, withβ = 1

2
.

It then follows that

u2 + v2 = H(x, y, |∇φ|) ,
[
K

1
β β|∇φ|

] 2β
1−β

,

and the potential equation (38) becomes

∆pφ , ∇ ·
(
|∇φ|p−2∇φ

)
= f, (41)

wheref =
[
K

1
β β

]− β
1−β

ρ, andp = 1
1−β .

Equation (41) is known in the applied mathematics literature
as p-Poisson’s equation, and is the topic of much ongoing
research [23], [24]. The operator∆p is called thep-Laplace
operator. Whenρ = 0, (41) becomes the homogeneousp-
Laplace equation. Both equations appear often in variational
problems such as our own. In the special casep = 2, which
corresponds toβ = 1

2 , thep-Poisson andp-Laplace equations
become the well known, and much easier to solve, linear
Poisson and Laplace equations.

The boundary condition (39) becomes:

|∇φ|p−2[∇φ · n̂(s)] = −
[
K

1
β β

]− β
1−β

ρb(s), (42)

Fig. 14. Optimal traffic flow (denoted by arrows) and contours of constant
potential, for the physical layer of Section VII-D, withβ = 2

3
.

Fig. 15. Optimal traffic flow (denoted by arrows) and contours of constant
potential, for the physical layer of Section VII-D, withβ = 2

3
on the upper

half of the region, andβ = 3
8

on the lower half of the region.

and is in general nonlinear, unlessp = 2 or ρb(x, y) = 0.

E. Numerical Example

As a numerical example, let us consider a topology in which
the areaA = {|x| ≤ 1.5, |y| ≤ 1}. We place a distributed
data source withρ = 100 inside the rectangle{−0.5 ≤ x ≤
0.5, 0.45 ≤ y ≤ 0.55}, and a symmetric distributed data sink
with ρ = −100 inside the rectangle{−0.5 ≤ x ≤ 0.5, −
0.55 ≤ y ≤ −0.45}. Regarding the physical layer, we assume
that GSD ≡ 0 andF (x, y, d(x, y)) = Kdβ(x, y) with K = 1,
therefore to calculate the optimal traffic flow we need to solve
(41) together with the boundary condition (42). We assume
that there are no sources or sinks on the boundary, i.e.,ρs(s) =
0, therefore (42) becomes the standard Neumann condition
[∇φ · n̂(s)] = 0.

In Figs. 12, 13, and 14 we plot the optimal traffic flow for
the casesβ = 3

8 (p = 8
5 ), β = 1

2 (p = 2), andβ = 2
3 (p = 3)

respectively. In Fig. 15 we plot the optimal traffic flow for
the case whereβ = 2

3 in the upper half{y ≥ 0} of A, and
β = 3

8 in the lower half{y < 0} of A. In the figures, arrows

© 2006 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
 obtained for all other uses, in any current or future media, including reprinting/republishing  
this material for advertising or promotional purposes, creating new collective works, for resale  
or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. 
http://dx.doi.org/10.1109/TIT.2006.876256



16

denote the direction and size ofT at the respective point, and
contours denote loci of constant potentialφ. Note that the loci
of constant potential meet the boundaries always vertically, as
we are requiring that[∇φ · n̂](s) = 0.

The plots are determined numerically, using the PDE tool-
box of MATLAB. In the caseβ = 1

2 , (41) degenerates to
the linear Poisson’s equation of Electrostatics, and MATLAB
calculates the solution using a standard Finite Element method.
In the casesβ = 2

3 and β = 3
8 , however, (38) is nonlinear,

and MATLAB solves it using an iterative method, based
on damped Newton iterations with the Armijo-Goldstein line
strategy.

As expected, in all three cases the optimal node placement
induces a traffic flow that is heaviest in the region between
the source and sink, however some of the traffic will travel
along much longer routes. As already discussed, the intuition
behind this result is that, ifall packets use the short, direct
routes, then the congestion in the central region will be so high
as to require a very large number of nodes to be supported,
more than the number of nodes needed if some of the packets
take a longer, but much less congested, route.

Equally expected should be the fact that, the largerβ be-
comes, the smaller the traffic that uses longer routes becomes.
Indeed, as we see from (40), the larger the value ofβ, the
easier it is for the network to support high levels of traffic, by
increasing the node density, therefore short, congested routes
do not come at a high cost. On the other hand, whenβ is
small, as the traffic flow becomes larger, the number of nodes
needed to support it increases very fast, so it is best for the
routes to spread out as much as possible.

Perhaps not expected is how dramatically the traffic pattern
changes with even moderate changes in the value ofβ.
This suggests that network designers should carefully study
the physical layer of their network, and deploy the nodes
accordingly.

F. Dirichlet Boundary Conditions

Going back to the calculus of variations derivations of
Section VII-B, note that we used the fact that all admissible
traffic flows must satisfy (20), in order to show that the right
hand side of (31) is zero. Then, using (30), (32) follows
immediately, and after a few more derivations we arrive at
(33). Note, however, that the right hand side of (31) will also
be zero if we arbitrarily require thatφ = 0.

Formally, let us partition the boundary curveC of A into
two parts,C1 andC2, and let us require that:

[T · n̂](s) = −ρb(s), C(s) ∈ C1, (43)

φ(s) = 0, C(s) ∈ C2. (44)

Together, these assumptions guarantee that the right hand side
of (31) is zero, and, replicating the derivations of Sections VII-
B and VII-C, we have thatT is given by (37), where the
potential function φ can be determined by solving (38),
together with the new mixed boundary conditions (43) and
(44). Note that, in the special case when (40) holds with
β = 1

2 , and (41) becomes Poisson’s equation of Electrostatics,
(44) means thatC2 is a grounded conductor.

Fig. 16. Optimal traffic flow (denoted by arrows) and contours of constant
potential, for the network of Fig. 13, when we substitute, on the upper and
lower boundary, the Neumann condition (22) with the Dirichlet condition (23).

The boundary condition (43) specifies, at the boundary
sectionC1, the value of the component ofT that is vertical to
the boundary. As we discussed in Section V, this component
equals the rate with which data traffic enters (or leaves)C1.
On the other hand, the boundary condition (44) specifies that
φ is constant on the boundary, hence its gradient∇φ must be
vertical to the boundary. As the traffic flowT is parallel to
∇φ, it follows that the component ofT that is parallel to the
boundary is zero. In short, (43) places a constraint only on
the component ofT that is vertical to the boundary, and (44)
places a constraint only on the component ofT that is parallel
to the boundary.

The physical interpretation of (44) is that there is a part
of the boundary, i.e.C2, through which packets are free to
come and go, so long as they hit the boundary vertically.
This constraint means that the packets should approachC2

as fast as possible, without more nodes than necessary being
spent on any transport parallel to the boundary. Therefore, the
boundaryC2 models a fixed infrastructure network of very
large capacity, that can move sources and sinks around in order
to help the wireless network reduce its resources as much as
possible.

In Fig. 16 we calculate the optimal traffic flow for the
network of Fig. 13, where we substitute on the lower and upper
boundaries the Neumann condition (43) with the Dirichlet
condition (44). Clearly, some of the created packets are now
diverted to the upper boundary, which acts as a sink, while
some of the packets arriving at the distributed sink have
actually started from the lower boundary, which acts as a
source. The two boundaries may be thought of as belonging to
the same infrastructure network, that can move packets around
with a negligible cost.

We now summarize the findings of this section in the form
of a theorem:

Theorem 2: LetA be a compact region, on the inside of
which sources and sinks are placed, as described by the
information density functionρ(x, y). Let ∂A = C1 ∪C2, with
C1 ∩ C2 = ∅. Along C1, information is entering the network
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with a prescribed net rate ofρb(s). Along C2 the net rate
which which information is entering the network is subject to
optimization. Let the minimum node density needed to support
a traffic flow |T(x, y)| and the sensing/delivery of information
at location(x, y) be equal toG(x, y, |T(x, y)|2). LetG′ be the
partial derivative ofG with respect to the third argument, and
let H(·) be the function defined by writing4aG′2(x, y, a) = b2

as a = H(x, y, b).
The optimal placement of nodes, that minimizes the number

of nodes needed to transfer the data, induces the traffic flow

T(x, y) =
1

2G′(x, y, H(x, y, |∇φ|))
∇φ,

where the functionφ satisfies the scalar nonlinear differential
equation

∇ ·
(

∇φ

2G′(x, y,H(x, y, |∇φ|))

)
= ρ.

together with the boundary conditions

[T · n̂](s) = −ρb(s), C(s) ∈ C1,

φ(s) = 0, C(s) ∈ C2.

VIII. E XTENSIONS

A. Networks with multiple traffic types

Until now, it was assumed that there is only one type of
traffic in the network. Therefore, if more than one traffic
stream flows through a location in the network, we are allowed
to perform vector addition, and abstract the flow of traffic at
that location by a single vector, the traffic flow function at that
point.

If, however, there arem > 1 different types of traffic, each
of them will have to be associated with its own traffic flow
function Ti, and its own information density functionρi, and
boundary information density functionρi

b, for which we will
have:

∇ · Ti = ρi, i = 1, . . . ,m, (45)

ρi
b = −Ti · n̂, i = 1, . . . ,m. (46)

A point in the network through which different types of
traffic cross, will have to divide its resources to support all
traffic types, therefore (26) will have to be extended to:

d(x, y) ≥ G(x, y, |T1(x, y)|2, . . . , |Tm(x, y)|2).

Our new problem is the minimization of∫
G(x, y, |T1(x, y)|2, . . . , |Tm(x, y)|2) dS,

subject to (45) and (46).
This optimization problem in principle can be studied using

calculus of variations techniques, following the methodology
of Section VII where now the optimization must be over2m
functions, i.e., the componentsui and vi for each of them
traffic functionsTi = uix̂ + viŷ. Such an investigation goes
beyond the scope of this work. We note, however, that this
problem was investigated in [6].

B. Alternative transport optimization formulations

Our formulation could be applied to study a variety of
problems, other than the problem of minimizing the number
of nodes in the network. Indeed, from a mathematical point of
view, our aim was to solve the optimization problem (27), and
the quantities appearing in (27) could also admit alternative
interpretations.

For example, we could have defined a slightly different
setting in which the density of nodes is fixed, and not subject
to optimization, and the costG(x, y, |T(x, y)|2) could be the
power needed to support a level of traffic intensity|T(x, y)|.
This problem was first considered, with a similar but more
restricted formulation, in [7]. Also, we could take the density
of the nodes to be fixed, and the costG(x, y, |T(x, y)|2) to be
the delay incured locally under a traffic intensity|T(x, y)|.

Alternatively, we could use this formulation to determine
if there is a traffic flow that can transport all the created
traffic in a wireless sensor network in which the placement of
resources (nodes, energy, etc.) is fixed and not subject to any
optimization. In this case, the cost functionG(x, y, |T(x, y)|2)
would be very small when|T(x, y)|2) is below some threshold,
which reflects that the resources at the location(x, y) can
handle the traffic, and would grow very steeply as the threshold
is reached, to reflect the fact that the traffic must not exceed
the threshold.

Even more generally, our formulation could be viewed as
an abstract problem in optimal transportation. In the most
abstract setting, functionsρ andρb specify the rate with which
some indeterminate commodity is created or absorbed inside
or on the boundary of an areaA, T(x, y) specifies the rate
and direction with which the commodity flows through point
(x, y), andG(x, y, |T(x, y)|2) is the cost of transporting this
commodity through a point(x, y). The optimization problem
is how to minimize the total cost needed for the transport of
the commodity.

In contrast with other problems in optimal transportation,
for example the Monge-Kantorovich formulation [25], [26],
the transportation cost is not only a function of the distance
covered by the transported commodity, but in general also de-
pends on the competition among the transported commodities
for the transportation resources along the way. This aspect
of our formulation was forced by the nature of the wireless
channel, but may be relevant in other transportation settings
as well.

IX. CONCLUSIONS

We consider a setting in which a spatially distributed set
of sources is creating data for a spatially distributed set of
sinks. Our problem is how to optimally deploy a network of
wireless nodes, so that all the data can be sensed at the sources,
transported to the physical locations of the sinks, and delivered
to the sinks, using the minimum number of nodes.

We make the critical simplifying assumption that the net-
work is massively dense [13], i.e., there are so many sources,
sinks, and nodes, that it is best to describe the network in terms
of macroscopic parameters, such as their spatial distribution,
rather than in terms of microscopic parameters, such as their
individual placements.
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We first focus on a particular physical layer model that is
characterized by the following assumptions:(i) the wireless
nodes must only transport the data from the location of the
sources to the location of the sinks, and do not need to
sense the data at the sources, or deliver them at the sinks
once the data arrive at their physical locations, and(ii) the
nodes have limited bandwidth available to them, but they use
it optimally to locally achieve the network capacity. In this
setting, the optimal distribution of nodes induces a traffic flow
that resembles the electric displacement that will be created if
we substitute the sources and sinks with positive and negative
charges respectively. The analogy between the two settings is
very tight, and many features of Electrostatics have a direct
interpretation in wireless sensor networks.

Under a more general physical layer model, the optimal
traffic flow no longer corresponds to an electrostatic field.
Nonetheless, we can derive its form in terms of a scalar,
nonlinear partial differential equation, by use of calculus of
variations techniques.

Our work finds the most efficient deployment of networks,
that strikes the most favorable balance between having short
routes and keeping the levels of congestion down. Our numer-
ical examples show that the optimal placement of nodes, and
the traffic flow it induces, can heavily depend on the precise
capabilities of the physical layer. Therefore, network designers
need to carefully study the physical layer of the network to be
created, before deciding on how the nodes should be deployed.

As discussed in Section VIII-B, the optimization problem
we are studying readily admits alternative interpretations,
therefore our work may also be of use in settings where we are
interested in minimizing the energy per packet, or the delay
per packet, and so on. Our work may also be viewed as an
abstract problem in optimal transportation, and so may be of
interest outside the field of wireless networks.

As in [11] and [12], our results only formally hold as the
number of nodes goes to infinity. However, they are also
relevant in networks with a finite (but relatively large) number
of nodes. To benefit from our formulation, network designers
should perform the following steps:

1) Approximate the distributed sources and sinks by an
information density function.

2) Decide on the shape of the functionG(x, y, |T(x, y)|2)
of (26), taking into account the various properties of the
physical, MAC, routing, and sensing layers, etc.

3) Calculate the optimal spatial density of nodes, the total
number of nodesN , and the induced traffic flow using
our formulation.

4) Place theN nodes so that they form a node density func-
tion resembling as close as possible the optimal node
density function. The accuracy of this approximation
will depend on how largeN is.

In the special case where (10) holds and the optimal traffic
flow resembles an electrostatic field, there is a very intuitive
and straightforward way of performing the last step, using
electric field lines and constant potential loci. In this case,
the optimal node density is proportional to the square of the
Electrostatic field|E|2 = |E| × |∇U |, as specified by (10).
Therefore, we can plotn electric field lines andm loci of

(a)

(b)

(c)

Fig. 17. Electric field lines and constant potential loci created by a single
positive charge of magnitudeq and a single negative charge of magnitude
−q. (a) q = 1 Cb. (b) q = 2 Cb. (c) q = 4 Cb.
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constant potential, and then place one node in each intersection
point between an electric field line and a constant potential
locus. By construction, the spatial density of intersection
points is proportional to|E| × |∇U |, as required. In this
manner, a number of nodes that does not exceedn ×m will
be deployed. The parametersn andm must be chosen so that
the resulting number of nodes is close toN , and the network
looks locally like a square grid.

As an example of this process, in Fig. 17 we have plotted
electric field lines and constant potential loci that are created
by a single positive charge of magnitudeq and a single
negative charge of magnitude−q, and for the three cases
q = 1 Cb, q = 2 Cb, q = 4 Cb. According to the discussion
of the previous paragraph, these plots have an alternative
interpretation: The intersections of lines is where we need to
place nodes so that all the information created at a source of
q bps is transported to a sink ofq bps, and the optimal number
of nodes is needed. Note that, according to (10), in order to
double the traffic, we need to increase the number of nodes
by a factor of4. In order to find places for4 times more
nodes, and still have the network locally resemble a square
grid, we need to double the number of electric field lines and
double the number of constant potential loci. Also note that, as
the number of nodes increases, the network locally resembles
more and more accurately a square grid. Each electric field
line represents a route used by packets, and the number of
hops needed for the packets to go from the source to the
destination equals the number of times the line intersects the
loci of constant potential.

The previous discussion is intuitive, but clearly imprecise,
and so points to an issue of fundamental importance for this
work, namely the calculation of the rate with which the perfor-
mance of discrete networks converges to the performance of
their corresponding massively dense networks as the number
of nodes increases. This rate will depend, among other factors,
on the physical layer parameters, the particular MAC and
routing protocols, the use or not of network coding, the use
or not of cooperation among the transmitters, how the nodes
are placed, for example deterministically, or randomly with a
prescribed spatial density, etc. To calculate the rate, we will
need to be able to determine precisely the performance of
wireless sensor networks of arbitrary size and topology. Re-
lated works have focused on calculating only scaling laws, and
then on homogeneous topologies, which are more amenable to
analysis than our own non-homogeneous topologies [11], [12].
Therefore, calculating this rate of convergence for any setting
of interest seems to be a major undertaking and, despite its
obvious significance, is out of the scope of this work.
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