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Abstract— A spatially distributed set of sources is creating data but rather by the environment in which the nodes exist.
that must b(—?j delivered to.a spatlally dIStI’IbUted. set of sinks. A Therefore, for some applications, for example the sensing of
network of wireless nodes is responsible for sensing the data at thetemperatures in a planted area, the data that are sensed in
sources, transporting them over a wireless channel, and delivering . hbori | t’ d if th d dinat
them to the sinks. The problem is to find the optimal placement nglg 0'_"”9 ;ensors are correlated — Ir ine ng es c.oor Inate
of nodes’ so that a minimum number of them is needed. W|th thell’ ne|ghb0rs and CompreSS the data n a d|Str|bUted

The critical assumption is made that the network ismassively manner, the total amount of traffic that must be received
dense, i.e., there are so many sources, sinks, and wireless nodegy the data collectors will be significantly reduced [4], [5].
that it does not make sense to discuss in terms of MICroscopic aAnother feature of wireless sensor networks is that. in most

parameters, such as their individual placements, but rather in licati it i ted that il be totallv i
terms of macroscopic parameters, such as their spatial densities, 2PPlICalIONS, 1L 1S expected that sensors will be totally Im-

Assuming a particular interference-limited, capacity-achieving Mobile. This can significantly simplify the design of the
physical layer, and specifying that nodes only need to transport routing protocols [6], [7]. On the other hand, it is expected
the data (and not to sense them at the sources, or deliver that the sensors will typically be operating using a non-
them at the sinks once their location is reached), the optimal \enewaple battery supply, therefore it is critical that they use

node placement induces a traffic flow that is identical to the . . g .
electrostatic field created if the sources and sinks are replaced (€Il available energy as efficiently as possible [8], [9], [10].

by a corresponding distribution of positive and negative charges.
Assuming a general model for the physical layer, and specifying .
that nodes must not only transport the data, but also sense B- Massively Dense Networks
g;:g‘a rﬁte:lTeo?Ol:wg;;jsa?sd gievltlavr?rt:;eg] ztcgl‘aer Sg;"nsliynt:aer 05;':22" It is envisioned that, in the future, wireless sensor networks
differential equation found by calculus of variations techniques. may consist of a large number.of n_odes, potentially O_n the
The proposed formulation and derived equations can help in Order of many thousands [3]. At first, it may seem that this can
the design of large wireless sensor networks that are deployed create insurmountable difficulties in their design and analysis.
in the most efficient manner, not only avoiding the formation However, recent work has shown that the large number of
of dbOFt'e”ECks’ th‘t alsod Srt]”k'.”g ttue gp?mal blf"tancfe”bet""ﬁe”t nodes in a network could actually be a blessing in disguise,
reucing congestion and having the data packets 1oflow Shott 5 it can allow researchers to make important simplifying

routes. .
Keywords: Capacity, Electrostatics, Node placement, Physical 8SSumptions. . . . '
layer, Wireless ad hoc networks, Sensor networks. For example, in [11] the authors investigate the asymptotic

behavior of the capacity of a class of two-dimensional random
networks as the number of nodesapproaches infinity, under
. INTRODUCTION a uniform traffic assumption. The authors present a scheme
A. Wireless Sensor Networks that achieveswith high probability (w. h. p.), i.e., with

Wireless sensor networks are comprised of sensors tR&gbability approachingl as » approaches infinity, a rate
are equipped with wireless transceivers and so are ableofocommunication equal ta:;(nlogn)~2, wherec; is a
form a wireless network [3]. The sensors use this network fultiplicative constant, from each node to its randomly chosen
coordinate their sensing activities, and so enhance their sendiggtination. The authors also show that, with high probability,
capabilities, and also to relay the data they sense to specifieé 7 nodes cannot send data to their destinations with a
data collection locations, typically referred to as data sinksPer-node rate of communication equal ¢gn™ 2, where c;

These networks differ from generic wireless ad hoc nefs @ multiplicative constant. These results are based on a

works in that the traffic is not created by the nodes themselv@sopagation model under which power decays polynomially
. _ . with distance, and a given Signal to Interference and Noise
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and do not need to either sense the traffic at the sources,
or deliver the traffic to the sinks, once it arrives at their
physical locations.
(B) We assume a specific relation between the traffic that can
be transported through a locatidm,y), and the node
\ / densityd(x,y) at that location. In particular, the amount
of traffic that can cross a linear segment of incremental
lengthe, centered atz, y), is at mosk|T(z, ¥) |max, and:

N

DISTRIBUTED
DATA SINK
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DISTRIBUTED f\\
DATA SOURCE
o>

wireless nodes

Fig. 1. A set of wireless nodes is deployed in an area to support the sensing, |T($> y)‘max =Cv d(x7 y)v @
transport, and delivery of data from a distributed traffic source to a distributed . . . - .
traffic sink. wherec is a constant. As discussed in detail in Section I,

this assumption is justified for a physical layer in which

() the bandwidth available to the nodes is limited, there-
macroscopic quantities, such as the spatial density of nodes fore (ii) adjacent transmissions interfere with each other,
d(z,y) at a particular location(z,y), and the total traffic and (i) the nodes in each location share the bandwidth
that goes through this location. In this setting, it is shown in the most efficient manner, so that the network locally
that the minimum-hop route connecting two arbitrary points operates at its capacity bound. Therefore, the network
is identical to the path followed by a ray of light, traveling behaves locally as the networks studied in [11], [12].
between the two points, if we assume that the network is|n Section IV we show that, under these two assumptions,
substituted by an optically inhomogeneous medium whogge optimal spatial density of nodes induces a traffic flow
index of refraction equals/d(z,y). Therefore, an important that is identical to the lectrostatic field that will be induced
problem in wireless networks can be shown to be a fundamenthe distribution of sources is substituted by an identical

tal and well-understood problem in Optics. distribution of positive charge, and the distribution of sinks
is substituted by an identical distribution of negative charge.
C. Overview of work Many aspects of Electrostatics are shown to have a straightfor-

. . . . ard and illuminating interpretation in the context of wireless
In this work we investigate a setting that, to the best g o, .
R -~ sepsor networks, notably boundary conditions along the in-
our knowledge, has not attracted significant research intergs . . ) . .

terfaces of different dielectric materials, Thomson’'s theorem

until now. As shown in Fig. 1, we consider an environment in ' )
. . ) n the placement of charges on conductors, and the potential
which there are a spatially distributed set of data sources anﬁuﬁction

spatially distributed set of data sinks. We have availablealargein Section V we slightly modify the network model of

number of wireless nodes, to be used@the sensing of the Section Il, and in Section VI we introduce a general physical

data, (i) the transport of the data from the source locations . .
to the sink locations, andii) the delivery of the data to the ayer model, that does not include Assumptions (A) and (B).

sinks once their location is reached. In particular, we substitute (1) with:

We are interested in calculating the minimum number of IT(z,y)|max = F(z,y,d(x,y)), 2
nodes needed to support the traffic, and the associated place- . . _ . .
ment of nodes that achieves this minimum. In other word here F'() is some grbltrary fun<_:t|on. Different choices of
we are given a task (the transfer of data from the sourc §') cor.respond to different physical layers models. We also
to the sinks) and a set of resources (the wireless node lude in our model thefa_ctthat nodes must noton!ytrgnsport
and we would like to determine what is the minimum o?.é data, but also sense it at the sources and deliver it at the

resources needed, and how this minimum of resources shotllyS: on(_:e their location is reached. L )
be deployed to achieve the task. n Section VIl we use calculus of variations to determine the

%otimal distribution of nodes, and the traffic flow it induces,

Note that a fundamental tradeoff exists: On the one han L der th | phvsical | del of Section VI. Th
the traffic must take relatively short routes, so that not ma ier the general physical layer model of section Vi. he
timal distribution is given in terms of a scalar partial

nodes are needed for each route. On the other hand, it n‘? rential tion (PDE). which in aeneral is nonlinear. Th
important that the traffic is sufficiently spread, to minimizéj erential equatio ( ), lich In general IS nontinear. 1he
sults of Section IV are contained in the results of this section

the effects of interference. These two goals are competh{ ' a special case
and the optimal placement of nodes should strike a balance . ' . . .
P P n Section VIII we briefly discuss extensions of our work

the most favorable way. that go beyond th f thi . In particular, w
As in [13], the assumption is made that the network igia go beyo ¢ scope o S Paper. particuiar, we

. . : Squss the case of networks with different types of traffic,
massively dense, i.e., there are so many sources, sinks, an

nodes available, that it is best to describe the network %ewﬁglpe“scsazzrr]]sgfr ggtrwfoorrkn;u(lsggr? alg arlga;)rlr;z';lrt:;/einpéc;tl);emasn q
terms of macroscopic parameters. In Section II, we deﬁ'lé%er minimization), and the inter retaF\)tion of our work >;ls a
these parameters in detail. gy ' P

We first study the problem under two specific assumptio more abstract problem in optimal commodity transportation.

) ] n[sn' Section IX we present some concluding remarks, and
(A) Wireless nodes only have to transport the traffic from

the locations of the sources to the locations of the sinksFormal definitions ofT andd(z,y) appear in Section I.
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in particular discuss how our results could be used in measured inbps/m. It is defined so thafi) its direction

practical setting to optimize the performance of wireless sengmincides with the direction of the flow of information at

networks with a modest number of nodes. point (x,%), and (i) €|T(x,y)| equal$ the rate with which
information crosses a linear segment of incremental leagth
II. NETWORK MODEL that is centered ofiz, y), and is perpendicular td(x, y).

In this section we first introduce three macroscopic quan-When viewing a specific location of the network, one
tities: the information density functidnp(z,y), the node may observe many distinct streams of traffic, possibly along
density functiond(z, ), and the traffic flow functiorT (z, y). different directions. However, the fact that the traffic streams

We then derive an equation linkingz, y) and T(z, y). all carry the same type of pac'k.ets, allows us to combine
them by performing vector addition, and thus abstract the
. . movement of data at the microscopic level by a simple
A. Macroscopic Quantities macroscopic quantity, the traffic flow function at that location.
We consider the unbounded two dimensionglplane, on QOur argument is identical to the argument used to justify
which are placed distributed sources and sinks of informatiafhe abstraction of the flow of a liquid in terms of a single
We model the sources and sinks jointly, by the continuowygctor function: Microscopically, different molecules of the
information density function p(z,y), which is measured liquid will be traveling along different directions and with
in bps/m?. At locations (z,y) where p(z,y) > 0, there different velocities. However, when the liquid is viewed from
is a distributed data source, such that the rate with whielhy adequate distance, a single dominant traffic direction and
information is generated within a surface of infinitesimahtensity emerge, that can be described jointly in terms of a
areae, centered at(z,y), is ep(z,y). At locations where flow vector.
p(z,y) < 0, there is a distributed data sink, such that the
fi:lrrlfgr:(? saiga,t;;,rli;atieq\)/\(/g?lyrw).a surface of infinitesimal AL The divergence of the traffic flow function
We require that the total rate with which sinks must absorb Let Ag be a surface on they plane, of arbitrary shape.
data is the same as the total rate with which the data is crea¥@l Will denote its boundary curve byA4, and its total area

at the sources. This requirement translates into the equatid® |4o|. For information to be conserved, it is necessary that
the rate with which information is created in the area is equal

/p(x, y) dS =0, (3) to the rate with which information is leaving the area through

its boundaryd Ag. In other words, the following equality must
where the surface integral is taken over the whole plane. hold:

To fa_C|I|tate the traqsfer of information from .the sources p(z,y) dS = [T(z,y) - A ds, (5)
to the sinks, we are given a large number of wireless nodes, Ao 940
that we are free to place anywhere on the plane. Because

ere A is the unit vector normal to the boundary curve
assume the number of nodes to be very large, we will descn

o at the point(x,y) on 0Ap, and pointing outsided,
%nd the integral on the right hand side is the path integral
4of the function[T(x, y) - A]. This function represents the rate
égeasured |HL) with which information is leavingd at the

int (z,y) of its boundarydAy.Equation (5) must hold for
any surfaced,. Therefore, it will also hold for a sequence of

. surfacesA; that all include in their interior an arbitrary point
N = /d z,y) dS. ) (z0,¥0), and are such that their aregt;| — 0. Applying (5)

We stress that the assumption that the network is massivEly 4= we have:

dense does not imply that the number of nodéss infinite, ' "

but rather thatV is very large. A similar situation occurs in /Ak plz,y) dS = féAk[T(I’ y) - A ds. ©)
Electromagnetism, where we model the electric charges that . X

exist in a medium by a density function, without assuming Sincep(z,y) is assumed continuous, we have, by a known
that the total number of ions or their net electrical charge \geeorem of elementary calculus [14], that

infinite.

In networks, the flow of information is typically described in /Ak p(z,y) dS = p(zo,y0) x [kl +o(|Ak])- (7
terms of the rate with which information arrives at individual

nodes. However, in our setting, we have a massively densé=0mbining (6) and (7), dividing byAy|, and taking the
network, in which the rate of arrival of information in allmit with respect tok, we arrive at

particular node is a microscopic quantity. In this setting, we 1 R N

can best model the flow of traffic in the network in terms of thé(%0: %0) = 151;0 A b [T(z,y) 0] ds = V - T(xo,v0)-
traffic flow function T(x, y ), which is a macroscopic quantity. § (8)

T(z,y) is a continuous vector function whose magnitude is
SIf x is a vector, by|x| we denote its length.

2We denote scalars by lower case letters, and vectors by bold capitals. “We write f(x) = o(x) to denote thatim,_.o @ =0.

which are microscopic quantities, but rather in terms of a

macroscopicquantity, thenode density d(x,y), measured
in nodes/m?, and assumed continuous. The total number
nodes,N, is given by
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The limit in (8) is defined as theivergence of the vector
function T, at the point(xg,yo) [15]. The divergence of the
traffic flow function measures the degree with which the traffic T o °
flow increases (when information in injected in the network) —

or decreases (when information is removed from the network) —

T

at the particular poin{zo,yo). In cartesian coordinates, the m+
divergence is given by the formufa- T = &L= + aaTyy , however T (X0 0) —W:
its intuitive meaning can best be conveyed by the limit of (8), —» < fk._.\..‘/'\:/_.\./kj
which is independent of the choice of the coordinate system. . . o e I
To summarize, we have showed that o2 A R

—] >
vV-T=p. (9) j ° S N

Note that there is nothing particular to wireless sensor net- /4:. * et ®
works, or to communications for that matter, in the derivations -l oo e

leading to (9). In fact, (9) is a well known equation of
hydrodynamics. In that contexT,(x,y) describes the flow of Fig. 2. A square of side, centered at the poiftzo, o). If the node density

some liquid, angv(x, y) is modeling its sources and sinks. at that pointisi(zo, yo), then there are?d(zo, yo) nodes in the square and,
with high probability, a ‘highway system’ can be constructed that consists of

O(e+/d(z0,yo)) highways, each relaying: W bps from the left side to the
[1l. BANDWIDTH-LIMITED CAPACITY-ACHIEVING right side.

PHYSICAL LAYER

In this section, we first specify a particular model for the o _
capabilities of the nodes at the physical layer. We then proceéd All successful transmissions happen with raié bps,
to show that, under this model, the traffic flow must be irrotavhich we implicitly take to be a function gf and the available
tional. Although the model will be significantly generalized ipandwidth.
subsequent sections, it is worth to study it separately, as it lead§onsider a locatiotizo, yo) of the network. We would like

to a particularly simple solution for the optimal placement dP determine how much traffic can pass through that location,
nodes. given that the node density theredéz,, yo). Technically, we

want to establish the maximum value for the ndfitzo, yo)|.
For this, let us construct a small square of sideentered at

(z0,¥0), and oriented so that the traffic flow functi®iz, yo)

We make the assumption that no nodes are needed to s§8Sgytical to one of its sides, as shown in Fig. 2. The precise
the data at the sources, or deliver the data to the sinks opgBnber and placement of nodes in the square will depend on
the data reach their physical locations. For now, the only tagky the network is constructed, but a reasonable assumption
we assign to the nodes is the transport of the data from t&nat the nodes are thrown randomly in the square, according
physpal locations of the sources to the physical locations gf 5 spatial Poisson process of intensityo, yo). Therefore,
the sinks. o _ _ the expected number of nodes in the square willrbe=

This assumption is reasonable if there is a secondary ”E‘Id(x07yo). We need to calculate the maximum volume of
work of specialized nodes, exclusively dedicated to the sensipgsfic that can be carried into the left edge and out of the
and delivery of the data. It is also reasonable if the moﬁbht edge of the square.

_challenging task of th_e _node:f, is the transport of the data, sOrpig problem was recently studied in [12], where it was
it is acceptable to optimize with respect to this task only, and,o\n (as an intermediate result) that the maximum possible
then deploy a few extra nodes where needed to handle {igsic that can be carried from the left side to the right side
sensing and the delivery tasks. of the square O (W /n). This is achieved by the use of

Let the wireless nodes be communicating over a COMMANnighway system’ that consists &(,/n) highways, each

wireless channel of some finite bandwidth. Nodes can emﬁbhway consisting 0f9(y/n) wireless nodes, and carrying
transmit or receive at the same time. When receiving, a nogleW bps. The constantk, captures the effects of a node
is susceptible.tq thermal noise of pow¥r same for all nodes. having to locally share the channel with competing nodes.
When transmitting, a nod& uses a power leveP, same for hg highways are constructed in a manner that ensures that
all nodes, and a node at a distanceX — Y| will receive the they can carry their traffic simultaneously, without being
signal with powerK P|X — Y™, where K" is a normalizing o enyhelmed by the interference of each other. As discussed
constantand: > 2. Let{X);; k € 7} be the set of transmitting i, the introduction, this result is proved by percolation theory,
nodes at a given time instant. The transmission from n¥ge 5.4 is used in the tightening of a famous previous result by
to node.X;; is received successfully iff Gupta and Kumar [11]. It only holds with probability going
PK|X; — X;|7« >3 to unity asn — oo.
N + ZkeT,k;ﬁi PK|X; — X,;|~ : To conclude, for the physical layer we are examining, the

A. Physical Layer

This means that a reception is successful iff the Signal t()sf(n) — 6(g(n)) iff k1f(n) < g(n) < kaf(n), for all n > no, and for
Interference and Noise Ratio (SINR) is above a given threshalghmeny, k1, k2.
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maximum amount of traffic that can cross a linear segment of C

lengthe is on the order otV /n = We/d(xo, yo). Therefore,
a reasonable assumption in this case is that:

IT(2, )| < |T(2,y)|max = c\/d(z,y), (10)

for some constant: that is proportional to the available
bandwidth.

Clearly, our discussion does not constitute a proof of (10),
but rather a justification for the use of (10) as a reasonable
model of a more complicated reality.

S

B. The curl of the traffic flow function

We now show that, under the model of Section IlI-A, amoni9- 3.  The setup of the proof that the optimal traffic flow function is
all traffic flow functions that satisfy (9), the one that needygotatonal
the smallest number of nodes to be supported must also be
irrotational, i.e. its curl must be zero everywhere: to show this mathematically. Indeed, outside the sfripis
_ identically zero, and inside the strip it can be shown that the
VxT=0. 1y . : ) o
divergence is zero by a direct application of the definition (8).
The curl V x T of atwo dimensionalector T at a point  As the divergence operator is linear, we have:

is a scalar function defined as follows:
(0, 90) V- (To+T1) =V -To+V T =p,

(12) and it suffices to show that the traffic flow functi¢f, +T)
can be supported by fewer nodes. Indeed Ngtbe the total
where{A4;} is a sequence of surfaces of vanishing area, thaimber of nodes needed to suppditand No..1 be the total
contain (z, o) in their interior, and the integral of the rightnumber of nodes needed to supp®est+ T;. We have:
hand side is the line integral of the functidnover the curve Z(No — Not1)
0A;, (which is taken to have a counter-clockwise direction). 0 o+t
Intuitively, the magnitude of the curl at a poifito, o) is a = /(\To\2 —|To+T1?) dS
measure of how much circulation around the pdin, yo) S
the functionT has. The circulation is counter-clockwise if the
curl is positive, and clockwise if the circulation is negative.

VxT2 lim 224 "~
| Ay |—0 | Ag|

J(ToP = Tof? = [Tif? —2To T as
S

In cartesiachoorginates, the curl qf a functiqr_1 is given by — _/ 2 dS+/ 2T -1 dS
VT = (%t — %) A more detailed exposition on curl, 5 s

with its generalization in the three dimensions (which is a
vector function) can be found in [15].

We now prove (11), by assuming that it does not hold anfhe first equality comes from using (10) with the equality, and
arriving at a contradlctlon.. Ip particular, suppose that the ”aﬁﬁbting that the function, andT,+T, differ only within the
flow Ty that needs the minimum number of nodes has a nogyrfaces. The last one comes from applying (13). It follows
zero curl at some point in space. It follows from (12) thahat for a sufficiently small value o, the last expression is
there Is a curvel, of length L_, along which Fhe I!ne integral positive, and so the traffic floW, + T, can be supported by
of Ty is non-zero. By choosing a proper direction farwe 5 smajler number of nodes than the traffic fldy. Therefore,
can assume that the line integral is positive: we arrive at a contradiction, so (11) must hold.

= -S| +2657{T0'df = —¢2|S| + 2edp.
JC

féTO ~ds=p>0. 13) IV. ANALOGY WITH ELECTROSTATICS

As shown in Fig. 3, we form around a strip S of A. Homogeneous propagation environments
infinitesimal and constant width Becausé is infinitesimally In the previous sections, we proved that the traffic flow
small, the area of the strip can be taken to|Bp= ¢ x L. function must satisfy (9) and (11). These equations jointly do

We construct an auxiliary vector functidn, in the follow- not uniquely specify the traffic flow. Indeed, provided there
ing manner: Outside the stri§, T; = 0. Inside the strip, at a is a solutionT, that satisfies both of them, then so does
point (x,y), T; = —et, wheret is a unit vector tangential t8, T, +c, wherec is a constant vector. However, by Helmholtz’s
at the point wheré€ is closest to the pointz, ), and with the theorem [16], it follows that the solution to (9) and (11) exists
same direction ag. Therefore, we construck; to resemble and is uniquely specified if, in addition, we require that the
the flow of a small quantity of liquid around a closed hose dfaffic flow is zero at infinity:T|,, = 0. Assuming that the
impermeable boundaries, which gaaginstthe average flow traffic sources and sinks are constraint over a finite region,
of Ty in S. By its physical interpretation, it is clear th@ this is a reasonable boundary condition to take, as there is no
has a zero divergence everywhere. It is also straightforwarded for the traffic flow to arrive at the sink by first going to
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Fig. 4. Field lines (in thin black) and lines of constant potential (in thiclFig. 5. Field lines (in thin black) and lines of constant potential (in thick
gray), in a two dimensional topology consistingfpositive singular charges gray), in a two dimensional topology consisting of a singular positive charge
of equal magnitude, and a single singular negative chargé wines that and a linear uniform distribution of negative charge, of equal total magnitude,
magnitude, placed in a homogeneous dielectric. placed in a uniform dielectric.
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infinity and bacR. To summarize, it follows by Helmholtz’s

theorem that the equations ) _ ) ) _
for solving Electrostatics problems in particular. In this, and

V:-T=p, VxT=0, Tle=0, (14) the following examples of this section, we use the specialized
software tool of [17]. As is standard in Electrostatics, in the
igure we denote the electric field Hield lines. These are
efined in the following manner: The field line crossing a point
Q/,y) is parallel toE(z,y), and the density of field lines at
]that point is proportional to the magnitud(zx, y)|.

uniquely specify the optimal traffic flow function. Once th
optimal traffic flow is known, by solving the system (14), th
corresponding optimal node density can easily be derived,
applying (10) with equality.

However, it is a basic fact of electrostatic field theory [16
that equations (14) also uniquely specify the electric dis- The above figure also has an interpretation in the context
placementD induced by a two-dimensional electric chargef wireless sensor networks. In particular, the field lines show
densityp(x,y) in a homogeneous dielectric (for example fre¢éhe optimal packet trajectories in an environment in which
space). Note that, in homogeneous dielectrics, the electribere are5 singular traffic sources of equal magnitude, and
displacemenD is simply proportional to the electric fiell, a single, singular traffic sink at the center, collecting all the
i.e., D = e.€0E, whereg, is the permittivity of free space created information. As there is a convergence of field lines
ande, is the relative permittivity of the dielectric (equal totowards the central traffic sink, more nodes will be placed
1 for the case for free space). Note also that in the chargeound it, in order to support the large volumes of traffic, in
densityp we only count free charges, and not charges that aecordance to condition (10) taken with equality.
induced by the polarization of the dielectric. Therefore, our ) ) ) )
optimal placement problem is identical to a standard problem”S & second example, in Fig. 5 we plot the field lines
of Electrostatics, namely the determination of the electrlf & toPology consisting of a singular positive charge, and

displacement (equivalently the electric field) in a homogeneofisdistribution of negative charge, of equal total magnitude,
dielectric, in the presence of a distribution of free electri@lond a horizontal linear segment. The field lines of the figure
charge. are also the trajectories of packets in a topology where the

As an example, let us consider the topology of Fig. 4 ipositive and the negative charges are substituted with a traffic

which we have placed in a homogeneous dielecirositive SOUrce and a traffic sink respectively.

singular charges of equal magnitude around a single singulaizg expected, the optimal node placement induces a traffic
negative charge ofy times that magnitude. The inducedioy that is heaviest in the region between the source and
electric displacement (and the associated electric field) cgfa sink. The intuitive explanation is that the routes through
be calculated by using any of a large number of softwafgis region are the shortest. On the other hand, quite a lot of
tools that are available, either for solving arbitrary PDES, Gfaffic will actually travel along much longer routes, some of it
6Note that Helmholtz's theorem is typically mentioned in a three dimenz?'(%tuaIIy arrlvmg tO. the sink from below. The IntUI.tIOI’I behind
sional setting, however its two dimensional version follows as a special caldiS result is that, ifall packets use short, more direct routes,

A two-dimensional density is a density immersed in the two dimensiontihen the congestion in the central region will be so high as to
space. Equivalently, it could also mean a density immersed in the thr@quire a very Iarge number of nodes to be Supported more
dimensional space that is invariant with respect to theoordinate. In the h b f nod ded if f th k ’ k
latter case, the electric displacement it induces will also be invariant wiman the number of nodes needed It some of the packets take
respect to the: coordinate, and with a zers-component. a longer, but much less congested, route.
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B. Nonhomogeneous propagation environments # \
Until now it has been assumed that all parts of the wireless
network are equally efficient. This is a reasonable assumpt@ The setting of Fig. 5, in which we have replaced the lower half of
1 plane with a dielectric W|tl'e1 = 10, and the upper half of the plane is

when the network consists of a set of identical nodes, aﬁge space with2 — 1.
in addition all parts of the environment present a similar
challenge to the network. However, these assumptions may not
always hold. For example, perhaps part of the network may beNext, we develop a boundary condition on the tangential
in an environment with heavy vegetation, which increases themponents of the traffic flow. For this, let us consider the two
attenuation of the signals with distance. As another exampigseams of traffic moving along either side of the boundary.
parts of the bandwidth may not be available everywhere. Since the traffic is optimally distributed, i.e., it uses the

Such cases can be modeled by assuming that the coefficigiiimum number of wireless nodes, it follows that the moving
c appearing in (10) is no longer a constant, but is a functiasi an incremental part of the tangential component of the
of the location. In particular, we assume that theplane is traffic from one to the other side can not result to a net change
partitioned in a number opropagation regions F;, where of the number of nodes needed. Therefore, we must have:
i =1,...,p, each associated with a coefficiefnt such that oTy 0T
within P; condition (10) is substituted with: = ,

ody ady

T(@,y)| < [T(@,y)lmax = cicV/d(z,y). (15) whered; andd, are the node densities on the two sides of the

We now develop boundary conditions that connect the t\,@pundary Noting tha; + T3 = cfc*dy and T3, + Ty =
traffic flow vectors across the two sides of the same boundafyc’d2, and using (16), after some straightforward algebra, this
Let us concentrate, with no loss of generality, at a paint)) €guation becomes:
on theAboundary o_f regionB; and P,. As shown i_n Fig._ 6, let ()T = () Te. 17)

n andt be respectively the normal and tangential unit vectors

of the boundary atz,y). Also, letT; and T, be the traffic ~ As is known from elementary Electromagnetics [16], [18],

flows at point(z,y), at the two sides of the boundary, whichthe boundary conditions (16) and (17) must also be satisfied by

we decompose as follows: the electric displacemeit if the regionsp; contain dielectrics

. 2 . . characterized by relative permittivitied = ¢?. In addition,
Ti(z,y) = Taf + Tat, Ta(w,y) = Tnal + Tinl these boundary conditions, togetheﬁwth the equations (14),

We first develop a boundary condition involving the normavhich continue to hold at the interior of the regiods,
components of the traffic flow. For this, let us apply (5) on theniquely specify the electric displacement.
perpendicular regioml = abed, shown in Fig. 6, centered at As an example, in Fig. 7 we plot the field lines that are
(z,y) and with heighth and widthw. The widthw is taken created by a distribution of free charge similar to that of Fig. 5,
to be so small, that the boundary appears locally as a straigbt where we now assume that the lower half of the plane is

line. By taking firsth — 0, (5) becomes: occupied by a dielectric witkl = 10, and the upper half
of the plane is free space witf = 1. In the context of
7{ [T(z,y)-N] ds = 0. wireless sensor networks, Fig. 7 shows how the optimal packet
o4 trajectories of the network of Fig. 5 would be modified if the
As T must be continuous on each side of the boundary, wsver half of the plane was modeled by (15) with a factor
have that c1 = v/10 and the upper half of the plane was modeled by
(15) with a factore, = 1.
ng[T(x’y) A] ds = [Tn1 (2, ) — Tnz (@, y)lw + ofw), The introduction of different propagation regions allows us

to handle the case where there are regions in which no nodes
can be placed. As an example, we may have a situation in
Th1 = Tho. (16) which both the traffic sources and the traffic sinks are placed

and by dividing byw and takingw — 0, we have that:
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( / We model such scenarios by defining a settafraffic

W_, P, = R* — U!_,T;. EachT; is associated with an
information rate @Q;, measured irbps, which represents the
net amount of sources/sinks that must be placed;inWe
assume that data can move with no cost insigdeand we
require@; to be distributed only on the boundary of, 07T;.
Equation (1) is modified as follows:

t
[, seds+dai-o
Ui Pi i=1

=177

///\ regions {T;}, wherei = 1,...,¢. The information density
/ = Wy p S function p is only defined outside the traffic regions, in
AN

For any distributiorD of the information rateg@;} on the
boundaries of thdT;}, there is an optimal node distribution,
dp(z,y) that minimizes the number of wireless nodes needed

Fig. 8. Field lines (in thin black) and constant potential lines (in thick grayl)o upport the traffic. A problem that arises naturally is

created by a positive and a negative charge of equal magnitude, that are pIace? . L .
inside a dielectric of very large relative permittivity, which is adjacent to fref0 find the optimal distributiorD,,, of the rates{Q;} on

space. the boundaries of th¢T;}, whose optimal node distribution
dp.,,, (x,y) needs the minimum numbe¥ of sensor nodes.
In other words, we have a problem that consists of two

in a large room, and we are not allowed to place any nodesnsecutive minimizations.

outside the floor of the room. Let us consider the electrostatic equivalent of the total

This case can be handled by assuming the existence afiuanber of nodesV:
special propagation regioffy, with a constant, << ¢;, for
alli=1,...,p;. Inthis case, the cost of placing nodes in that p; _ d( — / ﬁ
: i ' ¢ _ x,y)dS 55 dS

propagation region is too high, because the physical layer in uP_, P; ur_, P, G €

that region is very weak, as seen by (15). In the limit when €0 ID|? 2¢0

oL =0, forall i = 1,...,p, the optimal traffic pattern, as -2 Ur  p. €0€L s = CT“:'

determined by solving (14), jointly with (16), (17), avoids =

routing any traffic throughP,, unless of course the topologyIn the second equality, we use (15). In the third equality,

absolutely requires that packets must pass thraBgh(That we move from the networking quantities to their electrostatic

would be the case if, for example, there were sources or siré@uivalents. In the last equality, we substitute for the electro-

of traffic within P,.) static field energy [16], [18]
As an example, in Fig. 8 we have plotted the field lines 1
created by a positive and a negative charge placed close to &= */ E-Dds.
uP_. P,

each other within a dielectric of very large relative permittivity, =17
and close to a linear boundary surface with free space. Thkerefore, the total number of nodes of the networking setting
field lines also show the optimal traffic flow in the case wheis mapped to the total energy of the Electrostatics setting, up
a point source and a point sink are placed close to the lingara constant coefficient.
boundary with a region through which no traffic can flow.  We are now ready to consider the Electrostatics equivalent
of our minimization problem: we have a setting with a fixed
spatial electric charge density(z,y), and a set of regions
{T;} on which we have placed a set of chardeg;}. Our
Until now, we have assumed that each location of infiniteg@ssumption that the chargés can move everywhere along
imal size (x,y) is associated with fixedrate of information their corresponding regions; means that these regions are
creation (or absorption). However, there are situations in whi€@nductors. Therefore, the equivalent problem becomes the
the placement of data sources and sinks is also subjectc&tculation of the distribution of electric charge on a set
optimization. As an example, let us consider a sensor netwdtk surfaces, such that the energy of the electric fi€ldis
designed to monitor the levels of humidity and temperatufginimized.
of a large plantation, and forward the measurements to aFortunately, this is exactly the same problem that nature
large central building. If we assume that a large number 8plves when placing charges on conductors. In particular,
wireless receivers, connected over high capacity wired linkélomson’s theorem [16], [18] states that charges placed on
with a central traffic sink, are placed along the circumferen€@nductors distribute themselves so that the energy of the elec-
of the building, then the sensor network should be free ttic field is minimized. Furthermore, the electric displacement
select which parts of the circumference of the building shou@f the resulting field is uniquely specified by the boundary
receive how much traffic, in a way that minimizes the numb&endition
of wireless nodes that must be deployed. D(z,y) -t =0, (18)

C. Traffic sources and sinks with limited mobility
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many packets should be received at each location on the

boundary of the sink.

D. The potential function

In Electrostatics, the electric fiel® can be described in
terms of the scalapotential function U(-). The two are
related by the equations

E=-VU,

where VU denotes the gradient @f, and
Fig. 9. Field lines (in thin black) and constant potential lines (in thick gray)
when a singular positive charge is placed over a infinite conducting plane,

infused with a negative charge of the same magnitude. U(A) - U(B) = / E-ds,
A

where the line integral is along any curve that startsl and

Where(x7y) is any point on the boundam"i of a regionﬂ, ends atB. The differenCd](A) — U(B) denotes the amount
andt is the unit vector parallel to the bounda®{; at point Of energy that the field transfers to a positive unit charge as it

(z,y), together with the conditions (that follow from Gauss'§noves from pointd to point B. In Figs. 4, 5, 7, 8, and 9 we
law): have plotted (in thick gray) lines of constant potential. As the

. ) potential is defined as the negative gradient of the electric field,
jéTJD' Jdl=Q; Vi=1,...,m. (19 the lines of constant potential intersect vertically the electric
field lines.
In the above conditionsi is a unit vector normal at each A natural question to ask is the meaning of the potential in
point of the boundary and pointing outwards, a?[ﬂ;r is a our sensor networks context. For this, we consider a cdrve
closed curve that is continuously tangential to the boundasjong the trajectory of a packet stream, starting at a pdint
0T; but lies outside off;. This complication of taking the and ending at a downstream poiBt and possibly crossing
integral alongdT;" and not along)T; is due to the fact that different propagation regions. We have:
the functionD is in general discontinuous a¥i;.
Going back to sensor networks, it follows that the optimal U(4) — U(B)
distribution of traffic sources and sinks should create a traffic B B 1 B
flow similar to the electric field induced by a placement of :/ E‘dS:/A %D ds N ?T ds
charges on a set of conductors, and this fi€lds uniquely B 1 !
determined by (18) and (19) (substitutiBguith T, and taking f/‘zﬁw 47/ L Jaw, ) ds.
p to be the information density function and tligg to be €0Ja Ci
information rates) together with (14), and possibly (16) ane the third equality, we moved from Electrostatics variables to
@n. networking variables. The fourth equality comes from noting
Both (18) and (19) have simple meanings in the context tdfat, by its construction, curv€ is parallel toT, and the
sensor networks, and should have been anticipated. Equaiiamer product can be removed. The fifth equality comes from
(18) requires that packets arriving at a traffic region hitquiring that (15) holds with equality, so that at each point
the traffic region vertically. Indeed, if the traffic also has #he network does not have more nodes than needed, and the
tangential component, the packets arrive at the traffic soumetwork uses indeed the minimum number of nodes.
using a route that is longer than the absolute necessary, and Mote that\/d(z,y) ds is the approximate number of hops
rearranging of th&), at the surface of the region will result tothat a packet makes in order to traverse an incremental length
a traffic that needs fewer nodes to be supported. Equation (#9)at a point(x, y) where the node density &z, ). Indeed,
simply states that the total net rate with which information i§ d(z,y)(ds)? nodes are randomly placed in a square of size
leaving the traffic regiofT; is equal to the net rate with which (ds)?, there will be roughly\/d(z,y)(ds)? = \/d(z,y)ds
we stipulate that information is created inside the region. nodes along each side of the square, and roughly as many
As an example, in Fig. 9, we have placed a positive electtiops will be needed by a packet to traverse the square from
charge within a uniform dielectric and close to the lineasne edge to an opposite edge.
boundary with a conductor infused with a negative electric Therefore, if the curveC continuously stays in the same
charge of the opposite magnitude. In the figure, we hapeopagation region, then the differentéA) — U (B) is equal
plotted the electric field, which can be calculated easily fdo the number of hops needed to go frehto B, multiplied by
this topology by the method of images [16]. The above figurge—o. In the general case, whéhcrosses multiple propagation
has a dual interpretation in the context of wireless sensmgions, the differenc& (A) — U(B) is a weighted sum of
networks. In particular, it shows the optimal routes that packedtse hops needed in each region, with the weight for redipn
must follow when moving, through a uniform propagatioequal to—*-
environment, from a singular source of information to a linear We stress that, although we are assuming a massively
traffic sink, when there is no particular restriction on howlense network, the total number of nodes in the network, and
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consequently the total number of hops to go from paint Ve A \

to point B, are both finite, albeit very large. The situation is ds A
very similar to that of Electrostatics, where we approximatethe -~ &l
distribution of charges by a charge density, without assuming
that the actual number of distinct charges is infinite.

We now summarize the findings of this section in the form
of a theorem:

Theorem 1: Let thery plane be partitioned int traffic
regionsT;, i = 1,...,t, each associated with an information
rate );, and p propagation regionsP;, i = 1,...,p, each
characterized by a coefficient such that the maximum norm
for the traffic flow is given by:

Fig. 10. The compact regioA where the functiong(z, y), ,d(z,y),
T(, )| < [T(@,9) s = ciev/d(z,y). i 0o ) e apecitd P ol Al

Let p(z,y) be an information density function, defined every-
where inUP;. i . .

The optimal distribution of nodet{z, ), that minimizes the Wireless network. The placement of nodes is not subject to
number of nodes needed to transport all the traffic, induc@gY Optimization, The authors are interested in finding energy
a traffic flow T(z,y) that can be calculated by solving theefficient routes to the central sink. They propose a quadratic

differential equations optimization problem which also leads to the condition that
the traffic must also be irrotational, and so must also resemble
V:-T=p, VxT=0, an electrostatic field. In this case, however, the quadratic

optimization problem is not motivated by physical layer con-

together with the boundary conditions: ! . . )
9 y siderations, as in our case, but rather is adopted because of

T(z,y) — O, (z,y) € UP;, (z,y) — oo, its intuitive appeal. Nevertheless, it leads to important energy
T(z,y)-t = 0, (x,y)€ Ty, savings. The authors also consider the network equivalents
of dielectric materials and the potential function, but the
j{ LT-Alds = Qi analogies they use are different from our own. In [6] the
oT; R R same authors use a similar approach to suggest a heuristic, but
Ti(z,y) - = Ti(z,y) -0, (2,y) € IPNOP;, very intuitive, optimization problem for optimizing the flow

ETi(zy) -t = &T(@y) 1, (z,y) € 0P NOP;, of traffic in a wireless ad hoc network with multiple types of

whereT;(z,v) is the limit of T at (x,y) from within P; and traffic.

0P; N OP; is the boundary of the propagation regioi% and
P;. V. NETWORK MODEL-PART Il
The optimal traffic flow is identical to the electric displace- We now slightly modify the model of Section Il, to assume
ment vectorD that exists if theT; are conductors infused that all sources, sinks, and wireless nodes exist within a
with chargesQ; and the P; are dielectrics with relative compact, i.e., closed and bounded, regibnWe parametrize
permittivitiese.. = ¢, infused with a free charge density its boundaryC by its arc lengths, so thatC(s) traces out all
LetU(-) be the potential function of the electrostatic settinghe points in the curve as goes from0 to L. We denote by
Let A be a point in any of the propagation regions, and it f(s) the unitary vector normal t@' at the pointC(s), and
be a location downstream from, in the same or another pointing outwards.
propagation region. In the network setting/(A) — U(B)  To model the sources and sinks that exist on the boundary
equals the weighted sum of the hops taken by the packetgfrthe region, we define thboundary information density

each region, with the weight for regioR; equal to ;< function p,(s), measured irbps/m and assumed continuous.
B 4 If pp(s) > 0, then there is a distributed source of information
UA) - U(B) = i/ —+/d(z,y) ds. located at the boundary poirit(s), such that the rate with
€ Ja G

which information is entering the network though an infin-

) ) . itesimal arc of lengthds centered at that point ig,(s) ds.
In the following sections we will extend Theorem 1 forlf, however, p,(s) < 0, then there is a sink of information

the case of a physical layer model that is_ significantly MOf§cated at the boundary poirtt(s), such that the rate with

general than the model of (10). As we will see, the optimglnich information is removed from the network through an
traffic flow resembles an electrostatllc field only in the ,SpeC'FHfinitesimal arc of lengthls of the boundary, centered at that
case when (10) holds. Before leaving the electrostatic CaE%im’ is —py(s) ds. As the total volume of traffic entering the

however, it should be noted that a similar, but differenpenyork must be equal to the total volume of traffic leaving
analogy between wireless networks and Electrostatics has network, we substitute (3) with:

been explored, independently, in [6], [7]. In [7] the authors
considgr a wireless sensor network consisting of a C(_antral /p(x’y) dAjL?{ pu(s)ds = 0.
data sink and a large number of sensor nodes forming a
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n T some appropriately chosen critical distarkg,. In that case,
however, it is intuitively clear that the traffic capabilities of

the network will be dramatically altered. This problem was

a > b examined in [19]. There, it was shown that, as the number
(Xo¥ o) t of nodes in a network: increases, at first the maximum
h A achievable aggregate throughput that can be carried by the
_______ network increases like/n, however after some point the
d: w i C bounded nature of the power transfer function starts to have an

effect, and for very large values afthe maximum aggregate
throughput saturates at a constant value. Therefore, a more
accurate macroscopic model for the capabilities of the network
would be:

_ B(d(z,y))

Clearly, an equation is needed that connegés) with T, )l < [Ty lmax = Fald(, y)] 2
T(z,y), analogous to (9). To this end, let us consider a poisthere now the exponent(d(z,y)) is close to; for small
C(s) = (x9,y0) on the boundary of regiom. As shown in values ofd(z,y), but converges t® for d(z,y) — oo. The
Fig. 11, we construct a rectangiécd of infinitesimal size, precise form of the exponent functigii-) will depend on the
that is inside the regioml and touches the boundary at theexact law by which power propagates over small distances, but
segmentb, which includes(zg, yo). The rectangle has width an investigation towards this direction goes beyond the scope
w and heighth that are so small, that the boundary can bef this work.
viewed locally as a straight line. Conservation of data requiresThe discussion until now assumed that the nodes can

Fig. 11. A rectangleabcd of infinitesimal size placed insidd, and adjacent
to its boundary around poir(tzo, yo)-

that: coordinate optimally to achieve the maximum possible transfer
b of traffic. In practice, this is not the case, as nodes have

/ () ds Jr/ p(z,y) dA to operate undgr media access control (MAC) protocols that

a abed operate suboptimally, particularly as the network becomes

d c R b more and more dense. In such a case, the behavior of the
= _/a T8 ds _/d [T-A] d8+/c T8 ds. physical layer could be approximated by (21), where now
As the rectangle is very small, this equation can be approt>r<1-e exponenty(-) also models_the imperfection of the MAC
imated by: ' protocol used. Such a modeling also goes beyond the scope

of our work.

wpp(Zo, Yo) + whp(zo, Yo)
070 0 B. Ultra Wideband Physical Layers

= —h{T(@o,y0) - = w[T(zo,yo) - A] + h[T (20, 0) - 1| Until now it was assumed that all nodes transmit over a
Dividing by w, and then takingh — 0, we arrive at the common wireless channel, interfering with each other’s trans-
condition: missions in the process. This is provably the best that nodes

pp=—T-N, (20)  can do when the total bandwidth available for communications
is limited [11]. Let us now consider the case where the
available bandwidth is very large, ideally infinite. This is the
case of Ultra Wideband (UWB) communications. As UWB
VI. GENERAL PHYSICAL LAYER transceivers are very inexpensive and simple to make, and still

In this section, we first revisit and refine the physicalave excellent performance, it is expected that in the future
layer model of Section Ill, and then consider an alternativmany wireless sensor networks will be using UWB technology.
Ultra Wideband (UWB) model. We conclude by unifying the Since the available bandwidth is infinite, each transmission
two models under a general model, which also accounts fin occupy its own portion of the bandwidth, and will only be
the requirement that nodes must not only transport the datampered by thermal noise. It would seem at first that, with
but also sense them at the sources, and deliver them at itiftnite bandwidth, comes infinite capacity. This is not so, as,
destinations once their physical location is reached. the more bandwidth we use, the greater becomes the power
of the thermal noise. This can be seen by Shannon’s formula
for the additive white Gaussian (AWGN) channel:

which must hold at any poinf’(s) alongC.

A. Bandwidth Limited Physical Layers

The discussion that motivated (10) critically hinges on the C = Wlogy(1 + &) — (log, e)&’ (22)
assumption that a signal that is transmitted with povrer nW '’ w—oo n

will be received with powe? K'd—%, whered is the traveled whereC is the capacity})V the available bandwidth; is the
distance. This implies that, a8 — 0, the received power noise spectral density, arfg). is the received power. Therefore,
becomes larger than the transmitted power, and in fact agwannels that are not bandwidth constrained are necessarily
proaches infinity! A more realistic model would be to assunm@ower constrained.

that the received power is given by a bounded function of theThe capacity of wireless networks under an UWB physical
distance, for example the functidhK (max{d, dmin})~%, for layer was recently studied in [20]. There, the authors consider
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a setting in whichn nodes are placed on a unit disk, eac. General Model
node randomly selecting as its destination another node in therpe aim of Sections IlI, VI-A and VI-B was not tprove
network. Each node transmits with powgy and a receiver (10) (21), (23), and (24). The aim was to only justify
at a distancel will receive the signal with powe’Kd™*.  them, as reasonable models of a much more complicated and
Receivers are susceptible to thermal noise of spectral depsityntractable reality. A more diligent modeler could arrive at
and each transmission occupies its own bandwidth, Wh'_Ch ISi¥fdre accurate formulas, that incorporate effects of the physical
large that th(le “m)lsp%f (22) is achieved, and all communicatiopyer that we ignored, such as the effects of fading, sleeping
. . ogs € .
is with rate 7%26104 . . __nodes, extraneous interferers, random node placement, or the

In this setting, the authors show that, with probabiliteffects of network coding, transmitter cooperation, MAC and

going to 1 as the number of nodes goes to infinity, the routing protocols, etc. Instead of going through the messy

maximum achievable aggregate throughp®itdgn >~ ). This details of more accurate models, and in order to widen the
result is in sharp contrast with the capacity result of Guptope of our work, we will consider the following general
and Kumar who found that, under limited bandwidth, but amodel:
identical topology and traffic pattern, the maximum achievable
aggregate traffic is onI)@(n%) [11]. The gain comes from (@ )l < T2, Y)lmax = F(z,y, d(2,)), (25)
having infinite bandwidth. Indeed, as more and more nodes avbBere F(-) is a positive function, strictly increasing with
placed in the network, the average distance between nearespect tod(z,y), but apart from that totally arbitrary. Equa-
neighbors decreases, hence the received power increasestioks (10), (21), (23), and (24) are special cases of (11).
there is no interference, this leads to an increase of the capadityte that (25) implicitly assumes that the maximum traffic
of the links between neighbors, as specified in (22). Therefow]l depend on the positioriz, y). Therefore, it can model a
it is best for nodes to communicate by using multiple hopspn-homogeneous medium. On the other hand, the maximum
exclusively between neighbors. Even after accounting for therm of T(z, y) will not depend on its direction, therefore the
effects of transmitting the same information multiple timesnedium is implicitly assumed isotropic. An equivalent way of
the end effect is that the maximum achievable aggregateiting (25) is the following:
throughput can increase very fast with the number of nodes, 2
as ©(n“s"), and this is provably the maximum throughput d(@.y) 2 Gr(@.y, [T(z,9)l"),
that we can squeeze out of the network [20]. where Gr(z,y,-) is the inverse ofF(z,y,-) with respect

The calculations of [20] assume that nodes are placed ofPathe third argument, and so is also positive and strictly
disk, and the traffic starts and ends at nodes within the digRcreasing. o _
However, the calculations can easily be modified to hold for Until now, we focused on the minimum node density
the case where nodes are placed in a square and the traﬁ{gquwed to transport the data. Hovyever, transporting the data
must be carried from the left edge to the right edge, as i only one of the_z three tasks required of _the_nodes: the other
Fig. 2. Working as in the derivation of (10), we are motivatefyvo tasks is sensing the data, and also delivering the data to the

to consider the following macroscopic model: sinks, once the data arrive at the physical location of the sinks.
These two tasks are complementary: the first one is essentially
IT(z,9)| < |T(x,y)|max = k2 [d(x,y)]‘%l_ (23) the insertion of traffic in the wireless networks, and the

second is the extraction of the traffic, once the destination has
The derivation of the capacity bound of [20] critically hingedeen reached. Researchers typically concentrate on the sensing

on the assumption that a signal transmitted with pofewill and transport tasks and ignore the delivery task. However,
be received by a node at a distantavith power PKd—“. by the explicit inclusion of the delivery task, we make our
As discussed in Section VI-A, this is unrealistic for veryormulation a bit more general, and also more symmetric.
small distanced, as it implies that the received power can be We assume that, in order to support the sensing (or delivery)
arbitrarily large; a more realistic model would use a bounded a location(z, y) where the information density function is
power transfer function. In addition, we have assumed thaltz,y), the node density(x,y) must satisfy the requirement:
nodes _coordlnate perfectly to achieve the capacity. In reality, d(z,y) > Gsp(z,y, p(z,y)).
they will be operating under MAC protocols that may be sub-
optimal, particularly as the node density increases. Therefofote that the information density function is a given, and not

a more realistic macroscopic model would be that: subject to any optimization. Therefore, the right hand side
can be thought of as only a function of the locati@n y).
IT(z,y)| < |T(@,9)|max = ks|d(z, y)]?@@9), (24) The precise shape dfsp(z,y,p(z,y)) will depend on the

sensing/delivering capabilities of the nodes, but it is intuitively
where 3(d(z,y)) is approximately equal ta*t! for small clear thatGsp (z, , p(z,y)) = 0 when p(z, ) = 0.

values ofd(z,y), but decreases a¥(z,y) — oo. The de-  Since the nodes must perform both the transport, and the
termination of its precise shape goes beyond the scope of thisising/delivery of the data, it follows that the density must
work. satisfy the following:

®The notation f(n) = é(go;)) means thatky (m)f(n) < gln) < d(z,y) > f(Gr(z,y, [T(x,y)[*), Gsp(@,y, p(,y)))
Ofgggéi(r[zz)()].or all n > ng, and k1(n) and kz(n) are rational functions = G(z,y, |T(x7y)|2)7 (26)
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where f(-) is some arbitrary function that captures the caF + 6T = (i + du)X + (9 4 dv)y continues to satisfy the con-
pability of the nodes to jointly perform sensing/delivery andtraints of (27). Note that the variations are not incrementally

transporting. Specifying this function goes beyond the scopmallnumbers, but incrementally smélinctions. By standard

of this work. calculus of variations arguments [21], [22], it follows that the
Let G’ be the partial derivative of:(x,y, |T(x,y)|?) with first variation on the integral should be zero:

respect to the third argumefit(x,y)|?. For any reasonable oC oC

physical layer model, the derivative cannot be negative, for any ol = / (auéu + %6 ) dsS =0 (28)

value of|T(x,)|?, as this would imply that there is a situation
in which we would need more nodes to carry less traffizvhere the partial derivatives are calculated at the points
Furthermore, we make the mildly restricting assumption thét, v, @*(z,y) + 9(z,y)). This requirement is analogous to
G’ must be strictly positive. Intuitively speaking, it is reasonthe requirement that the variation of a functigifz), when
able to assume that, the larger the traffic, the more nodes @& move an incremental distande from a stationary point
needed to support it, even if locally most of the burden on thie(which can be a maximum or a minimum), should be of the
nodes comes from sensing/delivering the data. Mathematicadger (dx)?, i.e. much smaller than the variation itself.
speaking, if there is a range ¢T(x,y)|?> for which G’ is The perturbed functiong + éu and v + év must satisfy the
zero, then there will be some areas of the network in whiglivergence constraint of (27), which for cartesian coordinates
the optimal traffic flowT(x,y) can not be uniquely defined, becomes:

as we can increase the traffic with no extra cost. Technically 0 . .

speaking, at some point in the derivations of Section VIl we y(“ + du) + c‘Ty(U + 0v) = p(z,y).

will need to divide withG’, and we need to ensure that |tS th timal solut | tisfies the di it i
is always non-zero. The slightly more general case, witére ince he optimal solution also satisfies the diversity con

can be zero, can also be studied with our formulation but do‘et’atéalnt we have that

0 0
not lead to a tidy solution, therefore we will ignore it. Tt Lo= pay).
ox oy
VII. OPTIMAL NODE PLACEMENT Combining the two equations, we arrive at:
A. Problem Formulation 0 0
) —(0v) =0,
g (00) + 5,(00) =

_In this section we calculate the optimal node distribution
d(z,y), that uses the minimum number of nodes and still ishich must hold at all point§z,y) € A, and all small
able to sense, transport, and deliver all the traffic, subjectvariationséu anddwv for which the perturbed function satisfies
the conditions (9) and (20), when the minimum required nodee divergence constraint. Therefore, the following equation
density is given by (26). The problem can be written as: must hold, for any scalar, continuously differentiable function

minimize: I=[,Gx,y,|T(z,y)*) dS, 9@, y):
H . V- T(I’,y)—p( €,y )7 ( vy)EAv 5 +35 ds = 0. 29
subject to: {[T A(5)] = —pus), 0< s <L / d(z,y) ( (6u) 6y( v)) (29)

27) Adding (28) and (29), we arrive at:
The minimization will be performed over all possible traffic

flows T(z,y) that satisfy the constraints. <6G5 + %5 + ¢ ( u) + ¢a(5v)> ds
Note that we are not explicitly considering different propa- Ou v 9
gation regions, as in Section IV-B, but implicitly, through the oG  0¢ oG 0¢
dependence of thé&/(z,y, |T(z,y)|?) on the position(z, y). - / ((au B %)51‘ + (% B ay)&}) ds
Also, we are not allowing any source/sink mobility, in the 9 o
form of traffic regions. Our formulation will be extended to +/A ( (¢pdu) + ay(éf’(sv)) dS =0. (30)

include source/sink mobility in Section VII-F.
However, by Green’s Theorem [22], we have that:

B. Calculus of Variations / §(¢5u) s = j{qbéucosyds,
Let us write T(z,y) = u(z,y)X + v(z,y)y, so that “ g ¢

IT(x,9)|> = u?(z,y) + v?(x,y). Let us assume that the / By Ppov = j{qﬁévsinuds,
c

minimum of (27) is achieved by an optimal traffic flow o _
T(z,y) = a(z,y)X + 0(x,y)y. Therefore, the optimal value where, as shown in Fig. 1@, is the angle formed between

of the integrall of (27) is: the positivez-axis and the outward normal vectdfs) at the
point C(s) of the boundaryC' of A, ands is the arc length
i _/ G(x,y, 0% (x,y) + 0%(z,y)) dS. alongC. Adding the two together, we arrive at:

Let the optimal functiongi(z,y) ando(x,y) be perturbed / (¢du) + (9255” ) dS = j{ ¢(ducosv + dusinv) ds.
by small variationsdu. and év, such that the perturbed traffic (31)
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However, (ducosv + dvsinv) is the algebraic value of the for some properly defined functiaf (z, y, |[Vé|). In this case,

projection of the perturbation traffic on the outward normdB4) can be written as

vectorf at pointC(s), i.e., - 1 v 37
(ducosv 4 dvsinv) = [(0T) - A)(s). (=.9) = 2G'(z,y, H(z,y,|V4|)) > 37)

On the other hand, both the optimal traffic flow, and it§PPIying the divergence operator on both sides, and using (9),
perturbation, must satisfy the boundary condition of (27); We arrive at:

1ty Vo B
TAG) = —ps), V'<2G’<x,y,H<x,y,v¢>>)‘p' (28)

(T+0T-A(s) = —puls). The above equation, which we will refer to from now on as
By subtracting the two, we have thatdT) - A](s) = 0, thepotential equation, is a scalar partial differential equation
everywhere onC. Therefore, the right hand side of (31) iSPDE) with a single unknown, the scalar potential function.
0, and using (30) if follows that: Therefore, it is much easier to handle than the PDE system of
oG  9¢ oG  9¢ (33) and (9).
/A(E - %)5Ud5+/14(% - 87/)571615:0 (32)  Taking the inner product of each side of (37) wifh

. . i 20), gi h li ition th
The above equation must hold for any small perturbatloriggoumsg;%iéso()gg%l_ves the nonlinear boundary condition that

ou and v, and at the same time for any continuously

. . . g 1
differentiable ¢(z,y). We now require that(z,y) satisfies [V -A(s)] = —pu(s). (39)
98 — 82 — ), therefore (32) becomes 2G'(z,y, H(z,y,|Vl)) ’
G 9o In the special case wherg,(s) = 0, (39) becomes the
/(% - %)M ds. Neumann conditioffV¢ - A(s)] = 0, which is linear.
A

] . . o Using the PDE (38), together with the boundary condition
This equation must hold foany arbitrary variation du (s (39), we can determine the potential function at all pointsin
long as we also definév so that the constraints are satisfied)rnen, we can determiné+v? from (35), or equivalently (36),
Clearly, this can only happen if the other factor of the integrangq finally T(z,y) can be determined using (37). Knowing

.. . . o ~
is identically zero, m._(% - 92)=0. S X T(x,y), we can find the optimal node distributiatiz,y) by
To conclude, if the integral of (27) is minimized Byand ging (26). The number of nodes needed will simply be its
0, thend and ¢ must satisfy the system of equations: surface integral over!.
0G99 0 oG 99 0 (33) All the steps in this process are trivial, with the exception

ou  Or o Oy of solving the PDE (38), together with the boundary condition

together with the constraints of (27¢ and2C are calculated (39): Which is highly non-trivial. Indeed, there is no general
9 i ! ( —%E 9 ! method for solving nonlinear PDEs analytically, and in the

at the points(z,y,4%(z,y) + 9%(z,y)), and ¢(z,y) is a o ) :
continuously differentiable scalar function, which from nov%i‘:er:}gﬁlg'/ty of settings the solution can only be calculated
nw I th ntial. Lo . .
on we call thepotentia Before moving to the study of a special case, we mention
. . that our potential equation (38) can be thought of as a
C. The Potential Equation . :
d ) ) generalization of the linear scalar PDE (24) of [7]. As already

The system (33), together yvnh thg d|verg§nce constrgw{emioned, [7] studies a formulation related to our own. Due
(9), consists of three pa_rtlal differential equations, of whicly jis special form, Equation (24) of [7] was shown using
two are in general nonlinear. Note that we also have thregaightforward arguments, and without reverting to calculus

unknowns, i.e..a, 9, and ¢. To simplify the notation, from ¢ \ariations.
now on we writeu, v, and T, instead ofd, v, and T. Note
that |T|? = u? + v

To simplify the problem, note that we have defir&das the
partial derivative ofG (z,y, u? + v?) with respect to the third
argument®+v?. It follows that 2% = 2G'u and 4 = 2G'v,

D. Special caseF(z,y,d(z,y)) = Kd®?(x,y), Gsp = 0

As a special case, let us assume thdte,y, d(z,y)) =
d®(x,7). Therefore, (25) becomes:

therefore the system (33) gives: IT(z,9)| < |T(z,9)|max = Kdﬁ(%y), (40)
2G/ (z, y, u® + v2)T(z,y) = (%y( + @y) £ Vep. (34) Asthe maximum norm does not depend on the position ),
Oz dy this model corresponds to a homogeneous medium. Note that
Taking the square of the norm of both sides of (34), we arriy@0) and (23) are special cases of (40). In addition, we set
at: Gsp =0, and we takeF (z, vy, |T(z,y)|?) of (26) to be
Au? + )G (@ y,u? +0?) = [Vo2. (35) ! :

- 2y _ 2135
In the above equation; andv appear only through? + v2. Gy, [T(z,y)") [T y)IP]*

We now make the mild assumption that (35) can be solvg§erefore
with respect tou? + v, and come to the form , 1
G/(‘r»yv ‘T($7y)| ) = 27

u? +0* = H(z,y,|Vl), (36) K#

K7

[IT(, )2
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Fig. 12. Optimal traffic flow (denoted by arrows) and contours of constaffd: 14. Optimal traffic flow (denoted by arrows) and contours of constant

: ) . : 2
potential, for the physical layer of Section VII-D, with= 3. potential, for the physical layer of Section VII-D, wifh = £.
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Fig. 15. Optimal traffic flow (denoted by arrows) and contours of constant
Bbtential, for the physical layer of Section VII-D, with = % on the upper
half of the region, an@3 = % on the lower half of the region.

Fig. 13. Optimal traffic flow (denoted by arrows) and contours of consta
potential, for the physical layer of Section VII-D, with = %

It then follows that and is in general nonlinear, unlegs= 2 or p,(x,y) = 0.

2B
-3

u? + 02 = H(z,y,|Vo|) 2 K5 IVe|| ",
( Vél) [ | ‘] E. Numerical Example

and the potential equation (38) becomes As a numerical example, let us consider a topology in which
Ay 2 V- (IVeIP2Vg) = f, (41) the aread = {|x| < 1.5,'|y|. < 1}. We place a distributed
data source wittp = 100 inside the rectanglé—0.5 < z <
25 0.5, 0.45 <y < 0.55}, and a symmetric distributed data sink

— |35l 7 1
Wheref._ Kﬁﬁ_} P .andp_ -5 o with p = —100 inside the rectangld—0.5 < = < 0.5, —
Equation (41) is known in the applied mathematics literatugps s y < —0.45}. Regarding the physical layer, we assume

as p-Poisson’s equation, and is the topic of much ongoiqgat§SD —0 and F(z, y, d(z,y)) = Kd°(z,y) with K = 1
research [23], [24]. The operatd, is called thep-Laplace herefore to calculate the optimal traffic flow we need to solve
operator. Wherp = 0, (41) becomes the homogeneops (41) together with the boundary condition (42). We assume
Laplace equation. Both equations appear often in vanauoqﬁgt there are no sources or sinks on the boundarypi.s) =
problems such as our own. In the special case 2, which  herefore (42) becomes the standard Neumann condition
corresponds t@ = 3, the p-Poisson angb-Laplace equations V- (s)] = 0.

become the well known, and much easier to solve, Iinear|n Figs. 12, 13, and 14 we plot the optimal traffic flow for

Poisson and Laplace equations. the casesi = 2 (p=25), =1 (p=2), andB = 2 (p = 3)
I . 8 571 2 ! 3
The boundary condition (39) becomes: respectively. In Fig. 15 we plot the optimal traffic flow for
-5 the case wher@d = % in the upper half{y > 0} of A, and

IVo[P~2[Ve - A(s)] = — {K%ﬂ} po(s),  (42) g =2 in the lower half{y < 0} of A. In the figures, arrows
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denote the direction and size dfat the respective point, and Y —
contours denote loci of constant potentialNote that the loci f :
of constant potential meet the boundaries always vertically, & | - - -
we are requiring thafVe¢ - f](s) = 0. 0.5[ -
The plots are determined numerically, using the PDE tool
box of MATLAB. In the caseS = % (41) degenerates to
the linear Poisson’s equation of Electrostatics, and MATLAB Lo
calculates the solution using a standard Finite Element metho ol
In the casesxd = 2 and 8 = £, however, (38) is nonlinear, /
and MATLAB solves it using an iterative method, based"
on damped Newton iterations with the Armijo-Goldstein line E
strategy. B el ¥
As expected, in all three cases the optimal node placeme _%.5 1 05 0 05 i 15
induces a traffic flow that is heaviest in the region betweer.
the source and sink, however some of the traffic will travel
along much longer routes. As already discussed, the intuitisig. 16_3.| fOptirrPal traffic kfIO\;v F(_denfsted Ey arrows)ban_d contourrs] of constang
i i i i i otential, for the network of Fig. , when we substitute, on the upper an
?:L:]tlgg ttfr:lesn rtﬁzu(itolnsgg;itc’)r:ﬁ: t?}eelc(l:(ee;?rslsreegtir:; 3\:&) lg’e ilger::ig%ver boundary, the Neumann cgondition (22) with the Dirichlet conditi%% (23).
as to require a very large number of nodes to be supported,
more than the number of nodes needed if some of the packet
take a longer, but much less congested, route.
Equally expected should be the fact that, the largdre-
comes, the smaller the traffic that uses longer routes beco

L

1l
i
’

osk <. - X E ]

Il

?’he boundary condition (43) specifies, at the boundary
sectionC', the value of the component @f that is vertical to
n{BS boundary. As we discussed in Section V, this component

Indeed, as we see from (40), the larger the valu3ofhe equals the rate with which data traffic.e'nters (or Iea@s)
easier it is for the network to support high levels of traffic, b?n the otthe: harl?], tge bc:jundarr]y Conc_itltlon (3%) ,[SPECTES that
increasing the node density, therefore short, congested roﬂég_cons ant on Ih€ boundary, hence 1is grac ptmust be

do not come at a high cost. On the other hand, wheis vertlc_al to the boundary. As the traffic flo_w is parallel to
small, as the traffic flow becomes larger, the number of nodgsé' |(tjfolloyvs that tlhe %orr:pozgnt (IJT that is par?llgl tto thle
needed to support it increases very fast, so it is best for tplgun ary 1S zero. in snhort, (. ) places a constraint only on
routes to spread out as much as possible. the component oT that is vertical to the boundary, and (44)

Perhaps not expected is how dramatically the traffic patttei?!‘fi?}est;”1 cor;stralnt only on the componenTahat is parallel
changes with even moderate changes in the value3.of 0 the oun_ary.. ] ) ]
This suggests that network designers should carefully study! "€ Physical interpretation of (44) is that there is a part

the physical layer of their network, and deploy the noddd the boundary, i.eC, through which packets are free to
accordingly. come and go, so long as they hit the boundary vertically.

This constraint means that the packets should appraach

as fast as possible, without more nodes than necessary being

spent on any transport parallel to the boundary. Therefore, the
Going back to the calculus of variations derivations dfoundaryC, models a fixed infrastructure network of very

Section VII-B, note that we used the fact that all admissiblarge capacity, that can move sources and sinks around in order

traffic flows must satisfy (20), in order to show that the righito help the wireless network reduce its resources as much as

hand side of (31) is zero. Then, using (30), (32) followpossible.

immediately, and after a few more derivations we arrive at|n Fig. 16 we calculate the optimal traffic flow for the

(33). Note, however, that the right hand side of (31) will alspetwork of Fig. 13, where we substitute on the lower and upper

F. Dirichlet Boundary Conditions

be zero if we arbitrarily require that = 0. _ boundaries the Neumann condition (43) with the Dirichlet
Formally, let us partition the boundary curée of A into  condition (44). Clearly, some of the created packets are now
two parts,Cy andCs, and let us require that: diverted to the upper boundary, which acts as a sink, while
T-Al(s) = —po(s), C(s) e, (43) some of the packets arriving at the distributed sink have

actually started from the lower boundary, which acts as a
¢(s) = 0, C(s) € Ca. (44) source. The two boundaries may be thought of as belonging to

Together, these assumptions guarantee that the right hand §iesame infrastructure network, that can move packets around
of (31) is zero, and, replicating the derivations of Sections VIWith a negligible cost.

B and VII-C, we have thafl is given by (37), where the We now summarize the findings of this section in the form
potential function¢ can be determined by solving (38),0f a theorem:

together with the new mixed boundary conditions (43) and Theorem 2: LetA be a compact region, on the inside of
(44). Note that, in the special case when (40) holds withihich sources and sinks are placed, as described by the
8= % and (41) becomes Poisson’s equation of Electrostatiasformation density functiop(z,y). LetdA = Cy U Cq, with

(44) means that’s is a grounded conductor. C, N Cy = . Along C4, information is entering the network
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with a prescribed net rate of,(s). Along C> the net rate B. Alternative transport optimization formulations
which which information is entering the network is subject to oyr formulation could be applied to study a variety of
optimization. Let the minimum node density needed to suppgfbplems, other than the problem of minimizing the number
a traffic flow|T(z,y)| and the senS|ng/deI|v2ery of m/formatlonof nodes in the network. Indeed, from a mathematical point of
at location(z, y) be equal tai(z, y, [T(x,y)|"). LetG’ be the  yiew, our aim was to solve the optimization problem (27), and
partial derivative ofG; with respect to the third argument, andthe quantities appearing in (27) could also admit alternative
let H(-) be the function defined by writinghG'2(x, y, a) = b? interpretations.
asa = H(z,y,b). o For example, we could have defined a slightly different
The optimal placement of nodes, that minimizes the numkgs#ting in which the density of nodes is fixed, and not subject
of nodes needed to transfer the data, induces the traffic floyy optimization, and the cosE(z, v, [T(z,)|?) could be the
1 power needed to support a level of traffic intengityz, y)|.
T(z,y) = Yel V7 v Vo, This problem was first considered, with a similar but more
(2,y, H(z,y,|V¢|)) : S ’

_ o . . _ restricted formulation, in [7]. Also, we could take the density
where the functior satisfies the scalar nonlinear differentialof the nodes to be fixed, and the c6#tz, y, |T(z,y)[2) to be
equation the delay incured locally under a traffic intensjiy(x, y)|.

Vo Alternatively, we could use this formulation to determine
V- <2G’(m . H(z,y |V¢))) =p if there is a traffic flow that can transport all the created
o T traffic in a wireless sensor network in which the placement of
together with the boundary conditions resources (nodes, energy, etc.) is fixed and not subject to any
optimization. In this case, the cost functioiz, y, [T(z,y)|?)

[T-Alis) = —pls), Cls) € Cr, would be very small whefT (z, 3 )|?) is below some threshold,
o(s) = 0, C(s) € Cs. which reflects that the resources at the locat{any) can
handle the traffic, and would grow very steeply as the threshold
VIIl. EXTENSIONS is reached, to reflect the fact that the traffic must not exceed

the threshold.

Even more generally, our formulation could be viewed as

Until now, it was assumed that there is only one type @in abstract problem in optimal transportation. In the most
traffic in the network. Therefore, if more than one traffi@bstract setting, functionsandp; specify the rate with which
stream flows through a location in the network, we are allowggme indeterminate commodity is created or absorbed inside
to perform vector addition, and abstract the flow of traffic ajr on the boundary of an ared, T(x,y) specifies the rate
that location by a single vector, the traffic flow function at thaind direction with which the commodity flows through point
point. (z,), andG(x,y,|T(x,y)|?) is the cost of transporting this

If, however, there aren > 1 different types of traffic, each commodity through a pointz, y). The optimization problem
of them will have to be associated with its own traffic flows how to minimize the total cost needed for the transport of
function T*, and its own information density functiost, and the commodity.
boundary information density functiogf, for which we will In contrast with other problems in optimal transportation,
have: for example the Monge-Kantorovich formulation [25], [26],
; ] the transportation cost is not only a function of the distance
& Tl = pii=1...,m, (45)  covered by the transported commodity, but in general also de-

py = —T'-hdi=1....m. (46) pends on the competition among the transported commodities

or the transportation resources along the way. This aspect
f our formulation was forced by the nature of the wireless
hannel, but may be relevant in other transportation settings

A. Networks with multiple traffic types

A point in the network through which different types ofr
traffic cross, will have to divide its resources to support a
traffic types, therefore (26) will have to be extended to:

as well.
d(l‘,y) 2 G(LL’, Y, |T1((E,y)‘2, R |Tm(x7/y)|2) |X CONCLUS|ONS
Our new problem is the minimization of We consider a setting in which a spatially distributed set
of sources is creating data for a spatially distributed set of
/G(gmy, Tz, )|, ..., [T™(z,y)|?) dS, sinks. Our problem is how to optimally deploy a network of
wireless nodes, so that all the data can be sensed at the sources,
subject to (45) and (46). transported to the physical locations of the sinks, and delivered

This optimization problem in principle can be studied usintp the sinks, using the minimum number of nodes.
calculus of variations techniques, following the methodology We make the critical simplifying assumption that the net-
of Section VIl where now the optimization must be oZen  work is massively dense [13], i.e., there are so many sources,
functions, i.e., the componentg and v’ for each of them sinks, and nodes, that it is best to describe the network in terms
traffic functionsT? = w’X + v'y. Such an investigation goesof macroscopic parameters, such as their spatial distribution,
beyond the scope of this work. We note, however, that thiather than in terms of microscopic parameters, such as their
problem was investigated in [6]. individual placements.
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We first focus on a particular physical layer model that is

characterized by the following assumptiord: the wireless
nodes must only transport the data from the location of the
sources to the location of the sinks, and do not need to
sense the data at the sources, or deliver them at the sin \
once the data arrive at their physical locations, &ii)dthe
nodes have limited bandwidth available to them, but they us
it optimally to locally achieve the network capacity. In this —+__
setting, the optimal distribution of nodes induces a traffic flow___
that resembles the electric displacement that will be created X
we substitute the sources and sinks with positive and negati~
charges respectively. The analogy between the two settings
very tight, and many features of Electrostatics have a diret
interpretation in wireless sensor networks. /
Under a more general physical layer model, the optims
traffic flow no longer corresponds to an electrostatic field
Nonetheless, we can derive its form in terms of a scala |
nonlinear partial differential equation, by use of calculus of \\
variations techniques. \
Our work finds the most efficient deployment of networks, \ .\ X\
that strikes the most favorable balance between having sh<\\ \ r ’/ P e AN NN y

routes and keeping the levels of congestion down. Our nume \\\
ical examples show that the optimal placement of nodes, ar—__ >0\

As discussed in Section VIII-B, the optimization problem/ //
we are studying readily admits alternative interpretations |/
therefore our work may also be of use in settings where we ai
interested in minimizing the energy per packet, or the dela
per packet, and so on. Our work may also be viewed as ¢
abstract problem in optimal transportation, and so may be ¢ \ \
interest outside the field of wireless networks. T 3

As in [11] and [12], our results only formally hold as the
number of nodes goes to infinity. However, they are als(\\j\\\
relevant in networks with a finite (but relatively large) number\f X S
of nodes. To benefit from our formulation, network designery, ~ .

(oS /,_\\\ g A X Vo / /
— QR , T I~ X \ 1
the traffic flow it induces, can heavily depend on the precis \\\\\\\}\\ﬁ /Z,/,\ TR e \\ |l // /
capabilities of the physical layer. Therefore, network designer——""—78 =~ \\\\\ \\ \ / | 7 /
need to carefully study the physical layer of the network to bn///// ’/;/ / ( \\\§§\\\\\E§\\\\\\\ \ / / L/ :
created, before deciding on how the nodes should be deploye Vi \ \\\ R X LR W\ ) // s

should perform the following steps: ;\\\\\\\
1) Approximate the distributed sources and sinks by a;'\
information density function. SRS

2) Decide on the shape of the functioi(z, y, | T(z,y)|?) /7/
of (26), taking into account the various properties of the’ /'
physical, MAC, routing, and sensing layers, etc. /j /

3) Calculate the optimal spatial density of nodes, the toté//
number of nodesV, and the induced traffic flow using K
our formulation.

4) Place theV nodes so that they form a node density func- \\ \\ \¢
tion resembling as close as possible the optimal nod\
density function. The accuracy of this approximation
will depend on how largeV is.

In the special case where (10) holds and the optimal traffig. 17. Electric field lines and constant potential loci created by a single

flow resembles an electrostatic field, there is a very intuitiResitive charge of magnitude and a single negative charge of magnitude
: . . —g. (@ g=1Cb.(b) g=2Cb. (c) g =4 Cb.

and straightforward way of performing the last step, using

electric field lines and constant potential loci. In this case,

the optimal node density is proportional to the square of the

Electrostatic field[E|?> = |E| x |VU]|, as specified by (10).

Therefore, we can plot electric field lines andn loci of

\\

L\
\
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constant potential, and then place one node in each intersecfimmclarifying the connections between this work and [6], [7],

point between an electric field line and a constant potentahd the anonymous reviewers for their numerous insightful
locus. By construction, the spatial density of intersectiomarks and suggestions.

points is proportional tolE| x |[VU]|, as required. In this

manner, a number of nodes that does not exeeedm will BIOGRAPHIES

be deployed. The parametersandm must be chosen so that Stavros Toumpis (S'98-M'03) received the Diploma in

ltggkrselzlélglrll g”rll(LEl}mabgr S;:;Odﬁg is closeltg and the network electrical and computer engineering from the National Techni-
Y q grid. c(?I University of Athens, Greece, in 1997, the M.S. degrees in

As _an.exanjple of this process, in F_|g. 17. we have pIottee ctrical engineering and mathematics from Stanford Univer-
electric field lines and constant potential loci that are creatgﬂ‘; CA, in 1999 and 2002, respectively, and the Ph.D. degree
by a single positive charge of magnitude and a single e f ' .

. . in electrical engineering, also from Stanford, in 2003.
negative charge of magnitudeq, and for the three cases .
: : ; From 1998 to 1999, he worked as a Research Assistant
qg=1Cb, ¢g =2 Cb, ¢ =4 Cb. According to the discussion . . L
of the previous paragraph, these plots have an alternat1:\9r the Mars Global Surveyor Radio Science Team, providing
P paragraph, P erational support. From 2000 to 2003, he was a Member

interpretation: The mtersect!ons of I!nes is where we need the Wireless Systems Laboratory, at Stanford University.
place nodes so that all the information created at a sourceFrr)f

bps is transported to a sink afbps, and the optimal number om 2003 to 2005, he was a Senior Researcher with the
¢ bps IS transp ps, afitl P ) elecommunications Research Center Vienna (ftw.), in Vienna,
of nodes is needed. Note that, according to (10), in order }0

double the traffic. we need to increase the number of no ustria. Since 2005, he is a Lecturer at the Department
u Ic, W ! u St Electrical and Computer Engineering of the University
by a factor of4. In order to find places for times more

. of Cyprus. His research is on wireless ad hoc networks,
nodes, and still have the network locally resemble a square, emphasis on their capacity, the effects of mobility on

grid, we need to double the number of electric field lines ANfeir performance, medium access control, and information

double the number of constant potential loci. Also note that, gs .
eoretic issues.
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. erini, Greece. He obtained the Diploma in electrical engineer-
line represents a route used by packets, and the number o

hops needed for the packets o o from the source to ng from the Aristotle University of Thessaloniki, Greece in
ps ne P 9 A 87, and the M.S. and Ph.D. degrees in electrical engineering
destination equals the number of times the line intersects

. . 6m the University of Maryland, College Park in 1989 and
loci of constant potential. :
1991 respectively.

The previous discussion is intuitive, but clearly imprecise, He is Professor in the Department of Computer and

and so points to an issue of fundamental importance for thl'??lecommunications Engineering of the University of Thes-

work, namely the calculation of the rate with which the perforéaiy' Greece, and Research Professor in the Department of

mance of discreFe networ_ks converges to the performancegf ctrical and Computer Engineering and the Institute for
their corrgspondmg mqsswely Qense networks as the num stems Research, University of Maryland College Park since
of nodes Increases. This rate will depend, among other factoi 02. He has held positions as Assistant Professor at the
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