Enhancing High-Level Control-Flow for Improved Testability

Frank F. Hsu

Elizabeth M. Rudnick

Janak H. Patel

Center for Reliable & High-Performance Computing
University of Illinois, Urbana, IL

Abstract

In this study, we present a controllability mea-
sure for high-level circuit descriptions and a high-level
synthesis-for-testability technique. Unlike many recent
studies in the area of high-level synthesis for testability
that focus on improving the testability of data paths,
the objective of our approach is to improve the testa-
bility of synthesized circuits by enhancing the control-
lability of the control flow. Ezperimental results on
several high-level synthesis benchmarks show that when
this approach is used prior to logic synthesis, a shorter
ATPG time, a smaller test set, and better fault cov-
erage and ATPG efficiency are often achieved. Im-
plementation of this technique requires minimal logic
and performance overheads and allows test vectors to
be applied at clock-speed.

1 Introduction

A majority of current design-for-testability (DFT)
and synthesis-for-testability (SFT) approaches employ
full scan or partial scan techniques to improve the
testability of VLSI circuits. Although the scan ap-
proach greatly reduces the difficulties of sequential cir-
cuit test generation, it also has many disadvantages.
Besides the area overhead required to implement the
scan chain and increased time needed for test applica-
tion, scan-based solutions may have limited capabili-
ties for at-speed test. Scan tests targeted at stuck-at
faults cannot be applied at the operational speed of
the circuit due to scanning in and out of flip-flop val-
ues. Work done by Maxwell et al. [1] has shown that
a stuck-at fault test set applied at clock-speed is able
to identify more defective chips than a test set having
the same fault coverage but applied at a slower speed.

Furthermore, most conventional DFT and SFT
techniques are applied near the end of the design cycle,
when the gate-level structure of the circuit is known.
Unfortunately, as the size and complexity of VLSI cir-
cuits increase, the testing process also becomes increas-
ingly complicated and costly. Many studies [2, 3, 4]
have been conducted recently on the analysis of testa-
bility and the application of SFT schemes early in the

*This research was supported in part by DARPA under Con-
tract DABT63-95-C-0069, in part by the Semiconductor Re-
search Corporation under Contract SRC 95-DP-109, and by
Hewlett-Packard under an equipment grant.

ICCAD '96
1063-6757/96 $5.00 O 1996 |IEEE

design cycle. By integrating the testability techniques
prior to logic synthesis, the designer is able to obtain
an easily testable circuit with reasonable overhead [5].
SFT techniques presented in [6, 7, 8] utilize information
at the Register Transfer (RT) level to generate easily
testable designs. Dey et al. [9] presented a method
to break data flow loops by exploiting hardware shar-
ing to minimize the usage of scan registers. In these
approaches, the testability enhancement is achieved at
the expense of employing scanned memory elements.

A nonscan DFT approach that uses RT-level struc-
tural information to produce testable data paths was
presented in [10]. This approach utilizes multiplex-
ers to implicitly break feedback loops in the data path
and redirect data to improve controllability and ob-
servability of logic modules. Similarly, the technique
proposed in [11] provides a means of augmenting data
flow paths by inserting test statements into the high-
level description prior to logic synthesis. These high-
level approaches improve the data path testability by
adding buses and multiplexers to the circuit; however,
high area overhead for routing these buses result.

Instead of focusing on data path testability, we in-
troduce a new testability measure based on the control-
lability of branch conditions in the control-data flow
graph (CDFG). The entry and exit conditions of some
loops in a CDFG are often hard to control; hence,
they may cause difficulties during automatic test gen-
eration. We will concentrate on these hard-to-control
(HTC) loops in the system. The proposed controllabil-
ity measure is first employed to identify HTC loops in
a CDFG. Then a nonscan SFT scheme is introduced
to augment controllability of the exit-condition node
within each of the HTC loops. The purpose of adding
controllability to the control flow is to achieve efficient
fault activation and facilitate fault-effect propagation
to the primary outputs (PO’s), while using the data
paths that already exist in the system.

In [12], Lee et al. presented a data path scheduling
algorithm for easily testable systems. Unlike the ap-
proach in [12], our approach performs the behavioral
modifications at the high level, such that any imple-
mentation of this behavior is inherently testable. The
advantage of this technique is that it can use any syn-
thesis tool, since the technique does not require any
modification in the synthesis procedures.

The design flow used in this work is illustrated in
Figure 1. The high-level description is analyzed, and

VHDL description
Testability analysis

Control point insertion
into VHDL

Y
High-level synthesis

Performance Cell level design
and area
estimation

ATPG
Test vectors
Fault coverage

Figure 1: High-level SFT design flow.

control points are inserted. A high-level synthesis tool
is then used to obtain a gate-level implementation.
Gate-level DFT tools may be used if desired, and then
an automatic test pattern generator (ATPG) is used
to obtain test vectors. Performance and area estimates
are made by the synthesis tool.

We will introduce our testability measure that uses
the CDFG information available from the high-level
description in Section 2. Then the proposed nonscan
SET approach will be discussed in Section 3, followed
by experimental results for several high-level synthesis
benchmarks in Section 4.

2 Testability Measure

A typical CDFG consists of operation nodes, deci-
sion nodes, and transition arcs connecting these nodes.
As an example, the high-level description and flow
graph for the Greatest-Common-Divider (GCD) circuit
are shown in Figure 2. The rectangle processing func-
tion contains serial operations that are to be executed
by the circuit. The diamond shape decision function
denotes the decision node with branching conditions.
Our GCD example contains a while loop, as described
in the high-level program. The nodes in the while
loop are connected by bold lines in the correspond-
ing CDFG, as shown in Figure 2. Before we study
the characteristics of the CDFG, some definitions are
given.

DEFINITION 1: A node within a control-data
flow graph is the locus of execution for the system
if it is currently being executed by the system.

DEFINITION 2: A decision node within a
control-data flow graph is K-controllable if the di-
rection of the branch taken can be controlled directly or
indirectly by the input values K clock cycles before the
locus of execution reaches the node, where K is the
smallest such integer.

DEFINITION 3: A decision node within a
control-data flow graph is non-controllable if the di-
rection of the branch taken cannot be controlled directly
or indirectly by the primary inputs within any prede-
termined number of clock cycles prior to the locus of
execution reaching the node.

In the remaining text, the term locus will mean lo-
cus of execution. During normal operation, the GCD
circuit first reads values from the primary inputs (PI’s).
Then depending on the input values, the system either
sends the result to the PO’s, or spends several itera-
tions within the while loop before the result is ready
for output. Notice that while the locus stays within
the loop, the PI’s are ignored and PO’s are held con-
stant. Since each iteration is triggered by a rising edge
of the system clock, the system becomes uncontrollable
and unobservable for several clock cycles until the locus
exits the while loop.

By applying the proposed testability measure as de-
scribed in Definition 2, the controllability of a loop-exit
node can be determined, where a loop-exit node is the
decision node that controls the exit condition of a loop.
In the GCD example shown in Figure 2, decision node
A is 1-controllable, since its decision can be directly
controlled by the PI’'s within one clock cycle before
the locus arrives at node A. Decision nodes B and C
are not easily controllable, because the direction of the
branch taken cannot be controlled by the PI’s once the
locus enters the while loop. Thus, decision nodes B and
C are marked as HTC nodes in the control flow. By
identifying the HTC decision nodes at the high level,
the designer is able to pinpoint the hard-to-test por-
tions of the synthesized circuit. Then suitable SFT or
DFT techniques may be applied to improve the overall
testability of the system.

It should be noted that the testability measure de-
fined above is used for guidance, and therefore, the ac-
curacy of K is not extremely important. When behav-
ioral synthesis is used, the clock is not exactly known
before synthesis. Therefore, one needs to approximate
the above measure. One approximation is to count the
number of register transfer statements in place of clock
cycles.

3 Synthesis for Testability

Once the HTC nodes have been identified using the
above testability measure, the controllability of these
nodes can be augmented. Our SFT technique utilizes
one or two extra test input pins to control the out-
come of the conditional branches, directly guiding the
control flow and indirectly affecting the values of the
variables, as shown in Figure 3. We use control points
of various types, depending on the situation. Control
points of type T1 are AND’ed with the original branch
condition to allow the condition to be forced false.

process

input X

input Y
begin : ¢
X = PortX; ®
Y := PortY; (X==0)or No
Y ==0)
If (X==0) or (Y==0) then
GCD = 0; Yes
Yes
else <=Y
while (X!=Y) loo
e () loop . ©
if (X>Y) then No
X = X-Y;
else Yes
Y =Y-X;
end if; GCD:=0 GCD =X X:=X-Y Yi=Y-X
end loop;
GCD = X;
end if;
PortGCD <= GCD;

end process;

output GCD

Figure 2: High-level description and control-data flow graph for circuit GCD.

Type T1: force false
(x=0) --> (x=0) AND C1
(B>0) --> (B>0) AND C1

Type T2: force true
(x=0) --> (x=0) OR C2
(B>0) --> (B>0) OR C2

Type T3: complement
(x=0) --> (x=0) XOR C3
(B>0) --> (B>0) XOR C3

B:=B/2
Y =Y +1
Type T4: load
if C4 then Y =PI
elseY:=Y+1

Out <= Y

Figure 3: Controllability insertion in the control-flow.

Control points of type T2 are OR’ed with the original
branch condition to allow the condition to be forced
true. Control points of type T3 enable the branch con-
dition to be complemented through an exclusive-OR
function. If HTC variables remain in the circuit af-
ter control points of type T1, T2, or T3 have been
used, a control point of type T4 is added to enable
the variables to be loaded from existing PI’s. Each
test pin can be connected to various decision nodes
in the flow graph as long as only one node with aug-
mented controllability is being executed in any clock
cycle. The added controllability not only reduces the
difficulties of sequential circuit test generation, but it
also increases the fault coverage when testing the syn-
thesized circuits. The advantage of controlling the data
path through the control of conditional branches is that
the area overhead is small and is independent of the

width of data registers. Direct control of data register
through multiplexers becomes increasingly costly with
the increase in data width. From a testability point of
view, conditional branches that control loops are far
more important than other branches. Therefore, we
discuss the loop control in more detail.

3.1 Single Loop

After the controllability of each decision node is
computed, nodes that are HTC and nodes that have
high K-controllable values are possible candidates for
the proposed scheme. Although the technique can aug-
ment any decision node in the CDFG, our presenta-
tion of this SFT approach will concentrate on improv-
ing the controllability of HTC exit nodes of functional
loops. In the GCD example, decision node B is cho-
sen to demonstrate the advantages of our approach.
The non-controllable node B causes the system to have
very low controllability and observability while the lo-
cus stays within the loop. Implementation of the pro-
posed testability scheme using a control point C1 of
type T1 AND’ed with the original loop-exit condition
(X!=Y) allows the locus to exit the while loop using
the extra control point C1. With the added controlla-
bility, faults activated within the loop can be quickly
propagated to the PO’s. Test vectors at the PI’s can
also be applied more efficiently because less time is
spent, performing operations within the loop.

Additional improvements in controllability can be
made by adding a control point of type T2. Control
point C1 of type T1is AND’ed with the original loop-
exit condition (X!=Y); then the result is OR’ed with
control point C2 of type T2. While control point C1
allows the locus of the system to escape the while loop
without completing the computation, control point C2

enables the locus to stay within the loop even after
the result has been calculated. The purpose of C2 is
to activate certain faults within the loop when those
faults cannot be activated under normal circumstances.
Thus, by using two extra test signals to guide the direc-
tion of control flow, the test generator is able to create
vectors that activate more faults.

Another variation of this approach is to use a single
control point, C3 of type T3, that is exclusive-OR’ed
with the original branch condition. The use of control
point C3 allows the locus of the system to escape the
while loop early or remain in the loop longer than it
normally would. This modified approach is especially
useful for reducing the number of test pins when mul-
tiple decision nodes are to be controlled independently.

Even after the controllability of branch conditions
has been improved, some variables may still be hard
to control for certain data value ranges. Direct control
of these variables is then necessary to make the cir-
cuit testable. Rather than adding multiple extra input
pins, the variables are loaded from existing PI’s under
control of a single control point, C4 of type T4. Con-
trol point C4 is implemented using one extra test pin
or existing test pins of type T1, T2, or T3.

3.2 Multiple Loops

In the GCD example, there is only one while loop in
the high-level description. However, the proposed tech-
nique can be extended for cascaded loops and nested
loops. Pictorially, each loop represents a closely con-
nected group of states in the total state space of the
system. Figure 4(a) shows a pseudo state transition
graph of a sequential circuit that has four cascaded
loops. Each oval represents a state space occupied by
states traversed within a loop. The normal transition
into a state space and out of a state space is shown

state
space 1

state space

sub-state space
state space 2

sub-sub-
state space

state
space 4

Figure 4: State graphs for (a) cascaded loops and
(b) nested loops.

using bold lines. During normal operation, the locus
of the system enters a state space at a specific entry
state and exits at a specific termination state. When
the locus stays within one state space, the functions of
other state spaces lie idle. Implementation of the pro-
posed SEFT scheme provides extra transitions from the
middle of a state space to the initial point of the next
state space, as shown by dashed lines. Thus, the time
required to traverse through all state spaces is reduced
because the extra test signal is able to efficiently pass
the locus through the loops. As shown in [13], reduc-
ing the distance among states of a sequential circuit
leads to higher fault coverage, and fewer test vectors
are required to test the circuit.

Similarly, Figure 4(b) shows a pseudo state tran-
sition graph of a circuit that has three nested loops.
The state space of an inner loop is embedded within
the state space of its outer loop. The normal transi-
tions into the inner loop and exit from the inner loop
are shown using bold lines. The outer loop halts its
execution when it initiates the execution of its inner
loop; it only resumes its execution after the inner loop
returns the locus of the system. Notice that when the
locus is within an inner loop, the other functionalities
of the parent loop remain idle. Thus, by providing
the extra transition to exit from the inner loop’s state
space, as shown with dashed lines, the outer loop is
able to exercise its own state space more effectively.

4 Experimental Results

Experiments were conducted to demonstrate the ef-
fectiveness of the proposed SFT techniques. The high-
level synthesis benchmarks HLSynth92 and HLSynth95
were used in the experiments. The circuit descriptions
are written in VHDL code, and they were translated
into a synthesizable subset of the VHDL language in or-
der to evaluate their testability. Then the HTC nodes
were identified, and the VHDL code was modified for
improved testability. Finally, gate-level implementa-
tions were obtained for the original circuits and circuits
with enhanced testability using a commercial logic syn-
thesis system. Characteristics of the high-level circuit
descriptions are listed in Table 1, including the num-
ber and types of functional loops that exist in each
high-level description, the number of HTC loops, the
number of HTC variables, and the number of condi-
tional branches. Circuit GCD calculates the greatest
common divisor value of two numbers; Diffeq solves dif-
ferential equations; Barcode processes signals received

Table 1: Circuit Characteristics

Functional HTC HTC Conditional
Circuit Loops Loops | Variables Branches
GCD 1 single 1 0 3
Diffeq 1 single 1 1 1
Barcode 2 nested 2 1 5
DHRC 2 cascaded 2 0 2

Table 2: Area and Performance Impact of Proposed SFT
Techniques

Control | Test Est. Est. Primi-
Circuit Points Pins | Area | Delay tives
GCD - 0 1156 98 1167
GCD1 T1 1 1159 95 1194
GCD2 T1,T2 2 1146 98 1180
GCD3 T3(2) 2 1135 99 1174
Diffeq - 0 31,776 93 33,800
Diffeql T1 1 30,842 105 31,783
Diffeq2 T1,T2 2 30,843 105 31,786
Barcode - 0 678 47 598
Barcodel T1 1 729 44 627
Barcode3 | T3(2),T4 2 769 48 655
DHRC - 0 4619 99 4211
DHRC1 T1 1 4745 99 4259
DHRC2 T1,T2 2 4775 99 4323
DHRC3 T3(2),T4 2 4562 99 4252

from a barcode reader; and DHRC performs differen-
tial heat computation.

Several circuit implementations were synthesized for
each high-level description. Characteristics of the syn-
thesized circuits are shown in Table 2. One imple-
mentation uses the original description, and another
uses the description with control point C1 of type T1
AND’ed with the branch condition. For all circuits
except Barcode, a third implementation uses the de-
scription with two control points, C1 of type T1 and
C2 of type T2, where C1 is AND’ed with the branch
condition and C2 is OR’ed with the result. For some
of the circuits, the original description with two con-
trol points of type T3 were also used; in this case, the
control points were exclusive-OR’ed with the branch
conditions for two decision nodes. In two circuits, one
extra control point, C4 of type T4, was added to al-
low the HTC variables to be controlled directly from
existing PI’s.

For the Barcode circuit, one of the test pins used to
implement the T3 functions was also used for the T4
functions; thus, the number of test pins required was
two. During logic synthesis, the optimization directive
was set to minimize circuit area, and the timing con-
straint (clock cycles) was set to a fixed constant across
different variations of a given design. The estimated
area and delay are reported by the synthesis tool and
are shown in the table. The small variations among the
sizes and delays are caused by the heuristics used in the
circuit synthesis process, which are far from optimum.
As shown in Table 2, the proposed SFT technique pro-
duces almost no area overhead, while the circuit delays
are kept within a reasonable range. The total number
of primitives in each gate-level circuit is also shown in
the table; primitives include gates such as and, or,
not, mux, and dff, as well as primary inputs and pri-
mary outputs. After the gate-level circuit descriptions
were obtained, partial scan and full scan were added to
the original circuits for comparison. The OPUS partial
scan tool [14] was used to select flip-flops to break all
cycles in the circuit graph.

The testability enhancements were evaluated using
a commercial ATPG system that uses a deterministic,
fault-oriented algorithm. Results are given in Table 3,
including the number of faults detected, the number of
faults found to be untestable, the number of test vec-
tors generated, the fault coverage, the ATPG efficiency,
and the execution time for each circuit. Fault cover-
age is the percentage of faults detected, and ATPG
efficiency is the percentage of faults either detected or
identified as untestable. Results for partial scan and
full scan circuit implementations are included in the
table. The number of test pins required for scan is
not given, since this depends on the scan implementa-
tion. The use of scan elements introduces extra logic
gates (primitives) and approximately seven additional
faults per scan flip-flop, which accounts for the larger
number of total faults in the scan versions. The pro-
posed technique is able to increase the fault coverage
and fault efficiency of the synthesized circuits by in-
creasing the effectiveness of the test generation process.
The number of aborted faults is greatly reduced by the
augmented controllability in the circuits, and the time
required to perform automatic test generation is often
reduced.

The progression of testability improvement is shown
by the results for the GCD circuits in Table 3. The
testability in general for GCD is very low, and many
faults are aborted during test generation. By adding
a control point of type T1, we are able to increase
the fault coverage from 75.0% to 92.3%, and the time
for test generation drops by 62%. Adding a control
point of type T2 further increases the fault coverage
to 98.1%, and the test generation time drops by 85%.
Adding controllability to the “if (X > Y)” decision
node in addition to the while loop using two test pins
of type T3 results in improvements in fault coverage
similar to those for a single control point of type T1.
The increasing number of test vectors for the circuits
with testability enhancements is justifiable by the im-
proving fault coverage of these vectors. The fault cov-
erage is comparable to the partial scan (GCD_ps) and
full scan (GCD_fs) fault coverages, but the scan logic
would be expected to have significant area and per-
formance overheads. In summary, the testability of
GCD is improved by the proposed scheme, and the
impact on circuit area and performance is negligible.

Unlike GCD, which has low fault coverage initially,
Diffeq is highly testable even without implementing
any testability enhancement scheme. However, the
proposed SFT approach can still be applied to fur-
ther improve its testability. As shown in Table 3,
adding the extra control points enables the test gen-
erator to produce smaller test sets that achieve higher
fault coverage and are generated within a shorter pe-
riod of time. The fault coverages are as high as the
partial scan (Diffeq_ps) and full scan (Diffeq_fs) fault

Table 3: ATPG Results for Proposed SFT Techniques

Control | Test Scan Total | Detected Unt. Test Fault ATPG | ATPG
Circuit Points Pins | DFFs | Faults Faults Faults | Vectors | Cov.(%) | Eff.(%) | Time
GCD - 0 0 2101 1576 8 200 75.01 75.39 1.87h
GCD_ps - - 32 2357 2310 5 583 98.01 98.22 10.9m
GCD fs - - 49 2493 2455 2 338 98.48 98.56 8.96m
GCD1 T1 1 0 2101 1939 5 543 92.29 92.53 43.1m
GCD2 T1,T2 2 0 2111 2071 5 999 98.11 98.34 16.4m
GCD3 T3(2) 2 0 2152 1957 12 713 90.94 91.50 46.7m
GCDY’ T1 1 0 2101 1513 9 143 72.01 72.44 1.79h
Diffeq - 0 0 86,386 86,778 13 1062 99.88 99.89 52.9m
Diffeq-ps - - 96 87,654 87,621 12 987 99.96 99.98 16.5m
Diffeqfs - - 289 89,198 89,161 15 559 99.96 99.98 13.8m
Diffeql T1 1 0 82,000 81,981 5 921 99.98 99.98 41.8m
Diffeq2 T1,T2 2 0 82,002 81,990 5 868 99.99 99.99 33.0m
Diffeql’ T1 1 0 82,000 81,927 6 759 99.91 99.92 40.0m
Barcode - 0 0 1033 717 18 1977 69.41 71.15 57.1m
Barcode_ps - - 26 1243 1236 3 342 99.44 99.68 1.08m
Barcode_fs - - 46 1403 1401 2 206 99.86 100 16.5s
Barcodel T1 1 0 1199 1038 6 888 86.57 87.07 30.7m
Barcode3 T3(2),T4 2 0 1231 1091 2 885 88.63 88.79 28.2m
Barcodel’ T1 1 0 1199 742 88 3930 61.88 69.22 1.36h
DHRC - 0 0 9546 8939 93 1176 93.64 94.62 1.80h
DHRC_ps - - 9 9626 9281 135 1619 96.42 97.82 47.5m
DHRC fs - - 202 11,115 10,914 135 272 98.19 99.41 17.1m
DHRC1 T1 1 0 9491 8887 87 645 93.64 94.55 1.85h
DHRC2 T1,T2 2 0 9539 9036 142 1216 94.73 96.22 1.43h
DHRC3 T3(2),T4 2 0 9556 9104 84 1788 95.27 96.15 1.71h
DHRC1’ T1 1 0 9491 8862 126 1160 93.37 94.70 2.19h

Circuits GCD1’, Diffeql’, Barcodel’, and DHRC1’ have inactive test pins but are
structurally identical to GCD1, Diffeql, Barcodel, and DHRC1I, respectively.

coverages. However, the test application time is much
shorter for the proposed approach. For example, Dif-
feq2 requires 868 test cycles, while Diffeq_fs with full
scan requires more than 100,000 test cycles due to scan-
ning of flip-flop values. Even though the performance
is lowered for the testability-enhanced Diffeq circuits
synthesized in this experiment, the implementation of
the proposed technique requires virtually no area over-
head. Thus, designers may take further optimization
steps to improve the performance of the circuit without
significant impact on circuit area.

While GCD and Diffeq each contain a single loop
only, Barcode contains two nested loops. The inner
loop makes at least 255 iterations each time it is in-
voked. With one test pin of type T1 controlling the
exit condition of the inner loop, the system is able to
return the locus to the outer loop prior to completion
of the iterations. As shown in Table 3, the fault cover-
age is improved from 69.4% to 86.6%, and the number
of aborted faults is greatly reduced. Adding a control
point of type T2 allowing the locus to stay in the in-
ner loop after the 255 iterations would not be helpful,
since reaching the end of 255 iterations is already dif-
ficult for a gate-level ATPG. However, using two con-
trol points of type T3 to control two different decision
nodes through exclusive-OR functions is effective. Fur-

thermore, Barcode contains an embedded loop counter,
and embedded counters are notorious for making any
circuit hard to test at the gate level. Therefore, it may
be necessary to make the loop counter directly control-
lable to get a high fault coverage. Thus, a control point
of type T4 was added to load the counter directly from
existing PI’'s. One of the two test pins added as type-
T3 control points was also used as a type-T4 control
point to minimize the number of test pins. Further
improvements in fault coverage resulted, at the cost of
an estimated 7.5% increase in area. The partial scan
and full scan implementations had significantly higher
fault coverages; therefore, additional gate-level DFT
techniques may be necessary for this circuit.

Unlike Barcode, which has two nested loops, DHRC
has two cascaded loops. The first loop initializes the
memories in the design; then the second loop performs
the computations. The high-level description of DHRC
is a modified version of the DHRC' benchmark, because
the original description is incomplete. The problem
size has been reduced so that logic synthesis can be
done within a reasonable period of time. The design
without testability enhancement is fairly testable. The
use of a single control point of type T1 does not im-
prove the fault coverage or test generation time, but
the test set size is reduced. Addition of control points

of types T1 and T2 results in fewer aborted faults,
shorter test generation time, and higher fault cover-
age. Use of two control points of type T3 (which re-
quires only one test pin) combined with a control point
of type T4 (to load the counter directly from existing
PI’s) results in further improvements in fault coverage;
the fault coverage is nearly as high as the partial scan
and full scan fault coverages, while the impact on area
and performance is negligible. The proposed SFT ap-
proach may be a better choice than partial scan or full
scan for this circuit due to the area and performance
overheads of scan and the higher test application time.

Although various types of circuits are synthesized
for the same design, one might argue that they differ
in testability because they have different circuit struc-
tures. A further experiment was conducted to demon-
strate the effect of the extra test inputs on circuits hav-
ing the same structure. Using circuits enhanced with
test pins of type T1 produced in the previous experi-
ment, we tied the test pins to a constant value so that
they are not functional during test generation and test
application. In other words, the functions of these cir-
cuits are identical to the original circuits. The resulting
circuits are named GCD1’, Diffeql’, Barcodel’, and
DHRC1'. We then performed test generation on the
modified circuits. Results are shown in Table 3. The
testability of circuits with inactive test pins is shown
to be much lower than the testability of circuits with
functional test pins. In most cases, the testability of
circuits with inactive test pins is similar to the testa-
bility of circuits generated without test pins, i.e., their
fault coverage, ATPG time, and test length are similar.

5 Conclusions

We have presented a high-level testability measure
to evaluate the controllability of functional loops in a
high-level circuit description. The proposed testabil-
ity measure is first applied to identify hard-to-control
nodes in the control-data flow graph. Then the pro-
posed synthesis-for-testability technique adds control-
lability to these hard-to-control loops to assist the ac-
tivation and propagation of faults during test genera-
tion and test application. Implementation of this ap-
proach does not utilize any scan design, and the logic
synthesis can be performed by any high-level synthe-
sis system. Experimental results on several high-level
synthesis benchmarks show that circuits generated us-
ing this approach often require shorter ATPG times
to produce test sets that achieve better fault coverage
and fault efficiency. The test vectors can be applied
at clock-speed, and the testability is improved at the
cost of one or two extra input pins, while the area and
performance overheads are minimal.

References

[1] P. C. Maxwell, R. C. Aitken, V. Johansen, and I. Chi-
ang, “The effect of different test sets on quality level
prediction: When is 80% better than 90%?,” Proc. Int.
Test Conf., pp. 358-364, 1991.

[2] S. Chiu and C. A. Papachristou, “A partial scan cost
estimation method at the system level,” Proc. IEEE
Int. Conf. Computer Design, pp. 146-150, 1993.

[3] T. C. Lee, N. K. Jha, and W. H. Wolf, “A conditional
resource sharing method for behavioral synthesis of
highly testable data paths,” Proc. Int. Test Conf.,
pp. 744-753, 1993.

[4] M. Potkonjak, S. Dey, and R. K. Roy, “Behavioral
synthesis of area-efficient testable designs using inter-
action between hardware sharing and partial scan,”
IEEE Trans. Computer-Aided Design, vol. 14, no. 9,
pp- 1141-1154, Sept. 1995.

[5] T. Thomas, P. Vishakantantaiah, and J. A. Abraham,
“Impact of behavioral modifications for testability,”
Proc. IEEE VLSI Test Symp., pp. 427-432, 1994.

[6] V. Chickermane, J. Lee, and J. H. Patel, “A com-
parative study of design for testability methods us-
ing high-level and gate-level descriptions,” Proc. Int.
Conf. Computer-Aided Design, pp. 620—624, 1992.

[7] S. Bhattacharya, F. Brglez, and S. Dey, “Transforma-
tions and resynthesis for testability of RT-level control-
data path specifications,” IEEE Trans. VLSI Systems,
vol. 1, no. 3, pp. 304-318, Sept. 1993.

[8] H. Harmanani and C. Papachristou, “An improved
method for RTL synthesis with testability tradeoffs,”
Proc. Int. Conf. Computer-Aided Design, pp. 30-35,
1993.

[9] S. Dey, M. Potkonjak, and R. Roy, “Exploiting hard-
ware sharing in high-level synthesis for partial scan
optimization,” Proc. Int. Conf. Computer-Aided De-
stgn, pp- 20-25, 1993.

[10] S. Dey and M. Potkonjak, “Non-scan design-for-
testability of RT-level data paths,” Proc. Int. Conf.
Computer-Aided Design, pp. 640645, 1994.

[11] C. Chen, T. Karnik, and D. G. Saab, “Structural
and behavioral synthesis for testability techniques,”
IEEE Trans. Computer-Aided Design, vol. 13, no. 6,
pp. 777-785, June 1994.

[12] T. C. Lee, W. H. Wolf, and N. K. Jha, “Behavioral
synthesis for easy testability in data path scheduling,”
Proc. Int. Conf. Computer-Aided Design, pp. 616619,
1992.

[13] F. Hsu and J. H. Patel, “A distance reduction ap-
proach to design for testability,” Proc. IEEE VLSI
Test Symp., pp. 158-163, 1995.

[14] V. Chickermane and J. H. Patel, “An optimization
based approach to the partial scan design problem,”
Proc. Int. Test Conf., 1990, pp. 377-386.

	CDROM Home Page
	1996 Home Page
	ICCAD 96
	Front Matter
	Table of Contents
	Session Index
	Author Index

