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Abstract

This paper shows that the competitive learning rule found
in Learning Vector Quantization (LVQ) serves as a promis-
ing function approximator to enable reinforcement learning
methods to cope with a large decision search space, de-
fined in terms of different classes of input patterns, like those
found in the game of Go. In particular, this paper describes
S[arsa]LVQ, a novel reinforcement learning algorithm and
shows its feasibility for Go. As the distributed LVQ represen-
tation corresponds to a (quantized) codebook of compressed
and generalized pattern templates, the state space require-
ments for online reinforcement methods are significantly re-
duced, thus decreasing the complexity of the decision space
and consequently improving the play performance. As a re-
sult of competitive learning, SLVQ can win against heuris-
tic players and starts to level off against stronger opponents
such as Wally. SLVQ outperforms S[arsa]Linear when play-
ing against both a heuristic player and Wally. Furthermore,
while playing Go, SLVQ learns to stay alive while SLinear
fails to do so.

1 Introduction

Game playing has been dominated by game-tree
search[Russell and Norvig, 1995] using look-ahead heuristic
evaluation. The high-degree of interactions between moves,
combined with the high branching factor, however, makes
tree-search methods unsuitable for games like Go. Tactical
and strategic considerations are difficult to integrate in a
heuristic evaluation. Tactical considerations are based on
local move patterns. Strategic considerations are based on
whole board evaluation. The relative urgency of those moves
is best determined on a case-to-case basis by the outcome of
the game. Reinforcement learning can address the problem
of action (move) selection based on delayed rewards and has
been successfully used in Backgammon[Tesauro, 1995]. For
longer games such as Go, one has to cope with increased
spatio-temporal decision complexity in addition to space
complexity as it is the case for Backgammon. The claim of
this paper is that for a large decision search space, defined in
terms of different classes of input patterns, like that found

in the game of Go, the competitive learning rule found in
LVQ is a promising function approximator for reinforcement
learning methods. Towards that end, this paper describes
SLVQ and shows its feasibility for Go.

2 The Game of Go

Go is a perfect information, deterministic, 2-player game
usually played on a 19x19 board. It can also be played on
smaller boards of arbitrary sizes. The board is empty at
the beginning of the game and the players alternate placing
stones on the board. Stones are placed on the intersection of
lines. Once placed on the board, a stone never moves un-
less captured. The 4 adjacent points of a stone on the board
are called “liberties” of the stone. Connecting stones in a
group increase the number of liberties. A stone is captured
when it has no liberties left. The aim of the game is to en-
close territory or vacant points. The only way to achieve this
goal is to make your stones “alive”. Here, alive is taken in
the weak sense meaning that your stones can’t be captured.
It has been found that the capability to make a 2-eye shape
(Figure1) is sufficient and necessary for life. There are 3 dis-
tinct phases of the game corresponding to different patterns
of play: opening, middle game, and endgame.1

Figure 1: The white stones are alive in a 2-eye shape.

The Complexity of Go
Since Go is a deterministic, perfect information game, per-
fect play should be possible if not for the large search space.
How hard is Go and what is its relevance to machine learn-
ing? Figure2 shows the different peaks of potential solu-
tions, only one of which, the key move, will lead to a win-
ning game. The smoothness of the landscape indicates the
absence of correlation between the evaluation function, in
this case the sum of influence values, and the distance to

1A good starting point for more information is www.usgo.org.



the goal, a characteristic of complex problems. Go is also
hard for machine learning because there are no identifiable
features. Rather each feature is a pattern that, like fractals,
grows into larger and more detailed patterns.
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Figure 2: Fitness landscape of candidate moves as the sum of in-
fluence values for the board in Figure3

Representation and Evaluation of the Board
The board is represented as a square matrix of stone objects.
A list of legal moves is generated and passed to the play-
ers. A legal move does not commit suicide, does not repeat
a previous position2, and does not put a player in atari (sim-
ilar to check in chess)3, but single throw-ins are allowed and
kos are recognized. The evaluation of the board is done us-
ing the Chinese rules which allow a player to fill its territory
without penalty4 and a program to play without recognizing
life or death patterns. No komi points were added for white
and no prisoners were included in the final score. After each
move, the influence value of the move (+1.0 for black and -
1.0 for white) is propagated to neighboring stones. This rep-
resentation was first used by Zobrist[Zobrist, 1970]. In our
implementation, each neighbor (including diagonals), if it’s
an empty point, computes its influence value by summing the
influence value of its neighbors (8-connected neighbors) with
equal weight until no changes occur in a ripple-like fashion.
The influence value representation conveys the relationships
between the stones (Figure3). At the end of the game, the
difference in territory won (over the maximum territory) is
propagated as the reward. This somewhat simplified version
of the game still retains its main strategic aspects.

-0.72 -0.73 -0.49 -1.00 0.13
-0.7 -0.74 -1.00 1.00 0.4
-0.73 -0.6 -1.00 1.00 0.87
-0.62 -1.00 1.00 1.00 0.93
-0.59 -0.17 0.34 0.84 0.92

Figure 3: 5x5 pattern and its influence representation

2Zobrist’s hashing.
3Although this last constraint is not part of the rules of Go and does not

allow the common “throw-in” tactic, it makes it easier to define a reasonable
“pass” move.

4We used Robert Jasiek’s rules at
http://home.snafu.de/jasiek/simple.html.

3 Learning

This section describes briefly the reinforcement learning and
self-organization learning principles required for the SLVQ
Go algorithm (see Section4).

Reinforcement Learning
The interactive nature of reinforcement learning is particu-
larly appealing for game learning since the early days of
Samuel’s checker player[Samuel, 1990]. What is learned
through interaction with the environment is an optimal pol-
icy mapping states to actions maximizing the total reward
obtained. Compared to other learning paradigms, reinforce-
ment learning has some nice properties for game learning:
no expert knowledge is needed and it is incremental, that is
continuous learning against a variety of opponents is pos-
sible. From a reinforcement learning point of view, Go is
a finite-horizon sequential-task problem with discrete states.
Because of the large state space, it is helpful to view the game
with continuous states using the influence value propagation
of the stones.

Policies for Reinforcement Learning
There are two basic ways of using experience in rein-
forcement learning: off-policy and on-policy. They dif-
fer only by the update rule used to arrive at an opti-
mal policy. The off-policy, embodied in the Q-learning
algorithm[Watkins, 1989], uses the estimate of the optimal
policy for update of the existing policy and consequently sep-
arates exploration from control. The on-policy, embodied in
the Sarsa algorithm[Sutton and Barto, 1998], uses the current
estimate of an existing non-optimal policy for refinement to-
wards abetterexisting policy. The only guarantee to arrive
at an optimal policy with Sarsa is possible only if the existing
policy progressively inches itself towards an optimal policy.
In both policies, convergence has been proved in the discrete,
tabular case if each action is selected infinitely often.

An on-policy approach for game learning has more opportu-
nities for active learning in the exploration of moves as well
as better on-line performance inteachinggames. In addition,
credit assignment to previous moves, or eligibility trace, is
not limited as it is the case for the off-policy approach where
greedy control moves have to coincide with the exploratory
policy. Better informed exploratory policy will be the subject
of future research.

Self-Organization and LVQ
Self-organization involves the ability to learn and organize
(cluster) sensory information without the benefit of a teacher.
Learning is driven by measures of fitness, possible evolved
over time. If the task to be learned is that of clustering, one
example of such a fitness measure is that of similarity. The
process of self-organization consists of iteratively modifying
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synaptic weights in response to sensory patterns until an op-
timal configuration, according to some closeness measure,
eventually develops. One particular class of self-organizing
systems that are of interest to us are the Self-Organizing Fea-
ture Maps (SOFM) [Kohonen, 1997], which are driven by
competitive learning. In the competitive learning scheme, the
output neurons of the network compete among themselves to
be activated or fired, with the result that only one output neu-
ron or one neuron per group is on at any one time. The lo-
cations of the winning neurons tend to become ordered with
respect to each other in such a way that a meaningful lat-
tice like coordinate system eventually emerges and faithfully
represents the sensory input.

There are many situations where the clusters derived as a re-
sult of self-organization have to be appropriately labeled as
it would be the case for information retrieval. Towards that
end, one expands SOFM using a supervised learning scheme
as it is the case with Learning Vector Quantization (LVQ). In
the case of LVQ, the labeled clusters collection correspond
to a (quantized) codebook of compressed pattern templates.

The LVQ algorithm[Kohonen, 1997] is a supervised cluster-
ing method in which each output unit represents a particular
class or category. The weight vector for an output unit is of-
ten referred to as a reference or codebook vector for the class
that the unit represents. It is also assumed that a set of train-
ing patterns with known class labels is provided, along with
an initial distribution (“seed”) of reference vectors. After
training, the neural net classifies an input vector by assign-
ing it to the same class as the (labeled) output unit that has
its weight vector closest to the input vector. After learning,
the probability density function of the input is approximated
by the modified set of discrete decoders or codebook vectors.
The distributed representation of LVQ into codebook vectors
as generalization of the input patterns significantly reduces
the state space requirements and has a close correspondence
to a tabular representation of state-action pairs.

4 The Sarsa Learning Vector Quantization (SLVQ)
Player

SLVQ integrates Sarsa with LVQ. This integration loosely
ties the estimation of the utility function Q to the pattern
recognition task of the situation. In an on-policy control al-
gorithm, the utility of thenext move takena′ will be used
to update the state-action pairQ(s,a) (for the off-policy con-
trol algorithm, the utility of thebestmove according to the
current estimate of the optimal policy is the one used). The
update of the weight vectors is a function of the change in the
utility of the move. Let∆Q(st ,a) be the change in utility for
states at timet and associated actiona, the prototype vector
m that matchedst most closely then moves closer to or away
from the input vectorx accordingly:

st ∼mt

∆Q(mt ,a) = αmλmt [γQ(mt+1,a′)−Q(mt ,a)]
m(t +1) = m(t)+ ∆Q(mt ,a) [st −mt ]

and wherea′ is the next action taken under the policy fol-
lowed in an on-policy approach. The choice of an on-policy
approach gives us better on-line performance at the expense
maybe of less flexibility in exploration. The learning rateα is
local tomand decays proportionally as a function of the num-
ber of timesm won the competition. Algorithm1 shows the
backward implementation view of SLVQ. In addition, learn-
ing is also possible in this context from the opponent’s action
to provide a balance of positive and negative examples to the
learning task.

Algorithm 1 SLVQ
Initialize γ andλ.
Initialize C← {−→m,a,Q,α,e} i , the initial set of codebook,
action, utility, learning rate and eligibility tuples.

REPEAT for each episode; or each game
Initialize e=0 for each tuple
clear history

REPEAT for each step of episode; each move of the game−→st ← current state
normalize−→st
Ct ← argSo f tmaxC similarity(−→st ,−→m)
decayαt
Ct−1← previous match
δ = γQt −Qt−1
et−1 = 1.0
FOR each statet− i in history;backup
Qt−i ← Qt−i + αt−iδet−i−−→mt−i ←αt−iδet−i(−→st−i−−−→mt−i)
normalize−−→mt−i
et−i ← γλet−i
END

UNTIL end of episode

Clastmatch← last state in history

δ = reward−Qlastmatch

elastmatch= 1.0

FOR each statet− i in history
Qt−i ← Qt−i + αt−iδet−i
−−→mt−i ←αt−iδet−i(−→st−i−−−→mt−i)
normalize−−→mt−i

END

UNTIL no more episodes

The initiatialization of the weight vectors is done from real
games played against Gnugo5. Each board configuration

5http://www.gnu.org/software/gnugo/gnugo.html



makes up a weight vector after the propagation of the in-
fluence values and normalization. The softmax exploration
policy was used with SLVQ where action selection is im-
plemented by adding a small random number decaying with
time to the action evaluation and picking the action with the
largest sum[Sutton and Barto, 1998].

Matching
Matching of a board configuration against a weight
vector is done using the fuzzy constrast model
[Santini and Jain, 1999]. This distance is not a metric
distance but takes into account the presence or absence
of certain stones in a pattern. This characteristic makes
it extremely well suited for the recognition of the vital
stones in a game. Let a patternP be represented by the
set of influence valuespi j (after normalization) at each of
its points. The similarityS between patternsP and R can
be computed as a function of their commonality and their
reflexive differences:

Com(P,R) = ∑i ∑ j min
{

pi j , r i j
}

Di f f (P,R) = ∑i ∑ j max
{

pi j − r i j ,0
}

S(P,R) = Com(P,R)−αDi f f (P,R)−βDi f f (R,P)

α andβ represents the relative saliency of the prototype and
the variant (input pattern). The saliency of a board patternP
represented as a set of quantitative features by the influence
values of the stones can be determined as the density
∑i ∑ j wi j pi j wherewi j is proportional to the inverse distance
relationship of the move associated with the pattern.
Rotation and mirror symmetry of the board is performed to
compute a best match. Figure4 shows the codebook vectors
becoming a closer approximation of the input space as
training progress.
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Figure 4: Similarity of the codebook vectors

Additional codebook vectors were added from the sample
input when no good match was found, that is when the
similarity score was negative.

Final action evaluation was done by computing the pareto
optimality of moves along the pattern similarity dimension
and the utility (Q) dimension. This prevents the selection of
codebook vectors with good similarity but poor outcome.

5 Experimental Results

This section presents experimental data to show the feasibil-
ity of SLVQ Go and its comparative merits compared to other
potential Go players.

Go Players

Wally Wally[Millen, 1981] is a low-level player but its
moves are surprisingly good despite no knowledge of
the “whole” board situation. It uses simple heuristics:
1) capture; 2) put in atari; 3) search the board for a
pattern matching a table of “good” moves ordered by
urgency and breaking ties randomly; and 4) if noth-
ing else was found to do, play a random move. The
program[Newman, 1988] was modified to play white
as well as black and to play different board sizes.

“Heuristic” This player deterministically chooses the move
generating the highest sum of influence values. This
evaluation is consonant with the input representation
of the board. This heuristic has much more strategic
value than tactical value.

SLinear This player implements the Sarsa algorithm with
the equivalent of a linear function approximator. Each
point on the board is a feature with 3 possible val-
ues: black, white or empty. Weights, initialized to
1.0, are associated with each feature and the policy
is to pick the move with the greatest weight. This
player learnsgood moves by playing random games.
The exploration and the learning rate decay propor-
tionally as the square root of the number of games
played. This player is a TD(λ) version of Monte Carlo
Go[Brugmann, 1993]

Experimental Setup
The parameters were initialized as follows:

5x5 λ = 0.5
γ = 0.9
α = 0.05 decays as a function of1√

h
whereh is

the number of times a codebook vector has won
the competition.
exploration = 0.05

7x7 λ = 0.9
γ = 0.9
α = 0.09 decaying as above.
exploration = 0.09

Results after Training
The offline results below show the average territory dif-
ference lost over 5 games for SLVQS (SLVQ with soft-
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max as the exploration strategy) and SLinear playing as
Black against the “Heuristic” player or Wally. Training was
done against the same opponent as the games played offline.
Please note winning corresponds on the average to negative
territory lost. The player for whom the average territory lost
is positive but small in value, however, occasionally wins
some games. Smoothing of the graphs (10%) ensures a eas-
ier readability of the performance trend in this complex game
where one move difference can drastically alter the outcome
of the game.

5x5 * A 5x5 game has approximately 13M possible con-
figurations under rotational invariance. The legal move con-
straints bring this figure down somewhat but the state space
still remains huge. The codebook vectors were initialized
with sample boards from 27 games for a total of 331 vec-
tors. Figures5 and6 show the comparative performance of
SLVQS and SLinear. SLVQS routinely defeats the “Heuris-
tic” player and defeats Wally most of the time too. One can
see that SLVQS outperforms SLinear.
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Figure 5: 5x5 games against the “heuristic” player
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Figure 6: 5x5 games against Wally

Figure7 shows the results of SLVQS and SLinear against
Wally in the problem of Figure3. SLinear does not learn to
live as the average territory lost quickly converges to 1.
SLVQS levels against Wally towards the end of the training.
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Figure 7: 5x5 pattern in Figure3 against Wally

7x7 * Increasing the dimensions of the board from 5x5
to 7x7 makes the game clearly more difficult. The code-
book vectors were initialized from samples of 42 games
or 659 codebook vectors. Figure8 shows results against
Wally. The performance of SLVQS improves as training pro-
gresses. SLVQS will win a few games against Wally and
again SLVQS outperforms SLinear.
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Figure 8: 7x7 games against Wally

Figure9 shows SLVQS winning against the “Heuristic”
player. Clearly, it is easier to learn a strategy against a
deterministic player and harder to learn to play against a
pure tactical player since SLVQ has only a generalized
representation of the board and here again, SLVQS
outperforms SLinear.

Figure11shows results on the life-and-death pattern of
Figure10. Similar to the 5x5 pattern, SLinear does not learn
the goodness of certain moves in special circumstances.
SLVQS again does much better than SLinear. As training
goes on it attempts to level off against Wally and
occasionally wins some games. There seems to be a plateau
occurring in the performance of SLVQS which might
indicate some amount of overfitting.

SLVQ plays a good opening (Figure12). It knows the value
of the center on a small board and of the corners. It knows
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Figure 9: 7x7 games against “Heuristic”

Figure 10: 7x7 life-and-death pattern
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Figure 11: 7x7 life-and-death pattern of Figure10against Wally

to cut and put a stone in atari but also has some amount of
senselessthrow-inswhich are necessary in the endgame to
finish the game under the program’s rules. Overall, SLVQS
plays too aggressively and tries to capture first rather than
defend even when the capture was not urgent. Training
specifically for those non-obvious moves on Go problems
might be necessary.
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Figure 12: SLVQS (black) opening against Wally

6 Conclusions and Future Work

This research shows the feasibility of learning a cognitive
skill with reinforcement learning in a knowledge-free ap-
proach. Beyond Go, other application domains include, for
example, navigational tasks and C3I. The distributed repre-
sentation of LVQ reduces the state space significantly when
the input space can be decomposed into different classes.
The integration of LVQ and Sarsa enriches the reinforcement
learning paradigm to include competitive learning. Future re-
search will include enhancement of the exploration strategy,
further decomposition of the input space to localized regions
of the board, and learning action coordination with a gating
network.
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