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ABSTRACT
Well-differentiated thyroid carcinomas comprise two well-
defined histological types: papillary and follicular (PTCs
and FTCs, respectively). Despite being derived from the
same cell (thyroid follicular cell), these two types of
tumour accumulate distinct genetic abnormalities during
progression. The molecular pathology of thyroid cancer is
now better understood because of our ability to identify
RET/PTC rearrangements and BRAF mutations in the
aetiopathogenesis of the large majority of PTCs and the
high prevalence of RAS mutations and PAX8/PPARc
rearrangements in follicular patterned carcinomas (FTCs
and follicular variant of PTCs). This review summarises
most of the molecular alterations currently used as
targets for new biological treatments and looks at some
of the changes that are already occurring or may occur in
the treatment of patients with thyroid cancer. For
simplicity, the review is divided up according to the major
genetic alterations identified in well-differentiated thyroid
carcinomas (RET/PTC rearrangements, BRAF mutations,
RAS mutations and mitochondrial DNA deletions and
mutations) and their respective treatments.

Thyroid cancer is the most common type of
endocrine neoplasia and is mostly due to tumours
derived from follicular cells.1 C-cell-derived thyroid
medullary carcinoma represents ,5% of clinically
evident thyroid carcinomas.1 In this review, we
concentrate on the changes in treatment of
patients with well-differentiated follicular cell-
derived carcinomas, which represent ,85% of all
thyroid carcinomas.1

Follicular cell oncogenesis presents multiple
discrete stages ranging from common benign
follicular adenomas (FTAs) to the less common,
highly aggressive, poorly differentiated thyroid
carcinomas and undifferentiated (anaplastic) thyr-
oid carcinomas.1 Between these two ends of the
spectrum is the common well-differentiated thyr-
oid carcinomas, which comprise two histological
types: papillary and follicular (PTC and FTC,
respectively). The essential diagnostic criteria differ
between the two; in PTCs, they are cytological,
based on the presence of typical nuclear features
(large, pale staining, ‘‘ground glass’’ and irregular,
‘‘grooved’’ nuclei), whereas the diagnosis of FTC
rests on the histological demonstration of capsular
and/or vascular invasiveness.1

The two types of well-differentiated thyroid
carcinoma (WDTC) accumulate distinct genetic
abnormalities during tumour progression. In PTCs,
somatic rearrangements of the RET proto-oncogene2–4

and BRAFV600E mutations5 6 are the most common
events. In contrast, FTCs have a different genetic
profile: they are characterised by RAS mutations7 8

and PAX8/PPARc rearrangement.9 10 The follicular
variant of PTC (FVPTC) shares some of the
molecular features of follicular tumours (FTA and
FTC), namely a high frequency of RAS mutations
and PAX8/PPARc rearrangements,11 whereas a less
common and less often reported BRAFK601E form
(,7%) is detected in cases of FVPTC.12 These
observations reinforce the assumption that some
FVPTC cases are an intermediate category between
conventional PTC and FTC.11

The behaviour of WDTCs is typically indolent,
and they can be effectively treated by surgery
followed by radioiodine therapy. However,
tumours that lose differentiation and therefore
the ability to trap radioiodine do not respond to
radioiodine treatment and carry a less favourable
prognosis. Patients with such tumours are obvious
candidates for alternative approaches such as
molecular targeted therapy.

The clinical use of pathway-targeted drugs
(mainly tyrosine kinase inhibitors (TKIs)) in
patients with thyroid cancer still does not rely on
the genetic background of each concrete tumour,13–15

being mainly based on observations in in vitro
models. The situation will be improved substantially
after the conclusion of meta-analyses of ongoing
clinical trials and by the exploitation of other
molecular and/or other metabolic pathways and
the utilisation of treatment combinations.

For simplicity, this review has been divided
according to the major genetic alterations identi-
fied in WDTCs. In each section, the use of new
drugs designed to target the inhibition of specific
cellular pathways is discussed (a summary is given
in table 1). Although we acknowledge the putative
importance of relatively unspecific treatments that
have been used successfully in other tumour
models and are also thought to be useful in thyroid
carcinomas (eg, anti-angiogenesis drugs and drugs
targeting growth factors/growth factor receptors),
we decided to restrict the discussion to mechan-
isms considered to be the hallmarks of WDTCs.

RET/PTC REARRANGEMENTS AS A THERAPEUTIC
TARGET
RET encodes a membrane receptor tyrosine kinase
that signals through a ligand–co-receptor–RET
complex. The formation of ligand–co-receptor–
RET complexes results in RET dimerisation
and triggers autophosphorylation at intracellular
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tyrosine residues. Tyrosine phosphorylation of intracellular
target proteins activates several downstream pathways, which
include mitogen-activated protein kinase (MAPK)/extracellular
signal-regulated kinase (ERK)1/2, phosphatidylinositol 3-kinase,
c-Jun N-terminal kinase, p38, ERK5 and cAMP-responsive
element-binding protein.

In the thyroid gland, wild-type RET is expressed at high levels
in parafollicular C-cells, but not in follicular cells; this finding is
consistent with its role in the development and function of neural
crest-derived cell lineages.16 Activating point mutations of RET in
C-cells are responsible for sporadic and familial medullary thyroid
carcinomas and for the inherited cancer syndromes MEN2A and
MEN2B (for a review, see de Groot et al17).

In sporadic PTCs, three major rearrangements involving the
RET gene, RET/PTC1, 2 and 3, have been identified, leading to
the presence of a constitutively activated RET tyrosine kinase
domain in the cytoplasm of follicular cells. The prevalence of
somatic rearrangements of the RET proto-oncogene varies from
3% to 60% in different series of sporadic PTCs.18 RET/PTC1 is
the most common type, comprising up to 60–70% of the
rearrangements, whereas RET/PTC3 accounts for 20–30% of
positive cases. Other novel and rare types of RET/PTC are
usually associated with radiation exposure. RET/PTC rearran-
gements, especially RET/PTC1, seem to be more common in
tumours with a pure, or predominantly papillary, growth
pattern.18 19 The prognostic significance of RET/PTC in PTCs
remains controversial. Some groups have suggested an associa-
tion between RET/PTC and more aggressive tumours,20 whereas
others have proposed that tumours that harbour RET/PTC
display slow growth and do not progress to poorly differ-
entiated and undifferentiated thyroid carcinomas.2–4 In PTCs,
almost no overlap exists among mutations in RET/PTC, RAS or
BRAF; it is thus tempting to conclude that thyroid cell
transformation into PTC takes place through constitutive
activation of effectors along the RET/PTC–RAS–BRAF signal-
ling pathway.5 6

Oncogenic forms of RET found in PTCs are targets of
potential therapeutic interest. Various compounds have been

reported to inhibit oncogenic RET (mutated or rearranged)
(table 1), including PP1 and PP2,21 vandetanib (ZD6474),22

RPI-1,23 CEP-701,CEP-751,24 imatinib,25 sunitinib (SU5416,
SU11248),26 gefitinib,27 sorafenib (BAY 43-9006),28 motesanib
(AMG706)29 and axitinib (AG013736).15

The mechanism of action of small-molecule TKIs is based on
the principle that sterically blocking the ATP-binding pocket
results in impaired phosphorylation activity, inhibits signal
transduction, and prevents activation of intracellular signalling
pathways relevant to tumour growth and angiogenesis.

The pyrazolopyrimidines, PP1 and PP2, and the 4-anilino-
quinazoline, vandetanib, inhibit RET rearrangement-derived
oncoproteins with a half-maximal inhibitor concentration
(IC50) below 100 nM. These molecules were shown to inhibit
RET enzymatic activity and phosphorylation of downstream
targets, such as ERK1/2. Vandetanib has been found also to
inhibit RET signalling in two human PTC cell lines and to
reduce tumorigenicity of RET/PTC-transformed fibroblasts
injected into nude mice.21 Vandetanib blocks in vivo phosphor-
ylation and signalling mediated by RET/PTC3 oncoprotein of
an epidermal growth factor (EGF)-activated receptor/RET
chimeric receptor. Furthermore, it blocks anchorage-indepen-
dent growth of RET/PTC3-transformed NIH3T3 fibroblasts
and the formation of tumours after injection of NIH3T3-RET/
PTC3 cells into nude mice.22

Although sorafenib (BAY 43-9006) was designed originally as
a RAF inhibitor30 (see below), preclinical studies have shown
that it can inhibit the kinase activity and signalling of wild-type
and oncogenic RET. Sorafenib inhibited oncogenic RET kinase
activity at an IC50 of 50 nM or less in NIH3T3 cells. It arrested
the growth of NIH3T3 and RAT1 fibroblasts transformed by
oncogenic RET and thyroid carcinoma cells that harbour
rearranged RET alleles. These inhibitory effects paralleled a
decrease in RET phosphorylation.28 Finally, PTC cells carrying
the RET/PTC1 rearrangement were found to be more sensitive
to sorafenib than PTC cells carrying a BRAF mutation.31 There
is an ongoing phase II clinical trial using sorafenib in patients
with advanced thyroid cancer (see below).14

Table 1 Summary of studies using new compounds that target key molecular pathways in follicular cell-
derived thyroid cancer models

Compound Trade name Structure Targets Clinical trials References

PP1, PP2 Zaleplon Pyrazolopyrimidine RET – 21

ZD6474 Vandetanib Anilinoquinazoline RET, VEGFR, EGFR Phase II 22

RPI-1 – Indolinone RET, MET – 23, 32

SU11248,
SU5416

Sunitinib Butanedioic acid VEGFR-2, PDGFR, c-KIT,
RET, CSF-1R

Phase II 26, 35

ZD1839 Gefitinib Anilinoquinazoline EGFR Phase II 36

BAY43-9006 Sorafenib Bis-aryl urea RAF-1, BRAF, VEGFR-
2/-3, PDGFR-B, Flt-3, c-
KIT, RET

Phase II 14, 28, 30, 31,
60, 62, 63

CI-1040
(PD184352)

– Benzhydroxamate ester MEK – 59

AAL881 LBT-613 – Isoquinolines RAF-1, BRAF, VEGFR-2 – 74

17-AAG,
17-DMAG

Tanespimycin Benzoquinones Heat shock protein 90 Phase II 76, 77

AMG706 Motesanib
diphosphate

Diphosphate salt VEGFR, PDGFR, KIT,
RET

Phase II 29

AG-013736 Axitinib Benzamide RET, VEGFR, PDGFR, c-
KIT

Phase II 15

R115777 Zarnestra, tipifarnib Quinolinone Farnesyltransferase Phase I (in
conjugation
with topotecan)

96, 97

EGFR, epidermal growth factor receptor; PDGFR, platelet-derived growth factor receptor; VEGFR, vascular endothelial growth factor
receptor.
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RPI-1 is a 2-indolinone derivative initially shown to inhibit
RET/PTC1 activity with an IC50 of 27–42 mM. It selectively
inhibited the anchorage-independent growth of NIH3T3-trans-
formed cells expressing the RET/PTC1 gene, and the trans-
formed phenotype of NIH3T3-RET/PTC1 cells reverted to a
normal fibroblast-like morphology. In these cells, the constitu-
tive tyrosine phosphorylation of RET/PTC1, of the transducing
adaptor protein, shc, and of a series of coimmunoprecipitated
peptides was substantially reduced.23 Activation of c-Jun N-
terminal kinase 2 and AKT (acutely transforming retrovirus
AKT8 in rodent T cell lymphoma) was abolished, thus
supporting the drug inhibitory efficacy on downstream path-
ways. In addition, cell growth inhibition was associated with a
reduction in telomerase activity by nearly 85%.32

Sunitinib was initially described as a TKI that targets vascular
endothelial growth factor receptors (VEGFRs) and platelet-
derived growth factor receptors (PDGFRs)33 and has also been
found to inhibit c-KIT.34 It is now approved for the treatment of
gastrointestinal stromal tumour and renal cell carcinoma. In
vitro kinase assays showed that sunitinib inhibited the
phosphorylation by RET/PTC3 of a synthetic tyrosine kinase
substrate peptide in a dose-dependent manner. RET/PTC-
mediated Y705 phosphorylation of signal transducer and
activator of transcription (STAT) 3 was inhibited by addition
of sunitinib, and the inhibitory effects of sunitinib on the
tyrosine phosphorylation and transcriptional activation of
STAT3 correlated very closely with decreased autophosphoryla-
tion of RET/PTC. Sunitinib caused complete morphological
reversion of transformed NIH3T3-RET/PTC3 cells and inhibited
the growth of TPC-1 cells with an endogenous RET/PTC1.26

Treatment of two patients with progressive metastatic thyroid
carcinomas (a PTC and a FTC) showed sustained clinical
responses to sunitinib over a period of 4 years.35

Gefitinib was initially approved for non-small cell lung
cancer, as it targets oncogenic EGFR. In vitro data suggest that
EGFR contributes to RET kinase activation, signalling and
growth stimulation. Conditional activation of RET/PTC
oncoproteins in thyroid PCCL3 cells markedly induced expres-
sion and phosphorylation of EGFR, which was mediated in part
through MAPK signalling.27 RET and EGFR were found to
coimmunoprecipitate. Ligand-induced activation of EGFR
resulted in phosphorylation of a kinase-dead RET, and this
effect was entirely blocked by EGFR kinase inhibitor. Gefitinib
also inhibited cell growth induced by various constitutively
active mutants of RET in thyroid cancer cells as well as in
NIH3T3 cells.27 This evidence has provided a biological basis for
clinical evaluation of gefitinib in thyroid cancer. The results
obtained in a phase II trial showed no objective responses
among 25 patients with thyroid cancer treated with gefitinib.36

BRAF MUTATIONS AS A THERAPEUTIC TARGET
BRAF, together with ARAF and CRAF, constitute the RAF family
of serine/threonine kinases. RAF proteins are intermediate
members of the canonical MAPK/ERK pathway.37 This pathway
links extracellular signals to the cell, ultimately controlling cellular
processes such as proliferation, differentiation, survival and
apoptosis.38 BRAF activation is accomplished by GTP-bound
RAS. Active BRAF then phosphorylates MAPK/ERK kinase
(MEK)1 and MEK2, which in turn activate ERK1 and ERK2,
respectively. Such activation results in ERK translocation to the
nucleus, where they trigger a multiplicity of regulatory proteins.39

More than 80% of activating BRAF mutations consist of a T
to A transversion at nucleotide 1799, which leads to replace-
ment of valine with glutamic acid at position 600.40 Mutant

BRAF is capable of stimulating ERK activity in vivo, indepen-
dently of RAS, and shows high transforming capacity.41 This
evidence boosted BRAF to the category of a classical oncogene.

BRAFV600E mutation is the most prevalent oncogenic event in
thyroid carcinoma and is tightly linked to PTC, which is the
most common form of thyroid cancer.1 5 6 12 42 In PTCs,
BRAFV600E mutation frequencies range between 29% and
69%.18 43 44 The nature and frequency of BRAF mutations were
later found to be associated with different subtypes of PTC,
ranging from very high prevalences in PTCs with an exclusive or
predominantly papillary growth pattern to a much lower
prevalence in FVPTCs (0–12%).12 37 45–48 A different activating
BRAF mutation, K601E, was almost exclusively found in cases
of FVPTC.5 49 50 Finally, another type of BRAF mutation,
BRAFVK600-1E, has been reported in a case of solid variant PTC,
as well as in some metastases of conventional PTCs.51 The
BRAFV600E mutation is also present in some poorly differentiated
thyroid carcinomas and in 20–30% of anaplastic thyroid
carcinomas.48 52 53 In anaplastic thyroid carcinomas, BRAF
mutations are restricted to cases in which a well-differentiated
PTC counterpart is presented, suggesting that BRAF mutations
may play a role in the progression of thyroid carcinomas.47

BRAF mutations are associated with older age of patients,47 48

extrathyroidal extension,48 54 higher tumour staging54 and
tumour recurrence. Furthermore, it has been advanced that
BRAF mutation is a negative prognostic marker, which may
reflect, at least in part, the diminished radioiodine avidity of
cells carrying such a mutation.54 The prognostic significance of
BRAF mutation is more difficult to prove if one takes into
account the influence of other clinicopathological factors,
namely the papillary or follicular growth pattern of the
carcinomas.48 55

The role of mutant BRAF in thyroid cancer pathogenesis has
been addressed in several studies. Targeted expression of
BRAFV600E in thyroid cells of mice resulted in development of
PTC lesions that could further progress to poorly differentiated
carcinomas.56 Taken together, the data indicate that BRAF and/or
its downstream effectors are logical targets for the treatment of
late-stage PTCs and poorly differentiated/undifferentiated carci-
nomas displaying the BRAF mutation (table 1).

Several strategies for reducing BRAF production or its
activation have been reported, using either silencing techniques
or small-molecule kinase inhibitors such as sorafenib.57

RNA interference methods that suppress the expression of
oncogenic BRAFV600E cause inhibition of the MAPK signalling
cascade and growth of human anaplastic thyroid carcinoma cell
lines.58 In BRAFV600E-harbouring PTC cells, BRAF knockdown by
RNA interference induced a decrease in proliferation and
abrogated cell transformation and in vivo tumorigenicity.58

Protein kinase inhibitors such as the BRAF-targeted and
multi-targeted kinase inhibitor, sorafenib, are currently the
most promising agents for targeting BRAF activity. Sorafenib is
a bis-aryl urea initially designed to target RAF-1,30 which was
found to have strong activity against BRAF and angiogenesis-
related receptor tyrosine kinases such as VEGFR-2 and VEGFR-3,
PDGFR-b, Flt-3 and c-Kit.60

Inhibition of BRAFV600E in several tumour cell lines (mela-
noma, breast, pancreas and colon) by sorafenib resulted in
disruption of the MAPK–ERK pathway and inhibition of cell
proliferation. Such effects prevented growth of colon tumour
xenografts harbouring activating K-RAS and BRAFV600E muta-
tions.60 Besides kinase inhibition, the mechanism by which
sorafenib controls tumour growth seems to depend on blocking
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angiogenesis through induction of apoptosis in the tumour
vasculature.61

The anti-tumour effects of sorafenib have also been demon-
strated in thyroid cancer models, inhibiting proliferation of
anaplastic cell lines.62 This effect is apparently independent of
the presence of a BRAFV600E mutation and seems to result from
blocking angiogenesis through disruption of VEGFR signalling.62

Four phase I studies using oral sorafenib as a single agent have
been completed to date. An encouraging safety profile has been
found, with the most common secondary effects being
diarrhoea, fatigue, rash, palmar–plantar erythema, musculo-
skeletal pain and weight loss.14 63 Currently, phase III clinical
trials are being performed in patients with melanoma and
advanced hepatocellular carcinoma, and phase II trials in
patients with thyroid cancer.64 Recently, a phase II study of
sorafenib in patients with metastatic, iodine-refractory thyroid
cancer (without molecular characterisation) showed that
sorafenib has significant anti-tumour activity with an overall
clinical benefit rate of ,80% and progression-free survival of
79 weeks, without significant toxic effects.14 A potential
problem of sorafenib is the multiplicity of targets; one cannot
predict whether the activity of sorafenib is due to BRAF
inhibition or disruption of any of its other multiple targets, such
as VEGFR. Moreover, even though the array of inhibitory
effects that occur in tumour cells may seem desirable, some of
these effects may just as easily be toxic to the patient.57

Reports of acquired TKI drug-related resistance have been
increasing, especially in lung cancer and leukaemia.65–67 To
overcome a similar effect, it has been suggested that sorafenib
should be administered concomitantly with drugs that target
other components of the MAPK–ERK cascade such as MEK,
once this is the direct and main effector of BRAF.68 MEK
phosphorylation can be inhibited by the compound CI-1040
(PD-184352), producing inhibition of colon carcinoma growth
in mice69 and regression of melanoma-derived pulmonary
metastases.70 A recent study by Liu et al59 showed that
CI-1040 inhibits proliferation and induces cell cycle arrest of
thyroid cancer cells, specifically in those harbouring BRAFV600E

and RAS mutations, showing that MEK inhibition could be of
particular importance in the therapeutic approach to thyroid
cancer. CI-1040 has reached the clinical testing stage and is
currently in phase II trials for patients with lung, colon, breast
and pancreatic cancer. Sorafenib is also being tested in
combination with other cytotoxic chemotherapeutic agents,
such as doxorubicin, and has been used in combination with
carboplatin to treat patients with melanoma.71 72 So far, phase II
trials have shown no improvement in the survival of these
patients.73

Two other small-molecule inhibitors of RAF kinase, AAL881
and LBT-613, have also been tested for anti-tumour effects in
anaplastic thyroid carcinoma cell lines and xenografts that
harbour BRAFV600E mutations or RET/PTC rearrangements.
Both compounds were capable of inhibiting MAPK activation,
arresting the cell cycle in G1 phase and inhibiting growth of
tumour xenografts.74

Another targeting strategy relies on interfering with BRAF
protein stability by inhibiting chaperone and heat shock protein
(Hsp) 90, to which BRAF binds.75 Inhibition of Hsp90 by the
benzoquinone, geldanamycin, and its less toxic analogues,
17-allylamino-17-demethoxygeldanamycin (17-AAG) and
17-N,N-dimethylethylenediaminegeldanamycin (17-DMAG),
causes disruption of the BRAFV600E–Hsp90 complex, leading to
its proteasome-dependent degradation.76 77 17-AAG has reached
clinical testing and is currently in phase I/II.78

RAS MUTATIONS AS A THERAPEUTIC TARGET
RAS proteins are signal-switch molecules, which regulate cell
fates by coupling receptor activation to downstream effector
pathways that control diverse cellular responses such as
proliferation, differentiation and survival.79 80 Overall, mutated
RAS alleles are found in ,30% of all human cancers.81 When
mutated, the RAS genes produce a protein that remain locked in
an active state (bound to GTP), thereby relaying uncontrolled
proliferative signals. In thyroid tumours, RAS gene mutations
are particularly prevalent in FTAs and FTCs and less common in
PTCs (for reviews, see Sobrinho-Simoes et al18 and Kondo et al82).
Their prevalence in PTCs varies widely from series to series,
being relatively rare (0–16%) in conventional PTCs7 8 83 and
much more common (.25%) in FVPTCs.11 84–86 RAS mutations
are also common in poorly differentiated (55%) and anaplastic
carcinomas (52%).87 In the latter types of thyroid cancer, a
significant association between RAS mutations and poor
survival has been found, leading to the suggestion that RAS
mutation may be considered a marker of aggressive behaviour.87

The relationship between RAS activation and chromosomal
instability in thyroid tumours88 has been recently reinforced by
the finding of a significant association between H-RAS 81 T–C
polymorphism, together with increased p21 (which is the active
form of RAS), and the occurrence of aneuploidy.89 In thyroid
oncology, the correlation between aneuploidy and prognosis is
not as clear as in other tumour models, but several studies have
shown that the presence of aneuploidy is an adverse prognostic
factor in thyroid carcinomas,90 91 making further studies on
H-RAS isoforms promising.

The result of activation of oncogenic RAS in thyroid cells is
still debatable. Some studies have shown that RAS activation
induces proliferation without loss of differentiation,92 whereas
others have shown that a high level of RAS expression induces
both growth and loss of differentiation,93 the dedifferentiation
being dependent on the level of RAS expression.93 It has also
been reported that, in thyroid cells, RAS overexpression inhibits
thyroid transcription factor 1 (TitF1) and PAX8 activity,93 but
the exact mechanism of this inhibition is not yet understood.

To the best of our knowledge there are no studies using RAS
proteins as a direct molecular therapeutic target, but some
ongoing studies are using different molecular approaches in an
attempt to target the RAS pathway.

Post-translation modifications are crucial to the localisation
of RAS proteins to the correct subcellular compartment and to
their normal function. These post-translational modifications
include prenylation, proteolysis, carboxymethylation and pal-
mitoylation.94 95 The crucial role of prenylation in the process
turns the enzymes that catalyse the post-translational proces-
sing of RAS prime targets for drug design. One approach was to
use farnesyltransferase inhibitors (FTIs), which simulate the
CAAX motif to compete with RAS for its post-translational
processing enzymes, thus blocking the first step of RAS
modification and thereby inhibiting its activity.96 Although
very promising, both N-RAS and K-RAS were shown to become
geranylgeranylated at their C-termini after FTI treatment,
which rendered them refractory to inactivation by FTIs.97

Meanwhile, there are ongoing clinical trials combining FTIs
(R115777) with topotecan (a chemotherapy agent that is a
topoisomerase 1 inhibitor) in patients with advanced solid
tumours, previously treated or beyond standard treatment of
clinical benefit (table 1).98

The problems with the FTIs forced the development of
alternative strategies for blocking RAS function. Recent studies
in mice suggested that RAS transformation is impaired in
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protease (RAS converting enzyme)-deficient animals.99 This
protease is responsible for the removal of the AAX.peptide, a
critical step in the correct localisation of RAS. Elimination of
RAS function by homologous gene recombination or antisense
RNA has shown that expression of activated RAS is necessary
for maintenance of the transformed phenotype of tumour
cells.100–102

Mutant RAS oncogenes produce novel proteins that are
processed and displayed through HLA molecules on tumour
cells. Therefore, mutant RAS proteins are an attractive target
for vaccine therapy, and there are ongoing clinical trials using
this approach.103 104

MITOCHONDRIAL MUTATIONS AND DELETIONS AND
METABOLIC PATHWAYS
Although the vast majority of human genes are located in the
nucleus, there is one vital set of genes that reside in the
cytoplasm, mitochondrial DNA (mtDNA). mtDNA is located in
the mitochondria, which are double-membrane organelles
responsible for producing most of the cellular ATP by oxidative
phosphorylation (OXPHOS) in an oxygen-dependent pro-
cess.105–110 In addition to OXPHOS, cells can also produce ATP
through glycolysis, which takes place in the cytosol and does
not require O2. OXPHOS is more efficient at generating ATP
than glycolysis and therefore it is the preferred process, provided
that there is enough O2 available. Whenever there is a decrease
in O2 levels, there is a shift from OXPHOS to glycolysis and the
ATP is generated mainly through glycolysis (Pasteur effect).111

In the first half of the 20th century, Otto Warburg112 made an
outstanding discovery: cancer cells prefer to metabolise glucose
by glycolysis, not using OXPHOS, even in the presence of O2

(Warburg effect or aerobic glycolysis). He further hypothesised
that this phenomenon was attributable to irreversible damage
to OXPHOS in cancer cells.112 The Warburg effect has since been
demonstrated in different types of tumour, and the concomi-
tant increase in glucose uptake has been exploited clinically for
the detection of tumours by fluorodeoxyglucose positron
emission tomography.113 Although aerobic glycolysis has now

been generally accepted as a metabolic hallmark of cancer, its
cause and its relationship to cancer progression is still unclear.

One hypothesis to explain the above metabolic shift in cancer
cells is related to defects in OXPHOS that push cancer cells
towards glycolysis. In the past 10 years, mutations in mtDNA-
encoded OXPHOS genes have been shown in most types of
human tumour, including thyroid tumours.114–124

In 2000, Yeh et al124 screened 25% of the entire mtDNA and
reported the presence of point mutations in three out of 13
PTCs (23%). The prevalence of mtDNA mutations was also
assessed by Maximo et al125 in a series of 66 thyroid tumours,
through direct sequencing of ,70% of the mitochondrial
genome. They detected numerous mutations in all genes that
encode OXPHOS proteins (except ATPase8), as well as three
mutations in three tRNAs.125 Combining the results of Yeh
et al124 and Maximo et al,125 it appears that alterations in mtDNA
genes affecting complex I may increase susceptibility to thyroid
tumorigenesis. This assumption was later confirmed by several
groups.114–116

Additional evidence for the involvement of OXPHOS com-
plex I in thyroid tumorigenesis was provided by Maximo et al,126

who analysed a nuclear gene, GRIM-19, that encodes a
mitochondrial complex I protein,127 in oncocytic and non-
oncocytic thyroid tumours. They identified three GRIM-19
missense somatic mutations in three oncocytic cell thyroid
tumours, as well as a germline mutation in an oncocytic cell
thyroid tumour arising in a thyroid with multiple oncocytic cell
nodules.126 No mutations were detected in any of the 20 non-
oncocytic cell carcinomas tested, nor in any of the 96 blood
donor samples. It was proposed that such mutations may be
involved in the genesis of sporadic or familial oncocytic cell
thyroid tumours through the dual function of GRIM-19 in
mitochondrial metabolism (as part of OXPHOS complex I) and
cell death (being involved in retinoic acid-induced and interferon
b-induced apoptosis).126

Classical oncogenes and tumour suppressor genes such as
RAS and p53, involved in thyroid tumorigenesis, may also drive
metabolic changes and promote glycolysis.128–130 The altered
metabolism of cancer cells may confer a selective advantage for
survival and proliferation in the unique tumour microenviron-
ment, an adaptation in which the hypoxia-inducible factor may
play a central role.128 131

Although the cause of the metabolic shift toward glycolysis is
not yet clear, the Warburg effect may at least be one ‘‘Achilles’
heel’’ of cancer cells, as the glycolytic phenotype appears to be
the common denominator of diverse molecular abnormalities.
Understanding this phenomenon and its targeting may facil-
itate the treatment of cancer in several organs including the
thyroid.132–136

The decreased efficiency of oncocytic cells with regard to
iodine uptake and hormone synthesis explains the poor
responsiveness to radioiodine therapy of oncocytic cell tumours.
It has thus been proposed that the treatment of WDTCs with
oncocytic cell features may benefit from the discovery of drugs
that reverse the Warburg effect.119 137

CONCLUDING REMARKS
As recently stressed by Pfister and Fagin,13 for many years
human thyroid cancers have received very little attention with
regard to the use of novel treatments. As reported here, this
situation is rapidly changing, partly because many of the
molecular pathways involved in thyroid carcinogenesis have
now been revealed, providing new therapeutic targets, and

Take-home messages

c The increasing knowledge of the molecular pathways involved
in thyroid carcinogenesis provides alternative therapeutic
strategies to the current standard treatments (thyroid ablation
and radioiodine therapy).

c The hallmarks of well-differentiated thyroid carcinoma
(WDTC), such as RET/PTC rearrangements, BRAF and RAS
mutations, as well as metabolic defects that are common to
most human cancers, are obvious candidates for molecular-
targeted intervention.

c Drugs that target such molecular pathways could be useful to
treat highly aggressive forms of thyroid cancer such as
undifferentiated cancers, particularly those that harbour
common genetic defects to WDTC (eg, BRAF mutations).

c Current drugs show promising results in vitro, but most fail to
prevent cancer progression in clinical trials, also because of
tumour-acquired drug resistance.

c The most promising approaches rely on targeting multiple
oncogenic events. For this, it will be necessary to use in vitro
cell-based screens and then validate the combinations found in
realistic animal model systems.
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partly because of the extension to thyroid cancer of drugs
developed for the treatment of other cancer types.

We are convinced that the current trend of using massive
high-throughput approaches to disclose new targets will not be
fruitful unless we can integrate the huge amount of available
information into a system biology frame. We also think that
metabolic approaches via mitochondria and other more biology-
driven targets may prove useful, especially if it proves possible
to integrate these approaches in an organismal biology model of
cancer development. Finally, we believe that, regardless of the
approach used in the treatment of radioiodine-resistant thyroid
cancers, it will be necessary to use, together with molecular
signatures, in vitro cell-based screens and then to validate the
combinations thus found in realistic animal model systems.
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