PLB-HeC: A Profile-based Load-Balancing
Algorithm for Heterogeneous CPU-GPU Clusters

Luis Sant’Ana and Raphael Camargo

Center for Mathematics, Computation and Cognition

Federal University of ABC
Santo André, Brazil
{luis.ana,raphael.camargo } @ufabc.edu.br

Abstract—The use of GPU clusters for scientific applications in
areas such as physics, chemistry and bioinformatics is becoming
more widespread. These clusters frequently have different types
of processing devices, such as CPUs and GPUs, which can
themselves be heterogeneous. To use these devices in an efficient
manner, it is crucial to find the right amount of work for each
processor that balances the computational load among them. This
problem is not only NP-hard on its essence, but also tricky due
to the variety of architectures of those devices.

We present PLB-HeC, a Profile-based Load-Balancing algo-
rithm for Heterogeneous CPU-GPU Clusters that performs an
online estimation of performance curve models for each GPU
and CPU processor. Its main difference to existing algorithms is
the generation of a non-linear system of equations representing
the models and its solution using a interior point method,
improving the accuracy of block distribution among processing
units. We implemented the algorithm in the StarPU framework
and compared its performance with existing load-balancing algo-
rithms using applications from linear algebra, stock markets and
bioinformatics. We show that it reduces the application execution
times in almost all scenarios, when using heterogeneous clusters
with two or more machine configurations.

Keywords—GPU clusters; GPGPU; load-balancing; parallel
computing;

I. INTRODUCTION

The use of GPUs (Graphics Processing Units) is becoming
increasingly popular among developers and HPC practitioners.
Modern GPUs are composed of thousands of simple floating
point units (FPUs) that, combined, can provide a computational
power several times superior to traditional CPUs. For increased
parallelism, multiple GPUs are usually offered on GPU clus-
ters [1], with the GPUs distributed on different machines.
The use of GPUs can benefit applications that have high
computational demands and large degrees of parallelism [2].
Among these applications, we can include fluid mechanics [3],
visualization science [4], machine learning [5], bioinformat-
ics [6] and neural networks [7].

The main drawback is the difficulty in optimizing GPU
code, specially considering the architectural differences among
different GPUs — they may differ on the distribution of cores,
shared memory, presence of cache, etc. There is a clear effort
(by both academy and industry) to ease the development of
optimized code on such hardware [8], [9]. The development
of applications for GPU clusters is even more complex, since it
requires the management of the multiple memory spaces, one

Daniel Cordeiro
Department of Computer Science
University of Sao Paulo
Sdo Paulo, Brazil
danielc@ime.usp.br

for each GPU in the cluster, in addition to the main memory
of the each node. This management includes transferring data
between these memory spaces and ensuring the consistency
of data. There are several efforts by the scientific community
for the creation of new programming models [10], [11] and
frameworks [12], [13], [14] to simplify the development of
GPU cluster applications. However, the combination of CUDA
(Compute Unified Device Architecture) and MPI (Message
Passing Interface) is still the standard choice to develop
applications for GPU clusters.

High-performance GPU clusters are typically homoge-
neous, containing nodes and GPUs with the same configura-
tion. Homogeneity facilitates the development of applications,
since they can be optimized just for a single architecture.

Homogeneity, however, can be hard to maintain in the
current scenario; a new generation of hardware is launched
every couple of years. It is also difficult to be guaranteed
on distributed cooperative platforms, composed of commodity
hardware from different research groups (in a grid-like fash-
ion). Thus, combining heterogeneous machines can increase
the available computational power to cluster users.

Developing a load-balancing mechanism that works effi-
ciently for all kinds of applications is difficult. With two or
more GPUs (or CPUs), this problem is strictly equivalent to the
classic problem of minimizing the maximum completion time
of all tasks (makespan), which is known to be NP-hard [15].
An efficient load-balancing scheme must be considered on
case-by-case basis. For example, there are several types of
data-parallel applications [16] that could be divided using
domain decomposition. Several scientific applications fit into
this group, including applications in bioinformatics [6], neural
networks [7], chemistry, physics and materials science.

When using homogeneous clusters, data from a data-
parallel application can be distributed among the available
GPUs using tasks of the same size, i.e., that take approxi-
mately the same amount of time to be executed. With het-
erogeneous GPUs, however, this distribution is more difficult.
At the time of writing, the major GPU vendor offers GPU
processors with more than four different microarchitectures:
Tesla, Fermi, Kepler and Maxwell. These architectures have
different organizations of FPUs (Floating-point Unit), caches,
shared memory and memory speeds. Even for GPUs with
the same architecture, characteristics can vary considerably
among models. These differences increase the complexity of

determining the division of tasks among the available GPUs
that will result in the best performance. Finally, GPU clusters
normally have high-end CPUs in addition to the GPUs, and
these CPUs can used by the applications.

The main task of the load-balancing mechanism is to devise
the best data division among the GPUs. A division of the load
based on simple heuristics, such as the number of cores in the
GPU, may be ineffective and could result in worse performance
if compared to using a simple homogeneous division [17]. A
possible approach is to determine the performance profiles for
each GPU type and application task and use it to determine the
amount of work given to each GPU. This profiling can be stat-
ically computed, before the execution of the application [17],
or dynamically computed, at runtime [18], [19].

Another solution is to use simple algorithms for task
dispatching — such as the greedy algorithm used by sev-
eral frameworks including StarPU [14] — where tasks are
dispatched to the devices as soon as they become available.
Such algorithms use simple (but fast) heuristics to determine
the distribution of tasks among the processors, but can result
on suboptimal distributions. A more elaborate and precise
load-balancing algorithm causes a higher overhead, but can
potentially compensated by a better task distribution.

In this work we present PLB-HeC, a novel profile-based
load-balancing algorithm for data-parallel applications in het-
erogeneous CPU-GPU clusters. The algorithm uses perfor-
mance information gathered at runtime in order to devise a
performance model customized for each device (CPU or GPU).
Differently from other existing algorithms, the key idea is
generate and solve a non-linear system of equations represent-
ing the performance model for each device, and then use a
interior point method that can generate a better task distribution
among processors. The algorithm is implemented inside the
StarPU framework, easing its use both on legacy applications
and the new ones. We compared the proposed algorithm with
Acosta [18] and dynamic (HDSS) [19] algorithms and with
the standard StarPU greedy algorithm.

II. RELATED WORK

The standard approach for load balancing in distributed
systems is to divide the tasks among CPUs according to a
weight factor representing the processing speed of each pro-
cessor. Early approaches used fixed weight factors determined
at compile time with limited success [20]. The main problem
is that these weight factors are difficult to determine, specially
in heterogeneous scenarios.

The problem of load balancing in heterogeneous GPUs,
began to be studied recently. One proposal was the usage
of a static algorithm that determines the distribution before
the execution of the application, using profiles from previous
executions [17]. The algorithm uses these profiles to find the
distribution of data that minimizes the execution time of the
application, ensuring that all GPUs to spend same amount of
time performing the processing of kernels. The algorithm was
evaluated using a large-scale neural network simulation. Its
main drawback is that since it is static, an initial unbalanced
distribution cannot be adjusted in runtime. Another problem is
that it requires previous executions of the applications in the
target devices to determine its execution profiles. Finally, it

does not consider the case where application behavior changes
with the parameters. A dynamic algorithm, like the one that
we propose, does not have these limitations.

The problem was also studied using classic Scheduling
Theory. On hybrid architectures with m homogeneous CPUs
and k£ homogeneous (i.e., the heterogeneity comes only from
the different types of processors available) the problem is
already NP-hard. Bleuse et al. [21] proposed an approximation
algorithm which achieved a ratio of % + ﬁ + € using dual
approximation with a dynamic programming scheme. They
have proved that the algorithm takes O(n2k®m?) per step
of the dual approximation to schedule n tasks. Besides their
performance guarantees, the running time of such solutions is
often dominated by the cost of scheduling itself.

In [22], the authors use the concept of logical processors
to model GPU-CPU hybrid systems, where the processor
represents an independent group of tightly coupled devices
such as cores on the same socket or a GPU and its host core.
The authors propose a way to measure the impact of having
multiple cores sharing the same computational resources and
show that using this information in the load-balancing process
can reduce the total application execution time.

In [23] the authors proposed two algorithms. The first,
called naive algorithm, is based on an online profiling scheme.
The algorithm executes in two phases - profiling phase and
execution phase. In the profiling phase the algorithm deter-
mines the distribution of items among devices based on the
processing rate Gr of GPUs and C'r of CPUs. These rates are
used for data distribution in the execution phase. The second
algorithm, called asymmetric algorithm, reduces the overhead
of initial phase by sharing a pool of work between CPU and
GPU that avoids the need of synchronization. The overhead of
the execution phase is reduced by repeating the profiling until
a certain termination condition is reached or the convergence
to a certain size of the job is achieved. Similarly to other
models, its performance model is based on single numbers,
which limits the accuracy of the block distribution. Also, it
does not allow further improvements in the load-balancing
during the execution phase.

In [24], the authors propose a framework, based on
Charm++, called G-Charm. It schedules chare objects among
CPUs and GPUs at runtime, based on the current loads and the
estimated execution times, which depend on the average time
taken by the task in previous time steps. The memory layer
of G-Charm keeps track of chare buffers in order to reduce
memory transfer, but the scheduling strategy, however, seems
to not consider data transfer costs.

Acosta et al. [18] proposed a dynamic load balancing
algorithm that interactively searches for a good distribution
of work among the available GPUs. It uses a decentralized
scheme in which synchronizations are made at each iteration
to determine if there is need to rebalance the load. The idea
is to use a shared vector where each processor records the
time they spent on the last task. If the difference between
these times is larger than a threshold defined by user, the
algorithm computes a vector called RP (Relative Power), which
relates the time spent to process a certain load versus the
load processed. The processors then calculate the SRP (Sum
Relative Power), which is the sum of all RP vectors, and their

next attributed load. The disadvantage of this algorithm is
that the convergence of the load balance is asymptotic, as the
definition of the load on each processor is based on a simple
weighted average of the measured relative power (RP) in the
last iteration. This may cause suboptimal load distributing
during several iterations, resulting in poor performance and the
need for several rebalancing processes. PLB-HeC generates
a curve of execution times for each processor and is able
to determine the distribution of the load faster and more
accurately, preventing unnecessary rebalancing.

The Heterogeneous Dynamic Self-Scheduler (HDSS) [19]
is a dynamic load-balancing algorithm for heterogeneous GPU
clusters. It is divided in two phases. The first is the adaptive
phase, where it determines weights that reflect the speed of
each GPU — similarly to Hummel ef al. [20] — but performed
dynamically and using profiling data. A performance curve
with the FLOPs per second for each task size is created for
each GPU. The weights are determined based on logarithmic
fits on the curves. These weights are used during the second
phase, called completion phase, where it divides the remaining
iterations among the GPUs based on their relative weights. It
starts allocating larger block sizes to the GPUs, and decrease
their size as the execution progresses. The weight model based
on logarithmic curves is more suitable for GPUs, where the
number of FLOPs per second stabilizes with larger tasks.
A drawback of HDSS is that using of a single number to
model each processor can limit the accuracy of the load-
balancing. Moreover, once determined, these weights are not
changed throughout the execution. Our proposed algorithm
uses a curve for modeling each processor, resulting in better
block size distributions. Finally, our algorithm performs a
progressive refinement of the performance models for the
processors during execution, allowing the balancing during
execution.

III. PROPOSED ALGORITHM

In a typical data-parallel application, data is divided in
blocks, which can be concurrently processed by multiple
threads, in a process called domain decomposition [16]. After
finishing, the threads merge the processed results and the
application proceeds to its next phase.

The task of our load-balancing algorithm is determining the
size of data blocks assigned to threads located on each GPU
and CPU in the system. We consider that application data can
be decomposed into small data blocks, allowing the algorithm
to find a near optimal distribution of block sizes. We will use
the term “processing units” to refer to both CPUs and GPUs.

A. Overview

The proposed algorithm is composed of three phases: (i)
processing unit performance modeling, where a performance
model for each processing unit is devised during application
execution, based on the tasks’ execution and data transfer
times; (ii) block size selection, where the algorithm determines
the best distribution of block size among the processing units,
based on the computed performance model; and (iii) execution
and rebalancing, where the algorithm provides the processing
units with blocks of the appropriate size until the end of appli-
cation execution, or until the difference between the execution

f(x) = -0,00451 + 7,07e-10x + 2,05e-16x7

1,0

1.0] [f(x) = 1,49¢-8x+0,01

0,0

00 2,0x10" 4,0x10" 6,0x10 0,0
Block Size (KB)

(a) Black-Scholes (CPU)

2,0x10" 4,0x10" 6,010
Block Size (KB)

(b) Black-Scholes (GPU)

\f(x) =-0,0043 + 5,84e-9x + 1 46e-16x2\ f(x) = 0,00153 + 6,56e-9x + 5,55e-17x"

00 2,0x10" 4,0x10" 6,0x10" 0,0
Block Size (KB)

2,0x10" 4,0x10" 6,010
Block Size (KB)

(c) Matrix multiplication (CPU) (d) Matrix multiplication (GPU)

Fig. 1. Execution times and performance models for the GPU and CPU
implementations of the Black-Scholes and matrix multiplication applications.

times of different processing units becomes larger than a given
threshold. In this case, it generates a new performance model
and recalculates the block sizes for each processing unit.

B. Processing unit performance modeling

In this phase, the algorithm devises a performance model
for each processing unit based on execution time measure-
ments. The algorithm constructs two functions Fj,[z] and
Gplz]. Fplz] represents the time a processing unit p spends
processing a block of size x. G[z]r represents the time spent
to send a block of size x to processing unit p. In order to
generate these functions, there is a training phase, where the
algorithm assigns blocks of different sizes for each processing
unit and records the time spent to process and transfer them.
For each processing unit, we interpolate a curve that best
represents the measured times, allowing the extrapolation of
execution times for other block sizes.

The curve is initially fitted using four points, representing
four different block sizes allocated to each processing unit.
The first block has size initial BlockSize, defined by the
user. For the second point, the size of the block is doubled
and then adjusted to the performance of the processing unit,
based on the execution of the first block. The processing
unit with the earliest finish time, ¢y, receives a block of size
2 x initial BlockSize. The other processing units, with finish
times ty, receive blocks of size 2 * initial BlockSize * ty [ts.
For the third block, the multiplier is changed from 2 to 4 and
in the fourth one, we used a multiplier of 8. This process
is illustrated in the upper part of Figure 2, which shows a
schematic view of the complete load-balancing algorithm.

The above procedure has the advantage that in the first step
of the performance modeling phase, a performance preview
(ty/tx) of the processing units is already obtained, using a
small block size. The use of this preview to select the following
block sizes, which increase exponentially to cover a large
spectrum of block sizes, can significantly reduce the amount

[

I | |

I | A | | —
[

* Performance Modeling

]
L}M} . iind; M
A

Il Il [|

[Il Il \ |
[Il Il

+ Rebalancing

Finds
X1, Xg, oo Xp

\

[Il Il I |
[I I Il J

Finished Execution

Fig. 2. Load-balancing algorithm, with the performance modeling, block size
selection and execution phases.

of idle processing unit times during the performance modeling
phase.

The algorithm then follows to next step, where it searches
for a curve that fits the existing points using the least squares
fitting method for the functions F[z] and G, |[z], representing
the processing and data transfer times, respectively. If the
coefficient of determination of the least squares method is
greater than 0.7 for all processing units, the algorithm and
finishes this phase. Otherwise, it generates more points in the
curve, until reaching a coefficient larger than 0.7 or when 20%
of the application data is processed. A value of 0.7 provides
a good approximation for the curve and prevents overfitting.

To determine the execution time model (F),[x]), we find the
best fit curves using the least squares method, using a function
of the form:

Fylz] = a1 f1(x) + as fo(x) + ... + an fu(x) (1
where f;(x) is one function of the set Inx, z, z2, 23,
e”, x and the combinations z - e* and x - Inx. This set
should contemplate the vast majority of applications, but other
functions can be included if necessary. Figure 1 shows sample
processing time measurements for a GPU and a CPU for
different block sizes on two different applications. We can
see that the curves can be approximated by different types
of functions.

x

For the G,[x] function, we used an equation of the form:

Gplz] = a1z + ag 2)

where the linear coefficient a; represents the network and
PCle bandwidths, and as the network and system latencies.
These values are also adjusted from profiling data using the
least squares method, capturing all transfer overheads. We
consider that the data transfer delay increases linearly with
data size, which is a valid approximation for compute-bound
applications.

The pseudocode for this phase is shown in Algorithm 1.
This code is executed in a single node, called master

Algorithm 1 Processing units performance model

function determineModel()

blockSizeList < initial BlockSize;

14+ 1;

while i < 4 do
finishTimes < executeTasks(blockSizeList),
blockSizeList + setNextBlockSizes(finishTimes);
141+ 1;

end while

fitValues < determineCurveProcessor();

while fitValues.error > 0.7 do
finishTimes < executeTasks(blockSizeList);
blockSizeList + setNextBlockSizes(finishTimes);
fitValues < determineCurveProcessor();

end while

return fitValues;

node. Variable blockListSize contains the size of the blocks
assigned to each processing unit and is initialized with
initial BlockSize. The algorithm iteratively sends chunks of
data to each processing unit and measures the time that each
one spent to process them and the time spent to transfer the
data. These results are used to determine the block size for
each processing unit in the next iteration. After processing
four blocks it fits a performance curve model using the func-
tion determineCurveProcessor. Variable fitValues
receives the curve fitting results, including the error in the
fitting. If the fit error is above 0.7, it keeps sending new data
chunks to the nodes until the error is bounded to 0.7 or when
the submitted block sizes reaches 20% of the total application
data.

C. Block size selection

In this phase, the PLB-HeC algorithm determines the
block size assigned to each processing unit with the objective
of providing blocks with the same execution time on each
processing unit.

Consider that we have n processing units and an input data
of size normalized to 1. The algorithm assigns a data chunk of
size xz, for each processing unit g = 1, ..., n, corresponding to
a fraction of the input data, such that 22:1 x4 = 1. We denote
as Eg4(z,) the execution time of task E in the processing
unit g, for input of size z,4. To distribute the work among
the processing units, we find a set of values

X={z, eR:[0,1]| > z,=1} 3)
g=1

that minimizes E;(x1) while satisfying the constraint

which indicates that all processing units should spend
the same amount of time to process their tasks. In order to
determine this set of values =, we solve the system of fitted
curves for all processing units, determined in the performance
modeling phase, and given by:

‘—" Threshold

[@s—0nsSo—ooTo® |

time

‘ Local Computation

Fig. 3. Gantt chart of the execution of tasks on three processing units. When
the difference among processing units is more than a threshold, the system
re-balances the tasks.

&)

The equations system is solved applying an interior point
line search filter method [25], which finds the minimum
solution of a convex equation set, subject to a set of constraints,
by traversing the interior of its feasible region. The system of
equations is solved subject to the restrictions (3) and (4).

D. Execution and Rebalancing

After determining the task’s sizes, the scheduler sends a
block of the selected size x4 for each processing unit g. The
block size x, is a floating-point number, which is rounded to
the closest valid application data block size. When a processing
unit finishes executing a task, it requests another task of the
same size. The processing units then continue the execution
asynchronously, until completing all the tasks.

The scheduler also monitors the finish time of each task.
If the difference in finishing times ¢; and t; between any two
tasks of processing units ¢ and j goes above a threshold, the
rebalancing process is executed. Small thresholds may cause
excessive rebalancing while large thresholds may tolerate
larger imbalances that will cause more processing unit idleness.
The threshold must be determined empirically; in practice,
values of about 10% of the execution time of a single block
results in a good trade-off.

During the rebalancing, the scheduler synchronizes the pro-
cessing units and apply the performance modeling algorithm to
fit the best curves for the functions F,[x] and G,[x], updated
with the execution times of the tasks from the execution phase.
The block size selection routine is then applied to determine
the new block sizes x4 for each processing unit g.

The rebalancing process for the scenario with three pro-
cessing units is illustrated in Figure 3. Note that the syn-
chronization does not occur immediately after the threshold
detection, since it is necessary to wait for the other processing
units to finish processing their tasks. The processing units that
detected the threshold also receives a new task, otherwise it
would remain idle for a long period waiting for the other
processing units.

E. Complete algorithm

Algorithm 2 shows the pseudocode of the PLB-HeC al-
gorithm. The determineModel function, shown in Algo-
rithm 1 returns the performance model for each processing
unit into variable fitV alues. The algorithm solves the system
of equations contained in fitValues to determine the best
distribution X of task sizes for each processing unit. It then
calls function distributeTasks for each processing unit,
passing as parameters the identification of the processing unit
and the task size.

Algorithm 2 PLB-HeC algorithm

function PLB-HeC()

fitValues < determineModel()

X < solveEquationSystem(fitV alues);

for each proc from processorList do
distributeTasks(X, proc);

end for

function FinishedTaskExecution(proc, finishTime)
if rebalance = true then
fitValues < determineCurveProcessor();
X < solveEquationSystem(fitV alues);
synchronize();
rebalance < false;
end if
if there is data then
if maxDifference(finishTime)> threshold then
rebalance + true;
end if
distributeTask(X, proc);
end if

When a processing unit finishes a task it calls the function
FinishedExecution, passing as parameters its finish time
finishTime and its identifier proc. The function first verifies
if the rebalance flag was previously activated due to a
threshold detection. If it is active, the function determines new
curves for each processing unit’s performance model, solves
the system of equations to determine a new distribution of
tasks sizes and synchronizes the processes.

The function FinishedExecution then checks if there
is more data to process and, if true, send a new task to the
processing unit that called the function.

IV. IMPLEMENTATION

The algorithms were implemented in the C language,
using the StarPU framework. StarPU [14] is a framework for
parallel programming that supports hybrid architectures like
multicore CPUs and accelerators. The goal of StarPU is to
act like a runtime layer that provides an interface unifying
execution on accelerator technologies as well as multicore
processors. StarPU propose the use of codelets, defined as an
abstraction for a task that can be performed on one core of
a multicore CPU or subjected to an accelerator. Each codelet
may have multiple implementations, one for each architecture,
which may use specific languages and libraries for the target
architecture. A StarPU application is described as a set of
codelets and their data dependencies. New applications can
be ported to StarPU by implementing these codelets.

We implemented our load-balancing algorithm in the
StarPU framework. The StarPU framework offers a rich API
that allows one to modify and develop new scheduling poli-
cies. For comparison sake, we also implemented three other
algorithms: greedy, Acosta and HDSS. The greedy consisted
in dividing the input set in pieces and assigning each piece
of input to any idle processing unit, without any priority
assignment. Acosta algorithm [18], described in Section II,
iteratively finds a good distribution of work between CPUs
and GPUs based on the execution of the previous task. Finally,
The HDSS [19] was implemented using minimum square
estimation to estimate the weights and divided into two phases:
adaptation phase and completion phase. StarPU permits the
selection of the scheduling algorithm to use for different
applications and hardware architectures.

Finally, we used the IPOPT [25] (Interior Point OPTimizer)
library to solve the equations systems produced by Equation 5.
IPOPT is an open-source software package for large-scale
nonlinear optimization for solving nonlinear programming
problems.

A. Applications

We used three applications to evaluate the PLB-HeC algo-
rithm: a matrix multiplication application, a gene regulatory
networks (GRN) inference [26] application, and a financial
analysis algorithm (Black-Scholes). Each application was im-
plemented as a pair of codelets, one containing the GPU imple-
mentation and the other containing the CPU implementation.

The matrix multiplication application distributes a copy of
the matrix A to all processing units and divides matrix B
among the processing units according to the load-balancing
scheme. We used an optimized version of the matrix multipli-
cation, available from the CUBLAS 4.0 library. Multiplication
of two n x n matrices has complexity O(n?).

Gene regulatory networks (GRN) inference [26] is an
important bioinformatics problem in which gene interactions
must to be deduced from gene expression data, such as
microarray data. Feature selection methods can be applied
to this problem and are composed by two parts: a search
algorithm and a criterion function. This application was de-
veloped as a parallel solution based on GPU architectures for
performing an exhaustive search of the gene subset with a
given cardinality that best predict a target gene. The division of
work consisted in distributing the gene sets that are evaluated
by each processor. The complexity of the algorithm is known
to be O(n3), where n is the number of genes.

Black-Scholes is a popular financial analysis algorithm,
based on a stochastic differential equation that describes how,
under a certain set of assumptions, the value of an option
changes as the price of the underlying asset changes. It in-
cludes a random walk term, which models random fluctuations
of prices over time. The input is a vector of data, from which
options should be calculated. The division of the task consists
in giving a range of the input vector to each thread. The
complexity of the algorithm is O(n), where n is the number
of options.

V. RESULTS
A. System Configuration

We used four machines with different processor configura-
tions (shown in Table I) to evaluate our algorithm. The GPUs
differ in their clock speed, number of cores and architecture.
We performed the experiments using four scenarios: using only
one machine (A); two machines (A, B); three machines (A, B,
C); and four machines (A, B, C and D). Note that some boards,
such as GTX 295 and GTX 680 have two GPU processors.

To use the k& Stream Multiprocessors (SMs) from each GPU
and the cores of the each SM efficiently, we launched kernels
with k blocks and 1024 threads per block. The number of
available Stream Multiprocessors k is 13, 14, 8 and 30 for
the Tesla K20c, GTX Titan, GTX 680 and GTX 295, respec-
tively. For the CPUs, we created one thread per virtual core,
maximizing the CPU usage for hyper-threaded processors.

We used the Matrix Multiplication (MM), Gene Regulatory
Networks (GRN) inference, and Black-Scholes applications to
evaluate the execution time for different input sizes and number
of machines, with StarPU configured to use the following
scheduling algorithms: (i) PLB-HeC, (ii) Acosta algorithm,
(iii) HDSS, and (iv) Greedy. For all applications, our algorithm
was configured with a threshold of 10% of the execution time
for the rebalancing process. We determined the initial block
size for each application empirically, so that the initial phase
of the algorithm would take about 10% of the application
execution time, and used the same initial block size for all
algorithms. The block size values generated by the scheduling
algorithm were rounded to the closest valid block sizes for each
application: one line for the matrix multiplication, one gene for
the GRN, and one option for the Black-Scholes application.

a) Application execution times: Figure 4 shows the
execution times using the four load-balancing algorithms,
using one to four machines, for the matrix multiplication and
GRN applications. We also show the speedup relative to the
Greedy algorithm, to facilitate the comparison. We performed
experiments using matrices with sizes from 4096 x 4096
to 65536 x 65536 elements, and 60,000 to 140,000 genes.
Similarly, Figure 5 shows the results for the Black-Scholes
application, with 10,000 to 500,000 options. We present the
average execution time of 10 experiments. The standard de-
viations, using dedicated resources, were small and are not
shown in the graphs.

The execution time increased with the input size, as ex-
pected, but the speedup graphs shows a large fluctuation in
the performance of the load-balancing for small inputs. With
matrix multiplication, matrices of size 4096 x 4096 had a lim-
ited number of block divisions, and the small total application
execution times were not sufficient to compensate the larger
overheads of more complex load-balancing algorithms, causing
the greedy algorithm to perform better.

We will focus our analysis on larger input sizes, which are
the ones which normally demand the usage of GPU clusters.
With one machine, the influence of the scheduling algorithm
was small, with speedups close to 1, as it is only necessary to
divide the application data between a single CPU and GPU.
With more machines the differences between the algorithms
become more evident.

TABLE 1. MACHINE CONFIGURATIONS
Machine Description

A CPU Info Intel Xeon E5-2690V2 10 cores @ 3.0 GHz 25 MB cache 256 GB RAM
GPU Info | Tesla K20c 2496 / 13 SMs 205 GB/s 6 GB

B CPU Info Intel 17 a20 4 cores @ 2.67 GHz 8 MB cache 8 GB RAM
GPU Info | GTX 295 2 x 240 cores / 30 SMs | 223.8 GB/s 896 MB

c CPU Info Intel i7 4930K 6 cores @ 3.4 GHz 12 MB cache 32 GB RAM
GPU Info | GTX 680 2 x 1536 cores / § SMs 192.2 GB/s 2 GB

D CPU Info Intel i7 3939K 6 cores @ 3.2 GHz 12 MB cache 32 GB RAM
GPU Info GTX Titan 2688 cores / 14 SMs 223.8 GB/s 6 GB

Speedup

[5) ;3 3x10.000) 6 8x10,000

> 3
Matrix Size n

(b) 1 machine MM Speedup

2 4
Matrix Size n

(a) 1 machine MM Time

—=— PLB-Hec|
—e— Acosta

—+— HDSS
= 600] [=~— Greed S 14
@ 400 3
E 24 —
= 200 o VWO T
o v
0.9
) 5 7 s 3x10,000 ! i) 5 P 3 3x10,000
Matrix Size n Matrix Size n
(e) 2 machines MM Time (f) 2 machine MM Speedup
—— PLB-Hed|
—— PLB-Hed| Acosta
400 6 —+— HDSS
300
= o
o 200 B 1.2
E 100 a
= B ol T
o
) 3 7 3 310,000 08 —3 3 7 3 310,000
Matrix Size n Matrix Size n
(i) 3 machines MM Time (j) 3 machines MM Speedup
PLB-Hec|
ggg = PLB-Hec 3 Acosta
—— Acosta —— HDSS
300
—— HDSS
— 2501 | Greed a
& 200 S2
© 150 2
£ 100 3
= 50 n \

50— 5 T 5 10,000
Matrix Size n

(m) 4 machines MM Time

Py 3 810,000

2
Matrix Size n

(n) 4 machines MM Speedup

6000

—s— PLB-Hec|

—=— PLB-Heq
—— Acosta
—— HDSS

—~— Greedy

___4000;

<
[
E 2000
=
o o,
6 8 10 12 14 x10,000 0 2 4 6 8x10,000
Number of Genes Number of Genes
(c) 1 machine GRN Time (d) 1 machine GRN Speedup
1,14
4000{ | —*— PLB-Hec 1,12
—— Acosta 1o
—— HDSS ;
30001 | . Greedy o 1,08
< S
@ 2000 g 1o
£ g 1.04
F 4000 0 1,02
1,00
0 8 10 12 14 10,000 0.9 0 2 4 3 8x10,000
Number of Genes Number of Genes
(g) 2 machine GRN Time (h) 2 machine GRN Speedup
—=— PLB-Hec|
15001 | —— Acosta
—— HDSS
B 1000] [z Greedy
©
E
F 500
0—% 8 10 12 14 x10,000 0 2 4 6 §x10,000
Number of Genes Number of Genes
(k) 3 machines GRN Time (1) 3 machine GRN Speedup
1000] [PLB-He]
—— Acosta
800{ |—— HDSS
— —~— Greedy
“ 600
Py
£ 400
E

x10,000 0 2 4 6
Number of Genes

6 10 12 14 8x10,000

8
Number of Genes

(0) 4 machines GRN Time (p) 4 machines GRN Speedup

Fig. 4. Execution time and speedup (compared to the Greedy algorithm) for the Matrix Multiplication (MM) and Gene Regulatory Network (GRN) inference

applications, using different number of machines and input sizes.

We verified that PLB-HeC obtained the highest speedups
in the more heterogeneous scenarios, as expected, in which
case the more precise block size selection algorithm becomes
crucial. We emphasize that the presented execution times
include the time spent calculating the size of the task sizes for
each processing unit using the interior point method. The mean
time spent on this calculation was 170 ms, for the scenario
with 4 machines and matrices of order 65536, with standard
deviation of 32.3 ms. Although this time is not negligible, the
gains obtained with the better distribution of tasks sizes largely
compensates the overhead caused by these calculations.

The highest gains occurred with the matrix multiplication
application and four machines, with a speedup of 2.2 using our
algorithm in comparison with the Greedy ones for matrices
with 65536 x 65536 elements. The other dynamic algorithms,
HDSS and Acosta, obtained speedups of 1.2 and 1.04, respec-
tively. For other machine configurations and other applications

the speedup was lower, but for configurations with 3 or more
machines was consistently above 1.2, except for the GRN with
three machines. Also, for larger inputs, our algorithm always
resulted in lower execution times in comparison to the other
three load-balancing algorithms.

To understand the origin of this difference in application
execution, we evaluated the block distributions generated by
each load-balancing algorithm and the resulting idleness time
of the processing unit.

b) Block size distribution: Figure 6 shows the distribu-
tion of blocks among the machines for the three algorithms
that uses block size estimation for the distribution: Acosta,
HDSS and PLB-HeC. We present the results for two matrix
sizes, two GRN sizes and two number of options. We used
the machines A, B, C and D with one GPU per machine and
used one thread per CPU core and 1 thread per GPU core. The

—=— PLB-Hec|

1,01 —e— Acosta

1,00{ - - -~
o

3 0,99
3

2
2098

0,97

6 6
%100,000 x100,000

2 4 2 4
Number of Options Number of Options

(a) 1 machine BlackScholes Time

4,0][—PLB-Hed]
ta
3,5 S
—~— Greed:

— 3,0

(b) 1 machine BlackScholes Speedup

—=— PLB-Hec|
—=— Acosta

D

2 4 6
Number of Options x100,000

(f) 3 machine BlackScholes Speedup

2 4 6
Number of Options x100,000

(e) 3 machine BlackScholes Time

—=— PLB-Hec] 1,08
—=— Acosta

" 1,06
- — 1,04
1,02
1,00 --- -
0,98
0,96
0,94
60 0.9 [
x100,000

Time (s)
Speedup

2 4 6
Number of Options x100,000

(d) 2 machine BlackScholes Speedup

20 40
Number of Options

(c) 2 machine BlackScholes Time

4,0
35
3,0

Zas

220
=15

1,0

2 4 6
Number of Options x100,000

(h) 4 machine BlackScholes Speedup

2 4 6
Number of Options x100,000

(g) 4 machine BlackScholes Time

Fig. 5. Execution time and speedup (compared to the Greedy algorithm) for the BlackScholes application, using different number of machines and input sizes.

values represent the ratio of total data allocated on a single step
for to each CPU/GPU processor. We considered the block sizes
generated at the end of the performance modeling phase for the
algorithm PLB-HeC, of phase 1 for the HDSS algorithm, and
of the application execution for Acosta algorithm. The values
are normalized so the total size is equal to 1. We performed
10 executions and present the average values and standard
deviations. The standard deviation values are small, showing
that all algorithms are stable through different executions.

When comparing the block size distributions generated by
the three load-balancing algorithms, we note that Acosta and
HDSS algorithms produce similar distributions. The PLB-HeC
algorithm produces a qualitatively different distribution, with
proportionally smaller blocks allocated to CPUs and larger
blocks to GPUs, especially for the machines C and D, which
contain the largest number of cores. We note that both HDSS
and Acosta algorithm use simple linear weighted means from
a set of performance coefficients, which resulted in similar
distribution. Nevertheless, the HDSS algorithm resulted in
lower execution times due to the faster convergence. PLB-HeC
uses a performance curve model for each processing unit and
solves the resulting system of equations, probably resulting in
a more precise estimation of the best block partition among
processing units.

¢) Processing unit idleness: We also measure the per-
centage of time that each CPU and GPU was idle during
application execution. Figure 7 shows the results for the PLB-
HeC and HDSS algorithm. We used the same experimental
setup from the block size distribution experiment. At each task
submission round we recorded the time that each processing
unit was idle. We executed each application with each algo-
rithm 10 times.

The HDSS algorithm produced larger processing unit idle-
ness than PLB-HeC in all scenarios. This idleness occurred
mainly in the first phase of the HDSS algorithm, where non-
optimal block sizes are used to estimate the computational
capabilities of each processing unit. PLB-Hec prevents this
idleness periods in the initial phase by starting to adapt the
block sizes after the submission of the first block, significantly
reducing the idleness generated on this phase. Acosta algo-
rithm, not shown, produced significantly larger idleness, since
it synchronizes the block executions multiple times during

execution until it reaches an equilibrium, which is obtained
asymptotically.

Another measured effect is that with larger input sizes,
which are the most important when considering GPU clusters,
the percentage of idleness time was smaller. This occurred
mainly because the time spent in the initial phase, where most
of the idleness time occurs, was proportionally smaller when
compared to the total execution time. This effect is evident
when comparing the idle times of the matrix multiplication
application with 4096 and 65536 elements for the PLB-Hec
algorithm.

Incorrect block size estimations also produces idleness in
the execution phase of the algorithms, specially in the final
part, since some processing units may finish their tasks earlier
than others. HDSS prevents part of this idleness using decreas-
ing block size values during the execution. If some processing
unit is idle at the end, it can receive extra small blocks to
process. PLB-Hec uses another approach, by performing a
rebalancing process when the difference in execution time
among processing units is above a threshold. Interestingly, this
rebalancing was not executed, since the generated block size
distributions were always within the 10% threshold range. But
this mechanism can be useful in scenarios where the execution
conditions on the machines change or in applications where the
block size estimates are less accurate.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we present PLB-Hec, a novel algorithm for
dynamic load-balancing of domain decomposition applications
executing on clusters of heterogeneous CPUs and GPUs. It
performs a profile-based online estimation of the performance
curve for each processing unit and selects the block size dis-
tribution among processing units solving a non-linear system
of equations subject to restrictions. We used three real-world
applications in the fields of linear algebra, bioinformatics and
stock markets and showed that our approach decreased the
application execution time, when compared to other dynamic
algorithms. PLB-Hec obtained the highest performance gains
with more heterogeneous clusters and larger problems sizes,
where a more refined load-distribution is required. The PLB-
Hec was implemented on top of the well-known StarPU

Machine A
L | Machine B
Machine C & <
0,35 Machine D Q& (bgs

GPU CcPU GPU

4096 elements 65536 elements

(a) Matrix Multiplication

0,35

0,30

<
0.45 P Machine A %:?&
’ - Machine B M
0,40{|[f]| Machine C h
I]]]]]]]]]]]]]]]]]]] Machine D

Size Ratio

10,000 options

(c) Blackscholes

Fig. 6.
applications, using two different input sizes for each.

framework, what allows its immediate usage for a several
existing applications and a easier development cycle for new
application.

Although we used dedicated clusters, we can also envisage
the usage of our load-balancing algorithm on public clouds,
where the user can request a number of resources allocated
in virtual machines. In this case, the quality of service may
change during execution, and the addition of the execution time
difference threshold permits readjustments in data distribu-
tions. Another interesting scenario would be to consider fault-
tolerance, where machines may become unavailable during
execution. In this scenario, a simple redistribution of the data
among the remaining devices would permit the application to
re-adapt to this scenario.

ACKNOWLEDGMENT

The authors would like to thank UFABC, FAPESP (Proc.
n. 2012/03778-0 and Proc. n. 2013/26644-1) and NAPSoL-
PRP-USP for the financial support and Fabrizio Borelli for
providing the gene regulatory network application.

REFERENCES
[1] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover, “GPU cluster for
high performance computing,” in Proceedings of the 2004 ACM/IEEE
conference on Supercomputing, ser. SC *04. Washington, DC, USA:
IEEE Computer Society, 2004, p. 47.

(2]

(3]

(4]

(31

(6]

(71

(8]

(91

[10]

” Machine A

| Machine B g S
I:I Machine C &9 2 3
(I Machine D < <

CcPU

60000 genes 140000 genes
(b) Gene Regulatory Network

<
&
X

GPU

500,000 options

Block size distribution among the processing units (CPU and GPU) from the four machines, for the Matrix Multiplication, GRN and BlackScholes

A. Jog, E. Bolotin, Z. Guz, M. Parker, S. W. Keckler, M. T. Kandemir,
and C. R. Das, “Application-aware memory system for fair and effi-
cient execution of concurrent GPGPU applications,” in Proceedings of
Workshop on General Purpose Processing Using GPUs, ser. GPGPU-7.
New York, NY, USA: ACM, 2014, pp. 1:1-1:8.

G. Oyarzun, R. Borrell, A. Gorobets, O. Lehmkuhl, and A. Oliva,
“Direct numerical simulation of incompressible flows on unstructured
meshes using hybrid CPU/GPU supercomputers,” Procedia Engineer-
ing, vol. 61, no. 0, pp. 87 — 93, 2013, 25th International Conference on
Parallel Computational Fluid Dynamics.

H. K. Raghavan and S. S. Vadhiyar, “Efficient asynchronous executions
of AMR computations and visualization on a GPU system,” Journal of
Farallel and Distributed Computing, vol. 73, no. 6, pp. 866 — 875, 2013.

Q. Li, R. Salman, E. Test, R. Strack, and V. Kecman, ‘“Parallel multitask
cross validation for support vector machine using GPU,” Journal of
Parallel and Distributed Computing, vol. 73, no. 3, pp. 293 — 302,
2013, models and Algorithms for High-Performance Distributed Data
Mining.

Y. Jeon, E. Jung, H. Min, E.-Y. Chung, and S. Yoon, “GPU-based accel-
eration of an RNA tertiary structure prediction algorithm,” Computers
in Biology and Medicine, vol. 43, no. 8, pp. 1011 — 1022, 2013.

J. Liu and L. Guo, “Implementation of neural network backpropagation
in cuda,” in Intelligence Computation and Evolutionary Computation,
ser. Advances in Intelligent Systems and Computing, Z. Du, Ed.
Springer Berlin Heidelberg, 2013, vol. 180, pp. 1021-1027.

NVIDIA, “Nvidia cuDNN — GPU accelerated machine learning,” Avail-
able at: https://developer.nvidia.com/cuDNN, Oct. 2014.

——, “CUDA math library,” Available at: https://developer.nvidia.com/
cuda-math-library, Oct. 2014.

L. Wang, M. Huang, V. K. Narayana, and T. El-Ghazawi, “Scaling
scientific applications on clusters of hybrid multicore/GPU nodes,” in

Proceedings of the 8th ACM International Conference on Computing
Frontiers, ser. CF ’11. New York, NY, USA: ACM, 2011, pp. 6:1-6:10.

2 Machine A
L. |Machine B
L |Machine C
Machine D

dle time relative time execution (%)

[A NN

CcpPU

GPU
4096 elements

CcPU GPU
65536 elements

(a) Matrix Multiplication

A

V2270777777770707777700)

o 2\

P Machine A
N | Machine B
[|Machine C
Machine D

NN

)

N

Idle time relative time execution (%)

CcPU GPU
140000 genes

GPU
60000 genes

CcPU

(b) Gene Regulatory Network

P Machine A
N | Machine B
Machine C
Machine D

V2777777777770

- NAIIRIIIIIIIIIRIIIIIIIniiww

Idle time relative time execution (%)

CcPU
10,000 options

500,000 options

(c) Blackscholes

Fig. 7. Processing unit idle time in relation to the total execution time for the Matrix Multiplication, GRN and BlackScholes applications, using two different
input sizes for each.

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

L. Wang, W. Jia, X. Chi, Y. Wu, W. Gao, and L.-W. Wang, “Large scale
plane wave pseudopotential density functional theory calculations on
GPU clusters,” in High Performance Computing, Networking, Storage
and Analysis (SC), 2011 International Conference for, 2011, pp. 1-10.

J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee, “SnuCL: an OpenCL
framework for heterogeneous CPU/GPU clusters,” in Proceedings of the
26th ACM international conference on Supercomputing, ser. ICS ’12.
New York, NY, USA: ACM, 2012, pp. 341-352.

T. Miyoshi, H. Irie, K. Shima, H. Honda, M. Kondo, and T. Yoshinaga,
“FLAT: a GPU programming framework to provide embedded MPL”
in Proceedings of the 5th Annual Workshop on General Purpose
Processing with Graphics Processing Units, ser. GPGPU-5. New York,
NY, USA: ACM, 2012, pp. 20-29.

C. Augonnet, S. Thibault, and R. Namyst, “StarPU: a runtime sys-
tem for scheduling tasks over accelerator-based multicore machines,”
Laboratoire Bordelais de Recherche en Informatique - LaBRI, INRIA
Bordeaux - Sud-Ouest, Rapport de recherche RR-7240, Mar 2010.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company, Jan.
1979.

W. D. Gropp, “Parallel computing and domain decomposition,” in
Fifth International Symposium on Domain Decomposition Methods for
Fartial Differential Equations, Philadelphia, PA, 1992.

R. de Camargo, “A load distribution algorithm based on profiling for
heterogeneous GPU clusters,” in Applications for Multi-Core Architec-
tures (WAMCA), 2012 Third Workshop on, 2012, pp. 1-6.

A. Acosta, V. Blanco, and F. Almeida, “Towards the dynamic load
balancing on heterogeneous multi-GPU systems,” in Parallel and Dis-
tributed Processing with Applications (ISPA), 2012 IEEE 10th Interna-
tional Symposium on, 2012, pp. 646—653.

M. E. Belviranli, L. N. Bhuyan, and R. Gupta, “A dynamic self-
scheduling scheme for heterogeneous multiprocessor architectures,”

[20]

[21]

[22]

[23]

[24]

[25]

[26]

ACM Trans. Archit. Code Optim., vol. 9, no. 4, pp. 57:1-57:20, Jan.
2013.

S. F. Hummel, J. Schmidt, R. N. Uma, and J. Wein, “Load-sharing in
heterogeneous systems via weighted factoring,” in in Proceedings of the
8th Annual ACM Symposium on Parallel Algorithms and Architectures,
1997, pp. 318-328.

R. Bleuse, S. Kedad-Sidhoum, F. Monna, G. Mounié, and D. Trystram,
“Scheduling independent tasks on multi-cores with gpu accelerators,”
Concurrency and Computation: Practice and Experience, 2014.

Z. Zhong, V. Rychkov, and A. Lastovetsky, “Data partitioning on
heterogeneous multicore and multi-gpu systems using functional per-
formance models of data-parallel applications,” in Cluster Computing
(CLUSTER), 2012 IEEE International Conference on, Sept 2012, pp.
191-199.

R. Kaleem, R. Barik, T. Shpeisman, B. T. Lewis, C. Hu,
and K. Pingali, “Adaptive heterogeneous scheduling for integrated
GPUSs,” in Proceedings of the 23rd International Conference on
Parallel Architectures and Compilation, ser. PACT ’14. New
York, NY, USA: ACM, 2014, pp. 151-162. [Online]. Available:
http://doi.acm.org/10.1145/2628071.2628088

R. Vasudevan, S. S. Vadhiyar, and L. V. Kalé, “G-charm: An adaptive
runtime system for message-driven parallel applications on hybrid
systems,” in Proceedings of the 27th International ACM Conference
on International Conference on Supercomputing, ser. ICS *13. New
York, NY, USA: ACM, 2013, pp. 349-358. [Online]. Available:
http://doi.acm.org/10.1145/2464996.2465444

J. Nocedal, A. Wichter, and R. Waltz, “Adaptive barrier update
strategies for nonlinear interior methods,” SIAM Journal on
Optimization, vol. 19, no. 4, pp. 1674-1693, 2009. [Online].
Available: http://dx.doi.org/10.1137/060649513

F. F. Borelli, R. Y. de Camargo, D. C. Martins Jr, and L. C. Rozante,
“Gene regulatory networks inference using a multi-GPU exhaustive
search algorithm,” BMC bioinformatics, vol. 14, no. 18, pp. 1-12, 2013.

