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ABSTRACT. For high dimensional supervised learning problems,
often using problem specific assumptions can lead to greater ac-
curacy. For problems with grouped covariates, which are believed
to have sparse effects both on a group and within group level, we
introduce a regularized model for linear regression with ¢; and ¢
penalties. We discuss the sparsity and other regularization prop-
erties of the optimal fit for this model, and show that it has the
desired effect of group-wise and within group sparsity. We propose
an algorithm to fit the model via accelerated generalized gradi-
ent descent, and extend this model and algorithm to convex loss
functions. We also demonstrate the efficacy of our model and the
efficiency of our algorithm on simulated data.
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1. INTRODUCTION

Consider the usual linear regression framework. Our data consists
of an n response vector y, and an n by p matrix of features, X. In
many recent applications we have p >> n: a case where standard
linear regression fails. To combat this, Tibshirani (1996) regularized
the problem by bounding the ¢; norm of the solution. This approach,
known as the lasso, minimizes
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It finds a solution with few nonzero entries in §. Suppose, further,
that our predictor variables were divided into m different groups— for
example in gene expression data these groups may be gene pathways,
or factor level indicators in categorical data. We are given these group
memberships and rather than just sparsity in 3 we would like a solution

which uses only a few of the groups. |Yuan and Lin| (2007) proposed
1
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the group lasso criterion for this problem; the problem is
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where X® is the submatrix of X with columns corresponding to the
predictors in group I, Y the coefficient vector of that group and p;
is the length of ) . This criterion exploits the non-differentiability
of [|BW]|, at B = 0; setting groups of coefficients to exactly 0. The
sparsity of the solution is determined by the magnitude of the tuning
parameter A. If the size of each group is 1, this gives us exactly the
regular lasso solution.

While the group lasso gives a sparse set of groups, if it includes a group
in the model then all coefficients in the group will be nonzero. Some-
times we would like both sparsity of groups and within each group—
for example if the predictors are genes we would like to identify partic-
ularly “important” genes in pathways of interest. Toward this end we
focus on the “sparse-group lasso”
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where a € [0,1] — a convex combination of the lasso and group lasso

penalties (a = 0 gives the group lasso fit, &« = 1 gives the lasso fit). Be-
fore we move on, we would like to define consistent terminology for our
2 types of sparsity: we use “groupwise sparsity” to refer to the number
of groups with at least one nonzero coefficient, and “within group spar-
sity” to refer to the number of nonzero coefficients within each nonzero
group. Occasionally, we will also use the term “overall sparsity” to refer
to the total number of nonzero coefficients irregardless of grouping.

In this paper we discuss properties of this criterion, first proposed
in our unpublished note, Friedman et al.. We discuss using this idea
for logistic and Cox regression, and develop an algorithm to solve the
original problem and extensions to other loss functions. Our algorithm
is based on Nesterov’s method for generalized gradient descent. By
employing warm starts we solve the problem along a path of constraint
values. We demonstrate the efficacy of our objective function and algo-
rithm on real and simulated data, and we provide a publically available
R implementation of our algorithm in the package SGL. This paper is
the continuation of [Friedman et al.l a brief note on the criterion.
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This criterion was also discussed in Zhou et al.| (2010)). They applied
it to SNP data for linear and logistic regression with an emphasis on
variable selection and found that it performed well.

In Section [2] we develop the criterion and discuss some of its proper-
ties. We present the details of the algorithm we use to fit this model
in Section [3] In Section [ we extend this model to any log-concave
likelihood in particular to logistic regression and the Cox proportional
hazards model. In Section [5| we discuss when we might expect our
model to outperform the lasso and group lasso, and give some real
data examples. In Section [6] we show the efficacy of our model and the
efficiency of our algorithm on simulated data.

2. CRITERION

Returning to the usual regression framework we have an n response
vector y, and an n by p covariate matrix X broken down into m sub-
matrices, XM, X® XM with each X an n by p; matrix, where
p; is the number of covariates in group [. We choose B to minimize
2
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For the rest of the paper we will supress the /p; in the Y2, \/pi]| 3V
penalty term for ease of notation. To add it back in, simply replace all
future (1 — o)A by /pr(1 — a)X. One might note that this looks very
similar to the elastic net penalty proposed by |Zou and Hastie| (2005).
It differs because the || - ||2 penalty is not differentiable at 0, so some
groups are completely zeroed out. However, as we show shortly, within
each nonzero group it gives an elastic net fit (though with the || - [|3
penalty parameter a function of the optimal ||3(®)]|5).

The objective in (4)) is convex, so the optimal solution is characterized
by the subgradient equations. We consider these conditions to better
understand the properties of 6 For group k, 6 must satisfy

—X(k ( ZX )3t ) (1 —a) u+ adv

where u and v are subgradients of ||[3®||, and ||3®||, respectively,
evaluated at 3%, So,

_B® e A(k)
w=1{ 1B™; lfﬁA #0
e{u: ||ulls <1} if B(k) =
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sign (B;k)) if B;k) #0
v; = .
ol e{y ol <1y i Y =0,
With a little bit of algebra we see that the subgradient equations are
satisfied with 5®) = 0 if

(5) IE (X(k)Tr(_k)/n, a)\)H2 <(1—a)A
where r(_;) the partial residual of y, subtracting all group fits other

than group k
rew =y =) XU0

I#k
and with S(-) the coordinate-wise soft thresholding operator:

(S(z, aX)); = sign(z;)(|z;| — aX)4.
In comparison, the usual group lasso has f*) = 0 if
X Trpl], < A
On a group sparsity level the two act similarly, though the sparse-group

lasso adds univariate shrinkage before checking if a group is nonzero.

The subgradient equations can also give insight into the sparsity
within a group which is at least partially nonzero. If 3%) % 0 then the
subgradient conditions for a particular Bi(k) become

m 3(6)
1 N .
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This is satisfied for Bfk) =0if
(6) |Xi(k)Tr(_k7i)| < na\

With 7(_gq) = (k) — Z#i X;k)ﬁ(k) the partial residual of y subtracting

all other covariate fits, excluding only the fit of XZ-(k). This is the same
condition for a covariate to be inactive as in the regular lasso.

For BZ-(k) nonzero, more algebra gives us that ﬁi(k) satisfies

;
b SETm)
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These are elastic net type conditions as in [Friedman et al. (2009). Un-
like the usual elastic net, the proportional shrinkage here is a function
of the optimal solution, A2 = (1—a)A/||3®)|]. Formula (7)) suggests
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a cyclical coordinate-wise algorithm to fit the model within group. We
tried this algorithm in a number of incarnations and found it inferior
in both timing and accuracy to the algorithm discussed in section [3|
Puig et al.| (2009) and [Foygel and Drton (2010) fit the group lasso and
sparse-group lasso respectively by explicitly solving for ||B(k) |2 and ap-
plying (7) in a cyclic fashion for each group with all other groups fixed.
This requires doing matrix calculations, which may be slow for larger
group sizes, so we take a different approach.

From the subgradient conditions we see that this model promotes
the desired sparsity pattern. Furthermore, it regularizes nicely within
each group — giving an elastic net-like solution.

3. ALGORITHM

In this section we describe how to fit the sparse-group lasso using
blockwise descent — to solve within each group we employ an accel-
erated generalized gradient algorithm with backtracking. Because our
penalty is separable between groups, blockwise descent is guaranteed
to converge to the global optimum.

3.1. Within Group Solution. We choose a group k to minimize over,
and consider the other group coefficients as fixed — we can ignore
penalties corresponding to coefficients in these groups. Our minimiza-
tion problem becomes, find B(k) to minimize

1 2
(8) o lrew = XPBOI, + (1 = APz + a8

We denote our unpenalized loss function by

1
Ur—r), 8) = o |7 (r) — X(%Hi

Note, we are using [ here to denote the coefficients in only group k. The
modern approach to gradient descent is to consider it as a majorization
minimization scheme. We majorize our loss function, centered at a

point 5y by
(9) Uriw,B) < rr),Bo) + (8 — 50)TV5(7"(71€), Bo) + 2%“5 - @0”3

where t is sufficiently small that the quadratic term dominates the
Hessian of our loss; note, the gradient in V/(r_y),8) is only taken
over group k. Minimizing this function would give us our usual gradient
step (with stepsize t) in the unpenalized case. Adding our penalty to
@D majorizes the objective (§]).

M(B) = €(r—x), Bo)+(B—50) ' VL(rs, 50)+2it"ﬁ—ﬁo\‘34'(1—04))\\‘5“2—1—0&“5”1-
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Our goal now is to find 3 to minimize M (-). Minimizing M(-) is equiv-
alent to minimizing

1
(10) M(p) = Q—tllﬂ—(ﬁo—tw(r(—m,ﬁo))||§+(1—a))\||ﬁllz+a/\||/3||1-

Combining the subgradient conditions with basic algebra, we get that
B =0if
15(Bo = tVL(r(—1), Bo), tad)[|2 < t(1 — ) A

and otherwise B satisfies

(1) (1 ¥ %) B = S(o — 19 H(r(19: o). o).

Taking the norm of both sides we see that

18112 = (15 (Bo — tV (), Bo), tad)l]a = t(L = a)A) , .

If we plug this into (11)), we see that our generalized gradient step (ie.
the solution to ((10)) is
(12)
R t(l —a)A
G=(1-
15 (Bo = tVL(r(—k), Po), ta)]]2

If we iterate (12), and recenter each pass at (Bo)new = (8)ola, then
we will converge on the optimal solution for B*) given fixed values of
the other coefficient vectors. If we apply this per block, and cyclically
iterate through the blocks we will converge on the overall optimum.
For ease of notation in the future we let U (f,t) denote our update
formula

(13)

) S(ﬁo—tVﬁ(T(,k), 50), ta)\).
+

t(1—a)A
(Bo — tVL(r(—r), Bo), taN)||2

Note that in our case (linear regression)

Vf(?“(_k), ﬂo) = —X(k)TT(_k)/n.

) S(ﬁo—tvg(T(_k), ﬁo), tOéA).
+

3.2. Algorithm Overview. This algorithm is a sequence of nested
loops:
(1) (Outer loop) Cyclically iterate through the groups; at each
group (k) execute step 2
(2) Check if the group’s coefficients are identically 0, by seeing if
they obey

1S (XM T, ad)[], < (1= a)A
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If not, within the group apply step 3
(3) (Inner loop) Until convergence iterate:
(a) update the center by 6 + 3*)

(b) update B® from Eq (3], by
BY U (0.1)

This is the basic idea behind our algorithm. Meier et al.| (2008) have
a similar approach to fit the group lasso for generalized linear mod-
els. For a convergence threshold of €, in the worst-case scenario within
each group this algorithm requires O(1/¢) steps to converge. However,
recent work in first order methods have shown vast improvements to
gradient descent by a simple modification. As seen in Nesterov| (2007)
we can improve this class of algorithm to O(1/4/€), by including a mo-
mentum term (known as accelerated generalized gradient descent). In
practice as well, we have seen significant empirical improvement by
including momentum in our gradient updates. We have also included
step size optimization, which we have found important as often the
Lipschitz constant for a problem of interest is unknown. The actual
algorithm that we employ changes the inner loop to the following:

(Inner loop) Start with g0 = gkl — 5(()k), step size t = 1, and
counter [ = 1. Repeat the following until convergence
(1) Update gradient g by g = V/ (r_y, B*9)
(2) Optimize step size by iterating ¢t = 0.8 x ¢ until
1 2
k,l k,l T
(U (B™,1) < (B) + 9 Aap + 57 [ Aanll;
(3) Update 60 by
(14) ortD) U (BHD 1)
(4) Update the center via a Nesterov step by
[

(15) 6(k,l+1) — e(k,l) 4

l ; (9(k,l+1) . e(k,l))
+

(5) Set I =1+ 1.

Where A is the change between our old solution and new solution
Ay =U (8%, 8) — g+

Our choice of 0.8 in step 2 was somewhat arbitrary; any value in (0, 1)
will work. This is very similar to the basic generalized gradient al-
gorithm — the major differences are steps 2 and 4. In 2, we search
for a t such that in our direction of descent, the majorization scheme



&NOAH SIMON, JEROME FRIEDMAN, TREVOR HASTIE, AND ROB TIBSHIRANI

still holds. In 4 we apply Nesterov-style momentum updates — this
allows us to leverage some higher order information while only calcu-
lating gradients. While these momentum updates are unintuitive they
have shown great theoretical and practical speedup in a large class of
problems.

3.3. Pathwise solution. Usually, we will be interested in models for
more than one amount of regularization. One could solve over a 2
dimensional grid of a and A\ values, however we found this to be com-
putationally impractical, and to do a poor job of model selection. In-
stead, we fix the mixing parameter o and compute solutions for a path
of A values (as A regulates the degree of sparsity). We begin the path
with A sufficiently large to set B = (, and decrease A until we are near
the unregularized solution. By using the previous solution as the start
position for our algorithm at the next A-value along the path, we make
this procedure efficient for finding a pathwise solution. Notice that in

Eq [ if

1S (XD Ty/n,Aa) |2 < v/Bi(L — @)
for all [, then § = 0 minimizes the objective. We can leverage the
fact that for a fixed o |[S (XU Ty/n, Aa) |3 — pi(1 — )?A? is piecewise
quadratic in A to find the smallest )\; for each group that sets that
group’s coefficients to 0. Thus, we begin our path with

AP = max; A

This is the exact value at which the first coefficient enters the model.
We choose A™™ to be some small fraction of A™** (default value is 0.1 in
our implementation) and log-linearly interpolate between these two for
other values of A on this path. We do not have a theoretically optimal
value for o — the optimal value would need to be a function of the
number of covariates and group sizes among other things. In practice
for problems where we expect strong overall sparsity and would like
to encourage grouping we have used a = 0.95 with reasonable success
(this was used in our simulated data in Section [f]). In contrast, if we
expect strong group-wise sparsity, but only mild sparsity within group
we have used @ = 0.05 (an example of this is given in Section [5)). That
said, different problems will possibly be better served by different values
of & and in practice some exploration may be needed.

3.4. Simple Extensions. We can also use this algorithm to fit either
the lasso or group lasso penalty: setting @ = 1 or « = 0. For the group
lasso the only change is to remove the soft thresholding in update (13)
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and get
(1 —a)A
= (-
o) =\ Ty + 9o ol
For the lasso penalty, the algorithm changes a bit more. There is no

longer any grouping, so there is no need for an outer group loop. Our
update becomes

) (ﬁo — tVE(r(,l), 60)) .

U (Bo,t) = S(Bo — tVL(y, fo), tA)

which we iterate, updating (3, at each step. Without backtracking, this
is just the NESTA algorithm in Lagrange form as described in [Becker
et al.| (2009).

4. EXTENSIONS TO OTHER MODELS

With little effort we can extend the sparse-group penalty to other
models. If the likelihood function, L(5), for the model of interest is
log-concave then for the sparse-group lasso we minimize

(B)+ (1 =) /| [BV]], + ar]|8l
=1

where ¢(8) = —1/nlog (L(/)). Two commonly used cases, which we in-
clude in our implementation, are logistic regression and the Cox model
for survival data.

For logistic regression we have y, an n-vector of binary responses, and
X, an n by p covariate matrix divided into m groups, XM, ..., X ™).
In this case the sparse-group lasso takes the form

B = argming % [(Z log (1 + exp (a:jﬂ)) + yw?ﬁ)

i=1

+(1=a)A > o |[BY]] A+ 18],
=1

For Cox regression our data is a covariate matrix, X (again with sub-
matrices by group), an n-vector y corresponding to failure/censoring
times and an n-vector ¢ indicating failure or censoring for each obser-
vation (§; = 1 if observation i failed, while §; = 0 if censored). Here
the sparse-group lasso corresponds to

B = argminB% [log (Z (Z exp (z] B) — ;cjﬁ))

€D jERZ‘

+(1=a)A> o |[BY|], e 181l
=1

where D is the set of failure indices, R; is the set of indices, j, with
y; > vy; (those still at risk at failure time 7).
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4.1. Fitting extensions. Fitting the model in these cases is straight-
forward. As before we use blockwise descent. Within each block our
algorithm is nearly identical to the squared error case. While before

we had .

Urn B) = 5 ||ren — X8|
that form is only applicable with squared error loss. We define £, (3%, (%))
to be our unpenalized loss function, ¢(/3), considered as a function of
only B, with the rest of the coefficients, 3(~%), fixed. In the case of
square error loss, this is exactly £(r(_g), ). From here, we can use
the algorithm in Section [3| only replacing every instance of £(r(_), 5)
by £(3), ). We would like to note that although the algorithm
employed is straightforward, due to the curvature of these losses, in

some cases our algorithm scales poorly (eg. Cox regression).

2
2

4.2. Overlap Group Lasso. The sparse-group lasso can also be con-
sidered as a special case of a group lasso model which allows overlap in
groups (in this case many groups would be size 1). In the more general
overlap case one may see strange behavior — if a variable in the overlap
of many groups is included in a model then all of those groups will need
to be “active”. |Jacob et al|(2009)) give a very nice fix for this issue by
slightly reformulating the problem, but this more general framework is
beyond the scope of our paper.

5. APPLICATIONS

In this section we discuss when one might expect good performance
from the sparse-group lasso, and when another tool might be preferable.
One common statistical scenario is regression with categorical predic-
tors. For predictors with few levels it is reasonable to use the group
lasso — sparsity within group is unnecessary as groups are small. As
the number of levels per predictor rises, it becomes more likely that
even for predictors which we include, many of the levels may not be
informative. The sparse-group lasso will take this into account, set-
ting the coefficients for many levels equal to 0 even in nonzero groups.
At the other extreme, few predictors each with many levels, groupwise
sparsity often proves unhelpful and one may see the best performance
with the lasso (for example, if there are only 5 groups and one is active
in the true model, this is still 20% of groups active).

Along similar lines, often we run regression in a setting where the
predictors have a natural grouping. We mentioned gene pathways be-
fore and will expand on it here. In many (if not all) genetic conditions,
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genes do not function (or fail to function) independently. If a number
of genes in a given pathway all seem moderately successful at predict-
ing outcome, we would like to up-weight this evidence over similarly
predictive genes in different pathways. However, we also do not believe
that every gene in an active pathway is necessarily indicated in the
genetic condition. The sparse-group lasso is potentially useful for this
scenario — it finds pathways of interest and, from them, selects driving
genes. Furthermore, it shrinks the estimated effects of driving genes
within a group toward one another.

To further investigate this, we have compared the sparse-group lasso
to the lasso and group lasso on two real data examples with gene ex-
pression data. Our first dataset was the colitis data of Burczynski et al.
(2006). There were 127 total patients, 85 with colitis (59 crohn’s pa-
tients + 26 ulcerative colitis patients) and 42 healthy controls. Each pa-
tient had expression data for 22283 genes run on an affymetrix U133A
microarray. These genes were grouped into “genesets” using cytoge-
netic position data (the C'1 set from Subramanian et al.| (2005)). Of
the original 22283 genes only 8298 of these genes were found in the
C'1 geneset — the others were removed from the analysis. The C'1 set
contains 277 cytogenetic bands, each averaging about 30 genes (from
out dataset). We chose 50 observations at random and used these to
fit our models. We used the remaining 77 observations as a test set.

Because there were a large number of small pathways we chose o =
0.05 for the sparse-group lasso model. Each of the 3 models was fit
for a path of 100 A-values with Ay, = 0.01Apax (this value was chosen
because the peak in validation accuracy occured at the end of the path
for Amin = 0.1\ max)-

In Figure [} we see that the lasso performed slightly better than the
group lasso and sparse-group lasso with a 90% correct classification
rate at its peak to the 87% of the sparse-group lasso and 84% for the
group lasso. If we look into the solution slightly more we see that, at
its peak, the lasso chose to include 19 genes from totally different cyto-
genetic bands, whereas the sparse-group lasso included 43 genes from
only 8 Cytogenetic bands, and the group lasso included all 36 genes
from 7 bands. In this example the group lasso and sparse-group lasso
chose nearly the same predictors (the sparse-group lasso included an
additional group). All of these bands were very small (the largest had
11 genes, 4.5 was the median), and the sparse-group lasso actually did
not employ any within group sparsity. From our results, we can see
that the sparse-group lasso (with our choice of genesets) was not ideal
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Correct Classification Rate for Colitis Data

Method

=-=GL
= Lasso
— SGL

Correct Classification Rate

o

‘J 'W‘L‘ b‘H
Lambda Index

F1GURE 1. Classification accuracy on 77 test samples for
colitis data. All models were fit for a path of 100 A-values
with Apin = 0.1\ .. For the SGL, a = 0.05 was used.

for this problem.

One might question our choice of the positional bands rather than
another collection of gene sets. We chose the C'1 collection because it
seemed reasonable and had no overlapping groups. In general, scien-
tists with domain specific knowledge would likely do better choosing a
domain specific collection (eg. using a colitis associated collection for
the colitis data).

The second dataset we used for comparison was the breast cancer
data of Ma et al|(2004)). This dataset contains gene expression values
from 60 patients with estrogen positive breast cancer. The patients
were treated with tamoxifen for 5 years and classified according to
whether cancer recurred (there were 28 recurrences). Gene expression
values were run on a GPL1223: Arcturus 22k human oligonucleotide
microarray. Unfortunately, there was significant missing data. As a
first pass, all genes with more than 50% missingness were removed.
Other missing values were imputed by simple mean imputation. This
left us with 12071 of our 22575 original genes. We again grouped genes
together by cytogenetic position data, removing genes which were not
recorded in the GSEA C1 dataset. Our final design matrix had 4989
genes in 270 pathways (an average of ~ 18.5 genes per pathway). 30
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Correct Classification Rate for Cancer Data

Method

=-=GL
= Lasso
— SGL

Correct Classification Rate

o

‘J 'W‘L‘ b‘H
Lambda Index

F1GURE 2. Classification accuracy on 30 test samples for
cancer data. Both models were fit for a path of 100 A-
values with A, = 0.1\ .. For the SGL, a = 0.05 was
used.

patients were chosen at random and used to build the 3 models. The
remaining 30 were used to test their accuracies.

We again used o = 0.05 for the sparse-group lasso. Each of the 3
models was fit for a path of 100 A-values with A, = 0.1\ ..

Referring to Figure [2] we see that in this example the sparse-group
lasso outperforms the lasso and group lasso. The sparse-group lasso
reaches 70% classification accuracy (though this is a narrow peak, so
may be slightly biased high), while the group lasso peaks at 60% and
the lasso comes in last at 53% accuracy. At its optimum the sparse-
group lasso includes 54 genes from 11 bands, while the group lasso
selects all 74 genes from 15 bands (again, largely smaller bands for the
group lasso), and the lasso selects 3 genes all from separate bands. This
example really highlights the advantage of the sparse-group lasso — it
allows us to use group information, but does not force us to use entire
groups.

These two examples highlight two different possibilities for the sparse-
group lasso. In the cancer data, the addition of group information is
critical for classification, and the grouping may help give insight into
the biological mechanisms. In the colitis data, the group “informa-
tion” largely just increases model variance. The sparse-group lasso is
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certainly not perfect for every scenario with grouped data, but as evi-
denced in the cancer data, it can sometimes be helpful.

6. SIMULATED DATA

In the previous section we compared the predictive accuracy of the
lasso and sparse-group lasso on real data. One might also be interested
in its accuracy as a variable selection tool — in this section we compare
the regular lasso to the sparse-group lasso for variable selection on
simulated data. We simulated our covariate matrix X with different
numbers of covariates, observations, and groups. The columns of X
were iid. gaussian, and the response, y was constructed as

g
(16) Yy = Z X(l)ﬁ(l) + o€
=1

where € ~ N(0,1), ¥ = (1,2,...,5,0,...,0) for [ =1,...,9, and ¢
set so that the signal to noise ratio was 2. The number of generative
groups, ¢ varied from 1 to 3 changing the amount of the sparsity.

We chose penalty parameters for both the lasso and sparse-group
lasso (with av = 0.95) so that the number of nonzero coefficients chosen
in the fits matched the true number of nonzero coefficients in the gen-
erative model (5, 10, or 15 corresponding to g = 1,2,3). We then
compared the proportion of correctly identified covariates averaged over
10 trials. Referring to Table [I| we can see that the sparse-group lasso
improves performance in almost all scenarios. The two scenarios where
the sparse-group lasso is slightly outperformed is unsurprising as there
are few groups (m = 10) and each group has more covariates than ob-
servations (n = 60, p = 150), so we gain little by modeling sparsity of
groups.

We would like to note that in some trials we were unable to make the
sparse-group lasso select exactly the true number of nonzero coefficients
(due to the grouping effects). In these cases we allowed the sparse-group
lasso to select extra variables (as few as it could manage), however when
calculating the proportion of correct nonzero coefficient identifications
we used the total number of variables selected in our denominator, eg.
if the sparse-group lasso selected 7 variables in the 5 true variable case,
it would be unable to get a proportion better than 5/7 = 0.71. While
not ideal, we find no reason to believe that this would bias our results
in favor of the sparse-group lasso.
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Number of Groups in
Generative Model

1 group 2 groups 3 groups

n = 60, p = 1500, m = 10

SGL 0.72 0.36 0.28
Lasso 0.60 0.38 0.31

n =70, p = 2000, m = 200

SGL 0.68 0.44 0.31
Lasso 0.54 0.30 0.26

n = 150, p = 10000, m = 100

SGL 0.77 0.72 0.52
Lasso 0.76 0.62 0.43

n = 200, p = 20000, m = 400

SGL 0.92 0.78 0.68
Lasso 0.82 0.68 0.52

TABLE 1. Proportions of correct nonzero coefficient
identifications for standardized and unstandardized
Group Lasso out of 10 simulated data sets.

6.1. Timings. We also timed our algorithm on simulated data for lin-
ear, logistic, and Cox regression. Our linear data was simulated as in
Section [6] To simulate binary responses, we applied a logit transfor-
mation to a scaling of our linear responses

~ exp(5y)

1 + exp(5y;)
and simulated Bernoulli random variables with these probabilities. For
Cox regression, we set survival/censoring time for observation i to be
exp(y;), and simulated our indicators death/censoring independently
with equal probability of censoring and death (ber(0.5)). We used the
same covariate matrix for each 3 regression types.

i
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We found that the unregularized end of the regularization path re-
quired by far the most time to solve. To illustrate this we ran 2 sets of
simulations. For the first set we use Apnin = 0.1 A4k, running relatively
far along the path. For the second set we ran a much shorter path with
Amin = 0.6Apax. For some problems it may be necessary to solve for
Amin Small. However, these solutions have many nonzero variables. As
such in large p, small n problems, these unregularized solutions gener-
ally have very poor prediction accuracy as they tend to include many
noise variables. In this situations, solving far into the regularization
path may often be unnecessary.

Our implementation of the sparse-group lasso is called from R, but
much of the optimization code is written in C++ and compiled as a
shared R/C-++ library. All timings were carried out on an Intel Xeon
3.33 GHz processor.

Referring to Table [2| we see that while, in some cases, our algorithm
scales somewhat poorly, it can still solve fairly large problems with
times on the order of minutes. One noteworthy point is that smaller
group sizes allow our algorithm to make better use of active sets, and
this is reflected in the runtime differences between the 200 and 10 group
cases. Also, as we run further into the regularization path, more groups
become active. This is the main reason our solutions for A, = 0.1 are
much slower than for A,;; = 0.6 even though the 2 paths solve for the
same number of A\-values.

7. DISCUSSION

We have proposed and given insight into a method for modeling
groupwise and within group sparsity in regression. We have extended
this model to other likelihoods. We have shown the efficacy of this
method on real and simulated data, and given an algorithm to fit this
model. An R implementation of this algorithm is available on request,
and will soon be uploaded to CRAN.

8. SUPPLEMENTAL MATERIALS

R-package for SGL: R-package “SGL” containing the code used
to fit all the spare-group lasso models. (SGL _1.0.tar.gz, GNU
zipped tar file)
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Number of Groups in
Generative Model

1 group 2 groups 3 groups \ 1 group 2 groups 3 groups

Short Path Long Path

n = 150, p = 1500, m = 10

linear 1.788 7.052 8.278 30.86 65.13 66.29
logit 5.954 7.055 8.72 28.21 63.14 65.12
COX 7.592 10.09 8.453 72.87 76.31 7717

n = 200, p = 2000, m = 200

linear 0.501 0.8164 1.345 8.422 14.18 18.35
logit 1.594 3.121 2.676 32.48 42.38 43.65
cOX 2.482 4.084 3.315 95.31 o8 53.41

n = 150, p = 10000, m = 100

linear 6.566 11.46 15.15 140.4 269.6 322
logit 8.017 48.01 60.94 424.1 554.9 595.6
COX 21.61 117.3 117.2 635.8 793.4 789.2

n = 200, p = 20000, m = 400

linear 9.743 13.07 15.75 153.3 272.3 401.3
logit 10.73 23.6 50.87 600.8 815.7 965.4
COX 23.86 91.2 128.2 1324 1473 1578

TABLE 2. Time in seconds to solve for the “short” and
“long” paths of 20 A-values averaged over 10 simulated
data sets. Where A\, = 0.6\ ax for the short path and
Amin = 0.1\ Lax for the long path.

Test Code: All the R script files used for simulations and real
data calculations run in the manuscript. (testCode.tar.gz, GNU
zipped tar file)
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