
On Learning Discontinuous Human Control
Strategies*
Michael C. Nechyba,1, † Yangsheng Xu2, ‡
1Department of Electrical and Computer Engineering, Machine Intelligence
Laboratory, Benton 311, P.O. Box 116200, University of Florida, Gainesville,
Florida 32611-6200
2Department of Mechanical and Automation Engineering, The Chinese
University of Hong Kong, Hong Kong

Ž .Models of human control strategy HCS , which accurately emulate dynamic human
behavior, have far reaching potential in areas ranging from robotics to virtual reality to
the intelligent vehicle highway project. A number of learning algorithms, including fuzzy
logic, neural networks, and locally weighted regression exist for modeling continuous
human control strategies. These algorithms, however, may not be well suited for model-
ing discontinuous human control strategies. Therefore, we propose a new stochastic,
discontinuous modeling framework, for abstracting human control strategies, based on

Ž .hidden Markov models HMM . In this paper, we first describe the real-time driving
simulator which we developed for investigating human control strategies. Next, we
demonstrate the shortcomings of a typical continuous modeling approach in modeling
discontinuous human control strategies. We then propose an HMM-based method for
modeling discontinuous human control strategies. The proposed controller overcomes
these shortcomings and demonstrates greater fidelity to the human training data. We
conclude the paper with further comparisons between the two competing modeling
approaches and we propose avenues for future research. � 2001 John Wiley & Sons, Inc.

1. INTRODUCTION

In recent years, a number of different researchers have endeavored to
abstract models of human skill directly from observed human input�output
data.1,2 Much of the work to date attempts to model human skill by learning the
mapping from sensory inputs to control action outputs. Although the choice of
learning algorithm varies, the most frequently used�including fuzzy logic,
neural networks, and locally weighted regression�are all examples of continu-

*This work was supported in part by Carnegie Mellon University and graduate
fellowships from the National Science Foundation and the Department of Energy.

†Author to whom correspondence should be addressed; e-mail: nechyba@
mil.ufl.edu.

‡e-mail: ysxu@mae.cuhk.edu.hk.

Ž .INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, VOL. 16, 547�570 2001
� 2001 John Wiley & Sons, Inc.



NECHYBA AND XU548

Ž .ous function approximators FAs . For each of these algorithms, control outputs
are continuous and deterministic functions of model inputs.

Powerful as these may be, however, continuous learning algorithms may not
be able to faithfully reproduce control strategies where discrete events or
decisions introduce discontinuities in the input�output mapping. An example of
this type of discontinuous control occurs in human driving, which requires

Ž . Ž .control of 1 steering and 2 acceleration. While steering tends to vary
continuously with model inputs, acceleration control of the vehicle is decidedly
discontinuous, since it involves explicit switching between the gas and the brake
pedals.

To adequately model such control behavior, we therefore propose a new
stochastic, discontinuous learning algorithm, based on hidden Markov models,
where control actions are modeled as individual HMMs. During run-time
execution of the algorithm, a control action is then selected stochastically, as a
function of both prior probabilities and posterior HMM-evaluation probabilities.
Thus, we model the discontinuous acceleration control not as a deterministic

Ž .functional mapping as we do with the continuous steering control , but rather
as a probabilistic relationship between sensory inputs and discontinuous outputs.

In this paper, we first review previous work in modeling human driving. We
then describe the real-time graphic driving simulator for which we have recorded
human control data, and for which we wish to abstract the corresponding driving
control strategies. Next, we illustrate the difficulty of modeling a discontinuous
control strategy using a continuous learning framework, and we propose a new
HMM-based, discontinuous learning architecture for abstracting discontinuous
human control strategies. We show that the resulting discontinuous modeling
framework demonstrates better fidelity to the human training data than the
continuous modeling approach. Finally, we offer some comparisons between the
two learning architectures and we suggest directions for future research.

2. REAL-TIME DRIVING SIMULATOR

Several approaches to skill learning in human driving have been imple-
mented. Neural networks have been trained to mimic human behavior for a
simulated, circular racetrack.3,4 The task essentially involves avoiding other
computer-generated cars; no dynamics are modeled or considered in the ap-
proach. Pomerleau implements real-time road-following with data collected
from a human driver.5,6 A static feedforward neural network with a single hidden
layer, ALVINN, learns to map coarsely digitized camera images of the road
ahead to a desired steering direction, whose reliability is given through an
input-reconstruction reliability estimator. The system has been demonstrated
successfully at speeds up to 70 mi�h. Subsequently, a statistical algorithm called
RALPH7 was developed for calculating the road curvature and the lateral offset
from the road median. Neuser et al. control the steering of an autonomous
vehicle through preprocessed inputs to a single-layer feedforward neural net-
work.8 These preprocessed inputs include the car’s yaw angle with respect to the
road, the instantaneous and time-averaged road curvature, and the instanta-



LEARNING CONTROL STRATEGIES 549

neous and time-averaged lateral offset. Driving data is again collected from a
human operator. Other authors provide a control theoretic model of human
driver steering control.9 Finally, Pentland and Liu apply HMMs toward inferring
a particular driver’s high-level intentions, such as turning and stopping.10

In our work, we are interested in abstracting models of dynamic human
control strategies, including steering and acceleration. Figure 1 shows the
real-time, dynamic, graphic driving simulator which we developed for collecting
and analyzing human control strategy data. In the interface, the human operator
has full control over the steering of the car, the brake and the accelerator,
although the simulator does not allow both the gas and brake pedals to be

� 4pushed at the same time. The state of the car is given by � , � , � , where � is� � �

the lateral velocity of the car, � is the longitudinal velocity of the car, and � is�

the angular velocity of the car; the controls are given by

�8000 N � � � 4000 N 1Ž .
� 0.2 rad � � � 0.2 rad 2Ž .

where � is the user-applied longitudinal force on the front tires and � is the
user-applied steering angle. The nonlinear dynamic model of the car�omitted
here for space reasons�is fully described elsewhere.1,11,12

Ž .Because of input device constraints, the force or acceleration control � is
limited during each 1�50 s time step, based on its present value. If the gas pedal

Ž .is currently being applied � � 0 , then the operator can either increase or
decrease the amount of applied force by a user-specified constant 	� or switchg

Figure 1. The driving simulator gives the user a perspective preview of the road ahead.
Ž .The user has independent controls of the steering, brake, and accelerator gas .



NECHYBA AND XU550

Ž .to braking. Similarly, if the brake pedal is currently being applied � � 0 the
operator can either increase or decrease the applied force by a second user-
specified constant 	� or switch to applying positive force. Thus, the 	� andb g

Ž .	� constants define the responsiveness of each pedal. If we denote � k as theb
Ž .current applied force and if we denote � k � 1 as the applied force for the

next time step, we can write in concise notation that,

� k � 1 � � k , min � k � 	� , 4000 , max � k � 	� , 0 , �	�Ž . Ž . Ž . Ž .� 4Ž . Ž .g g b

� k � 0 3Ž . Ž .

� k � 1 � � k , max � k � 	� , �8000 , min � k � 	� , 0 , 	�Ž . Ž . Ž . Ž .� 4Ž . Ž .b b g

� k � 0 4Ž . Ž .

For the experiments in this paper, we collect human driving data across
randomly generated roads like the 20 km one shown in the map of Figure 1. The

Ž . Ž .roads are described by a sequence of 1 straight-line segments and 2 circular
arcs, connected in a manner that ensures continuous first derivatives across
segments. The length of each straight-line segment, as well as the radius of
curvature of each arc, lie between 100 and 200 m. Roads are defined to be 10 m
wide, and the visible horizon is set at 100 m. For notational convenience, let d�

denote the car’s lateral offset from the road median.

3. CONTINUOUS CONTROL

Below, we motivate the development of the discontinuous HMM-based
learning architecture by first illustrating the learning problems that occur when
attempting to model a discontinuous control strategy with a continuous learning
architecture. For given human driving data, steering will tend to vary continu-
ously with sensory inputs, while acceleration will tend to vary discontinuously
with sensory inputs. This is not merely an artifact of the constraints in Eqs. 3
and 4, but is caused primarily by the necessary switching between the brake and
the gas pedals, as is also the case for real driving. As we will show, continuous
HCS models, while abstracting convergent strategies, qualitatively bear little
resemblance to the original human control strategy. This is not only a shortcom-
ing of our neural-network function approximators; rather, we will show that any
continuous function approximator is doomed to fail in a similar manner when
attempting to model control strategies that involve discontinuous switching.

A. Cascade Learning

Here, we briefly summarize the cascade neural network learning architec-
ture. Further details, which are omitted for space reasons, may be found
elsewhere.2,11,13 Initially, there are no hidden units in the network, only direct
input�output connections which are trained first. When no appreciable error
reduction occurs, a first hidden unit is added to the network from a pool of



LEARNING CONTROL STRATEGIES 551

Figure 2. The cascade learning architecture adds hidden units one at a time to an
initially minimal network. All connections in the diagram are feedforward. The striped
circles represent the bias unit, the open circles represent the input unit, the lightly
shaded circles represent the first hidden unit, the shaded circles represent the second
hidden unit, and the dark shaded circles represent the output unit.

candidate units, which are trained independently and in parallel with different
random initial weights. Once installed, the hidden unit input weights are frozen,
while the weights to the output units are retrained. This process which is
illustrated in Figure 2, is repeated with each additional hidden unit, which
receives input connections from both the network inputs and all the previous
hidden units, resulting in a cascading structure.

In the experiments reported in this paper, we enhance the basic cascade
Ž .learning framework in two ways: 1 we allow new hidden units to have variable

activation functions,11 increasing the functional flexibility of the learning archi-
Ž .tecture; and 2 we train the neural-network weights through node-decoupled

Ž . 4extended Kalman filtering NDEKF , as opposed to gradient techniques, such
as quickprop or backpropagation. Both of these modifications have been shown
to significantly improve learning speed and error convergence of the cascade
learning architecture.1,14

A necessary condition for successful learning is, of course, that the model
be presented with those state and environmental variables upon which the
human operator relies. We hypothesize that the human’s control strategy, which
we are trying to learn, relies not only on the present state of the car, but also a
recent time history of the car; experiments, which vary the number and type of
inputs to the learning model, support this hypothesis.1 Thus, we need to map a

Ž .dynamic system i.e., the human control strategy onto the static mapping
capacity of the cascade learning architecture.

In general, we can approximate any dynamic system through a difference
equation,15

u k � 1 � 
 u k , u k � 1 , . . . , u k � n � 1 , x k , x k � 1 , . . . ,Ž . Ž . Ž . Ž . Ž . Ž .u

x k � n � 1 , z k 5Ž . Ž . Ž .x



NECHYBA AND XU552

Ž . Ž . Ž . Ž .where 
 � is some possibly nonlinear map, u k is the control vector, x k is
Ž .the system state vector, and z k is a vector describing the external environment

at time step k. The order of the dynamic system is given by the constants n andu
n . Thus, a static model can abstract a dynamic system, provided that time-x
delayed histories of the state and command vectors are presented to the model
as input. Consequently, the inputs to the cascade neural network should include,
Ž . � 4 Ž . Ž1 current and previous state information � , � , � , 2 previous output con-� �

. � 4 Ž .trol information � , � , and 3 a description of the road visible from the
Ž .current car position. More precisely, the network input vector � k at time-step

k is given by

� k � n , . . . , � k � 1 , � k , � k � n , . . . ,Ž . Ž . Ž . Ž .� � x � � � x

� k � 1 , � k , � k � n , . . . , � k � 1 , � k 6Ž . Ž . Ž . Ž . Ž . Ž .4� � x

� k � n , . . . , � k � 1 , � k , � k � n , . . . , � k � 1 , � k 7� 4Ž . Ž . Ž . Ž . Ž . Ž . Ž .u u

and

x k , x k , . . . , x k , y k , y k , . . . , y k 8Ž . Ž . Ž . Ž . Ž . Ž . Ž .� 41 2 n 1 2 nr r

For the road description, we partition the visible view of the road ahead into nr
Ž .equivalently spaced, body-relative x, y coordinates of the road median, and we

provide that sequence of coordinates as input to the network. Thus, the total
number of inputs to the network are 3n � 2n � 2n . The outputs of thex u r

� Ž . Ž .4cascade network are � k � 1 , � k � 1 , the steering and acceleration com-
mands at the next time step, respectively.

B. Experiments

We now conduct the following experiment. First, we ask a human operator
to drive over two different randomly generated 20 km roads � and � , similar1 2

Ž .to the one in Figure 1. We then use the first run � to train a cascade neural1
network, and we reserve the second road � for testing the network model. In2
this paper, we present results for two different individuals, Curly and Moe. By

� 4searching the space of possible inputs parameterized by n , n , n , we arrive atx u r
the following suitable input space representation for each individual’s model,

Curly: n � n � 6 n � 10 9Ž .x u r

Moe: n � n � 3 n � 10 10Ž .x u r

These input representations ensure that the cascade neural networks form
convergent control models.1 Figures 3 and 4 compare each individual’s control
data with their corresponding model-generated control over test road � , while2
Table I compares some aggregate statistics between the human and the model
data. For each person, the model consists of a simple linear cascade network
Ž .i.e., no hidden units .



LEARNING CONTROL STRATEGIES 553

Ž . Ž .Figure 3. Curly’s a control data and b corresponding linear model data over the test
road.



NECHYBA AND XU554

Ž . Ž .Figure 4. Moe’s a control data and b corresponding linear model data over the test
road.



LEARNING CONTROL STRATEGIES 555

Table I. Statistical comparison.

Curly Moe

Road � Human Data Linear Model Human Data Linear Model2

Ž .� mph 73.1 � 9.5 74.1 � 3.6 70.8 � 8.3 71.0 � 3.7
Ž .d m �0.77 � 1.97 �1.05 � 0.58 �0.53 � 1.42 �0.34 � 0.56
Ž .� rad �0.092 �0.066 �0.073 �0.056
Ž .� N 2190 � 2770 1790 � 810 1850 � 3340 1490 � 1090

C. Discussion

From Figures 3 and 4 and Table I, we make several observations. First,
Curly’s and Moe’s driving behavior is representative of other runs recorded by

Ž .them, as well as other individuals, in that 1 the steering control is reasonably
Ž .continuous; 2 the acceleration control has significant discontinuities due to

Ž .rapid switching between the brake and gas pedals; and 3 Curly and Moe
Ž .manage to stay on the road �5 m deviation from the road median for much of

the time, with only a few brief off-road episodes in especially tight turns.
Perhaps most importantly, the linear models, despite the discontinuous

acceleration command, are able to learn something; that is, the models keep the
vehicle on the road. Not only that, but they do so at approximately the same
average speed and lateral distance from the road median using a similar steering
control strategy as Curly and Moe, respectively. In some respects, the models’
control can even be considered superior to their respective human counterparts;
each model engages the brake only sparingly, and maintains tighter lateral road
position.

If we judge the models on how faithfully they reproduce each individual’s
acceleration control strategy, however, the models rate significantly worse; that
is, neither Curly’s nor Moe’s model acceleration control looks anything like the
original human data. Adding hidden units to impart nonlinearity to the model
introduces additional high-frequency components to the control, but does not
improve model fidelity to the human data much. Figure 5, for example, illus-
trates Curly’s model acceleration control when two hidden units are introduced
to the model.

To better appreciate why this is the case, we would like to visualize how
different input vectors in the training data map to different acceleration outputs
Ž .� k � 1 . As an example, consider Curly’s control strategy data and let n � nx u

� 6, n � 10 as before. For these input space parameters, the input trainingr
Ž .vectors � k are of length 50. Since it is impossible to visualize a 50-dimensional

Ž .input space, we decompose each of the input vectors � k in the training set into
Ž .16the principal components PCs over Curly’s entire data set, such that,

� k � ck
 � ck
 � ��� ck 
 11Ž . Ž .1 1 2 2 50 50



NECHYBA AND XU556

Figure 5. Adding hidden units to the linear model does not bring Curly’s model
significantly closer to his acceleration control strategy.

where 
 is the principal component corresponding to the ith largest eigenvaluei
� . Now, for Curly’s control data we have thati

� � � � � 4� �� � 0.44 � �� � 0.05 i � 3, 4, . . . , 50 12Ž .2 1 i 1

Ž .so that we coarsely approximate the input vectors � k as

� k � ck
 � ck
 13Ž . Ž .1 1 2 2

Ž k k .By plotting the PC coefficients c , c in two-dimensional space, we can now1 2
Ž . Ž .visualize the approximate relative location of the input vectors � k . Figure 6 a

Ž . Ž . Ž . Ž . Ž .and b shows the results for � k � 0 brake , and � k � 0 gas , respectively.
Ž .In each plot, we distinguish points by whether or not � k � 1 indicates a

Ž .discontinuity i.e., a switch between braking and accelerating such that

� k � 0 and � k � 1 � 0 Fig. 6 a 14Ž . Ž . Ž . Ž .
or

� k � 0 and � k � 1 � 0 Fig. 6 b 15Ž . Ž . Ž . Ž .

Ž . Ž .Figure 6. Switching actions black significantly overlap other actions gray when the
Ž . Ž . Ž . Ž .current applied force is a negative brake , and b positive gas .



LEARNING CONTROL STRATEGIES 557

Those points that involve a switch are plotted in black, while a representative
Ž .sample 20% of the remaining points are plotted in gray.

We immediately observe from Figure 6 that�at least in the low-dimen-
sional projection of the input vectors�the few training vectors that involve a
switch overlap the many other vectors that do not. In other words, very similar

Ž . Ž .inputs � k potentially lead to radically different outputs � k � 1 . Conse-
quently, Curly’s acceleration control strategy may not be easily expressible in a
functional form, let alone a smooth functional form. This poses an impossible
learning challenge not just for cascade neural networks, but for any continuous
function approximator. In theory, no continuous function approximator will be

Ž .capable of modeling the switching of the acceleration control � Fig. 7 .

4. DISCONTINUOUS CONTROL

In this section, we propose a stochastic, discontinuous learning algorithm to
overcome the problems discussed above. As before, we use a cascade neural
network for the steering control � ; now, however, we model the acceleration
control � through individual statistical models. During run-time execution of
the algorithm, a control action is then selected stochastically, as a function of
both prior probabilities and posterior evaluation probabilities. We will show that
the resulting controller overcomes the shortcomings of continuous modeling
approaches in modeling discontinuous control strategies, and that the resulting
model strategies appear to exhibit a higher degree of fidelity to the human
training data. Figure 8 illustrates the overall continuous�discontinuous hybrid
modeling architecture.

A. General Statistical Framework

Below, we view the discontinuous acceleration control not as a determinis-
Ž .tic functional mapping as we do with the continuous steering control , but

rather as a probabilistic relationship between sensory inputs and discontinuous
outputs. For now, we make the following assumptions. First, assume a control
task where at each time-step k, there is a choice of one of N different control

� 4actions A , i � 1, . . . , N . Second, assume that we have sets of input vectori

Figure 7. Switching causes very similar inputs to be mapped to radically different
outputs.



NECHYBA AND XU558

Figure 8. Overall control structure. Steering is controlled by a cascade neural network,
while the discontinuous acceleration command is controlled by the statistical HMM-based

Ž .controller shaded box .

� j4 � 4 jtraining examples � , j � 1, 2, . . . , n , where each � leads to control actioni i i
A at the next time step. Finally, assume that we can train statistical models � ,i i
so that

ni
j � 4P � � � , i � 1, . . . , N 16Ž .Ž .Ł i i

j�1

Ž j. jis maximized, where P � � � denotes the probability of model � given � .i i i i
Given an unknown input vector �*, we would like to choose an appropriate,
corresponding control action A*. Since model � corresponds to action A , wei i
define

p �* � A � p �* � � 17Ž . Ž . Ž .i i

Ž .where p �* � A denotes the likelihood of �* given A . By Bayes rule,i i

p �* � A P AŽ . Ž .i i
P A � �* � 18Ž . Ž .i p �*Ž .

where

N

p �* � p �* � A P A 19Ž . Ž . Ž . Ž .Ý i i
i�1

Ž .serves as a normalization factor, P A represents the prior probability ofi
Ž .selecting action A , and P A � �* represents the posterior probability ofi i

selecting action A given the input vector �*.i



LEARNING CONTROL STRATEGIES 559

We now define the following stochastic policy for A*. Let

A* � A with probability P A � �* 20Ž . Ž .i i

so that, at each time-step k, the control action A* is generated stochastically as
Ž .a function of the current model inputs �* and the prior likelihood of each

action.

B. Statistical Model

Hidden Markov models17 are powerful, trainable statistical models which
have previously been applied in a number of areas, including speech
recognition,17,18 modeling open-loop human actions,19 and analyzing similarity
between human control strategies.20 Because of their capacity to model arbi-
trary statistical distributions, we choose HMMs to be the trainable statistical
models � of the previous section.i

A discrete�hidden Markov model§ consists of a set of n states, intercon-
nected through probabilistic transitions, and is completely defined by � �
� 4A, B, � , where A is the probabilistic n � n state transition matrix, B is the
L � n output probability matrix with L discrete-output symbols, and � is the
n-length initial state probability distribution vector. For an observation sequence

Ž . ŽO of discrete symbols, we can locally maximize P � � O i.e., probability of
.model � given observation sequence O using the Baum�Welch expectation-

Ž . Ž .maximization EM algorithm. We can also evaluate P O � � through the
efficient forward�backward algorithm.

Using discrete HMMs, note from Figure 8 that the discontinuous part of
the HCS model consists of three distinct steps:

Ž .1 Input-space signals �* are first converted to an observation sequence of discrete
Ž .symbols O*, in preparation for hidden Markov model HMM evaluation.

Ž .2 The resulting observation sequence O* is then evaluated on a bank of discrete-
output HMMs, each of which represents a possible control action A and eachi

� j4of which has previously been trained on corresponding human control data � .i
Ž .3 Finally, the HMM evaluation probabilities are combined with prior probabilities

for each action A according to Eqs. 18 and 20 to stochastically select andi
execute action A* corresponding to input observation sequence O*.

C. Signal-to-Symbol Conversion

To use discrete-output HMMs, we must first convert the multidimensional
real-valued input space, to a sequence of discrete symbols. At a minimum, this

Ž .process involves vector quantizing the input-space vectors � k to discrete
symbols. We choose the well-known LBG VQ algorithm,21 which iteratively

l � 4generates vector codebooks of size L � 2 , l � 0, 1, . . . , and can be stopped at
an appropriate level of discretization, as determined by the amount of available

§Although continuous and semicontinuous HMMs are developed, discrete HMMs
are often preferred in practice because of their relative computational simplicity and
reduced sensitivity to initial parameter settings during training.17



NECHYBA AND XU560

data. By optimizing the vector codebook on the human training data, we seek
to minimize the amount of distortion introduced by the vector quantization
process.

Now, suppose that we want to provide the models � with m time-delayedi
values of the state and the control variables as input. There are at least two ways
to achieve this. First, we could set

n � n � 1 21Ž .x u

in Eqs. 6 and 7 and then we could train the models � on observable sequencesi
of length n � m. Alternatively, we could setO

n � n � m and n � 1 22Ž .x u O

In the first case, we vector quantize shorter input vectors but we provide a
longer sequence of observables n � 1 for HMM training and evaluation. In theO
second case, we vector quantize the entire input vector into a single observable,
and we base our action choice solely on that single observable. This necessarily
forces the HMMs � to single-state models, such that each model is completelyi
described by its corresponding output probability vector B .i

While in theory both choices start from identical input spaces, the single-
observable, single-state case works better in practice. There are two primary
reasons for this. Because the amount of data we have available for training
comes from finite-length data sets, and is therefore necessarily limited in length,
we must be careful that we do not overfit the models � . Assuming fullyi
forward-connected, left-to-right models � , increasing the number of states fromi

Ž . Ž .n to n � 1 increases the number of free trainable parameters by n � L,s s s
where L is the number of observables. Thus, having too many states in the
HMMs substantially increases the chance of overfitting, since there may be too
many degrees of freedom in the model. Conversely, by minimizing the number
of states, the likelihood of overfitting is minimized.

A second reason that the single-observable, single-state case performs
better relates to the vector quantization process. To understand how, consider

Ž .that each input vector � k minimally includes 2n road inputs. If we letr
n � 10, then for n � n � 1, 80% of the input dimensions will be road-related,r x u
while only 20% will be state-related. Thus, the vector quantization will most
heavily minimize the distortion of the road inputs, while in comparison neglect-
ing the potentially crucial state and previous command inputs. With larger
values of n and n , the vector quantization process relies more equally on thex u
state, previous control, and road inputs, and therefore forms more pertinent

Ž .feature prototype vectors for control. For Eq. 22 above,

P A � �* 	 P O* � � P A � b j P A 23Ž . Ž . Ž . Ž . Ž . Ž .ii i i i

Ž .where b j denotes the jth element in the � model’s output probability vectori i
B . Equation 23 defines a learned stochastic policy,i

� o , a � P a � A � o � O , � i , j 24Ž . Ž .Ž .i j

for each possible input observable O and action A .j i



LEARNING CONTROL STRATEGIES 561

D. Action Definitions

As we point out in Eqs. 3 and 4, the acceleration command � is limited at
Ž . Žeach time-step k to the following actions. When � k � 0 the gas is currently

.active ,

A : � k � 1 � � k 25Ž . Ž . Ž .1

A : � k � 1 � min � k � 	� , 4000 26Ž . Ž . Ž .Ž .2 g

A : � k � 1 � max � k � 	� , 0 27Ž . Ž . Ž .Ž .3 g

A : � k � 1 � �	� 28Ž . Ž .4 b

Ž . Ž .and when � k � 0 the brake is currently active ,

A : � k � 1 � � k 29Ž . Ž . Ž .5

A : � k � 1 � max � k � 	� , �8000 30Ž . Ž . Ž .Ž .6 b

A : � k � 1 � min � k � 	� , 0 31Ž . Ž . Ž .Ž .7 b

A : � k � 1 � 	� 32Ž . Ž .8 g

Actions A and A correspond to no action for the next time step; actions A1 5 2
and A correspond to pressing harder on the currently active pedal; actions A6 3
and A correspond to easing off the currently active pedal; and actions A and7 4
A correspond to switching between the gas and the brake pedals. The constants8
	� and 	� are set by each human operator to the pedal responsiveness levelg b

Ž .he or she desires. We estimate the priors P A by the frequency of occurrencei
Ž .of each action A in the human control training data. For � k � 0,i

4

� 4n � n i � 1, 2, 3, 4Ýi k�P A � 33Ž . Ž .k�1i � � 40 i � 5, 6, 7, 8

where n denotes the number of times action A was executed in the trainingi i
Ž .data set; similarly, for � k � 0,


 � 40 i � 1, 2, 3, 4
8�P A � 34Ž . Ž .i � 4n � n i � 5, 6, 7, 8Ýi k�

k�5

E. Experiments

Here, we follow the same procedure as in Section 3 for modeling the
control strategies of Curly and Moe, except that we now model the acceleration
control using the discontinuous framework developed above. We use the same
values for n , n , and n as in Eqs. 9 and 10, and n � 1, as discussedx u r O

Ž .previously. Furthermore, we vector quantize the input vectors � k to L � 512
discrete observables. Figures 9 and 10 compare each individual’s control data



NECHYBA AND XU562

Ž . Ž .Figure 9. Curly’s a control data and b corresponding hybrid controller data over the
test road.



LEARNING CONTROL STRATEGIES 563

Ž . Ž .Figure 10. Moe’s a control data and b corresponding hybrid controller data over the
test road.



NECHYBA AND XU564

Table II. Statistical comparison.

Curly Moe

Road � Human Data Hybrid Model Human Data Hybrid Model2

Ž .� mph 73.1 � 9.5 71.4 � 7.6 70.8 � 8.3 69.5 � 8.9
Ž .d m �0.77 � 1.97 �0.95 � 1.27 �0.53 � 1.42 �0.52 � 1.77
Ž .� rad �0.092 �0.081 �0.073 �0.069
Ž .� N 2190 � 2770 1940 � 2450 1850 � 3340 1790 � 3130

with their corresponding hybrid-model generated control over test road � ,2
while Table II compares some aggregate statistics between the human and the
hybrid model data.

5. DISCUSSION AND FUTURE WORK

A. Continuous vs. Hybrid Control

We see from Figures 9 and 10 that the stochastic controller also appears to
have learned a convergent control strategy. The big question is: Which con-
troller, the continuous neural-network controller, or the discontinuous HMM
controller, performs better? The answer to that question depends on what
precisely is meant by ‘‘better.’’

If we evaluate the two controllers based on absolute performance criteria,
the neural-network controller probably performs better. It minimizes variations
in the lateral position of the vehicle, conserves fuel by rarely ‘‘switching’’ to use
the brake, and averages a higher overall speed. By comparison, the HMM
controller runs off the road more often and resorts to braking much more
frequently than the neural-network controller. Simply put, the neural-network
controller appears to be more stable than its hybrid counterpart.

If, on the other hand, we evaluate the two controllers on how closely they
approximate the operators’s control strategy, the verdict changes drastically. As
we have already noted, the neural network acceleration control looks nothing
like the human control; the discontinuous acceleration control, on the other
hand, appears to be a much better approximation of Curly’s and Moe’s driving,
including more frequent off-road incidents. This greater similarity may also be
observed in individual turning maneuvers. In Figure 11, for example, we com-
pare Moe’s control strategy through a 150 m-radius, 120� curve with the
corresponding hybrid-model generated control trajectory. Moe’s model initially
brakes approximately 1�2 s before Moe himself does, albeit with somewhat less
force. Thereafter, the hybrid model closely emulates Moe’s strategy of rapid
switching between the brake and the accelerator while in the turn. Note that the
human and the model maneuvers take almost exactly the same amount of time
Ž .less than 1% difference .

We can further quantify the degree of similarity between each individual
and his corresponding model using a stochastic similarity measure � which we



LEARNING CONTROL STRATEGIES 565

Ž . Ž .Figure 11. Moe’s dashed and his hybrid model’s solid control through a given turn.

developed previously for comparing different human control strategies.20 The
similarity measure is capable of comparing stochastic, multidimensional trajecto-
ries and yields a value between 0 and 1, with larger values indicating greater
similarity. For the similarity comparison here, we include all relevant state and

� 4control variables � , � , �, � , � ; Table III reports similarity results between the� �

human data and each type of model. Note from Table III that the hybrid
controllers exhibit much higher fidelity to the human control data than the
continuous controllers.

B. Probability Profile

The most important reason behind the success of the hybrid controller is
that it is able to successfully model the switching behavior between the gas and
the brake pedals as a probabilistic event, since the precise time that a switch

Table III. Similarity between human and model
data.

� Curly Moe

Curly’s continuous model 0.096 N�A
Curly’s hybrid model 0.458 N�A
Moe’s continuous model N�A 0.088
Moe’s hybrid model N�A 0.555



NECHYBA AND XU566

Ž .occurs is not that important as is the case, for example, in Fig. 11 . What is
more important is that the switch take place in some time inter
al around the
time that the human operator would have executed the switch. Consider, for

Ž .example, Figure 12, which plots the posterior probabilities P A � O for a smalli
segment of Curly’s hybrid model control. We see that switches between the gas

Ž Ž . Ž . .Figure 12. Posterior probabilities for Curly’s model control P A � P A � 0 .3 7



LEARNING CONTROL STRATEGIES 567

Ž .and the brake pedals actions A and A , while never very likely for any4 8
individual time step, are modeled as intervals where,

P A � O � p � 0 or P A � O � p � 0 35Ž . Ž . Ž .4 8

The probability that a switch will occur after m time steps given the constant
probability p is given by

m
1 � 1 � p 36Ž . Ž .

Ž .Figure 13 plots this probability as a function of time at 50 Hz for p � 0.1 and
p � 0.05. Thus, we see that even for small values of p, the likelihood of a switch
rises quickly as a function of time.

Because we train separate models � for each action A , the hybridi i
modeling approach does not encounter the same one-to-many mapping prob-
lem, illustrated in Figures 6 and 7, that the continuous neural networks en-
counter. The relatively few occurrences of switching in each control data set are
sufficient training data, since the switching models � and � see only that data4 8

Ž .during training. Including the priors P A in the action selection criterion Eq.i
20 then ensures that the model is not overly biased toward switching.

C. Modeling Extensions and Improvements

Suppose the acceleration control � were not constrained by Eqs. 3 and 4,
and thus were not as readily expressible through discrete actions. For example,
suppose that the separate gas and brake commands could change by an arbitrary
amount for each time step, not just by 	� and 	� . How would this changeg b
the proposed control framework?

Figure 14 suggests one possible solution. Initially, we train two separate
Ž .continuous controllers, the first corresponding to � k � 0, and the second

Ž .corresponding to � k � 0. Since these controllers would not be required to
model switches between braking and accelerating, the control outputs will vary
continuously and smoothly with model inputs; hence a continuous function
approximator should be well suited for these two modeling tasks.

Ž .Figure 13. Probability of switch after t s at 50 Hz when the probability of a switch at
each time step is p.



NECHYBA AND XU568

Figure 14. Alternative architecture for discontinuous strategies.

˜ ˜Then, we train four statistical models � , corresponding to actions A ,i i
˜ ˜� 4i � 1, 2, 3, 4 , where actions A and A correspond to no switch at the next time1 2

˜ ˜Ž . Ž .step for � k � 0 and � k � 0, respectively, and actions A and A corre-3 4
Ž . Ž .spond to a switch at the next time step for � k � 0 and � k � 0, respectively.

This discontinuous action model would then regulate which of the continuous
models is active at each time-step k. Although the discontinuous controller’s
function in this scheme is reduced, it does preserve the critical role of the
discontinuous controller in properly modeling the switching behavior, without
the introduction of high-frequency noise. In fact, Figure 14 offers a modeling
architecture which is applicable whenever discrete events or actions disrupt the
continuous mapping from inputs to outputs.

Of course, our proposed statistical framework does have some limitations in
comparison to functional modeling approaches. Because we vector quantize the
input space, the stable region of operation for the hybrid controller is strictly
limited to the input space spanned by the VQ codes. In fact, we observe from
the modeling results that the continuous linear models are more stable than the
hybrid discontinuous�continuous models. Previously, we attempted to address
the stability problem2 of the hybrid HCS models by reasoning that the stability

Ž .of the system i.e., the simulated car is directly related to the kinetic energy T ,

T 	 � k 37Ž . Ž .Ý
k

� �that is pumped into the system, where the expected value of T , E T , is given by

� �E T 	 E � k 38Ž . Ž .Ý
k



LEARNING CONTROL STRATEGIES 569

Thus, in an attempt to improve the stability margin of the system, we adjusted
Ž .the model to generate �� k so that

E �� k � E � k 39Ž . Ž . Ž .
Condition 39 can be realized by increasing the priors for those actions that

� Ž .�decrease E � k �namely, A or A , by some small amount � , and, to stay3 4 s
within probabilistic constraints, by decreasing the priors A or A , respectively,2 1
so that

P� A � P A � � and P� A � P A � � 40Ž . Ž . Ž . Ž . Ž .3 3 s 2 2 s

or

P� A � P A � � and P� A � P A � � 41Ž . Ž . Ž . Ž . Ž .4 4 s 1 1 s

� Ž .�where � � 0 determines the degree to which E �� k is reduced. Whiles
modifications of Eqs. 40 and 41 do improve the stability of the hybrid HCS
models, we have recently begun to look at a more principled, less ad hoc
approach for improving model stability.

In on-going work, we apply reinforcement learning and the theory of
Ž .partially observable Markov decision processes POMDPs to the stability prob-

lem with some very promising early results.22 Through reinforcement learning,
we have been able to dramatically improve model stability to levels that
compare favorably with the continuous models of Section 3, while, at the same
time, maintaining a high degree of fidelity to the human training data. Although
more detailed experiments are needed, we believe that these results open up a
promising directions for future research by combining learning through observa-

Ž .tion from humans with subsequent reinforcement-learning-based optimization.

6. CONCLUSION

In this paper, we developed a discontinuous modeling framework for
abstracting discontinuous human control strategies, and we compared the pro-
posed approach to a competing continuous learning architecture. Which control
approach is preferred ultimately depends on the specific application for the HCS
model. If the model is being developed toward the eventual control of a real
robot or vehicle, then the continuous modeling approach might be preferred as
a good starting point. Continuous models can operate for a larger range of
inputs, can show greater inherent stability, and can lend themselves more readily
to theoretical performance analysis. If, on the other hand, the model is being
developed to simulate different human behaviors in a virtual reality simulation
or game, then the discontinuous control approach might be preferred, since
fidelity to the human training data and random variations in behavior would be
the desired qualities of the HCS model. Thus, depending on the application, we
believe a need exists for both types of modeling approaches.

We thank the many people who patiently ‘‘drove’’ through our driving simulator.
Special thanks go to ‘‘Curly’’ and ‘‘Moe’’ for their patience as they navigated through
some 50 miles of simulated road.



NECHYBA AND XU570

References

1. Nechyba MC. Learning and validation of human control strategies; Ph.D. thesis. The
Robotics Institute, Carnegie Mellon University; 1998.

2. Nechyba MC, Xu Y. Human control strategy: Abstraction, verification and replica-
tion. IEEE Contr Syst Mag 1997;17:48�61.

3. Fix E, Armstrong HG. Modeling human performance with neural networks. In:
Proceedings of the International Joint Conference on Neural Networks, 1990, Vol. 1,
p 247�252.

4. Fix E, Armstrong HG. Neural network based human performance modeling. In:
Proceedings of the IEEE National Aerospace and Electronic Conference, 1990, Vol.
3, p 1162�1165.

5. Pomerleau DA. Neural network perception for mobile robot guidance; Ph.D. thesis.
School of Computer Science, Carnegie Mellon University; 1992.

6. Pomerleau DA. Reliability estimation for neural network based autonomous driving.
Robot Autonomous Syst 1994;12:113�119.

7. Pomerleau DA, Jochem T. Rapidly adapting machine vision for automated vehicle
steering. IEEE Expert 1996;11:19�27.

8. Neusser S, Nijhuis J, Spaanenburg L, Hoefflinger B, Franke U, Fritz H. Neurocontrol
for lateral vehicle guidance. IEEE Micro 1993;13:57�66.

9. Modjtahedzadeh A, Hess RA. A model of driver steering control behavior for use in
assessing vehicle handling qualities. ASME J Dynamic Syst Measurement Contr
1993;115:456�464.

10. Pentland A, Liu A. Toward augmented control systems. Proc Intell Vehicles 1995;
1:350�355.

11. Nechyba MC, Xu Y. Learning and transfer of real-time human control strategies. J
Advanced Comput Intell 1997;1:137�154.

12. Hatwal H, Mikulcik EC. Some inverse solutions to an automobile path-tracking
problem with input control of steering and brakes. Vehicle Syst Dynamics 1986;
15:61�71.

13. Fahlman SE, Baker LD, Boyan JA. The Cascade 2 learning architecture; Technical
Report, CMU-CS-TR-96-184, Carnegie Mellon University, 1996.

14. Nechyba MC, Xu, Y. Cascade neural networks with node-decoupled extended
Kalman filtering. In: Proceedings of the IEEE International Symposium on Compu-
tational Intelligence in Robotics and Automation, 1997, Vol. 1, p 214�219.

15. Narendra KS, Parthasarathy K. Identification and control of dynamical systems using
neural networks. IEEE Trans Neural Networks 1990;1:4�27.

16. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes in C: The
art of scientific computing, 2nd ed. Cambridge, UK: Cambridge Univ. Press; 1992.

17. Rabiner LR. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE 1989;77:257�286.

18. Huang XD, Ariki Y, Jack MA. Hidden Markov models for speech recognition.
Edinburgh: Edinburgh Univ. Press; 1990.

19. Yang J, Xu Y, Chen CS. Human action learning via hidden Markov model. IEEE
Trans Syst Man Cybern A 1997;27:34�44.

20. Nechyba MC, Xu Y. Stochastic similarity for validating human control strategy
models. IEEE Trans Robot Automat 1998;14:437�451.

21. Linde Y, Buzo A, Gray RM. An algorithm for vector quantizer design. IEEE Trans
Commun 1980;28:84�95.

22. Nechyba MC, Bagnell JA. Stabilizing human control strategies through reinforce-
ment learning. In: Proceedings of the IEEE International Symposium on Robotics
and Control, 1999, Vol. 1, p 39�44.


	1. INTRODUCTION
	2. REAL-TIME DRIVING SIMULATOR
	Figure 1.

	3. CONTINUOUS CONTROL
	Figure 2.
	Figure 3.
	Figure 4.
	Table I.
	Figure 5.
	Figure 6.

	4. DISCONTINUOUS CONTROL
	Figure 7.
	Figure 8.
	Figure 9.
	Figure 10.
	Table II.

	5. DISCUSSION AND FUTURE WORK
	Figure 11.
	Table III.
	Figure 12.
	Figure 13.
	Figure 14.

	6. CONCLUSION
	References

