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Abstract

One popular method for the recovery of an ideal intensity image from corrupted

or indirect measurements is regularization: minimize an objective function which en-

forces a roughness penalty in addition to coherence with the data. Linear estimates

are relatively easy to compute but generally introduce systematic errors; for example,

they are incapable of recovering discontinuities and other important image attributes.

In contrast, nonlinear estimates are more accurate, but often far less accessible. This

is particularly true when the objective function is non-convex and the distribution of

each data component depends on many image components through a linear operator

with broad support. Our approach is based on an auxiliary array and an extended ob-

jective function in which the original variables appear quadratically and the auxiliary

variables are decoupled. Minimizing over the auxiliary array alone yields the original

function, so the original image estimate can be obtained by joint minimization. This

can be done e�ciently by Monte Carlo methods, for example by FFT-based annealing

using a Markov Chain which alternates between (global) transitions from one array to

the other. Experiments are reported in optical astronomy, with Space Telescope data,

and computed tomography.
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1 Introduction

In image restoration and image reconstruction the observed data are usually related to

the ideal, unknown image through a \forward" transformation which accounts for noise,

scattering, attenuation, variations among individual detectors, and so forth. Due to random

e�ects, the observed data y is a realization of a random array Y = fY

t

; t 2 Dg having some

probability distribution P (Y 2 dyjx

o

) determined by the ideal image x

o

= fx

o

i;j

; (i; j) 2

Sg; S = f(i; j) : 0 � i � I � 1; 0 � j � J � 1g. The goal is to estimate x

o

from y. Perhaps

the best known example of such a transformation is the linear degradation model:

Y = Kx

o

+ � (1)

where K is a linear operator and �= f�

t

; t 2 Dg is a noise process consisting of independent

random variables whose distribution may depend on Kx

o

. For example, in optical blurring,

K represents the point spread function (PSF) of the imaging system and, with white Gaus-

sian noise, the random variables fY

t

; t 2 Dg are independent and normally distributed, with

constant variance and means E(Y

t

) = (Kx

o

)

t

. Another example occurs in computed tomog-

raphy in which K represents an attenuated Radon transform; the data are photon counts

over an array of detectors D and follow a Poisson distribution.

In general, the information provided by the data alone (or even the data together with

the forward model) is not su�cient to determine x

o

with acceptable accuracy. For one thing,

there are many images consistent with the data. Consequently, some a priori information or

assumption about the structure of x

o

is needed for recovery. \Regularization" is one method

for adding constraints in addition to those implicit in coherence to the data. The estimated

image is

c

x

o

= arg min

x

�(x;y) (2)

where

�(x;y) = �

REG

(x) + ��

DATA

(x;y):

There may also be positivity constraint x � 0, meaning that x

i;j

� 0 for all (i; j). Gen-

erally ([1]), the �rst term imposes a \roughness penalty"; examples include constrained

least-squares, the Wiener �lter, maximum entropy, and Bayesian methods (or \penalized

maximum likelihood"). The second term ensures �delity to the data; � is a positive param-

eter which balances these two demands.

A natural choice for the data term is the negative loglikelihood, since

c

x

0

would then be the

maximum likelihood estimator with no regularization. That is, �

DATA

(x;y) = � log P (Y =

yjx). For the linear degradation model (1) with white Gaussian noise, this yields the common
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choice: �

DATA

(x;y) = ky �Kxk

2

:We shall assume this throughout, although the methods

presented in this paper can be generalized to other signal-independent noise models. We

shall also assume that K is known; it might be given analytically based on a distortion

model for the transport medium (see, e.g., [2], [3]) or it might be given numerically based

on previous estimation or calibration experiments, which is the case in the two applications

we consider; see x5.

When the regularization term is also quadratic, the estimator

c

x

o

is a linear combination

of the data values fy

t

; t 2 Dg. One well-known example is the Lagrangian formulation of

constrained least squares: �

REG

(x) is usually the squared L

2

� norm of either the image x

or its (discrete) derivatives. The main advantage of the linear methods is of course com-

putational. In particular, when both K and the (di�erence) operators composing �

REG

are

space-invariant, Hunt ([4]) showed how to compute

c

x

o

in an e�cient manner by imposing

toroidal boundary conditions and exploiting the connection between the discrete Fourier

transform and block circulant matrices; see x4. But these estimators su�er from the generic

defects of linear �lters, which introduce systematic errors and artifacts: for instance they

\oversmooth" and do not recover important attributes of x

o

, such as the location and mag-

nitude of jumps, or higher-order discontinuities; see, e.g., the discussions in [5], [6], and [7].

This is especially true for \di�cult" operators K.

In contrast, nonlinear regularization ([8], [9],[10], [5],[11],[12], [13], [14],[15],[16], [17],[18],[7],[19])

can sometimes recover such attributes. This is largely an empirical observation, but one that

is widespread and that can be veri�ed theoretically to a limited extent. Some authors (e.g.,

[8], [13],[7]) suggest the use of non-quadratic but still convex regularization functions of the

image derivatives. Starting with S. Geman and D.E. McClure ([11]; see also [10]), other

authors ([20],[5], [12],[14], [21], [16],[18], and [7]) advocate non-convex functions, for example

([11]):

�

REG

(x) =

X

(i;j)2S

 

(x

i;j

� x

i;j�1

)

2

1 + (x

i;j

� x

i;j�1

)

2

+

(x

i;j

� x

i�1;j

)

2

1 + (x

i;j

� x

i�1;j

)

2

!

In this case discontinuities in x may be recovered despite the loss of resolution due to K.

These developments re
ect the growing interest in \robust estimation" within the image

analysis community; see, e.g., [5],[14], [9].

The drawback of nonlinear (especially non-convex) regularization is nonlinear optimiza-

tion: if �

REG

is non-convex, then so is � itself, which naturally causes severe computational

problems. In general, in the nonlinear case, there exists no e�cient algorithm, either deter-

ministic or stochastic, for computing

c

x

0

: Stochastic algorithms are potentially more powerful,

but very slow (in real computing time). This is due to several factors (see x4), perhaps mainly
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to the existence of distant spatial interactions which result, for example, from operators K

with broad supports, such as the PSF for the Planetary Camera aboard the Hubble Space

Telescope (see Figure 2). Similarly, in tomography, two emission sources along the same

(solid) ray will contribute to the same detector bin. In these cases, which are the focus of

this paper, the standard Monte Carlo algorithms, which involve single-pixel sampling, are

very ine�cient; see x4.

The goal of this paper is to introduce a new method for computing nonlinear estimators,

such as those derived from non-convex regularization. The basic idea is to introduce a new

objective function which depends on both x and an auxiliary array, b, of real numbers, such

as an analog \line process." The new function has the same global minimum in x as �;

hence, in principle, it provides an accurate estimate. In addition, however, the estimate is

now far easier to compute due to the manner in which the auxiliary variables are introduced.

The new objective function is of the form

�

�

(x; b; y) = �

�

REG

(x; b) + � ky �Kxk

2

(3)

where �

�

REG

(x; b) is chosen (see x3) such that, for every x,

�

REG

(x) = min

b

�

�

REG

(x; b) (4)

from which it follows that

c

x

0

= arg

x

min

x; b

�

�

(x; b;y):

Moreover, �

�

REG

(x; b) is quadratic in x for each �xed b; this is what we mean by \half-

quadratic": conditional on b the estimation is constrained least-squares with quadratic reg-

ularization, as in [4].

If we stack the rows of x to make a vector of dimension N = IJ , then we can rewrite �

�

as

�

�

(x; b;y) =

1

2

x

0

�x� x

0

�(b;y) + 	(b)

where � is constructed from K and �nite di�erence operators, � is linear, and 	 is a sum

of functions of the individual components of b. Just as in the case of linear estimates, we

shall periodically extend x and y in order to convert matrix multiplication into circular

convolution (see for example [2]) and transform � into a block circulant matrix.

Similar ideas were developed in [5] with a somewhat di�erent coupled objective function.

The model there is also \half-quadratic" and the auxiliary variables are also non-interacting,

but there is one crucial di�erence: the quadratic form in [5] is not block-circulant. As a result,

4



optimization must rely on updating pixels one by one in the usual fashion. In contrast, the

optimization here uses global updates.

Various computational schemes which exploit the special structure of � could be explored;

we have only tried stochastic relaxation with annealing. The idea is to generate a time-

inhomogeneous Markov chain fX(0);B(0);X(1);B(1); :::g such that lim

k!1

X(k) =

c

x

0

in an appropriate sense; see x4. This can be done e�ciently by exploiting the fact that a

random array (X;B) with the joint probability distribution

�(x; b; y) =

exp(��

�

(x; b;y))

R
R

exp(��

�

(x; b;y))dxdb

(5)

is \half-Gaussian" in the sense that the conditional distribution of X given B = b is Gaus-

sian with mean vector � = �

�1

�(b;y) and covariance �

�1

. Conversely, the B variables are

conditionally independent givenX. Consequently, the transition probabilities of the Markov

chain can be exactly simulated. That is, we can simultaneously sample all the image intensity

variables or all the auxiliary variables conditioned on the others. Most of the computation is

carried out with FFTs, the procedure is fully parallel, and the processing time (per iteration)

is the same for any K.

The method has limitations. First, one must impose toroidal boundary conditions, which

is common, but requires awkward manipulations of the arrays and domains and can result in

reconstruction artifacts near the image borders ([2]), particularly if there is signi�cant detail

right up to the borders. These artifacts are nearly eliminated if the true pixel values near the

borders are nearly zero, which is usually the case in the applications we consider. Second,

it may turn out that the global minimum is harder to locate in the \energy landscape"

of �

�

than in the landscape of �; for example, there may be \deeper" or relatively more

numerous local minima in the extended surface. This could diminish the bene�ts of global

updates and is likely to be problem-dependent. Finally, the range of applicability is limited

by two restrictions: the operator K must be space-invariant (which means, for instance, that

the method cannot be directly applied to the count data in tomography; see x5) and the

noise process must be white Gaussian, at least if the data term is to have a statistical (log-)

likelihood interpretation.

Three experiments are presented in x5. Two involve deblurring Hubble Space Telescope

(HST) images, one of the planet Saturn, the other of a young stellar object together with a

trailing stream of gas that is thought to be a \jet." Restoration of HST imagery and spectra

is an active subject due to the 
aw in the primary mirror; see, e.g., [22] and the collection

of papers in [23]. One popular method is \Lucy-Richardson" iteration, a modi�cation of

maximum likelihood (see [24], [25], [26]), to which we compare our method in x5. The
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accuracy of the Saturn restoration is con�rmed by Voyager data, which has higher resolution;

in particular, the ring is indeed almost two-dimensional. Our restoration of the jet image

is the basis of a separate article ([27]). (For a similar approach to deconvolution problems

in astronomy, but applied to atmospheric blurring, see [3] and [16].) The third experiment

concerns single photon emission computed tomography. In this case we apply our methods to

the well-known Ho�man phantom; the accuracy of the reconstruction is roughly comparable

to other methods. It could likely be improved if our approach could be extended to account

for physical e�ects such as scatter and attenuation.

2 Regularization

Many types of regularization have been investigated. Certainly the simplest is to impose

positivity alone: restrict the domain of the maximum likelihood estimator to positive x. How-

ever, this is rarely su�cient for faithful reconstructions. Roughness penalties are generally

expressed by functions of the form

�

REG

(x) =

M

X

m=1

w

m

X

(i;j)2S

�(D

(m)

i;j

x) (6)

where � is a real function and each D

(m)

is a di�erence operator (i.e., discrete derivative).

Each m corresponds to a mixed partial derivative weighted by a positive constant w

m

. The

�rst-order di�erences (m = 1; 2) are: D

(1)

i;j

x = x

i;j

� x

i;j�1

; D

(2)

i;j

x = x

i;j

� x

i�1;j

. Iterating

D

(1)

and D

(2)

leads to higher-order terms, i.e., discrete mixed partials. For example, the

three second-order di�erences (m = 3; 4; 5) are: D

(3)

i;j

x = x

i;j�1

� 2x

i;j

+ x

i;j+1

;D

(4)

i;j

x =

x

i�1;j

� 2x

i;j

+x

i+1;j

and D

(5)

i;j

x = x

i;j

�x

i;j�1

�x

i�1;j

+x

i�1;j�1

. Similarly, third-order terms

would involve clusters of four or six pixels and correspond to third-order mixed partials.

We shall take M = 5, i.e., combine �rst-order and second-order terms; the reason will be

explained below.

The crucial choice is the function �, assumed to be even and nondecreasing on [0;1),

with �(0) = 0. A common example is the \quadratic stabilizer" �(u) = u

2

, which of

course corresponds to quadratic regularization. But this is unsatisfactory since our goal is

to \invert" the operator K while simultaneously preserving boundaries and other authentic

features of the original scene. Convex �-functions appear in [8] (�(u) = juj), [13] (�(u) =

log cosh(u)), and elsewhere. In [11], a new class was introduced:

�(u) =

juj




2(1 + juj




)

: (7)
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Since �(u) grows slowly for large u, the discontinuities associated with boundaries are not

unduly penalized. Thus, one very important property of these functions is the fact that

�(+1) < +1. The behavior at the origin is also signi�cant; see the discussion in [5].

Roughly speaking, when the exponent, 
, is small (say 
 � 1), sharp boundaries are favored

over gradual transitions, although larger values of 
 permit more variation within otherwise

homogeneous regions. In this paper � is essentially of this type (see x3.2) with 
 = 1, as

in [5] and [12]. Other non-convex functions with �(+1) < +1, some from the class (7),

appear in [10], [20],[21], [16],[18], and [7]. (Many of the cited references concern related

stochastic inverse problems, such as optical 
ow, segmentation, and surface reconstruction.)

Finally, Kunsch ([14]) compares quadratic, convex, and non-convex regularization, especially

the tradeo� between performance and computation, in the case of piecewise constant images

degraded by additive white noise.

Combining �rst-order and second-order terms has given consistently better results in our

experiments than using �rst-order or second-order terms alone. Clearly, with only �rst-order

terms, the objective function �

REG

would favor regions of constant grey level since x is

constant if and only if D

(1)

i;j

x = D

(2)

i;j

x = 0 for all (i; j). This suggests that purely �rst-order

models would introduce an arti�cial \patchiness" or \mottling," which is exactly what has

been observed in a variety of studies. To the extent that grey level images of real scenes have

homogeneous regions, these regions are better de�ned by constant gradient, or even constant

curvature, than by constant grey level.

Now consider the case of purely second-order terms. Obviously, x is planar if and only

if D

(3)

i;j

x = D

(4)

i;j

x = D

(5)

i;j

x = 0 for all (i; j). Regularization then encourages the formation of

planar patches. Unlike the �rst-order model, this introduces a bias against jumps because,

given multiple facets, a smaller penalty is incurred when the individual facets are continuously

linked.

It is desirable to allow both types of transitions between regions, namely jumps as well as

discontinuities in the �rst derivative. Therefore, we include both �rst-order and second-order

terms; hopefully, the in
uence of the data will yield the most faithful transition as long as a

variety of surface topographies is consistent with the regularization e�ects.

In order to quantify and illustrate these issues, consider the one-dimensional case, i.e.,

a signal x= fx

0

; x

1

; :::; x

I�1

g. Suppose we �x x

0

= x

1

= 0 and x

I�1

= x

I�2

= a > 0, and

allow the the remaining points to be chosen to incur the least penalty in the absence of any

data, i.e., minimize �

REG

(x). If � is concave, the minimum of the �rst-order model alone is

achieved by a single jump ([5]). If we represent x by a piecewise linear (continuous) graph

over [0; I�1], then then a signal x with a single jump has a graph with exactly three (linear)
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segments, two with zero slope and one with the maximum possible slope. The graph of the

minimum of the second-order model alone also has exactly three segments, but with the

least possible 
uctuation in slopes, i.e., it simply interplolates between the �xed segments;

no jump discontinuity is allowed.

A natural question is then, for the same constraints at the boundaries, what is the global

minimizer of the combined function

I�2

X

i=0

w

1

�

�

x

i+1

� x

i

�

1

�

+

I�2

X

i=1

w

2

�

�

x

i+1

� 2x

i

+ x

i�1

�

2

�

(8)

(Notice that we have included the two scaling parameters �

1

and �

2

that we had previously

suppressed to simplify the discussion.) The following result states that when � is concave the

global minimizer of the combined model is in the same class; thus the transitions are fairly

regular, ranging from pure jump to pure interpolation. The proof (which is not immediate)

is given in [28].

Theorem 1 If �(u) is symmetric and �

00

(u) < 0 on (0;1), then for any positive constants

w

1

; w

2

;�

1

and �

2

, the global minimizer of (8), subject to x

0

= x

1

= 0; x

I�1

= x

I

= a > 0,

is piecewise linear with exactly three segments.

Moreover, it is not hard to show that the minimizer can in fact assume any of the allowed

forms when w

1

and w

2

are both positive. In principle, the biases due to each model alone

are removed. These results suggest that, in 2D, the combined model promotes piecewise

planar surfaces, allowing both jumps between planar facets and continuously linked facets

of varying slopes. In the experiments, we will illustrate the shortcomings of having only

�rst-order or only second-order terms.

3 Auxiliary Variables

For each m = 1; :::;M , there is an auxiliary array b

(m)

= fb

(m)

i;j

; (i; j) 2 Sg. Each b

(m)

i;j

is a

signed real number. Let b = (b

(1)

; :::; b

(M)

). The new objective function is given by (3) with

�

�

REG

(x; b) =

M

X

m=1

w

m

X

(i;j)2S

�

1

2

�

D

(m)

i;j

x� b

(m)

i;j

�

2

+  

�

b

(m)

i;j

�

�

:

The pair of functions � and  , which appear in the de�nitions of �

REG

and �

�

REG

, respec-

tively, will be chosen to satisfy (4).

8



There is no e�ort here to organize the auxiliary array into boundary-like maps; indeed,

unlike the (binary) edge variables introduced in [29], the ones here are non-interacting.

Blake and Zisserman ([10]) introduced binary, non-interacting edge variables and noticed

that taking the minimum over the edge variables yields an objective function of the form (6)

with the particular choice �(u) = min(1; u

2

). The purpose was to motivate the choice of the

truncated quadratic for �; in particular, the auxiliary edge variables served no computational

purpose. In contrast, we contend that the augmented function is easier to manipulate.

3.1 A Correspondence Result

In this section we determine conditions on the functions � and  in order that (4) holds. In

addition, we shall give an explicit formula for computing � in terms of  and vice-versa, as

well as several examples of such pairs. These results follow directly from standard material

in convex analysis concerning the Legendre (or conjugate) transform; see, e.g., Rockefellar

[30].

Let f be a real-valued function on (�1;+1). The Legendre transform of f is

f

�

(v) = sup

u

(uv � f(u))

where the supremum is taken over all real numbers u. If f is convex, then f

�

is well-de�ned

(possibly in�nite - see [30]) and also convex; moreover, (f

�

)

�

= f . We shall say that (f; g)

are a Legendre pair if both are convex and g = f

�

and f = g

�

.

Now, given � and  , let f

�

(u) = (u

2

=2)� �(u) and g

 

(v) = (v

2

=2) +  (v). If these are a

Legendre pair, then it is easy to show that

�(u) = inf

v

 

(u� v)

2

2

+  (v)

!

; u 2 (�1;+1) (9)

and

 (v) = sup

u

 

�

(u� v)

2

2

+ �(u)

!

; v 2 (�1;+1): (10)

Since only one auxiliary variable b

(m)

i;j

appears in each term of �

�

REG

(x; b), it follows that,

for each x,

inf

b

�

�

REG

(x; b) = inf

b

M

X

m=1

w

m

X

(i;j)2S

�

1

2

(D

(m)

i;j

x� b

(m)

i;j

)

2

+  (b

(m)

i;j

)

�

=

M

X

m=1

w

m

X

(i;j)2S

inf

b

(m)

i;j

�

1

2

(D

(m)

i;j

x� b

(m)

i;j

)

2

+  (b

(m)

i;j

)

�
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=

M

X

m=1

w

m

X

(i;j)2S

�(D

(m)

i;j

x) by (9)

= �

REG

(x):

Since the data term does not involve b, we have proved:

Theorem 2 If

u

2

2

� �(u) and

v

2

2

+  (v)

are a Legendre pair, then

�(x; y) = inf

b

�

�

(x; b; y)

It is easy to construct Legendre pairs starting from either � or  . Let E denote the

class of functions that are even, increasing on [0;1), zero at the origin, and �nite at +1.

Given � 2 E, suppose f

�

is convex. Let f

�

�

be the Legendre transform of f

�

and de�ne

 (v) = f

�

�

(v)� v

2

=2. Then  2 E and (9) and (10) hold. Conversely, starting with  2 E,

suppose g

 

is convex. Then �(u) = (u

2

=2) � g

�

 

(u) 2 E and again (9) and (10) hold. These

assertions are veri�ed in [28].

Example 1: Let �(u) = min

 

1;

u

2

2

!

, the truncated quadratic ([10]). Then it is easy

to check that f

�

is convex and

 (v) =

8

>

<

>

:

1 �

(

p

2 � v)

2

2

if 0 � v �

p

2

1 if v >

p

2

:

Example 2: Let � correspond to choosing 
 = 2 in (7) (see [20], [11],[16]). Then again a

simple calculation shows that f

�

is convex. However, formula (10) does not yield a closed-

form expression for  .

Example 3: Begin with

 (v) =

v

2(1 + v)

; v � 0;

which is concave on (0;1). Then g

 

is convex and � may easily be computed numerically

from (9). Except for small quadratic well around the origin, the graph looks very similar to

that of  . This is the pair we use in all our experiments.
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Remark: It should be clear from this construction and from the discussion in x1 that,

aside from concavity, almost any function � 2 E will accomplish our purposes, i.e., enforce

the type of regularization we want. Concerning concavity, which we have also found to be im-

portant for restoring jumps, a necessary condition for the correspondence is that �(u) � u

2

=2

for all u. (In general, � will follow the quadratic over some interval (�c; c); c > 0 and be

concave on (c;1).) In particular, � is never concave on the entire interval [0;1). However,

this is really only an issue of scaling. If � is concave for some u � c, then all the statements

and equalities above persist for the pair �

�

(u) = �(u=�) and  

�

(v) =  (v=�), except that

the factor of 1=2 everywhere must be replaced by 1=2�

2

. Consequently, nothing important

is changed and the results in x2 about the bene�ts of concave � are \approximately" valid

since �

�

is concave on (c�;1).

3.2 Bayesian Viewpoint

The pair �; was chosen to satisfy (9) because we have selected the estimator (2). In a

Bayesian context, taking the prior distribution proportional to exp(��

REG

(x)), this esti-

mator is the mode of the posterior distribution P (X = xjY = y) / exp(��(x; y)), the

so-called MAP estimator. Other estimators, such as the posterior mean, are genuinely dis-

tributional properties. In that case, we would choose a pair �; for which (9) is replaced

by

�(u) = � log

Z

e

�(u�v)

2

e

� (v)

dv:

(Again, if  2 E, then so is �.) Then the marginal distribution of X with respect to

�(x; b; y) is the original posterior distribution. For instance, in Monte Carlo methods in

statistical physics ([31], [32],[33]), the auxiliary variables are sometimes used to eliminate

the interactions among the original variables. This can simplify simulations; for example,

sampling x alone can be achieved by sampling (x; b) and discarding b. In one special case, an

Ising model with site-dependent bonds is coupled with a continuous (auxiliary) array which

is conditionally Gaussian given the spins, whereas the spins are conditionally independent.

Note that in our set-up the two arrays play essentially opposite roles in that the \spins" are

conditionally Gaussian given the auxiliary variables. A discussion of such auxiliary models

may be found in the survey paper [31] of Besag and Green.

3.3 Positivity

Each element of the coupled Markov Chain which converges to our estimator is a sample

of a Gaussian vector, and therefore each element may assume values on the entire real line.
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However, the image to be restored or reconstructed is (usually) known to be positive. Of

course, the data term introduces a powerful bias against negative values, but this may not be

su�cient to avoid artifacts such as \ringing." Negative values can and will occur in certain

cases, e.g., in deconvolving Space Telescope data of bright point sources. In such cases,

most of the pixels in the ideal image have intensities nearly equal to zero; a few pixels are

very bright. Positivity can be an important stabilizing factor; without it, the solution may

exhibit oscillations around star, with alternating positive and negative rings. Incorporating

positivity in the manner below will generally suppress these rings without over-smoothing.

This problem usually does not occur in approaches based directly on � since positivity

is automatically incorporated into the algorithms used; this is the case, for example, with

ordinary stochastic relaxation with annealing, and for methods based on the EM algorithm.

Similarly, algorithms designed to implement maximum entropy estimators also guarantee

positivity.

The half-quadratic model can be easily extended to include an arbitrarily strong bias

against negative values. Since the underlying computational mechanism still involves sam-

pling Gaussian processes, we cannot strictly enforce positivity. However, since the soft con-

straint can be implemented with arbitrary \strength," it is e�ectively a hard constraint; in

particular, no signi�cant negative values are found in our experiments.

We are going to include another term in the regularization function �

�

REG

, say corre-

sponding to m = 0. The term that is added to �

�

REG

is

�

+

(x; b

(0)

) = w

0

X

(i;j)2S

�

1

2

�

x

i;j

� b

(0)

i;j

�

2

+  

+

�

b

(0)

i;j

�

�

(11)

where b

(0)

i;j

; (i; j) 2 S, are again real numbers and

 

+

(v) =

8

<

:

0 if v � 0

1 if v < 0

: (12)

The block circulant property of � is then preserved (see x4). The strength of the bias is

determined by the positive constant w

0

. Notice that the minimum value of (11) is zero,

achieved only if b

(0)

i;j

= x

i;j

� 0 for all (i; j) 2 S. Since

inf

v

 

(u� v)

2

2

+  

+

(v)

!

=

8

<

:

0 if u � 0

min(1; u

2

=2) if u < 0

the corresponding (m = 0) term that is added to �

REG

to preserve the identity (4) does

exactly what we want: penalize negative components in x.
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4 Optimization

Due to the non-convexity of �, computation of our estimator

c

x

o

is a non-convex optimization

problem. In our view, there are no deterministic algorithms which perform in a satisfactory

way. Iterative algorithms developed in an image processing context, such as graduated non-

convexity ([10]), ICM ([8]), and similar methods ([20],[6],[22]) can sometimes yield good

results, but often get \stuck" in local minima.

Stochastic algorithms which are based on a succession of random, local changes are

also limited. The total amount of computation necessary to reach a \neighborhood" of the

global minimum can be prohibitive. Although we shall focus on the Gibbs Sampler ([29]) the

situation is comparably di�cult for other dynamics, such as the Metropolis algorithm ([34]).

The Gibbs Sampler is based on many repetitions of a basic sampling step: generate a random

variable with the equilibrium distribution for X

i;j

at a given pixel (i; j), given the values X

k;l

of the �eld are �xed at all other pixels (k; l) 6= (i; j). (In the case of annealing, nothing

is changed except for adjusting the equilibrium measure in accordance with the \current"

temperature.) This basic step must be repeated a great many times: one full iteration (or

\sweep") corresponds to visiting all pixels and performing this step, and usually at least

several hundred iterations are necessary; some authors report needing orders of magnitude

more (e.g., [14]).

This might not be a problem if the basic step is su�ciently elementary. However, this step

can itself be rather complex for the types of situations encountered in astronomy, medical

imaging and related applications. One problem is the large dynamic range, but a more

serious one is the existence (due to K) of long range interactions among the X

i;j

. (See the

discussion in [28].) Moreover, the degree of parallelism is limited by the chromatic number

of the neighborhood graph. Thus, for example, if the PSF has support 64 � 64, pixels are

\neighbors" unless separated by at least 64 rows and columns.

4.1 Our Algorithm

Now consider the augmented stochastic process (X;B) under the law �(x; b; y) given in (5).

By design, our estimator

c

x

o

is the x coordinate of the mode. Temperature T is introduced

by de�ning

�

T

(x; b; y) =

exp(��

�

(x; b;y)=T )

R
R

exp(��

�

(x; b;y)=T )dxdb
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(For simplicity, the y-dependence is hereafter suppressed.) This distribution is \half-Gaussian"

in the sense that the conditional distribution of X given B = b, namely

�

T

(xjb) =

�

T

(x; b)

R

�

T

(x; b)dx

;

is Gaussian; the parameters are computed in x4.3 below. Conversely, the B variables are

conditionally independent given X.

A Markov chain f(X(k);B(k)); k = 0; 1; 2; :::g is constructed as follows. We choose a

temperature sequence fT

k

; k = 1; :::g and initialize the chain (k = 0) with all zero values.

For each k = 1; 2; :::, we generate (X(k);B(k)) from (X(k� 1);B(k� 1)) via the transition

probability �

T

k

(xjB(k � 1))�

T

k

(bjx). In other words, we generate X(k) from B(k � 1)

using �

T

k

(xjB(k � 1)) and then we generate B(k) from X(k) using �

T

k

(bjX(k)). Due

to the properties of �

�

, this can be done exactly. General results on simulated annealing

guarantee convergence in distribution to a measure concentrated over the global minima

of �

�

; some care must be taken in the continuum case, although we shall not pursue the

details.) Thus, each sweep of the standard Gibbs Sampler is replaced by these two steps;

therefore, the major di�erence is to replace single-site updates by global updates.

It is somewhat di�cult to compare the e�ciency of Monte Carlo optimization of � and

�

�

. For one thing, in the case of operators K with large supports, experimenting directly

with � itself is di�cult for realistic image sizes. We compared ([28]) the new algorithm with

an accelerated version of the standard Gibbs Sampler based on truncating the support of the

local conditional distributions, which already gains about an order of magnitude; see [35],

[36], [37]. Roughly speaking, for an image of size 128�128, the new algorithm is about three

times as fast for a medium blur (e.g., 9� 9) and about twenty times as fast for a large blur

(e.g., 64� 64). (The processing time for the new algorithm is independent of the size of the

blur support; see x4.3 below.) Consequently, if the number of iterations (i.e., full updates

of X) required to get \near"

c

x

o

is comparable for both �

�

and �, then the new algorithm

would be preferable due to the disparity in the CPU time per iteration.

It is tempting to speculate that a global update of X should also be generally more

e�cient for escaping from local minima (certainly coordinatewise ones) than a sweep of

single-site updates. But it must be kept in mind that we are dealing with two distinct

functions rather than two algorithms applied to the same function. Consequently, it is

possible that the new function is inherently more resistant to global minimization (although

this is hard to quantify in an algorithm-independent way) and hence more iterations might

be required. In our experiments, there are only negligible changes after about two hundred

iterations; see x5.
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Finally, other methods for accelerating simulated annealing through parallelization tech-

niques may be found in [38] and [39]; these studies are motivated by the slow convergence

resulting from strict adherence to the logarithmic cooling schedule dictated by theory.

4.2 The Distribution of the Coupled Process

For computational purposes, it will be convenient to express images as vectors and to rep-

resent K and the di�erence operators by matrices. From here on, we will allow x to denote

either an image residing on S or a vector of dimension N , obtained by stacking the image

rows; that is, the elements of the corresponding vector x = (x(0); :::; x(N � 1)) are de�ned

by x(n) = x

[n=J];n[modJ]

; n = 0; :::; N � 1, where [v] denotes the greatest integer less than or

equal to v. It should always be clear from the context what the mathematical operations

signify.

The key to computation is the relationship between block circulant matrices and the 2D

Discrete Fourier Transform (DFT) ([4]). The essential properties are mentioned below; more

details may be found in [40], [4], and [28]. An N � N matrix C is block circulant if it is

generated by an I � J matrix c = fc(i; j)g in the following manner:

C =

2

6

6

6

6

6

4

C(0) C(I � 1) : : C(1)

C(1) C(0) : : C(2)

: : : : :

C(I � 1) C(I � 2) : : C(0)

3

7

7

7

7

7

5

where C(i) is the J �J circulant matrix whose �rst row is (c(i; 0); c(i; J � 1); :::; c(i; 1)), and

whose j'th row is a cyclic right shift of the (j � 1)'st row.

The 2D DFT of the I � J matrix x is

F(x)(u; v) =

1

p

IJ

I�1

X

k=0

J�1

X

j=0

x

k;j

exp(�2�i(

ku

I

+

jv

J

)); (u; v) 2 S:

LetW be the N�N matrix consisting of I

2

blocks of size J�J with the (k; l)'th entry of the

(m;n)'th block given byW

m;n

(k; l) = (

p

N )

�1

exp

�

2�i

�

mn

I

+

kl

J

��

;m; n = 0; :::; I�1; k; l =

0; :::; J � 1. Then W is a symmetric, unitary matrix, and W

�1

= F in the sense that the

inverse of W applied to (the stack of) x is the stack of the 2D DFT of x. Moreover, every

block circulant matrix has the same eigenvectors, namely the columns of W, and

C =WGW

�1

where G is the diagonal matrix with entries given by

p

N �W

�1

c. Finally, we remark that

sums, products and inverses of block circulant matrices are again block circulant.
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Henceforth, we assume that y also has dimension N . This requires certain manipulations

(zero padding, etc.) of the original quantities; the details can be found in any of the standard

references about linear algebraic approaches to image restoration, e.g., [2]. Recall also that

our di�erence and blurring operators are spatially invariant. In the case of K (now regarded

as an N � N matrix) this means that the relationship between a data value y

i;j

and an

image value x

k;l

depends only on i � k and j � l. Similarly, the roughness penalties are

applied in the same way over the entire image. Under toroidal boundary conditions, these

relationships persist at the image borders in the usual way. In this way, the blurring matrix

K and the N �N matrices which yield �nite di�erences, say Q

m

;m = 1; :::; 5, are all block

circulant. Let K be generated by k and let Q

m

be generated by q

m

;m = 1; :::; 5; all these

generators have dimension I � J . For example, q

1

has entries 1 at (0; 0), �1 at (0; 1), and

is zero elsewhere; q

3

has entries 2 at (0; 0), �1 at (0; 1); (0; J � 1), and is zero elsewhere. In

addition, there is a scaling constant �

1

which divides q

m

;m = 1; 2 and another, �

2

, which

divides q

m

;m = 3; 4; 5: Parameter selection will be treated in x5.

It will be convenient to incorporate the data term into this notational system: de�ne

Q

6

= K, w

6

= 2�, and b

(6)

= y. Similarly, we can absorb the positivity constraint by letting

Q

0

denote the N �N identity matrix (generated by the matrix which is 1 in the (0; 0) entry

and 0 elsewhere) and setting  

m

=  ;m = 1; :::; 5 and  

0

=  

+

, where  

+

is de�ned in (12).

The half- quadratic regularization function can now be rewritten as

�

�

(x; b; y) =

6

X

m=0

w

m

1

2








Q

m

x� b

(m)










2

+

5

X

m=0

w

m

N�1

X

n=0

 

m

(b

(m)

n

):

Consequently, we can express �

�

as

�

�

(x; b; y) =

1

2

x

0

�x� x

0

�(b;y) + 	(b) (13)

where

� =

6

X

m=0

w

m

Q

0

m

Q

m

(14)

is an N �N block circulant matrix,

� =

6

X

m=0

w

m

Q

0

m

b

(m)

(15)

is an N � 1 vector (obviously linear in b and y), and

	 =

1

2

6

X

m=0

w

m

k b

(m)

k

2

+

5

X

m=0

w

m

N�1

X

n=0

 

m

(b

(m)

n

):
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4.3 Sampling the Intensity Array

We can now easily compute �

T

(xjb), the conditional distribution of X given B = b. Using

(13)-(15), it is clear that X is a multivariate normal, with mean vector � = �

�1

� and

covariance matrix given by � = T�

�1

. Clearly the random vector X = �

1=2

Z +� has the

desired distribution, where Z is an N � 1 vector of independent standard normal random

variables (denoted Z � Normal

N

(0; I).) This can be carried out with order N log

2

N

computations by exploiting the block circulant structure of �. Notice that the dependence

on the current auxiliary array enters only through �. In the following section we shall

indicate how to update �; for the remainder of this section we regard it as known.

Since �

1=2

is block circulant, we can represent it as �

1=2

= WDW

�1

where the entries

of the N �N diagonal matrix D are proportional to the 2D DFT of the generator of �

1=2

.

To compute D (which is �xed throughout the optimization process), we �rst diagonalize the

matrices Q

m

and Q

0

m

:

Q

m

=WD

m

W

�1

; Q

0

m

=WD

�

m

W

�1

; m = 0; :::;6

where � denotes complex conjugate. Then, with T = 1,

�

1=2

=

"

6

X

m=0

w

m

Q

0

m

Q

m

#

�1=2

by (14)

=

"

6

X

m=0

w

m

WD

�

m

D

m

W

�1

#

�1=2

= W

"

6

X

m=0

w

m

D

�

m

D

m

#

�1=2

W

�1

:

Thus,

D =

"

6

X

m=0

w

m

D

�

m

D

m

#

�1=2

:

Since the diagonal elements of D

m

are

p

N times the stack of the Fourier coe�cients of q

m

,

it follows that

D

n;n

=

 

N

6

X

m=0

w

m

jF(q

m

)(n)j

2

!

�1=2

; n = 0; :::; N � 1: (16)

The adjustment for temperature is trivial: just multiply these elements by

p

T .

Since X = WDW

�1

Z + �, one apparent algorithm would entail, in addition to gen-

erating Z, computing one FFT, one inverse FFT, and N complex multiplications and ad-

ditions. Actually, it is somewhat more e�cient to use the fact that the random vector
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X

�

= Re [WD(Z

1

+ iZ

2

)] + � has the same distribution as X, where Z

i

; i = 1; 2, are

independent, Normal

N

(0; I) (see [28]). Therefore the algorithm for updating X is

1. Generate two independent samples Z

1

and Z

2

;

2. Multiply D by Z

1

+ iZ

2

;

3. Take the real part of the inverse FFT of D(Z

1

+ iZ

2

) and then add �.

4.4 Sampling the Auxiliary Array

We now must generate a random vector B with distribution �

T

(bjx), the conditional dis-

tribution of B given X = x. Using (13), we have:

�

T

(bjx) / exp

�

�

1

T

(x

0

�(b;y) + 	(b))

�

/

5

Y

m=0

exp

�

w

m

T

�

(b

(m)

)

0

Q

m

x�

1

2

(b

(m)

)

0

b

(m)

�  

m

(b

(m)

)

��

/

5

Y

m=0

N�1

Y

n=0

f(b

(m)

n

;

w

m

T

; (Q

m

x)

n

):

where

f(b;�; �) = exp(�(�b�

1

2

b

2

�  

m

(b))):

Obviously the auxiliary variables fB

(m)

n

g

n;m

are conditionally independent, with density

f depending on the two parameters w

m

=T and (Q

m

x)

n

. We discretize all the variables and

precompute collections of appropriate inverse cdf tables, which are used to convert uniform

random variables to ones with the above densities.

In addition, we must compute the updated value of the mean �. First, it will be conve-

nient to write � = A+ 2�Ky where

A =

5

X

m=0

w

m

Q

0

m

b

(m)

:

Since Q

0

m

;m = 0; 1; :::; 5, are very local operators, it is more e�cient to compute A in the

spatial domain. Now,

� = WD

2

W

�1

[A+ 2�Ky]

= F

�1

D

2

h

F(A) + 2�

p

NF(k) � F(y)

i

(The last multiplication is element by element.)

Summarizing, in order to update both the auxiliary variables and the mean �:
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1. For each m and n, compute (Q

m

x)

n

; use the (previously calculated) cdf tables to

sample b

(m)

n

using the current value w

m

=T ;

2. Calculate and transform A;

3. Add F(A) to 2�

p

NF(k) � F(y);

4. Multiply the result by the diagonal matrix D

2

;

5. Do one inverse FFT of the result.

5 Experiments

In this section, we present the experimental results of an application of our approach to

problems in image restoration and image reconstruction. There are two experiments in

restoration and one in reconstruction. The choice of model parameters is always a trouble-

some issue. (See, e.g., the discussion in [14].) Our choices are largely empirical; in other

words, in each case we tried various settings to �nd those which appeared to work \best."

Nonetheless, we did �nd that the optimal parameters remained the same from experiment

to experiment, with the exception of the \smoothing parameter" � (see below). In some

cases there is a rather convincing calculation which is also convincing in practice. This is

the case here for the weights w

1

; :::; w

5

: clearly we want the two �rst-order weights, w

1

; w

2

,

to be the same, and the three second-order weights, w

3

; w

4

; w

5

, to also be the same, which

leaves two parameters, call them W

1

and W

2

. Moreover, each pixel appears in four �rst-

order terms with total weight 4(1 + 1) = 8 and ten second-order terms with total weight

6(1 + 2 + 1) + 4(1 + 1 + 1 + 1) = 40. To balance their in
uence, we set

8W

1

�

1

=

40W

2

�

2

.

Since W

1

+W

2

= 1, and having selected �

1

= 16;�

2

= 24, this leads to W

1

= 0:77 and

W

2

= 0:23. The other �xed values are the number of iterations (200), and the starting

and ending temperatures (T = 1:0 and T = :05, respectively). Finally, �, must depend on

the signal-to-noise ratio and the nature of the blur operator K and hence will be speci�ed

separately in each case.

5.1 Restoration

The point spread function is the generating matrix k (of the block circulant matrixK). Since

in reality the data are not wrapped around S, the usual technique (see [2]) should be used
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to modify them. However, this is not a serious problem in our examples because the values

near the boundary are all nearly zero, so that the circulant approximation is well justi�ed.

The �rst experiment involves an image of the planet Saturn obtained with a four second

exposure of the wide-�eld/planetary camera aboard the Hubble Space Telescope. The raw

data has size of 800 � 800, and is �lled with spikes caused by cosmic rays. Due to the

infamous aberration in the primary mirror of the telescope, the image is substantially more

blurred than would have been the case in the ideal, di�raction-limited, situation; see the

discussion in [41]. The actual PSF has a very large support, as shown in Figure 2. (It is

found by pointing the telescope at a bright, isolated star just prior to exposure; there can be

signi�cant variation between estimates or \�xes" over time, which is not a problem as long

as the calibrations are repeated with su�cient frequency.) After being cut to 512� 256 and

routinely \despiked," the preprocessed data are displayed on the left of Figure 1. On the

right of that �gure is the result of our algorithm, with � = 0:1.

In order to compare our approach with that of Lucy-Richardson ([25],[26]), which is pop-

ular in astronomy, and to compare di�erent orders of smoothing, we have enlarged one 32�32

piece of the Saturn image. (Due to the limitations of the display resolution, these di�erences

are otherwise di�cult to see.) The Lucy-Richardson method is an iterative procedure which

approaches the maximum likelihood estimator; since the true maximum likelihood estimator

is extremely rough, an early stopping strategy is employed to provide a measure of smooth-

ing. We display the results of the various methods in Figure 3. The \optimal" number

of iterations in the Lucy-Richardson method was determined by visual examination. As

clearly seen, this method has di�culty suppressing noise, deblurring, and maintaining edges,

all at the same time; in particular, early stopping blurs the edges, whereas later stopping

introduces too much noise. Turning to our method, the �rst-order model alone recovers the

jumps, but also converts gradually changing regions into stair-like or terraced structures.

Conversely, the second-order model alone respects slow changes, but is in general unable

to recover sharp edges. The combined �rst-order and second-order model achieves the best

performance, as predicted by Theorem 1. For comparison, the corresponding piece from

(unprocessed) Voyager data is also shown. Of course there is still insu�cient evidence to

assert that one method is more accurate than another in any quantitative sense.

The second experiment is also Hubble data, of the object DG Tau, a young star in the

Taurus cluster. Astronomers are interested in analyzing the \jet" which emanates from this

star ([27]). Due to the blur, the structure of the jet is not clear in the original data. The

original restored image (� = 8:0) is of size 128 � 128, but only a 64 � 64 piece is shown in

Figure 4 in order to improve the visibility. The PSF is 128 � 128 and looks like Figure 2.
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Figure 1: Experiment 1. Left: Hubble data after despiking. Right: restored by our algorithm.
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Figure 2: Experiment 1. Hubble point spread function in logarithmic scale.
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Figure 3: Experiment 1. Top left: Lucy-Richardson: 200 iterations. Top right: Lucy-

Richardson: (optimal) 30 iterations. Middle left: �rst-order smoothing only. Middle right:

second-order smoothing only. Bottom left: combined �rst- and second-order smoothing.

Bottom right: corresponding piece from Voyager data.
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Figure 4: Experiment 2. Left: Hubble data for object DG Tau. Right: restored by our

algorithm. Both displayed in logarithmic scale.

The CPU time necessary for 200 iterations on a DEC 5000/240 workstation was 732 seconds.

Note: We have used the quadratic data term despite the fact that the original photon

counts are Poisson distributed. Hence, in terms of the counts themselves, we are, in e�ect,

approximating a Gaussian variable with variance equal to its mean by one with a constant

variance. However, this approximation is not as rough as it might appear: there are other

degrading e�ects, such as thermal and background noise, which are of constant variance; see

also the remarks in [42] and [16].

5.2 Reconstruction

The application to image reconstruction involves single photon emission computed tomogra-

phy (SPECT). It is less straightforward because the relationship between the ideal image and

the (distribution of) the raw count data, whereas linear, is not represented by an spatially

invariant operator. The emission source is radioactive material placed inside the body of a

patient. The ideal image is the density distribution of this radioactive material in a slice of

the body. The data is a collection of photon counts for detectors placed around the object

of interest. In actual SPECT there is also an attenuation e�ect, although we shall ignore

it. Thus, in this simpli�ed (but standard) model, the mean response Y

t

at a detector t is
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a Poisson random variable with mean determined by an integral of the \ideal image" along

the line which is perpendicular to, and intercepts, the t'th detector. The exact description

may be found in numerous books and articles; see for example, [43] and [11]. The details

that follow are the minimum necessary to understand how our method is applied.

Let s be a point on the 2-D (continuous) plane and let x

o

s

be the corresponding value

of the ideal (continuum) image. We can regard s as a vector in a coordinate system with

origin at the rotation center of the detector array. Let � be the angle between a detector

array and the horizontal axis and let the location of an individual detector t in this array

be (p; �), where p is the signed distance between the individual detector and the center of

the array. The data collected by this detector is denoted Y (p; �). The angle � may assume

values from 0 to 2�; however, due to symmetry, it is su�cient restrict � to lie between 0 and

�. In the absence of noise, the relation between Y (p; �) and x

o

s

would be:

Y (p; �) =

Z Z

x

o

s

�(p� s � n)ds

where n is a unit vector making an angle of � with the horizontal axis, \*" denotes inner

product, and �() is the usual \delta function." We will not use the raw data Y (p; �) directly;

rather, we will use the so called back projected data Y , de�ned on the continuous plane as

follows:

Y

s

=

Z

�

0

Y (n � s; �)d�:

In other words, Y

s

is the sum of the raw data values from all detectors in
uenced by a source

at location s. It can be shown (e.g., in [43]) that the functional relationship between Y

and x

o

is linear, and can be characterized by convolution with the space-invariant operator

K corresponding to the PSF 1=jsj. Thus, working on the back projected data Y converts

the reconstruction problem into a deconvolution problem. Upon discretization, and with

suitable approximations, we arrive at a setting in which we may apply our model. It should

be noted, however, that the distribution of the noise in the back projected data does not have

independent components. Indeed, the resulting distribution is complex and it is somewhat

surprising that the Gaussian approximation we use works as well as it does.

In our experiment, the ideal image is a slice of size 256� 256 of the widely used Ho�man

phantom, shown in Figure 5. The simulated SPECT data have an average of 9.76 photons

per detector, with 256 detectors per array and 256 arrays (i.e., angles). The raw data are

then back-projected to form Y . Both data sets are displayed in Figure 5, together with

the approximated PSF. Two reconstructions were attempted: one uses the �rst-order model

only, with � = 0:5, and the other uses the combined model, with � = 1:0. These are dis-

played in Figure 6. Since, in this case, the ideal image is in fact piecewise constant, the
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result using only �rst-order smoothing is of comparable, even superior, quality.

6 Conclusion

This work was motivated by a simple and common observation: nonlinear estimates are

superior to linear ones for many image recovery problems but are generally far more di�cult

to compute. This is especially true when the image formation process involves a PSF (or

analogous operator) with broad support, and when the inverse problem is formulated as

global, nonlinear optimization. An important example is non-convex regularization, which

allows one to recover important image attributes (e.g., sharp transitions) which are distorted

by linear estimators.

It is unlikely that any method can entirely escape this tradeo�. In order to ameliorate

the problem we introduce a variation on the method of auxiliary variables: the desired

nonlinear estimate appears as the extremal state of a new functional on a larger domain; the

original (image intensity) variables appear quadratically and the new (auxiliary) variables

are decoupled. In fact, the quadratic form is block circulant provided several conditions

are met, including space-invariance of the PSF. It is then possible to compute a sequence

of estimates of the classical, least-squares type which converges to the desired nonlinear

estimate.

The sequence is actually random, based on Gibbs sampling with annealing. The advan-

tage over standard, single-site relaxation (in which pixels are "updated" one at a time, or in

small blocks) is that each element of the approximating sequence, each full image, is sampled

in one step using FFTs.

The method is applied to optical astronomy and emission tomography. In these cases

the periodic extensions (necessary for computing with FFT's) are relatively benign. The

main result involves the diabolical PSF resulting from the aberration in the original, primary

mirror aboard Hubble Space Telescope. We restore an image of the object DG Tau, revealing

a trailing stream of gas. We hope our method might be useful in other image recovery

problems.
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Figure 5: Experiment 3. Upper left: original phantom. Upper right: simulated SPECT raw

data. Lower left: back-projected data. Lower right: approximated PSF in logarithmic scale.
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Figure 6: Experiment 3. Left: �rst-order reconstruction. Right: combined order reconstruc-

tion.
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