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1 Introduction

The idea of connecting conservation of electric charge with gauge symmetry goes
back to 1918 and to Hermann Weyl’s attempt to produce a unified theory of
electromagnetism and gravitation by generalising the geometry on which Gen-
eral Relativity is based (Weyl, 1918a; see also Weyl, 1918b). It is well known
that this attempted unification failed, and that Weyl re-applied the gauge idea
in the context of quantum theory in 1929,1 there giving us his ‘gauge principle’
which has been so powerful in the latter half of this century.2 According to
the standard account, Weyl’s claim to have connected conservation of electric
charge with gauge symmetry comes to fruition in relativistic field theory.

The question addressed in this paper springs from the following observation.
In his 1918 theory Weyl introduced local gauge transformations (transformations
that depend on arbitrary functions of space and time), and it is local gauge
symmetry that he connects with conservation of electric charge. According to
the standard modern account, however, global gauge symmetry is invoked to
deliver conservation of electric charge (see, for example, Leader and Predazzi,
1996; Ryder, 1985; Sakurai, 1964; Schweber, 1961; Sterman, 1993; Weinberg,
1995). Which is the correct symmetry to connect with charge conservation?
This question might seem straightforward on the surface, but it turns out that
a rather interesting story lies behind any satisfactory answer. The story involves
a triangle of relationships, none of which has been adequately addressed in the
literature to date. This triangle involves Weyl’s work, relativistic field theory,
and Noether’s theorems.

1The term ‘gauge’ originates from the translation of Weyl’s work into English, and a better
translation of the original idea might perhaps have been ‘scale’. The use of the term ‘gauge’
in quantum theory has nothing to do with scale, of course, and is just an accident of history.

2Weyl, 1929. For a discussion of this paper, and of the work which preceded it by
Schroedinger, London and Fock, see O’Raifeartaigh, 1997.
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1.1 Background to the problem, and the plan of attack

In the same year that Weyl published his original paper connecting conserva-
tion of electric charge with gauge symmetry, Emmy Noether published a paper
(Noether, 1918) that is now famous for ‘Noether’s theorem’. This theorem
makes a general connection between conserved quantities and continuous sym-
metry transformations that depend on constant parameters (for example, a
spatial translation in the x-direction, x → x′ = x + a, where a is a constant);
such a transformation is a global transformation. This theorem is in fact the
first of two theorems proved in the 1918 paper. The second theorem is less
well known, and applies to symmetry transformations that depend on arbitrary
functions and their derivatives (for example, the transformation may depend on
an arbitrary function of x, the spatial location); such a transformation is a local
transformation.

The first theorem works straightforwardly for the continuous symmetries of
space and time in classical mechanics, giving conservation of linear and angular
momentum, energy, and so forth. However, when we come to gauge symmetry
and conservation of electric charge, things are not so straightforward, since both
theorems come into play. The first theorem applies to global gauge symmetry
and the second theorem applies to local gauge symmetry. In modern relativistic
field theory, the standard account connects conservation of electric charge with
gauge symmetry via Noether’s first theorem. Any connection using Noether’s
first theorem must come by applying it to the rigid subgroup of the local gauge
group (i.e. to the global gauge symmetry). This leaves us with the following
questions: what is the role of the second theorem in locally gauge invariant
theories, and what is the relationship between the second theorem and the first
theorem (as applied to the rigid subgroup)? Although Noether’s first theorem
has received thorough treatment in the literature (see especially Hill, 1951, and
Doughty, 1990), very little attention has been given to her second theorem (and
to cases where both theorems apply). Clarifying the roles of the first and second
Noether theorems in relation to modern relativistic field theory gives us one arm
of the triangular relationship.

Although the modern-day connection goes via global gauge symmetry, in
1918 Weyl claimed to have connected conservation of electric charge to local
gauge symmetry. Despite perennial interest in Weyl’s 1918 work, and the
recent revival in interest in the early history of gauge theory (see especially
O’Raifeartaigh, 1997), the relationship, if any, between Weyl’s 1918 work and
Noether’s second theorem has never been made clear. This is the second arm
of the three-way relationship, and we will clarify it here. The final arm that
will be addressed is between Weyl’s 1918 work and modern relativistic field the-
ory, where Weyl’s 1918 work is usually said to come to fruition. Again, despite
the interest in Weyl’s 1918 work, the relationship between (a) Weyl’s 1918 con-
nection between local gauge invariance and conservation of electric charge, and
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(b) the modern connection between global gauge invariance and conservation of
electric charge, has never been clarified. That it stands in need of clarification
is emphasised by the fact that the latter proceeds via Noether’s first theorem,
and the former does not.

So, the question before us is: which symmetry is the correct symmetry to
associate with conservation of electric charge - global gauge symmetry or lo-
cal gauge symmetry? In order to address this question we begin by stating
Noether’s two theorems precisely (section 2). We will then see how a careful
understanding of Noether’s two theorems bears on the case of electromagnetism
and conservation of electric charge. In section 3 we discuss the modern text-
book derivation, and in section 4 we examine the relationship between Weyl’s
work and Noether’s theorems. Section 5 discusses the relationship between
Weyl’s work and relativistic field theory, and section 6 tackles the application of
Noether’s second theorem in relativistic field theory. Section 7 takes a brief look
at a distinction made by Noether between ‘proper’ and ‘improper’ conservation
laws, and section 8 draws all these strands together to address the question
‘Which Symmetry?’

2 Noether’s Two Theorems

As already mentioned, Noether’s second theorem has received very little atten-
tion. It is not discussed in the standard history of field theory and gauge theory
literature: there is no discussion in O’Raifeartaigh 1997, Vizgin 1985, Moriyasu
1982, or Hill 1951, for example; and, although the second theorem is cited in
Kastrup’s excellent 1987 paper, it is not discussed in any detail. There is, how-
ever, a recent paper by Byers (1999) that discusses the relationship between
the second theorem and General Relativity. In the Noether literature itself,
the second theorem again receives almost no attention. For example, in Emmy
Noether: A Tribute to Her Life and Work (Brewer and Smith (eds.), 1981),
McShane’s chapter on the calculus of variations discusses the first theorem in
detail but merely states the second theorem without proof or discussion. In the
introduction to Noether’s Collected Papers (Jacobson (ed.), 1983), the commen-
tary on the 1918 paper consists of an extensive quote from Feza Gursey, with no
mention of the second theorem. If we turn to the physics literature, Noether’s
first theorem is widely cited, but the second theorem is not in any of the stan-
dard relativistic field theory textbooks which appeal to Noether’s first theorem
(usually referred to as ‘Noether’s theorem’) and which discuss local symmetries,
nor is it mentioned in Doughty’s excellent book Lagrangian Interaction (1990)
where he gives a thorough presentation of Noether’s first theorem. Nevertheless,
there is an excellent paper by Trautman (1962) that discusses the second theo-
rem in the context of General Relativity. Reviving interest in Noether’s second
theorem is of more than historical interest: failure to appreciate the domains of
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applicability of these two distinct theorems has given rise to ongoing mistakes
and confusion in the physics literature (see section 3 and Appendix A, below,
for two examples), and current discussions on conservation of energy in Gen-
eral Relativity would benefit from a thorough general understanding of the two
theorems. Furthermore, Noether’s original paper is difficult to get hold of in
English translation. For these reasons, and because the substance of this paper
requires an accurate reading of Noether’s 1918 paper, I begin by presenting the
content of Noether’s two theorems as given by Noether herself.

Noether’s theorems apply to Lagrangians and Lagrangian densities depend-
ing on an arbitrary number of fields with arbitrary numbers of derivatives, but
we will simplify our discussion to consider Lagrangian densities, L, depending
on ψi, ∂µψi, and xµ, and no higher derivatives of ψi, since this is all that we will
need for the purposes of this paper.3 The i indexes each field ψi on which the
Lagrangian depends. Noether derives her theorems by considering the following
variational problem, applied to the action S, S =

∫
Ld4x. We begin by forming

the first variation δS, in which we vary both the independent and the dependent
variables (xµ, and ψi, ∂µψi respectively, in our case), we include the boundary
in the variation, and we discard the second and higher order contributions to
the variation. We then require that the variation is an infinitesimal symmetry
transformation, and hence set δS = 0.4

Before we proceed, I will introduce one piece of terminology and shorthand
notation. Noether derives and presents both her theorems in terms of what she
calls the ‘Lagrange expression’:

Ei :=
∂L

∂ψi
− ∂µ

(
∂L

∂ (∂µψi)

)
(1)

which, when set to zero, gives the Euler-Lagrange equations. We will use this
terminology in what follows.

In deriving the consequences of the above variational problem, the first step
- common to both theorems - is to show that if the action S is invariant under

3Noether’s own statement of the two theorems is as follows:
“I. If the integral I is invariant with respect to a Gρ, then ρ linearly independent combina-

tions of the Lagrange expressions become divergences - and from this, conversely, invariance
of I with respect to a G will follow. The theorem holds good even in the limiting case of
infinitely many parameters.

II. If the integral I is invariant with respect to a G∞ρ in which the arbitrary functions occur
up to the σ-th derivative, then there subsist ρ identity relationships between the Lagrangian
expressions and their derivatives up to the σ-th order. In this case also, the converse holds.”

In Noether’s terminology, Gρ is a continuous group depending on constant parameters, and
G∞ρ is a continuous group depending on arbitrary functions and their derivatives.

4In this context, a symmetry transformation is a transformation that preserves the explicit
form of the Euler-Lagrange equations. The connection between this symmetry requirement
and δS = 0 (which is a sufficient condition for preserving the Euler-Lagrange equations) is
explained in detail in Doughty (1990, sections 9.2 and 9.5), and follows from the requirement
that the functional form of the Lagrangian be invariant (as stipulated by Noether, 1918,
equation 1).
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some group of transformations, then
∑

i

Eiδ0ψi ≡
∑

i

∂µBµ
i (2)

where

1. δxµ and δψi = δ0ψi +(∂µψi) δxµ are the infinitesimal variations in xµ and
ψi respectively, brought about by the symmetry transformation

2. δ0ψi is the change in ψi at a fixed co-ordinate: δ0ψi = ψi(x′)− ψi(x).

3. Bµ
i has the form

(
L− ∂L

∂(∂νψi)
∂νψi

)
δxµ + ∂L

∂(∂µψi)
δψi.5

Note also that here, and throughout this paper, we use the following con-
ventions:

1. the Einstein convention to sum over Greek indices; all other summations
are expressed explicitly

2. the symbol ‘≡’ to indicate those equations that hold independently of
whether the Euler-Lagrange equations of motion are satisfied.

Theorem 1

If the action S is invariant under a continuous group of transformations
depending smoothly on ρ independent constant parameters ωk (k = 1, 2, ... ,
ρ),6 then (2) implies the ρ relationships

∑

i

Ei
∂ (δ0ψi)
∂ (δωk)

≡ ∂µjµ
k (3)

where jµ
k is the Noether current associated with the parameter ωk:

jµ
k =

∑

i

(
L− ∂L

∂ (∂νψi)
∂νψi

)
∂ (δxµ)
∂ (δωk)

+
∂L

∂ (∂µψi)
∂ (δψi)
∂ (δωk)

. (4)

and where the ‘δ’ in δωk does not indicate a variation, but is used to emphasise
that we take infinitesimal ωk (the use of this potentially confusing notation
being for consistency with Doughty (1990) and Weyl (1918a and 1918b)).

5If the equations of motion are satisfied, the left-hand side of (2) goes to zero, and we
have

P
i ∂µBµ

i = 0. This is the expression used for conserved currents by Jackiw et al., 1994.
Discussion of the legitimacy of using this expression rather than proceeding to Noether’s
theorems is deferred to Brading and Brown, 2000, since it is more properly addressed in the
context of Noether’s theorems in general, rather than in the specific case of gauge symmetry
and electric charge conservation.

6This is a global symmetry group.
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From (3), if the equations of motion are satisfied then there are ρ continuity
equations

∂µjµ
k = 0, (5)

one for every constant parameter ωk on which the symmetry group depends.7

As noted in the introduction, this first theorem is the one that is at work
in the familiar derivations of conservation of linear momentum from spatial
translation invariance and so forth. So, in fact what Noether discusses is not
conserved quantities Qa as such, but currents jµ

k satisfying continuity equations.
Textbooks often move straight from the conclusion that jµ

k is satisfies a conti-
nuity equation to an associated claim about Qa being conserved, i.e. from the
claim that ∂µjµ

k = 0 to d
dtQk = 0 where Qk :=

∫
d3xj0

k(x). This is valid only for
appropriate boundary conditions, however.8

Theorem 2

If the action S is invariant under a continuous group of transformations
depending smoothly on ρ independent arbitrary functions pk(x) (k = 1, 2, ... ,
ρ) and their first derivatives,9 then (2) implies the ρ relationships

∑

i

Eiaki ≡
∑

i

∂µ (Eib
µ
ki) (6)

where aki and bµ
ki are functions of ψi, ∂µψi, and xµ, as defined in what follows.

Let δpk and ∂µ(δpk) together constitute infinitesimal symmetry transformations
(the δ here once again being used to emphasise that we take infinitesimal pk,
and not to indicate a variation). Then, since δ0ψi is linear in δpk, we can write

δ0ψi =
∑

k

{akiδpk + bµ
ki∂µ (δpk)} . (7)

Thus, Noether’s second theorem gives dependencies between the Lagrange
expressions (following Noether’s terminology) (1), and their derivatives. What

7To see that jµ rather than Bµ is the correct Noether current, see Brading and Brown,
2000.

8The integration process from the conserved current to the conserved charge goes via
Gauss’s theorem as follows. We have: ∂µjµ = 0. Integrating ∂µjµ over a space-like surface,R

d3x ∂µjµ =
R

d3x ∂0j0+
R

d3x ∂ij
i = d

dt

R
d3x j0 +

H
dS bnij

i, where we have used Gauss’s

theorem to convert a volume integral
R

d3x ∂ij
i into a surface integral

H
dS bnij

i. Now, if the
fields fall off with distance r such that, as r increases, the net outflow from the region enclosed
by S falls off more quickly than the volume enclosed by S increases, then for sufficiently large
r there will be no net outflow across the surface S, and

H
dS bnij

i = 0. This is our boundary
condition, and, given the continuity equation, it can be met only if the region enclosed by S
contains no sources. Then we have: 0 = ∂µjµ = d

dt

R
d3x bn0j0 = d

dt
Q. For further discussion

of the role of boundary conditions in Noether’s theorems, see Brading and Brown, 2000.
9This is a local symmetry group. The restriction to the first derivative is again imposed

for convenience, since this is all that we will need in what follows. Noether’s states and proves
her results with no such restriction.
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this means will become clear when we discuss specific applications of the theo-
rem, below.

These are the two theorems as presented by Noether (with our restriction to
L = L(ψi, ∂µψi,xµ)). It is the first theorem, and not the second theorem, that
is explicitly concerned with conserved quantities.

Relationship between Theorem 1 and Theorem 2

Suppose that the action S is invariant under a continuous group of trans-
formations depending on ρ arbitrary functions pk, a local symmetry group, and
that this group admits of a non-trivial rigid subgroup (where by rigid subgroup
we mean a subgroup of transformations pk = constant). Then the second theo-
rem applies to the local invariance group of S, and the first theorem applies to
the rigid subgroup. The first theorem gives us divergence relations (3) and the
second theorem gives us dependencies between the Lagrange expressions and
their derivatives (6). Noether discusses this case in section 6 of her paper, and
shows that the divergence relations must be consequences of the dependencies,
and in particular linear combinations of the dependencies. She writes (Noether
1918; p.202 of the English translation, Tavel, 1971):

I shall refer to divergence relationships in which the jµ
k can be

composed from the Lagrange expressions and their derivatives in the
specified manner as ‘improper’, and to all others as ‘proper’.

Noether then discusses the specific case of energy conservation in General
Relativity (see Brading and Brown, 2000); for our purposes, the general lesson
is that conservation laws arrived at by applying the first theorem to the rigid
subgroup of local group are ‘improper’ conservation laws, and we will discuss
what this means in section 7, below, when we consider the specific case of electric
charge conservation.10

3 Relativistic Field Theory and Noether’s First
Theorem

The standard textbook presentation of the connection between conservation of
electric charge and gauge symmetry in relativistic field theory involves Noether’s
first theorem. It can be found, to various levels of detail, in most quantum
field theory textbooks, such as those referred to in the introduction. All of
these books discuss both global and local gauge symmetry, but none mentions

10See also Brading and Brown, 2000.
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Noether’s second theorem. For the purposes of simplicity, I begin by focussing
on a single presentation by way of example, that of Ryder (1985). I choose
Ryder because his is one of the more detailed presentations, and because his
book is a popular textbook.

Ryder begins by applying Noether’s first theorem to the Lagrangian asso-
ciated with the Klein-Gordon equation for a relativistic complex scalar field,
Lm:

Lm = ∂µψ∂µψ∗ −m2ψψ∗ (8)

This Lagrangian is invariant under global phase transformations of the wave-
function, and from this Ryder derives the corresponding Noether current:

jµ
Lm

= i (ψ∗∂µψ − ψ∂µψ∗) (9)

Integrating this to yield a conserved quantity, Ryder writes (1985, p.91):

”This (real) quantity we should like to identify with charge.”

What else is needed before we can make this identification? Ryder’s next
step is to observe that Lm is not invariant under local phase transformations of
the wavefunction. That is to say, although ψ → ψ′ = ψe−iθ leaves Lm invariant
if θ is a constant (i.e. the transformation is global), if θ = θ(x, t) (i.e. the
transformation is local) then the transformation from ψ to ψ′ no longer leaves
Lm invariant. In order to create a Lagrangian that remains invariant under
a local transformation, we introduce a ‘four-vector’ Aµ which we transform
according to the rule Aµ → A′µ = Aµ +∂µθ whenever we transform ψ according
to ψ → ψ′ = ψe−qiθ, where q, the charge on the electron, is introduced as a
coupling constant.11 Together, the transformations

ψ → ψ′ = ψe−iqθ

ψ∗ → ψ∗′ = ψ∗eiqθ

Aµ → A′µ = Aµ + ∂µθ



 (10)

form a gauge transformation. This enables us to construct a locally gauge invari-
ant Lagrangian. Finally, we add an extra term in Aµ but not in ψ, which is itself
locally gauge invariant, giving us our total, locally gauge invariant Lagrangian

Ltotal = DµψDµψ∗ −m2ψψ∗ − 1
4
FµνFµν (11)

where Dµ = (∂µ + iqAµ) is the covariant derivative, and Fµν = ∂µAν − ∂νAµ.
From here, there are two main ways in which to proceed. Ryder obtains the

11For reasons of overall consistency I differ from Ryder in placing q in the transformation
of ψ rather than of Aµ. This choice corresponds with widespread usuage.
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Euler-Lagrange equations for Aµ, which are identified as the inhomogeneous
Maxwell equations

∂νFµν = jµ (12)

where jµ has the form12

jµ = iq (ψ∗Dµψ − ψDµψ∗) (13)

Then, in virtue of the anti-symmetry of Fµν , ∂µ∂νFµν vanishes and Ryder
concludes that this modified current jµ is the conserved current associated with
the Lagrangian (11). The other way of proceeding is via Noether’s first theorem
once again. Notice that Ltotal is invariant under global gauge transformations
as well as local gauge transformations. This global symmetry is a special case
of the local symmetry in which θ = θ(x, t) is set to θ = constant; as a result, the
gauge transformation leaves Aµ invariant and only the wavefunction ψ changes.
If we apply Noether’s first theorem to the global (that is to say, rigid) subgroup
of the full gauge group of Ltotal, we get the modified conserved current (13).13,14

Before moving on, one final remark. Recall that in her paper Noether distin-
guishes between ‘proper’ conservation laws and ‘improper’ conservation laws. In
Noether’s terminology, therefore, conservation of electric charge in relativistic
field theory, derived via the first theorem, is an ‘improper’ conservation law. We
discuss the significance of this in section 7, below.

4 Weyl and Noether’s theorems

The fact that the Lagrangian Ltotal of relativistic field theory is invariant under
the full local gauge group means that Noether’s second theorem comes into play.
Before turning to the application of the second theorem to Ltotal, I first want
to look at what Weyl was doing, because this sheds light on the application of
Noether’s second theorem in relativistic field theory. Weyl was clearly claiming

12This current differs from Ryder’s by a factor of q, due to the placement of q in the gauge
transformation of ψ rather than of Aµ. The jµ quoted here is consistent with Maxwell’s
equations and with widespread usuage.

13In 1990/91 there was an exchange in the American Journal of Physics (Karatas et al.,
1990; Al-Kuwari et al., 1991) concerning whether local gauge symmetry adds any new Noether
charges to those arising from global gauge symmetry. This exchange deserves a more detailed
discussion, but the most important feature of the correct answer is already evident. Noether’s
first theorem applies only to global symmetries, and the conserved quantities arising in locally
gauge invariant theories result from the application of the first theorem to the rigid subgroup
of the gauge group (i.e., to the global symmetry). Therefore, in the standard approach, the
same symmetry is in play in both cases, and the same Noether charge results.

14The case of Maxwell electromagnetism (i.e. electromagnetism without a gauge-dependent
matter field) and conservation of electric charge is discussed in Appendix A, where it is pointed
out that since there is no non-trivial rigid subgroup in this case, the first theorem cannot be
used to derive conservation of electric charge in this way.
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to connect conservation of electric charge to local gauge invariance, and the ques-
tion at issue here is what the relationship is between Weyl’s work and Noether’s
work. This will lead us into section 5, where we discuss the relationship between
Weyl’s work and the standard textbook account discussed in section 3, and into
section 6, where we turn to the relationship between relativistic field theory and
Noether’s second theorem.

4.1 Weyl’s 1918 theory

In his 1918 paper ‘Gravitation and Electricity’15 Weyl set out to provide a
unified field theory by generalising the geometry on which General Relativity
is based. Weyl sought to impose a ‘rigorous locality’ by introducing a geom-
etry in which not only the orientation of vectors may be non-integrable (as
in General Relativity) but also their lengths. Having developed his geometry,
Weyl then goes on to discuss its proposed application to physics.16 He writes
(O’Raifeartaigh, 1997, p.32):

We shall show that: just as according to the researches of Hilbert,
Lorentz, Einstein, Klein and the author the four conservation laws
of matter (of the energy-momentum tensor) are connected with the
invariance of the Action with respect to coordinate transformations,
expressed through four independent functions, the electromagnetic
conservation law is connected with the new scale-invariance, ex-
pressed through a fifth arbitrary function. The manner in which
the latter resembles the energy-momentum principle seems to me to
be the strongest general argument in favour of the present theory -
insofar as it is permissible to talk of justification in the context of
pure speculation.

Bearing in mind what we have said so far about Noether’s two theorems, can
Weyl be right that he has connected conservation of electric charge with local
gauge symmetry? In his excellent book on the history of unified field theories
Vizgin (1985; English translation, Vizgin 1994, p96) insists:

In view of the fact that in accordance with Noether’s first the-
orem conservation laws must be associated with finite-parameter
continuous transformations, however, it must be recognized that,

15The English translation referred to here of Weyl, 1918a, is in O’Raifeartaigh, 1997.
16Weyl’s 1918 theory is of interest for many reasons, including the issue at stake here (the

connection between gauge symmetry and conservation of electric charge). It is well-known
that Einstein was quick to point out difficulties with the theory, however (see Vizgin, 1994,
p98-104; see also Brown and Pooley, 1999, section 5, for a strengthening of Einstein’s critique).
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strictly speaking, neither the energy-momentum conservation law
follows from the invariance of the action with respect to arbitrary
smooth transformations nor the charge conservation law from gauge
invariance. The true symmetry of the charge conservation law was
found to be gauge symmetry of the first kind.17

So what does Weyl actually do? He begins with the action associated with
his unified theory of gravitation and electromagnetism, and an arbitrary varia-
tion of the dependent variables of the associated Lagrangian, vanishing on the
boundary. The form of the action is not given; what Weyl requires is that,
discarding boundary terms,

δS =
∫

(Wµνδgµν + wµδAµ) dx (14)

where δgµν is an arbitrary variation in the metric and δAµ is an arbitrary
variation in the electromagnetic vector potential.

If we were to set δS = 0 under this arbitrary variation, then we would have
an application of Hamilton’s principle; Wµν = 0 and wµ = 0 would be the
resulting field equations. Weyl interprets Wµν = 0 as the gravitational field
equations and wµ = 0 as the electromagnetic field equations, but again their
form is yet to be specified.18 In (14) Wµν and wµ are therefore the Lagrange
expressions (using Noether’s terminology, see (1) above) associated with the
gravitational and electromagnetic equations respectively.

Weyl’s purpose here is not, however, to obtain equations of motion via
Hamilton’s principle, but rather to investigate the consequences of imposing
local gauge invariance on the action S. His next step, therefore, is to demand
that the arbitrary variations be infinitesimal gauge transformations depending
on the arbitrary function ρ(xµ), and that the action be invariant under such a
gauge transformation (δS = 0). In Weyl’s 1918 theory, a gauge transformation
consists of an infinitesimal scale transformation

δgµν = gµνδρ (15)

17Gauge symmetry of the first kind is global gauge symmetry.
18In fact, Weyl chooses his Lagrangian to be L = Ri

jklR
jkl
i as ‘the most natural Ansatz we

can make’ for L. Earlier in the paper he constructed the geometrical curvature components
Ri

jkl from considerations of parallel transport and length-preserving transport of a vector.

This splits into two parts, Ri
jkl = P i

jkl − 1
2
δi
jFkl, where Fkl = 0 characterises the absence

of an electromagnetic field (transfer of the magnitude of a vector is integrable) and P i
jkl =

0 characterises the absence of a gravitational field (transfer of the direction of a vector is
integrable). As a consequence of choosing this Ansatz, and demanding that δS = 0 under
an infinitesimal gauge transformation, Weyl recovers Maxwell’s equations, but not Einstein’s.
Weyl’s gravitational equations are 4th-order (see Weyl, 1918, in O’Raifeartaigh, 1997, p.33-
34).
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combined with an infinitesimal transformation of the electromagnetic potential

δAµ = ∂µ (δρ) . (16)

Then, with δS = 0 and substituting the gauge transformation (15) and (16) in
(14), we have

δS =
∫
{Wµνgµνδρ + wµ∂µ (δρ)} dx = 0 (17)

from which
∫
{Wµνgµνδρ + ∂µ (wµδρ)− (∂µwµ) δρ} dx ≡ 0 (18)

where once again I use the symbol ‘≡’ to indicate that we have not assumed
any Euler-Lagrange equations of motion in forming this equality. Discarding
the boundary term,

Wµνgµνδρ ≡ (∂µwµ) δρ (19)

hence
Wµ

µ ≡ ∂µwµ. (20)

This expresses a dependence between the Lagrange expressions associated with
the gravitational field equations and the electromagnetic field equations.

In order to derive conservation of electric charge, Weyl now demands that
the gravitational field equations are satisfied, Wµν = 0, so (20) becomes

∂µwµ = 0. (21)

He then inserts the Lagrange expression associated with the inhomogeneous
Maxwell equations

wµ = ∂νFµν − Jµ (22)

giving
∂µ (∂νFµν − Jµ) = 0. (23)

Then, since the antisymmetry of Fµν guarantees that ∂µ∂νFµν ≡ 0, we get

∂µJµ = 0 (24)

as desired. Notice that this derivation does not involve demanding that the
Maxwell equations are satisfied. Instead, it relies on the gravitational field
equations being satisfied, and on the fact that the gravitational equations and
the Maxwell equations are not independent of one another (this lack of indepen-
dence being a consequence of imposing local gauge invariance). In other words,
there is some redundancy in the total set of field equations: the conservation
law for electric charge can be obtained either from the Maxwell equations di-
rectly, or via the Maxwell Lagrange expression (22) and the gravitational field
equations.
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Having followed a similar derivation for the four energy-momentum conser-
vation laws,19 Weyl (1918a; p.33 of the translation in O’Raifeartaigh, 1997)
writes:

The five conservation laws can be eliminated from the field equa-
tions since they are obtained in two ways and thereby show that five
of the field equations are superfluous.

This is Weyl’s route to the conservation laws. Clearly, the means by which he
connects conservation of electric charge with gauge symmetry is distinct from the
routes in the modern literature, discussed in section 3, above. We will compare
these methods in section 5, but in order to make the comparison precise we first
need to look at the relationship between Weyl’s work and Noether’s theorems.

4.2 Weyl’s 1918 theory and Noether’s second theorem

Weyl’s derivation is essentially an application of Noether’s second theorem. In
Noether’s second theorem we throw away the boundary terms, as Weyl does,
and we get (6) ∑

i

Eiaki ≡
∑

i

∂µ (Eib
µ
ki)

where aki and bµ
ki are given by (7)

δ0ψi =
∑

k

{akiδpk + bµ
ki∂µ (δpk)}

For Weyl’s theory, our symmetry transformation depends on the arbitrary func-
tion ρ(x), and in infinitesimal form we have (15) and (16). Consider first
E1 = Wµν . The Lagrange expression Wµν depends on the metric and so is
affected by the infinitesimal transformation of the metric δgµν = gµνδρ. So,
δ0ψ1 = gµνδρ and we have a contribution to only the left-hand side of Noether’s
second theorem:

E1a1 = Wµνgµν = Wµ
µ . (25)

(where we drop the k-index since the transformation depends on only one ar-
bitrary function ρ(x)). Now consider E2 = wµ. The Lagrange expression wµ

depends on the vector potential Aµ and so is affected by the infinitesimal trans-
formation of the vector potential δAµ = ∂µ (δρ) . So, δ0ψ2 = ∂µ (δρ), and we
have a contribution to only the right-hand side of Noether’s second theorem:

∂µ (E1b
µ
1 ) = ∂µwµ. (26)

19This parallel derivation is discussed in Brading and Brown, 2000.
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Therefore, equating (25) and (26), Noether’s second theorem gives us

Wµ
µ ≡ ∂µwµ,

exactly as Weyl showed (20).

Therefore, Weyl’s 1918 connection between local gauge invariance and con-
servation of electric charge begins from an instance of Noether’s second theo-
rem. He then simply assumes that Wµ

µ = 0, along with the form of the Maxwell
Lagrange expression, and this allows him to complete his derivation (see sec-
tion 4.1, above). This clarifies the relationship between Weyl’s 1918 work and
Noether’s 1918 work.

4.3 Weyl’s 1928/9 work and Noether’s second theorem

In his 1929 paper ‘Electron and Gravitation’ Weyl follows exactly the same
general strategy as in his 1918 work, applying it to his new unified theory of
matter and electromagnetism (as opposed to the 1918 unified theory of grav-
ity and electromagnetism). He requires that the variation in the action under
a local gauge transformation be zero; discarding boundary terms this gives us
a relation between the Lagrange expressions for the matter fields and the La-
grange expressions for the electromagnetic fields. If we then assume that the
electromagnetic equations of motion are satisfied, we are left with a continuity
equation from which conservation of charge can be derived.20 Weyl’s approach
to charge conservation in his 1928 book is slightly different, but once again there
is nothing that relies on global gauge invariance or that resembles an application
of Noether’s first theorem. He first discusses conservation of electric charge as a
consequence of the field equations of matter (p.214), and only at the end of the
section mentions his standard approach. Here, he states (Weyl, 1928, p.217),

The theorem of the conservation of electricity follows, as we have
seen, from the equations of matter, but it is at the same time a conse-
quence of the electromagnetic equations. The fact that [conservation
of electricity] is a consequence of both sets of field laws means that
these sets are not independent, i.e. that there exists an identity be-
tween them. The true ground for this identity is to be found in the
gauge invariance...

He then sketches his standard derivation, the derivation that is essentially
an application of Noether’s second theorem.

20For details, see p.140-141 of the translation of Weyl (1929) in O’Raifeartaigh (1997).
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In order to see how a conservation law results from the dependencies of
Noether’s second theorem, it is useful to look at the details of an example. We
will do this below in section 6, where we apply Noether’s second theorem in the
context of modern relativistic field theory.

5 Weyl and Relativistic Field Theory

We are now in a position to clarify the relationship between Weyl’s work and
the standard modern connection between gauge invariance and conservation of
electric charge, summarising what has been shown in the preceding sections.
Weyl’s 1918 connection between gauge invariance and conservation of charge is
usually thought to come to fruition in relativistic field theory, and in particular
through Weyl’s own re-application of his 1918 ideas in his 1928/9 work. It
is true that the connection between conservation of electric charge and gauge
symmetry was first suggested by Weyl, and that he re-applied it in a new context
in 1928/9. It is also true that this connection now has an established place in
modern physics. However, it is not true that the connection in modern physics is
made in the same way as that made by Weyl. Relativistic field theory appeals to
global gauge invariance and Noether’s first theorem; Weyl never used Noether’s
first theorem; he used local gauge invariance and (what we have now shown to
be an instance of) Noether’s second theorem.

6 Relativistic field theory and Noether’s second
theorem

There remains one arm of our three-way relationship which is in need of clarifi-
cation: the application of Noether’s second theorem in relativistic field theory.

Recall the relativistic Lagrangian for a complex scalar field interacting with
an electromagnetic field (11):

Ltotal = DµψDµψ∗ −m2ψψ∗ − 1
4
FµνFµν

where Ltotal = Ltotal (Aν , ∂µAν , ψ, ∂µψ, ψ∗, ∂µψ∗, xµ) .21

This Lagrangian has been constructed to be invariant under local gauge
transformations (10), as we have discussed in section 3, above.

21Here, ψ and ψ∗ are treated as independent fields.
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If we apply Noether’s second theorem (6), we find that ψ and ψ∗ give a
contribution to the left-hand side of (6), and the Aµ give a contribution to the
right-hand side, as we will now see. Consider first the gauge transformation of
ψ and ψ∗ (see (10)). Infinitesimally, δ0ψ = −iq (δθ) ψ and δ0ψ

∗ = iq (δθ) ψ∗.
Therefore, the contribution of these fields to Noether’s second theorem is entirely
to the left-hand side of (6), and we have:

[
∂L

∂ψ
− ∂ν

(
∂L

∂(∂νψ)

)]
(−iqψ) +

[
∂L

∂ψ∗
− ∂ν

(
∂L

∂(∂νψ∗)

)]
iqψ∗. (27)

The contribution of the Aµ, on the other hand, is entirely to the right-hand side
of (6), since δAµ = ∂µ (δθ) , and we have:

∂µ

[
∂L

∂Aµ
− ∂ν

(
∂L

∂(∂νAµ)

)]
. (28)

Noether’s second theorem therefore delivers:
[
∂L

∂ψ
− ∂µ

(
∂L

∂(∂µψ)

)]
(−iqψ) +

[
∂L

∂ψ∗
− ∂µ

(
∂L

∂(∂µψ∗)

)]
iqψ∗ (29)

≡ ∂µ

[
∂L

∂Aµ
− ∂ν

(
∂L

∂(∂νAµ)

)]
.

In other words, it says that not all the Lagrange expressions are independent of
one another, and gives us the interdependency.

There are various ways to proceed from here. Straightforward substitution
of the Lagrangian Ltotal into (29) yields

∂µ∂νFµν ≡ 0. (30)

This can be found in the literature (see for example Kastrup, 1987, and Byers,
1999), where the standard claim is that Noether’s second theorem leads to
‘Bianchi Identities’ such as (30); further discussion can be found in Brading and
Brown, 2000, and Trautman, 1962. For our present purposes, however, there is
something more interesting that we can do. We can return to (29), and follow
Weyl’s procedure of demanding that one set of Euler-Lagrange equations is
satisfied. Suppose we assume that the equations of motion for Aµ are satisfied.
Then, from (29),

[
∂L

∂ψ
− ∂µ

(
∂L

∂(∂µψ)

)]
(−iqψ) +

[
∂L

∂ψ∗
− ∂µ

(
∂L

∂(∂µψ∗)

)]
iqψ∗ = 0, (31)

and substituting in Ltotal we get

∂µjµ = 0 (32)

where jµ is the conserved current derivable via Noether’s first theorem (13).
Thus, as in Weyl’s original case, the inter-dependence between the two sets of
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field equations reveals itself in a conservation law. In this case, given local gauge
invariance of the Lagrangian, satisfaction of the electromagnetic field equations
is related to a constraint on the sources, i.e., that electric charge is conserved.22

7 Proper and Improper Conservation Laws

In section VI of her paper, Noether refers to a distinction made by Hilbert, a
distinction which she claims is clarified by her work. In theories prior to General
Relativity, such as classical mechanics and electrodynamics, the conservation
laws are consequences of the equations of motion of the associated particles or
fields. Hilbert contrasted this with General Relativity, remarking that here the
conservation of energy of the matter fields can be obtained without the matter
field equations being satisfied. In Noether’s terminology, conservation of energy
in General Relativity is an improper conservation law. The distinction between
proper and improper conservation laws, and the case of General Relativity,
are discussed in detail in Brading and Brown, 2000, and also in Trautman,
1962. Here, we simply note that conservation of electric charge in locally gauge
invariant relativistic field theory is an improper conservation law, because it
follows from local gauge invariance and the satisfaction of the field equations
for Aµ, independently of whether the matter field equations (the field equations
for ψ and ψ∗) are satisfied. This is in contrast to the theory associated with
the free complex scalar field, described by the Lagrangian Lm (see section 3,
above), which is globally gauge invariant but not locally gauge invariant; in this
case, conservation of charge holds only when the Euler-Lagrange equations for
ψ and ψ∗ are satisfied, and it is therefore a proper conservation law.

8 Which Symmetry?

We began with the observation that there is an apparent conflict between rela-
tivistic field theory textbook treatments of the connection between gauge sym-
metry and conservation of electric charge, and claims made by Weyl, the father

22We could also follow Weyl’s general procedure by starting from (29) and assuming that
the Euler-Lagrange equations for ψ and ψ∗ are satisfied. Then, the left-hand side of (29) goes
to zero and we get

∂µ (∂νF µν + jµ) = 0.

But since we know that ∂µjµ = 0 when ψ and ψ∗ satisfy the Euler-Lagrange equations, we
have that

∂µ∂νF µν = 0.

However, following Weyl’s procedure in this case is misleading because the validity of the
conclusion does not depend on the Euler-Lagrange equations for ψ and ψ∗ being satisfied.
Rather, it is a consequence of the anti-symmetry of the F µν term, and follows from Noether’s
second theorem when no Euler-Lagrange equations are assumed to be satisfied, as we saw
earlier in this section.
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of gauge theory. In the process of addressing this problem, we have successfully
clarified the three-way relationship between Weyl’s work, Noether’s theorems,
and modern relativistic field theory. We have used Noether’s two theorems
to show that there are two routes to conservation of electric charge in locally
gauge invariant relativistic field theory: one is the standard route using global
gauge invariance and Noether’s first theorem, the other uses local gauge invari-
ance and Noether’s second theorem. The latter route is essentially the method
used by Weyl in both 1918 and 1928/9. Therefore, although Weyl was the first
to make the connection between gauge symmetry and conservation of electric
charge, his connection is different from that found in modern relativistic field
theory textbooks. Although the standard textbook route to conservation of
electric charge via Noether’s first theorem is correct, it is subtly misleading in
locally gauge invariant relativistic field theory, since it implies that conservation
of electric charge is dependent upon satisfaction of the equations of motion for
the matter fields. In fact, conservation of electric charge can be derived without
the matter field equations being satisfied, using local gauge invariance and the
electromagnetic field equations instead. In short, conservation of electric charge
in locally gauge invariant relativistic field theory is a consequence of the lack
of independence of the matter and gauge fields (itself a consequence of local
gauge invariance) rather than simply a consequence of the equations of motion
of the matter fields. This understanding of the conservation law is immediately
apparent from Noether’s second theorem and Weyl’s derivation, but it is an
insight that might be missed from the standard textbook point of view.

Appendix A: Maxwell electromagnetism - an ap-
parent mystery resolved

This discussion of Maxwell electromagnetism (by which we mean electro-
magnetism without a gauge-dependent matter field) is included partly for the
sake of completeness, partly because it is an example of where failure to ap-
preciate the domain of applicability of the first theorem has led to confusion,23

and partly because applying the second theorem to this case gives rise to an
apparent mystery (a mystery which is nevertheless quickly dispelled).

For the Lagrangian associated with the Maxwell equations, the gauge trans-
formation consists of a transformation of the vector potential Aµ only:

Aµ → A′µ = Aµ + ∂µθ. (33)

This means that, unlike in the case of relativistic field theory, there is no non-
trivial rigid subgroup to which Noether’s first theorem applies. Only Noether’s
second theorem is of interest with respect to Maxwell electromagnetism.

23For example, Lanczos (1970, chapter XI, section 20) seeks to apply ‘Noether’s principle’ to
Maxwell electromagnetism in order to derive conservation of electric charge. He is apparently
attempting to extend the first theorem to the domain of the second theorem, where he claims
that ‘Noether’s principle’ is ‘equally valid’. His method involves treating the gauge parameter
as an additional field variable; whether or not the derivation is successful, it is certainly not
using either of Noether’s theorems.
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Recall Noether’s second theorem: if the action S is invariant under a contin-
uous group of transformations depending smoothly on the arbitrary functions
pk(x) and their derivatives, then (6)

∑

i

Eiaki ≡
∑

i

∂ν (Eib
ν
ki)

where δ0ψi = akiδpk + bν
ki∂ν (δpk). For a Maxwell gauge transformation, with

ψ = Aµ, we have p(x) = θ(x), and so in this case aAµ
= 0 and bν

Aµ
= δν

µ.
The Lagrange expression associated with Maxwell’s equations (with sources) is
EAµ

= ∂νFµν − Jµ. Thus, Noether’s second theorem gives us

∂ν

{
[∂νFµν − Jµ] δν

µ

} ≡ ∂µ [∂νFµν − Jµ] ≡ 0. (34)

from which we conclude via the anti-symmetry of Fµν that

∂µJµ ≡ 0. (35)

So it appears at first sight that conservation of electric charge follows from
Noether’s second theorem (subject to the usual constraints on boundary con-
ditions) for the Maxwell Lagrange expression, with no requirement that the
Maxwell equations be satisfied. On the face of it, the derivation looks rather
mysterious: we appear to have derived conservation of electric charge without
requiring that any equations of motion be satisfied; surely this cannot be right.

The only requirement we have put in is that the Lagrangian be invariant
under gauge transformations. The Lagrangian associated with Maxwell electro-
magnetism (with sources) is:

L =
1
4
FµνFµν − JµAµ (36)

where Jµ is the four-current, assumed to be a function of position.24

Applying a gauge transformation, we get

L′ =
1
4
FµνFµν − Jµ (Aµ + ∂µθ) = L + Jµ∂µθ. (37)

In fact, then, the Lagrangian is not invariant under gauge transformations.
However, the extra term picked up makes no difference to the Euler-Lagrange
equations for Aµ because the extra term has no dependence on Aµ. We can
therefore regard the transformation as a symmetry transformation. However,
this does not mean that we can apply Noether’s second theorem. Noether’s
second theorem as stated by Noether requires that the Lagrangian be invariant.
In fact, her derivation goes through so long as the Lagrangian is invariant up to

24Substitution of this into the Euler-Lagrange equations yields the Lagrange expression used
above: wµ = ∂νF µν − Jµ.
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a divergence term.25 Therefore, we can apply Noether’s second theorem only if
we convert the extra term in the transformed Lagrangian to a divergence term.
In other words, we must have that

L′ = L + ∂µ(Jµθ). (38)

This will only be true if
∂µJµ = 0. (39)

Therefore, the requirement that Noether’s second theorem be applicable implic-
itly embodies the restriction that Jµ be a conserved current.

In short, although the derivation of the conserved current via Noether’s
second theorem does not involve claiming that the Maxwell field equations are
satisfied, it does involve the prior assumption that Jµ is conserved, and so the
apparent mystery dissolves: we are only getting out what we put in, after all.
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