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AbstractWe introduce resource-bounded betting games, and propose a generalization of Lutz's resource-bounded measure in which the choice of next string to bet on is fully adaptive. Lutz's martingalesare equivalent to betting games constrained to bet on strings in lexicographic order. We show thatif strong pseudo-random number generators exist, then betting games are equivalent to martingales,for measure on E and EXP. However, we construct betting games that succeed on certain classeswhose Lutz measures are important open problems: the class of polynomial-time Turing-completelanguages in EXP, and its superclass of polynomial-time Turing-autoreducible languages. If anEXP-martingale succeeds on either of these classes, or if betting games have the \�nite unionproperty" possessed by Lutz's measure, one obtains the non-relativizable consequence BPP 6= EXP.We also show that if EXP 6= MA, then the polynomial-time truth-table-autoreducible languageshave Lutz measure zero, whereas if EXP = BPP, they have measure one.



1 IntroductionLutz's theory of measure on complexity classes is now usually de�ned in terms of resource-boundedmartingales. A martingale can be regarded as a gambling game played on unseen languages A. Lets1; s2; s3; : : : be the standard lexicographic ordering of strings. The gambler G starts with capitalC0 = $1 and places a bet B1 2 [0; C0] on either \s1 2 A" or \s1 =2 A." Given a �xed particularlanguage A, the bet's outcome depends only on whether s1 2 A. If the bet wins, then the newcapital C1 equals C0 + B1, while if the bet loses, C1 = C0 � B1. The gambler then places a betB2 2 [0; C1] on (or against) membership of the string s2, then on s3, and so forth. The gamblersucceeds if G's capital Ci grows toward +1. The class C of languages A on which G succeeds(and any subclass) is said to have measure zero. One also says G covers C. Lutz and others (see[Lut97]) have developed a rich and extensive theory around this measure-zero notion, and haveshown interesting connections to many other important problems in complexity theory.We propose the generalization obtained by lifting the requirement that G must bet on stringsin lexicographic order. That is, G may begin by choosing any string x1 on which to place its �rstbet, and after the oracle tells the result, may choose any other string x2 for its second bet, and soforth. Note that the sequences x1; x2; x3; : : : (as well as B1; B2; B3; : : :) may be radically di�erentfor di�erent oracle languages A|in complexity-theory parlance, G's queries are adaptive. The lonerestriction is that G may not query (or bet on) the same string twice. We call G a betting game.Our betting games remedy a possible lack in the martingale theory, one best explained in thecontext of languages that are \random" for classes D such as E or EXP. In this paper, E stands fordeterministic time 2O(n), and EXP stands for deterministic time 2nO(1) . A language L is D-randomif L cannot be covered by a D-martingale. Based on one's intuition about random 0-1 sequences,the language L0 = fip(x) : x 2 L g should likewise be D-random, where ip(x) changes every 0in x to a 1 and vice-versa. However, this closure property is not known for E-random or EXP-random languages, because of the way martingales are tied to the �xed lexicographic ordering of ��.Betting games can adapt to easy permutations of �� such as that induced by ip. Similarly, a classC that is small in the sense of being covered by a (D-) betting game remains small if the languagesL 2 C are so permuted. In the r.e./recursive theory of random languages, our generalization issimilar to \Kolmogorov-Loveland place-selection rules" (see [Lov69]). We make this theory workfor complexity classes via a novel de�nition of \running in time t(n)" for an in�nite process.Our new angle on measure theory may be useful for attacking the problem of separating BPPfrom EXP, which has recently gained prominence in [IW98]. In Lutz's theory it is open whether theclass of EXP-complete sets|under polynomial-time Turing reductions|has EXP-measure zero. Ifso (in fact if this set does not have measure one), then by results of Allender and Strauss [AS94],BPP 6= EXP. Since there are oracles A such that BPPA = EXPA [Hel86], this kind of absoluteseparation would be a major breakthrough. We show that the EXP-complete sets can be coveredby an EXP betting game|in fact, by an E-betting game. The one technical lack in our theory asa notion of measure is also interesting here: If the \�nite unions" property holds for betting games(viz. C1 small ^ C2 small =) C1 [C2 small), then EXP 6= BPP. Likewise, if Lutz's martingales doenjoy the permutation-invariance of betting games, then BPP 6= EXP. Finally, we show that if apseudo-random number generator of security 2n
(1) exists, then for every EXP-betting game G onecan �nd an EXP-martingale that succeeds on all sets covered by G. Pseudo-random generators ofhigher security 2
(n) likewise imply the equivalence of E-betting games and E-measure. Ambos-Spies and Lempp [ASL96] proved that the EXP-complete sets have E-measure zero under a di�erenthypothesis, namely P = PSPACE.Measure theory and betting games help us to dig further into questions about pseudo-random1



generators and complexity-class separations. Our tool is the notion of an autoreducible set, whoseimportance in complexity theory was argued by Buhrman, Fortnow, van Melkebeek, and Torenvliet[BFvMT98] (after [BFT95]). A language L is �pT -autoreducible if there is a polynomial-time oracleTuring machine Q such that for all inputs x, QL correctly decides whether x 2 L without eversubmitting x itself as a query to L. If Q is non-adaptive (i.e., computes a polynomial-time truth-table reduction), we say L is �ptt-autoreducible. We show that the class of �pT -autoreducible sets iscovered by an E-betting game. Since every EXP-complete set is �pT -autoreducible [BFvMT98], thisimplies results given above. The subclass of �ptt -autoreducible sets provides the following tighterconnection between measure statements and open problems about EXP:� If the �ptt-autoreducible sets do not have E-measure zero, then EXP = MA.� If the �ptt-autoreducible sets do not have E-measure one in EXP, then EXP 6= BPP.Here MA is Babai's \Merlin-Arthur" class, which contains BPP and NP and is contained in thelevel �p2 \ �p2 of the polynomial hierarchy [Bab85, BM88]. Since EXP 6= MA is strongly believed,one would expect the class of �ptt-autoreducible sets to have E-measure zero, but proving this|orproving any of the dozen other measure statements in Corollaries 6.2 and 6.5|would yield a proofof EXP 6= BPP.In sum, the whole theory of resource-bounded measure has progressed far enough to wind theissues of (pseudo-)randomness and stochasticity within exponential time very tightly. We turn thewheels a few more notches, and seek greater understanding of complexity classes in the places wherethe boundary between \measure one" and \measure zero" seems tightest.Section 2 reviews the formal de�nitions of Lutz's measure and martingales. Section 3 intro-duces betting games, and shows that they are a generalization of martingales. Section 4 showshow to simulate a betting game by a martingale of perhaps-unavoidably higher time complexity.Section 5, however, demonstrates that strong pseudo-random generators (if there are any) allowone to compute the martingale in the same order of time. Section 6 presents our main results per-taining to autoreducible sets, including our main motivating example of a concrete betting game.The concluding Section 7 summarizes open problems and gives prospects for future research.A preliminary version of this paper without proofs appeared in the proceedings of STACS'98,under the title \A Generalization of Resource-Bounded Measure, With an Application."2 MartingalesA martingale is abstractly de�ned as a function d from f 0; 1 g� into the nonnegative reals thatsatis�es the following \average law": for all w 2 f 0; 1 g�,d(w) = d(w0) + d(w1)2 : (1)The interpretation in Lutz's theory is that a string w 2 f 0; 1 g� stands for an initial segment ofa language over an arbitrary alphabet � as follows: Let s1; s2; s3; : : : be the standard lexicographicordering of ��. Then for any language A � ��, write w v A if for all i, 1 � i � jwj, si 2 A i�the ith bit of w is a 1. We also regard w as a function with domain dom(w) = f s1; : : : ; sjwj g andrange f 0; 1 g, writing w(si) for the ith bit of w. A martingale d succeeds on a language A if thesequence of values d(w) for w v A is unbounded.Let S1[d] stand for the (possibly empty, often uncountable) class of languages on which dsucceeds. Lutz originally de�ned the complexity of a martingale d in terms of computing fast-converging rational approximations to d. Subsequently he showed that for certain classes of time2



bounds one loses no generality by requiring that martingales themselves have rational values a=bsuch that all digits of the integers a and b (not necessarily in lowest terms) are output withinthe time bound. That is, given any martingale d meeting the original de�nition of computabilitywithin the time bound, one can obtain a rational-valued d0 computable within that bound suchthat S1[d] � S1[d0] [May94, JL95]. We adopt this requirement throughout the paper, and specifythat integers are represented in standard binary notation, and rationals as pairs of integers, notnecessarily in lowest terms. We use the fact that a sum a1=b1 + : : : am=bm can be computed andwritten down in `O(1) time, where ` is the sum of the lengths of the integers ai and bi.De�nition 2.1 (cf. [Lut92, May94]). Let � be a complexity class of functions. A class C oflanguages has �-measure zero, written ��(C) = 0, if there is a martingale d computable in � suchthat C � S1[d]. One also says that d covers C.Lutz measured the time to compute d(w) in terms of the length N of w, but one can also workin terms of the largest length n of a string in the domain of w. For N > 0, n equals blog2Nc; allwe care about is that n = �(logN) and N = 2�(n). Because complexity bounds on languages wewant to analyze will naturally be stated in terms of n, we prefer to use n for martingale complexitybounds. The following correspondence is helpful:Lutz's \p" � NO(1) = 2O(n) � measure on ELutz's \p2" � 2(logN)O(1) = 2nO(1) � measure on EXPSince we measure the time to compute d(w) in terms of n, we write \�E" for E-measure and\�EXP" for EXP-measure, and generally �� for any � that names both a language and functionclass. Abusing notation similarly, we de�ne:De�nition 2.2 ([Lut92]). A class C has �-measure one, written ��(C) = 1, if ��(� n C) = 0.The concept of resource bounded measure is known to be robust under several changes [May94].The following lemma has appeared in various forms [May94, BL96]. It essentially says that we canassume a martingale grows almost monotonically (sure winnings) and not too fast (slow winnings).Lemma 2.1 (\Slow-but-Sure-Winnings" lemma for martingales) Let d be a martingale.Then there is a martingale d0 with S1[d] � S1[d0] such that(8w)(8u) : d0(wu) > d0(w) � 2d(�); and (2)(8w) : d0(w) < 2(jwj + 1)d(�): (3)If d is computable in time t(n) , then d0 is computable in time (2nt(n))O(1).The idea is to play the strategy of d, but in a more conservative way. Say we start with aninitial capital of $1. We will deposit a part c of our capital in a bank and only play the strategyunderlying d on the remaining liquid part e of our capital. We start with no savings and a liquidcapital of $1. If our liquid capital reaches or exceeds $2, we deposit an additional $1 or $2 to oursavings account c so as to keep the liquid capital in the range $[1; 2) at all times. If d succeeds, itwill push the liquid capital in�nitely often to $2 or above, so c grows to in�nity, and d0 succeedstoo. Since we never take money out of our savings account c, and the liquid capital e is boundedby $2, once our total capital d0 = c + e has reached a certain level, it will never go more than $2below that level anymore, no matter how bad the strategy underlying d is. On the other hand,since we add at most $2 to c in each step, d0(w) cannot exceed 2(jwj + 1) either.3



We now give the formal proof.Proof. (of Lemma 2.1) De�ne d0 : �� ! [0;1) byd0(w) = (c(w) + e(w))d(�);where c(�) = 0 and e(�) = 1, andc(wb) = c(w) + 2 and e(wb) = d(wb)d(w) e(w) � 2 if d(w) 6= 0 and d(wb)d(w) e(w) � 3c(wb) = c(w) + 1 and e(wb) = d(wb)d(w) e(w) � 1 if d(w) 6= 0 and 2 � d(wb)d(w) e(w) < 3c(wb) = c(w) and e(wb) = d(wb)d(w) e(w) if d(w) 6= 0 and d(wb)d(w) e(w) < 2c(wb) = c(w) and e(wb) = e(w) otherwise:To see that the recursion does not excessively blow up the time complexity or size of the answer,note that owing to cancellation of values of d, every value e(w) where d(w) 6= 0 is given by a sumof the form NXk=0 ak d(w)d(w[1 : : : k])where each ak is in f�2;�1; 0; 1 g, N = jwj, and w[1 : : : k] stands for the �rst k bits of w. Each termin the sum is computable in time O(t(n)2N) (using the naive quadratic algorithms for multiplicationand integer division). Then by the property noted just before De�nition 2.1, these terms can besummed in time (Nt(n))O(1).By induction on jwj we observe that 0 � e(w) < 2; (4)and that d0(wb) = ( hc(w) + d(wb)d(w) e(w)i d(�) if d(w) 6= 0d0(w) otherwise;from which it follows that d0 is a martingale.Now let ! be an in�nite 0-1 sequence denoting a language on which d succeeds. Then e(w)will always remain positive for w v !, and d(wb)d(w) e(w) will become 2 or more in�nitely often.Consequently, limwv!;jwj!1 c(w) = 1. Since d0(w) � c(w)d(�), it follows that S1[d] � S1[d0].Moreover, by Equation (4) and the fact that c does not decrease along any sequence, we have thatd0(wu) � c(wu)d(�) � c(w)d(�) = d0(w) � e(w)d(�) > d0(w)� 2d(�):Since c can increase by at most 2 in every step, c(w) � 2jwj. Together with Equation (4), thisyields that d0(w) = (c(w) + e(w))d(�) < 2(jwj + 1)d(�):One can also show that S1[d0] � S1[d] in Lemma 2.1, so the success set actually remains intactunder the above transformation.As with Lebesgue measure, the property of having resource-bounded measure zero is monotoneand closed under union (\�nite unions property"). A resource-bounded version of closure undercountable unions also holds. The property that becomes crucial in resource-bounded measure is4



that the whole space � does not have measure zero, which Lutz calls the \measure conservation"property. With a slight abuse of meaning for \6=," this property is written ��(�) 6= 0. In particular,�E(E) 6= 0 and �EXP(EXP) 6= 0. Subclasses of � that require substantially fewer resources, do have�-measure zero. For example, P has E-measure zero. Indeed, for any �xed c > 0, DTIME[2cn] hasE-measure zero, and DTIME[2nc ] has EXP-measure zero [Lut92].Apart from formalizing rareness and abundance in complexity theory, resource-bounded mar-tingales are also used to de�ne the concept of a random set in a resource-bounded setting.De�nition 2.3. A set A is �-random if ��(fAg) 6= 0.In other words, A is �-random if no �-martingale succeeds on A.3 Betting GamesTo capture intuitions that have been expressed not only for Lutz measure but also in many earlierpapers on random sequences, we formalize a betting game as an in�nite process, rather than as aTuring machine that has �nite computations on string inputs.De�nition 3.1. A betting game G is an oracle Turing machine that maintains a \capital tape" anda \bet tape," in addition to its standard query tape and worktapes, and works in stages i = 1; 2; 3 : : :as follows: Beginning each stage i, the capital tape holds a nonnegative rational number Ci�1. Theinitial capital C0 is some positive rational number. G computes a query string xi to bet on, a betamount Bi, 0 � Bi � Ci�1, and a bet sign bi 2 f�1;+1 g. The computation is legal so long as xidoes not belong to the set fx1; : : : ; xi�1 g of strings queried in earlier stages. G ends stage i byentering a special query state. For a given oracle language A, if xi 2 A and bi = +1, or if xi =2 Aand bi =�1, then the new capital is given by Ci := Ci�1 +Bi, else by Ci := Ci�1 �Bi. We chargeM for the time required to write the numerator and denominator of the new capital Ci down. Thequery and bet tapes are blanked, and G proceeds to stage i+ 1.In this paper, we lose no generality by not allowing G to \crash" or to loop without writing a nextbet and query. Note that every oracle set A determines a unique in�nite computation of G, whichwe denote by GA. This includes a unique in�nite sequence x1; x2; : : : of query strings, and a uniquesequence C0; C1; C2; : : : telling how the gambler fares against A .De�nition 3.2. A betting machine G runs in time t(n) if for all oracles A, every query of lengthn made by GA is made in the �rst t(n) steps of the computation.De�nition 3.3. A betting game G succeeds on a language A, written A 2 S1[G], if the sequenceof values Ci in the computation GA is unbounded. If A 2 S1[G], then we also say G covers A.Our main motivating example where one may wish not to bet in lexicographic order, or accord-ing to any �xed ordering of strings, is deferred to Section 6. There we will construct an E-bettinggame that succeeds on the class of �pT -autoreducible languages, which is not known to have Lutzmeasure zero in E or EXP.We now want to argue that the more liberal requirement of being covered by a time t(n)betting game, still de�nes a smallness concept for subclasses of DTIME[t(n)] in the intuitive senseLutz established for his measure-zero notion. The following result is a good beginning.
5



Theorem 3.1 For every time-t(n) betting game G, we can construct a language in DTIME[t(n)]that is not covered by G.Proof. Let Q be a non-oracle Turing machine that runs as follows, on any input x. The machineQ simulates up to t(jxj) steps of the single computation of G on empty input. Whenever G betson and queries a string y, Q gives the answer that causes G to lose money, rejecting in case of azero bet. If and when G queries x, Q does likewise. If t(jxj) steps go by without x being queried,then Q rejects x.The important point is that Q's answer to a query y 6= x is the same as the answer when Qis run on input y. The condition that G cannot query a string x of length n after t(n) steps haveelapsed ensures that the decision made by Q when x is not queried does not a�ect anything else.Hence Q de�nes a language on which G never does better than its initial capital C0, and so doesnot succeed.In particular, the class E cannot be covered by an E-betting game, nor EXP by an EXP-bettinggame. Put another way, the \measure conservation axiom" [Lut92] of Lutz's measure carries overto betting games.To really satisfy the intuition of \small," however, it should hold that the union of two smallclasses is small. (Moreover, \easy" countable unions of small classes should be small, as in [Lut92].)Our lack of meeting this \�nite union axiom" will later be excused insofar as it has the non-relativizing consequence BPP 6= EXP. Theorem 3.1 is still good enough for the \measure-like"results in this paper.We note also that several robustness properties of Lutz's measure treated in Section 2 carryover to betting games. This is because we can apply the underlying transformations to the capitalfunction cG of G, which is de�ned as follows:De�nition 3.4. Let G be a betting game, and i � 0 an integer.(a) A play � of length i is a sequence of i-many oracle answers. Note that � determines the �rsti-many stages of G, together with the query and bet for the next stage.(b) cG(�) is the capital Ci that G has at the end of the play � (before the next query).Note that the function cG is a martingale over plays �. The proof of Lemma 2.1 works for cG. Weobtain:Lemma 3.2 (\Slow-But-Sure Winnings" lemma for betting games) Let G be a bettinggame that runs in time t(n). Then we can construct a betting game G0 running in time (2nt(n))O(1)such that S1[G] � S1[G0], G0 always makes the same queries in the same order as G, and:8�;8  : cG0(�) > cG0(�)� 2cG(�) (5)8� : cG0(�) < 2(j�j + 1)cG(�): (6)Proof. The proof of Lemma 2.1 carries over.To begin comparing betting games and martingales, we note �rst that the latter can be con-sidered a direct special case of betting games. Say a betting game G is lex-limited if for all oraclesA, the sequence x1; x2; x3 : : : of queries made by GA is in lexicographic order. (It need not equalthe lexicographic enumeration s1; s2; s3; : : : of ��.)6



Theorem 3.3 Let T (n) be a collection of time bounds that is closed under squaring and undermultiplication by 2n, such as 2O(n) or 2nO(1). Then a class C has time-T (n) measure zero i� C iscovered by a time-T (n) lex-limited betting game.Proof. From a martingale d to a betting game G, each stage i of GA bets on si an amount Bi withsign bi 2 f�1;+1 g given by biBi = d(w1)�d(w), where w is the �rst i�1 bits of the characteristicsequence of A. This takes O(2n) evaluations of d to run G up through queries of length n, hencethe hypothesis on the time bounds T (n). In the other direction, when G is lex-limited, one cansimulate G on a �nite initial segment w of its oracle up to a stage where all queries have beenanswered by w and G will make no further queries in the domain of w. One can then de�ne d(w)to be the capital entering this stage. That this is a martingale and ful�lls the success and run-timerequirements is left to the reader.Hence in particular for measure on E and EXP, martingales are equivalent to betting games con-strained to bet in lexicographic order. Now we will see how we can transform a general bettinggame into an equivalent martingale.4 From Betting Games to MartingalesThis section associates to every betting game G a martingale dG such that S1[G] � S1[dG], andbegins examining the complexity of dG. Before de�ning dG, however, we pause to discuss sometricky subtleties of betting games and their computations.Given a �nite initial segment w of an oracle language A, one can de�ne the partial computationGw of the betting game up to the stage i at which it �rst makes a query xi that is not in the domainof w. De�ne d(w) to be the capital Ci�1 that G had entering this stage. It is tempting to thinkthat d is a martingale and succeeds on all A for which G succeeds|but neither statement is truein general. The most important reason is that d may fail to be a martingale.To see this, suppose xi itself is the lexicographically least string not in the domain of w. Thatis, xi is indexed by the bit b of wb, and w1 v A i� xi 2 A. It is possible that GA makes a small(or even zero) bet on xi, and then goes back to make more bets in the domain of w, winning lots ofmoney on them. The de�nitions of both d(w0) and d(w1) will then reect these added winnings,and both values will be greater than d(w). For example, suppose GA �rst puts a zero bet on xi = sj,then bets all of its money on xi+1 = sj�1 not being in A, and then proceeds with xi+2 = sj+1. Ifw(sj�1) = 0, then d(w0) = d(w1) = 2d(w).Put another way, a �nite initial segment w may carry much more \winnings potential" thanthe above de�nition of d(w) reects. To capture this potential, one needs to consider potential playsof the betting game outside the domain of w. Happily, one can bound the length of the consideredplays via the running time function t of G. Let n be the maximum length of a string indexed byw; i.e., n = blog2(jwj)c. Then after t(n) steps, G cannot query any more strings in the domain ofw, so w's potential is exhausted. We will de�ne dG(w) as an average value of those plays that canhappen, given the query answers �xed by w. We use the following de�nitions and notation:De�nition 4.1. For any t(n) time-bounded betting game G and string w 2 ��, de�ne:(a) A play � is t-maximal if G completes the �rst j�j stages, but not the query and bet of thenext stage, within t steps. 7



(b) A play � is G-consistent with w, written � �G w, if for all stages j such that the queriedstring xj is in the domain of w, �j = w(xj). That is, � is a play that could possibly happengiven the information in w. Also let m(�;w) stand for the number of such stages j whosequery is answered by w.(c) Finally, put dG(�) = cG(�), and for nonempty w, with n = blog2(jwj)c as above, letdG(w) = X� t(n)�maximal;��Gw cG(�) 2m(�;w)�j�j : (7)The weight 2m(�;w)�j�j in Equation (7) has the following meaning. Suppose we extend the simulationof Gw by ipping a coin for every query outside the domain of w, for exactly i stages. Then thenumber of coin-ips in the resulting play � of length i is i�m(�;w), so 2m(�;w)�i is its probability.Thus dG(w) returns the suitably-weighted average of t(n)-step computations of G with w �xed.The interested reader may verify that this is the same as averaging d(wv) over all v of length 2t(n)(or any �xed longer length), where d is the non-martingale de�ned at the beginning of this section.Lemma 4.1 The function dG(w) is a martingale.Proof. First we argue thatdG(w) = Xj�0j=t(n);�0�Gw cG(�0) 2m(�0 ;w)�t(n): (8)Observe that when �0 = �� and � is t(n)-maximal, � �G w () �0 �G w. This is because none ofthe queries answered by � can be in the domain of w, else the de�nition of G running in time t(n)would be violated. Likewise if � �G w then m(�0; w) = m(�;w). Finally, since cG is a martingale,cG(�) =Pj�j=t(n)�j�j cG(��) 2j�j�t(n). These facts combine to show the equality of Equations (7)and (8).By the same argument, the right-hand side of Equation (8) is unchanged on replacing \t(n)"by any t0 > t(n).Now consider w such that jwj+1 is not a power of 2. Then the \n" for w0 and w1 is the sameas the \n" for dG(w). Let P0 stand for the set of � of length t(n) that are G-consistent with w0but not with w1, P1 for those that are G-consistent with w1 but not w0, and P for those that areconsistent with both. Then the set f� : j�j = t(n); � �G w g equals the disjoint union of P , P0,and P1. Furthermore, for � 2 P0 we have m(�;w0) = m(�;w) + 1, and similarly for P1, while for� 2 P we have m(�;w0) = m(�;w1) = m(�;w). Hence:dG(w0)+dG(w1) = X�2P[P0 cG(�)2m(�;w0)�t(n) + X�2P[P1 cG(�)2m(�;w1)�t(n)= X�2P0 cG(�)2m(�;w0)�t(n) + X�2P1 cG(�)2m(�;w1)�t(n) + 2X�2P cG(�)2m(�;w)�t(n)= 2 X�2P0 cG(�)2m(�;w)�t(n) + 2 X�2P1 cG(�)2m(�;w)�t(n) + 2X�2P cG(�)2m(�;w)�t(n)= 2dG(w):Finally, if jwj + 1 is a power of 2, then dG(w0) and dG(w1) use t0 := t(n + 1) for their length of�. However, by the �rst part of this proof, we can replace t(n) by t0 in the de�nition of dG(w)without changing its value, and then the second part goes through the same way for t0. Hence dGis a martingale. 8



It is still the case, however, that dG may not succeed on the languages on which the bettinggame G succeeds. To ensure this, we �rst use Lemma 3.2 to place betting games G into a suitable\normal form" satisfying the sure-winnings condition (5).Lemma 4.2 If G is a betting game satisfying the sure-winnings condition (5), then S1[G] �S1[dG].Proof. First, let A 2 S1[G], and �x k > 0. Find a �nite initial segment w v A long enough toanswer every query made in a play � of G such that � �G w and cG(�) � k + 2; and long enoughto make t(n) in the de�nition of dG(w) (Equation 7) greater than j�j. Then every �0 of lengtht(n) such that �0 �G w has the form �0 = ��. The sure-winnings condition (5) implies that theright-hand side of Equation (7) de�ning dG(w) is an average over terms that all have size at leastk. Hence dG(w) � k. Letting k grow to in�nity gives A 2 S1[dG].Now we turn our attention to the complexity of dG. If G is a time-t(n) betting game, itis clear that dG can be computed deterministically in O(t(n)) space, because we need only cyclethrough all � of length t(n), and all the items in Equation (7) are computable in space O(t(n)). Inparticular, every E-betting game can be simulated by a martingale whose values are computablein deterministic space 2O(n) (even counting the output against the space bound), and every EXP-betting game by a martingale similarly computed in space 2nO(1) . However, we show in the nextsection that one can estimate dG(w) well without having to cycle through all the �, using a pseudo-random generator to \sample" only a very small fraction of them.5 Sampling ResultsFirst we determine the accuracy to which we need to estimate the values d(w) of a hard-to-computemartingale. We state a stronger version of the result than we need in this section. In the nextsection, we will apply it to martingales whose \activity" is restricted to subsets J of f 0; 1 g� inthe following sense: for all strings x =2 J , and all w such that sjwj+1 = x, d(w0) = d(w1) = d(w).Intuitively, a martingale d is inactive on a string x if there is no possible \past history" w thatcauses a nonzero bet to be made on x. For short we say that such a d is inactive outside J . Recallthat N = �(2n).Lemma 5.1 Let d be a martingale that is inactive outside J � f 0; 1 g�, and let [�(i)]1i=0 be anon-negative sequence such that Psi2J �(i) converges to a number K. Suppose we can compute intime t(n) a function g(w) such that jg(w) � d(w)j � �(N) for all w of length N . Then there is amartingale d0 computable in time (2nt(n))O(1) such that for all w, jd0(w) � d(w)j � 4K + 2�(0).In this section, we will apply Lemma 5.1 with J = f 0; 1 g� and �(N) = 1=N2 = 1=22n. InSection 6.3 we will apply Lemma 5.1 in cases where J is �nite.Proof. First note that for any w (with N = jwj),����g(w) � g(w0) + g(w1)2 ���� � jg(w) � d(w)j + ����d(w0) � g(w0)2 ����+ ����d(w1) � g(w1)2 ����� �(N) + �(N + 1): (9)
9



In case J = f 0; 1 g�, we inductively de�ne:( d0(�) = g(�) + 2K + �(0)d0(wb) = d0(w) + g(wb) � g(w0)+g(w1)2 :Note that d0 satis�es the average law (1), and that we can compute d0(w) in time O(2nt(n)).By induction on jwj, we can show using the estimate provided by Equation (9) thatg(w) + �(N) + 2 1Xi=N+1 �(i) � d0(w) � g(w) + 2N�1Xi=0 �(i) + �(N) + 2K:It follows that d0(w) � g(w) + �(N)= d(w) + (g(w) � d(w)) + �(N) � d(w);and that d0(w) = d(w) + (g(w) � d(w)) + (d0(w)� g(w))� d(w) + �(N) + 2N�1Xi=0 �(i) + �(N) + 2K� d(w) + 4K + 2�(0):This establishes the lemma in case J = f 0; 1 g�. The generalization to other subsets J off 0; 1 g� is left to the reader.Next, we specify precisely which function fG we will sample in order to estimate dG, and howwe will do it.Let G be a t(n) time-bounded betting game. Consider a pre�x w, and let n denote the largestlength of a string in the domain of w. With any string � of length t(n), we can associate a unique\play of the game" G de�ned by using w to answer queries in the domain of w, and the successivebits of � to answer queries outside it. We can stop this play after t(n) steps|so that the stoppedplay is a t(n)-maximal �|and then de�ne fG(w; �) to be the capital cG(�). Note that we cancompute fG(w; �) in linear time, i.e. in time O(jwj + t(n)). The proportion of strings � of lengtht(n) that map to the same play � is exactly the weight 2m(�;w)�j�j in the equation (7) for dG(w).Letting E stand for mathematical expectation, this gives us:dG(w) = Ej�j=t(n)[fG(w; �)]:To obtain good and e�cient approximations to the right-hand side, we employ pseudo-randomgenerators. The following supplies all relevant de�nitional background.De�nition 5.1 ([NW94]). (a) The hardness HA(n) of a set A at length n is the largest integers such that for any circuit C of size at most s with n inputs,����Prx[C(x) = A(x)] � 12 ���� � 1s ;where x is uniformly distributed over �n. 10



(b) A pseudo-random generator is a function D that, for each n, maps �n into �r(n) wherer(n) � n+ 1. The function r is called the stretching of D.(c) The security SD(n) of D at length n is the largest integer s such that for any circuit C of sizeat most s with r(n) inputs���� Prx[C(x) = 1]� Pry[C(D(y)) = 1]���� � 1s ;where x is uniformly distributed over �r(n) and y over �n.We will use pseudo-random generators with the following characteristics:(1) an E-computable pseudo-random generator D1 that stretches seeds super-polynomially andhas super-polynomial security at in�nitely many lengths;(2) an EXP-computable pseudo-random generator D2 of security 2n
(1) ; and(3) an E-computable pseudo-random generator D3 of security 2
(n).D1 will be applied in the next section; in this section we will use D2 and D3. None of thesegenerators is known to exist unconditionally. However, a highly plausible hypothesis su�ces forthe weakest generator D1, as follows simply by combining work of [BFNW93] and [NW94] withsome padding.Theorem 5.2 If MA 6= EXP, then there is an E-computable pseudo-random generator D1 withstretching n�(log n) such that for any integer k, there are in�nitely many n with SD1(n) > nk.Proof. From the proof of Lemma 4.1 of [BFNW93], it follows that if MA 6= EXP, then there is aset A 2 EXP such that for any integer j, there are in�nitely many m such that HA(m) > mj. Fromthe proof of the main Theorem 1 in [NW94], it follows that for any set A 2 EXP, there is an EXP-computable pseudo-random generator D with stretching n�(log n) such that SD(n) = 
(HA(pn)=n).Say that D is computable in time 2nc for some integer constant c > 0. For any k > 0, the in�nitelymany m promised above with j = 2(ck + 1) yield in�nitely many n of the form m2=c such thatSD(n1=c) > nk. De�ning D1(x) = D(x0), where x0 denotes the pre�x of x of length jxj1=c, yieldsthe required pseudo-random generator.Exponential-time computable pseudo-random generators with exponential security have theinteresting property that we can blow up the stretching exponentially without signi�cantly reducingthe security. As with Theorem 5.2, credit for this observation should be distributed among thereferences cited in the proof.Theorem 5.3 (a) Given an EXP-computable pseudo-random generator D0 of security 2n
(1) ,we can construct an EXP-computable pseudo-random generator D2 of security 2n
(1) andstretching 2n
(1) .(b) Given an E-computable pseudo-random generator D0 of security 2
(n), we can construct anE-computable pseudo-random generator D3 of security 2
(n) and stretching 2
(n).Proof. For (a), Nisan and Wigderson [NW94] showed that the existence of an E-computablepseudo-random generator with stretching n + 1 (a \quick extender" in their terminology) with11



security 2n
(1) is equivalent to the existence of an E-computable pseudo-random generator withstretching and security 2n
(1) . See Statements (3) and (4) of their Main Theorem (Theorem 1)instantiated with s(`) = 2`. As used in [BFNW93], their main result carries through if we replace\E-computable" by \EXP-computable" in both statements, owing to padding. Since the existenceof D0 implies the existence of an EXP-computable extender with security 2n
(1) , the existence ofD2 follows.For (b), �rst de�ne D0(x) to be the �rst jxj + 1 bits of D0(x). Then D0 is an extender withsecurity 2
(n), and this implies that the range of D0 is a language in E requiring circuits of size 2
(n).Impagliazzo and Wigderson, in their proof of Theorem 2 in [IW97], showed how to transform sucha language into a language A 2 E such that HA(n) = 2
(n). Using this A in part (3) of Theorem 2of [NW94] yields an E-computable pseudo-random generator D3 of security and stretching 2
(n).(It is also possible to argue that the range of D0 is su�ciently hard to employ the technique of[NW94], without going through [IW97].)Pseudo-random generators of security 2n
(1) (even polynomial-time computable ones) are fairlywidely believed to exist (see [BM84, RR97, Bon99]), and while those of security 2
(n) are morecontroversial even for EXP-computability, their existence was made more plausible by the result of[IW97] used in the proof of (b) above. Polynomial-time computable pseudo-random generators ofsecurity 2
(n) exist relative to a random oracle [Zim95, Imp99], and E-computable ones also existif P = NP. (The latter observation follows by combining the techniques of Kannan [Kan82] withpadding and the above-mentioned result of [IW97]; it is noted by the second author as \Corollary2.2.19" in his dissertation [vM99].)The following general result shows how pseudo-random generators can be used to approximateaverages. It provides the accuracy and time bounds needed for applying Lemma 5.1 to get thedesired martingale.Theorem 5.4 Let D be a pseudo-random generator computable in time �(n) and with stretchingr(n). Let f : �� � �� ! (�1;1) be a function that is computed in linear time on a Turingmachine, and let s;R;m : N ! N be fully time-constructible functions such that s(N) � N andthe following relations hold for any integer N � 0, w 2 �N , and � 2 �s(N):jf(w; �)j � R(N)r(m(N)) � s(N)SD(m(N)) � (s(N) +R(N))6: (10)Then we can approximate h(w) = Ej�j=s(N)[f(w; �)] (11)to within N�2 in time O(2m(N) � (s(N) +R(N))4 � �(m(N))).Proof. For any integer N � 0, let IN be a partition of the interval [�R(N); R(N)] into subinter-vals of length 12N2 . Note that jIN j = 4N2R(N). De�ne for any I 2 IN and any string w of lengthN , �(I; w) = Prj�j=s(N)[f(w; �) 2 I]:The predicate underlying �(I; w) can be computed by circuits of size O(s(N) log s(N)), using thet-to-O(t log t) Turing-machine-time-to-circuit-size construction of Pippenger and Fischer [PF79].12



Since SD(m(N)) = !(s(N) log s(N)), it follows that~�(I; w) = Prj�j=m(N)[f(w;D(�)[1 : : : s(N)]) 2 I]approximates �(I; w) to within an additive error of (SD(m(N)))�1, and we can compute it in timeO(2m(N) � s(N) � �(m(N))). We de�ne the approximation ~h(w) for h(w) as~h(w) = XI2IN ~�(I; w)min(I):Since we can write h(w) ash(w) = XI2IN �(I; w)Ej�j=s(N)[f(w; �) j f(w; �) 2 I];and we can bound the approximation error as follows:jh(w) � ~h(w)j� XI2IN ��(I; w) ����Ej�j=s(N)[f(w; �) j f(w; �) 2 I]�min(I) ����+ �����(I; w) � ~�(I; w) ����min(I)�� maxI2IN(jIj) + jIN j � (SD(m(N)))�1 �R(N)� 12N2 + 4N2 �R2(N) � (SD(m(N)))�1 � 1N2 :Computing ~h(w) requires jIN j = 4N2R(N) evaluations of ~�, which results in the claimed upperbound for the time complexity of ~h.Now, we would like to apply Theorem 5.4 to approximate h = dG given by Equation (7)to within N�2, by setting f = fG and s(N) = t(logN). However, for a general betting game Grunning in time t(n), we can only guarantee an upper bound of R(N) = 2t(logN) �cG(�) on jf(w; �)j.Since SD can be at most exponential, condition (10) would force m(N) to be 
(t(logN)). In thatcase, Theorem 5.4 can only yield an approximation computable in time 2O(t(logN)). However , wecan assume without loss of generality that G satis�es the slow-winnings condition (6) of Lemma 3.2,in which case an upper bound of R(N) 2 O(N) holds. Then the term s(N) in the right-hand sideof Equation (10) dominates, provided t(n) = 2
(n).Taking everything together, we obtain the following result about transforming E- and EXP-betting games into equivalent E- respectively EXP-martingales:Theorem 5.5 If there is a pseudo-random generator computable in E with security 2
(n), then forevery E-betting game G, there exists an E-martingale d such that S1[G] � S1[d]. If there is apseudo-random generator computable in EXP with security 2n
(1) , then for every EXP-betting gameG, there exists an EXP-martingale d such that S1[G] � S1[d].Proof. By Lemma 3.2, we can assume that cG satis�es both the sure-winnings condition (5) aswell as the slow-winnings condition (6). Because of Lemma 4.2 and Lemma 5.1 (since the seriesP1i=1 1i2 converges), it su�ces to approximate the function dG(w) given by Equation (7) to withinN�2 in time 2O(n) respectively 2nO(1) , where N = jwj and n = logN .Under the given hypothesis about the existence of an E-computable pseudo-random generatorD0, we can take D to be the pseudo-random generator D3 provided by Theorem 5.3(b). Thus we13



meet the conditions for applying Theorem 5.4 to h = dG with s(N) = NO(1), R(N) = O(N), andm(N) = O(logN), and we obtain the approximation of dG that we need. In the case of an EXP-betting game G, to obtain an EXP-martingale we can take D to be the pseudo-random generatorD2 of weaker security guarantee 2n
(1) provided by Theorem 5.3(a). Then we meet the requirementsof Theorem 5.4 with s(N) = 2(logN)O(1) , R(N) = O(N), and m(N) = (logN)O(1).6 Autoreducible SetsAn oracle Turing machine M is said to autoreduce a language A if L(MA) = A, and for all stringsx, MA on input x does not query x. That is, one can learn the membership of x by queryingstrings other than x itself. If M runs in polynomial time, then A is P-autoreducible|we also write�pT -autoreducible. If M is also non-adaptive, then A is �ptt-autoreducible.One can always code M so that for all oracles, it never queries its own input|then we callM an autoreduction. Hence we can de�ne an e�ective enumeration [Mi]1i=1 of polynomial-timeautoreductions, such that a language A is autoreducible i� there exists an i such that L(MAi ) = A.(For a technical aside: the same Mi may autoreduce di�erent languages A, and some Mi mayautoreduce no languages at all.) The same goes for �ptt-autoreductions.Autoreducible sets were brought to the polynomial-time context by Ambos-Spies [AS84]. Theirimportance was further argued by Buhrman, Fortnow, Van Melkebeek, and Torenvliet [BFvMT98],who showed that all �pT -complete sets for EXP are �pT -autoreducible (while some complete setsfor other classes are not). Here we demonstrate that autoreducible sets are important for testingthe power of resource-bounded measure.6.1 Adaptively Autoreducible SetsAs stated in the Introduction, if the �pT -autoreducible sets in EXP (or su�ciently the �pT -completesets for EXP) are covered by an EXP-martingale, then EXP 6= BPP, a non-relativizing consequence.However, it is easy to cover them by an E-betting game. Indeed, the betting game uses its adaptivefreedom only to \look ahead" at the membership of lexicographically greater strings, betting nothingon them.Theorem 6.1 There is an E-betting game G that succeeds on all �pT -autoreducible sets.Proof. Let M1;M2; : : : be an enumeration of �pT -autoreductions such that each Mi runs in timeni+ i on inputs of length n. Our betting game G regards its capital as composed of in�nitely many\shares" ci, one for each Mi. Initially, ci = 1=2i. Letting h�; �i be a standard pairing function,inductively de�ne n0 = 0 and nhi;ji+1 = (nhi;ji)i + i.During a stage s = hi; ji, G simulates Mi on input 0ns�1 . Whenever Mi makes a query oflength less than ns�1, G looks up the answer from its table of past queries. Whenever Mi makesa query of length ns�1 or more, G places a bet of zero on that string and makes the same query.Then G bets all of the share ci on 0ns�1 according to the answer of the simulation of Mi. Finally,G \cleans up" by putting zero bets on all strings with length in [ns�1; ns) that were not queries inthe previous steps.If Mi autoreduces A, then share ci doubles in value at each stage hi; ji, and makes the totalcapital grow to in�nity. And G runs in time 2O(n)|indeed, only the \cleanup" phase needs thismuch time. 14



Corollary 6.2 Each of the following statements implies BPP 6= EXP:1. The class of �pT -autoreducible sets has E-measure zero.2. The class of �pT -complete sets for EXP has E-measure zero.3. E-betting games and E-martingales are equivalent.4. E-betting games have the �nite union property.The same holds if we replace E by EXP in these statements.Proof. Let C stand for the class of languages that are not �pT -hard for BPP. Allender andStrauss [AS94] showed that C has E-measure zero, so trivially it is also covered by an E-bettinggame. Now let D stand for the class of �pT -complete sets for EXP. By Theorem 6.1 and the resultof [BFvMT98] cited above, D is covered by an E-betting game.If EXP = BPP, the union C [ D contains all of EXP, and:� If D would have E-measure zero, so would C [ D and hence EXP, contradicting the measureconservation property of Lutz measure.� If E-betting games would have the �nite-union property, then C [ D and EXP would becovered by an E-betting game, contradicting Theorem 3.1.Since Equation (1) implies (2), and Equation (3) implies (4), these observations su�ce to establishthe corollary for E. The proof for EXP is similar.Since there is an oracle A giving EXPA = BPPA [Hel86], this shows that relativizable techniquescannot establish the equivalence of E-martingales and E-betting games, nor of EXP-martingalesand EXP-betting games. They cannot refute it either, since there are oracles relative to whichstrong pseudo-random generators exist|all \random" oracles, in fact [Zim95].6.2 Non-Adaptively Autoreducible SetsIt is tempting to think that the non-adaptively P-autoreducible sets should have E-measure zero,or at least EXP-measure zero, insofar as betting games are the adaptive cousins of martingales.However, it is not just adaptiveness but also the freedom to bet out of the �xed lexicographic orderthat adds power to betting games. If one carries out the proof of Theorem 6.1 to cover the class of�ptt-autoreducible sets, using an enumeration [Mi] of �ptt -autoreductions, one obtains a non-adaptiveE-betting game (de�ned formally below) that (independent of its oracle) bets on all strings in ordergiven by a single permutation of ��. The permutation itself is E-computable. It might seem that anE-martingale should be able to \un-twist" the permutation and succeed on all these sets. However,our next results, which strengthen the above corollary, close the same \non-relativizing" door onproving this with current techniques.Theorem 6.3 For any k � 1, the �ptt -complete sets for �pk are �ptt-autoreducible.Here is the proof idea, which follows techniques of [BFvMT98] for the theorem that all EXP-complete sets are �pT -autoreducible. Call a closed propositional formula that has at most k blocksof like quanti�ers (i.e., at most k � 1 quanti�er alternations) a \QBFk formula," and let TQBFkstand for the set of true QBF formulas. Let A be a �ptt-complete set for �pk+1 = P�pk . Since15



TQBFk is �pk-hard, there is a deterministic polynomial-time oracle Turing machineM that acceptsA with oracle TQBFk. Let q(x; i) stand for the i-th oracle query made by M on input x. Whetherq(x; i) belongs to TQBFk forms a �pk+1-question, so we can �ptt-reduce it to A. It is possible thatthis latter reduction will include x itself among its queries. Let b+i denote the answer it gives tothe question provided that any query to x is answered \yes," and similarly de�ne b�i in case x isanswered \no."If b+i = b�i , which holds in particular if x is not queried, then we know the correct answerbi to the i-th query. If this situation occurs for all queries, we are done: We just have to runM on input x using the bi's as answers to the oracle queries. The bi's themselves are obtainedwithout submitting the (possibly adaptive) queries made by M , but rather by applying the latter�ptt-reduction to A to the pair hx; ii, and without submitting any query on x itself. Hence thisprocess satis�es the requirements of a �ptt -autoreduction of A for the particular input x.Now suppose that b+i 6= b�i for some i, and let i be minimal. Then we will have two playersplay the k-round game underlying the QBFk-formula that constitutes the i-th oracle query. Oneplayer claims that b+i is the correct value for bi, which is equivalent to claiming that x 2 A, whilehis opponent claims that b�i is correct and that x =2 A. Write �A(x) = 1 if x 2 A, and �A(x) = 0 ifx =2 A. The players' strategies will consist of computing the game history so far, determining theiroptimal next move, �ptt -reducing this computation to A, and �nally producing the result of thisreduction under their respective assumption about �A(x). This approach will allow us to recoverthe game history in polynomial time with non-adaptive queries to A di�erent from x. Moreover, itwill guarantee that the player making the correct assumption about �A(x) plays optimally. Sincethis player is also the one claiming the correct value for bi, he will win the game. So, we outputthe winner's value for bi.It remains to show that we can compute the above strategies in deterministic polynomial timewith a �pk oracle, i.e. in FP�pk . It seems crucial that the number k of alternations be constant here.Proof. (of Theorem 6.3) Let A be a �ptt -complete set for �pk+1 accepted by the polynomial-timeoracle Turing machineM with oracle TQBFk. Let q(x; i) denote the i-th oracle query of MTQBFkon input x. Then q(x; i) can be written in the form (9y1)(8y2) : : : (Qkyk) �x;i(y1; y2; : : : ; yk), wherey1; : : : ; yk stand for the vectors of variables quanti�ed in each block, or in the opposite form be-ginning with the block (8y1). By reasonable abuse of notation, we also let yr stand for a stringof 0-1 assignments to the variables in the r-th block. Without loss of generality, we may supposeevery oracle query made by M has this form where each yj is a string of length jxjc, and M makesexactly jxjc queries, taking the constant c from the polynomial time bound on M . Note that thefunction q belongs to FP�pk . Hence the languageL0 = f hx; yi : q(x; i) 2 TQBFk gbelongs to �pk+1. Since A is �ptt -complete for �pk+1, there is a polynomial-time nonadaptiveoracle Turing machine N0 that accepts L0 with oracle A. Now de�ne b+i (x) = NA[fxg0 (hx; ii)and b�i (x) = NAnfxg0 (hx; ii). We de�ne languages L1; L2; : : : ; Lk 2 �pk+1 and �ptt -reductionsN1; N2; : : : ; Nk inductively as follows:Let 1 � ` � k. The set L` consists of all pairs hx; ji with 1 � j � jxjc, such that thereis a smallest i, 1 � i � jxjc, for which b+i (x) 6= b�i (x), and the following condition holds. For1 � r � ` � 1, let the s-th bit of yr equal NA[fxgr (hx; si) if r � b+i (x) mod 2, and NAnfxgr (hx; si)otherwise. We put hx; ji into L` i� there is a lexicographically least y` such that�[(Q`+1y`+1)(Q`+2y`+2) : : : (Qkyk) �x;i(y1; y2; : : : ; yk)] � ` mod 2;16



and the j-th bit of y` is set to 1. The form of this de�nition shows that L` belongs to �pk+1. Hencewe can take N` to be a polynomial-time non-adaptive oracle Turing machine that accepts L` withoracle A.Now, we construct a �ptt-autoreduction for A. On input x, we compute b+i (x) and b�i (x) for1 � i � jxjc, as well as y(b)r for b 2 f0; 1g and 1 � r � jxjc. The latter quantity y(b)r is de�ned asfollows: for 1 � s � jxjc, the s-th bit of y(b)r equals NA[fxgr (hx; si) if r � b mod 2, and NAnfxgr (hx; si)otherwise. Note that we can compute all these values in polynomial time by making non-adaptivequeries to A none of which equals x.If b+i (x) = b�i (x) for every 1 � i � jxjc, we run M on input x using b+i (x) = b�i (x) as theanswer to the i-th oracle query. Since it always holds that at least one of b+i (x) and b�i (x) equalsthe correct oracle answer bi(x), we faithfully simulate M on input x, and hence compute �A(x)correctly.Otherwise, let i be the �rst index for which b+i (x) 6= b�i (x). Since bj(x) = b+j (x) = b�j (x) forj < i, we can determine q(x; i) by simulating M on input x until it asks the i-th query. We thenoutput 1 if b+i (x) = �x;i(y(b+i (x))1 ; y(b+i (x))2 ; : : : ; y(b+i (x))k );and output 0 otherwise. We claim that this gives the correct answer to whether x 2 A.In order to prove the claim, consider the game history y(b+i (x))1 ; y(b+i (x))2 ; : : : ; y(b+i (x))k . The playerclaiming the correct value for bi(x) gets to play the rounds that allow him to win the game nomatter what his opponent does. Since this player is also the one making the correct assumptionabout �A(x), an inductive argument shows that he plays optimally: At his stages `, the string y`in the above construction of L` exists, and he plays it. The key for the induction is that at laterstages `0 > `, the value of y` at stage `0 remains the same as what it was at stage `. Thus the playerwith the correct assumption about �A(x) wins the game|that is, �x;i(y(b+i (x))1 ; y(b+i (x))2 ; : : : ; y(b+i (x))k )equals his guess for bi(x) (and not the other player's guess).In order to formalize the strengthening of Corollary 6.2 that results from Theorem 6.3, we calla betting game G non-adaptive if the in�nite sequence x1; x2; x3; : : : of queries GA makes is thesame for all oracles A. If G runs in 2O(n) time, and this sequence hits all strings in ��, then thepermutation � of the standard ordering s1; s2; s3; : : : de�ned by �(si) = xi is both computable andinvertible in 2O(n) time. It is computable in this amount of time because in order to hit all strings,G must bet on all strings in f 0; 1 gn within the �rst 2O(n) steps. Hence its ith bet must be made ina number of steps that is singly-exponential in the length of si. And to compute ��1(xi), G needonly be run for 2O(jxij) steps, since it cannot query xi after this time. Since � and its inverse areboth E-computable, � is a reasonable candidate to replace lexicographic ordering in the de�nitionof E-martingales, and likewise for EXP-martingales. We say a class C has �-E-measure zero if Ccan be covered by an E-martingale that interprets its input as a characteristic string in the ordergiven by �.Theorem 6.4 The class of �ptt -autoreducible languages can be covered by a non-adaptive E-bettinggame. Hence there is an E-computable and invertible permutation � of �� such that this class has�-E-measure zero.Proof. With reference to the proof of Theorem 6.1, we can let M1;M2; : : : be an enumeration of�ptt-autoreductions such that eachMi runs in time ni+i. The machineG in that proof automatically17



becomes non-adaptive, and since it queries all strings, it de�nes a permutation � of �� as abovewith the required properties.Corollary 6.5 Each of the following statements implies BPP 6= EXP, as do the statements ob-tained on replacing \E" by \EXP."1. The class of �ptt -autoreducible sets has E-measure zero.2. The class of �ptt -complete sets for EXP has E-measure zero.3. Non-adaptive E-betting games and E-martingales are equivalent.4. If two classes can be covered by non-adaptive E-betting games, then their union can be coveredby an E-betting game.5. For all classes C and all E-computable and invertible orderings �, if C has �-E-measure zero,then C has E-measure zero.Proof. It su�ces to make the following two observations to argue that the proof of Corollary 6.2carries over to the truth-table cases:� The construction of Allender and Strauss [AS94] actually shows that the class of sets thatare not �ptt-hard for BPP has E-measure zero.� If EXP = BPP, Theorem 6.3 implies that all �ptt -complete sets for EXP are �ptt -autoreducible,because BPP � �p2 � �p3 � EXP.Theorem 6.4 and the �nite-unions property of Lutz's measures on E and EXP do the rest.The last point of Corollary 6.5 asserts that Lutz's de�nition of measure on E is invariant under allE-computable and invertible permutations. These permutations include ip from the Introductionand (crucially) � from Theorem 6.4. Hence this robustness assertion for Lutz's measure impliesBPP 6= EXP. Our \betting-game measure" (both adaptive and non-adaptive) does enjoy thispermutation invariance, but asserting the �nite-unions property for it also implies BPP 6= EXP.The rest of this paper explores conditions under which Lutz's martingales can cover classes ofautoreducible sets, thus attempting to narrow the gap between them and betting games.6.3 Covering Autoreducible Sets By MartingalesThis puts the spotlight on the question: Under what hypotheses can we show that the �ptt -autoreducible sets have E-measure zero? Any such hypothesis must be strong enough to implyEXP 6= BPP, but we hope to �nd hypotheses weaker than assuming the equivalence of (E- orEXP-) betting games and martingales, or assuming the �nite-union property for betting games.Do we need strong pseudo-random generators to cover the �ptt -autoreducible sets? How close canwe come to covering the �pT -autoreducible sets by an E-martingale?Our �nal results show that the hypothesis MA 6= EXP su�ces. This assumption is only knownto yield pseudo-random generators of super-polynomial security (at in�nitely many lengths) ratherthan exponential security (at almost all lengths). Recall that MA contains both BPP and NP; infact it is sandwiched between NPBPP and BPPNP.18



Theorem 6.6 If MA 6= EXP, then the class of �ptt-autoreducible sets has E-measure zero.We actually obtain a stronger conclusion.Theorem 6.7 If MA 6= EXP, then the class of languages A autoreducible by polynomial-timeoracle Turing machines that always make their queries in lexicographic order has E-measure zero.To better convey the essential sampling idea, we prove the weaker Theorem 6.6 before the strongerTheorem 6.7. The extra wrinkle in the latter theorem is to use the pseudo-random generator twice,to construct the set of \critical strings" to bet on as well as to compute the martingale.Proof. (of Theorem 6.6) Let [Mi]1i=1 enumerate the �ptt -autoreductions, with each Mi runningin time ni. Divide the initial capital into shares si;m for i;m � 1, with each si;m valued initiallyat (1=m2)(1=2i). For each share si;m, we will describe a martingale that is active only on a �nitenumber of strings x. The martingale will be active only if i � m=2dlog2me and m � jxj � mi,and further only if x belongs to a set J = Ji;m constructed below. Hence the martingale will beinactive outside J , and we will be able to apply Lemma 5.1. We will arrange that whenever Miautoreduces A, there are in�nitely many m such that share si;m attains a value above 1 (in fact,close to m) along A. Hence the martingale de�ned by all the shares succeeds on A. We will alsoensure that each active share's bets on strings of length n are computable in time 2an, where theconstant a is independent of i. This is enough to make the whole martingale E-computable andcomplete the proof.To describe the betting strategy for si;m, �rst construct a set I = Ii;m starting with I = f 0m gand iterating as follows: Let y be the lexicographically least string of length m that does not appearamong queries made by Mi on inputs x 2 I. Then add y to I. Do this until I has 3dlog2me stringsin it. This is possible because the bound 3dlog2memi on the number of queries Mi could possiblymake on inputs in I is less than 2m. Moreover, 2m bounds the time needed to construct I. Thuswe have arranged that for all x; y 2 I with x < y, Mi(x) does not query y. (12)Now let J stand for I together with all the queries Mi makes on inputs in I. Adapting ideas fromDe�nition 4.1 to this context, let us de�ne a �nite Boolean function � : J ! f 0; 1 g to be consistentwith Mi on I, written � �I Mi, if for all x 2 I, Mi run on input x with oracle answers given by� agrees with the value �(x). Given a characteristic pre�x w, also write � � w if �(x) and w(x)agree on all x in J and the domain of w. Since I and J depend only on i and m, we obtain a\probability density" function for each share si;m via�i;m(w) = Pr��w[� �I Mi]: (13)The martingale di;m standardly associated to this density (as in [Lut92]) is de�nable inductivelyby di;m(�) = 1 anddi;m(w1) = di;m(w)�i;m(w1)�i;m(w) ; di;m(w0) = di;m(w)�i;m(w0)�i;m(w) : (14)(In case �i;m = 0, we already have di;m(w) = 0, and so both di;m(w1) and di;m(w0) are set to 0.)Note that the values �i;m(wb) for b = 0; 1 can only di�er from �i;m(w) if the string x indexedby b belongs to J ; i.e., di;m is inactive outside J .19



Claim 6.8 IfMi autoreduces A, then for all su�ciently large m, if share si;m could play the strategydi;m, then on A its value would rise to (at least) m=2i. That is, si;m would multiply its initial valueby (at least) m3.To see this, �rst note that for any w v A long enough to contain J in its domain, �i;m(w) = 1.We want to show that for any v short enough to have domain disjoint from I, �i;m(v) = 1=2jIj.To do this, consider any �xed 0-1 assignment �0 to strings in J n I that agrees with v. Thisassignment determines the computation of Mi on the lexicographically �rst string x 2 I, using�0 to answer queries, and hence forces the value of �(x) in order to maintain consistency on I.This in turn forces the value �(x0) on the next string x0 in I, and so on. Hence only one outof 2jIj possible completions of �0 to � is consistent with Mi on I. Thus �i;m(v) = 1=2jIj. Sincedi;m(w) = di;m(v) � (�i;m(w)=�i;m(v)) by Equation (14), and 2jIj = 23dlog2me � m3, Claim 6.8 isproved.The main obstacle now is that �i;m in Equation (13), and hence di;m(w), may not be computablein time 2an with a independent of i. The number of assignments � to count is on the order of2jJj � 2mi � 2ni . Here is where we use the E-computable pseudo-random generator D1, with super-polynomial stretching and with super-polynomial security at in�nitely many lengths, obtained viaTheorem 5.2 from the hypothesis MA 6= EXP. For all i and su�ciently large m, D1 stretches aseed s of length m into at least 3dlog2memi bits, which are enough to de�ne an assignment �s toJ (agreeing with any given w). We estimate �i;m(w) by�̂i;m(w) = Prjsj=m[�s �I Mi]: (15)Take � = 1=mi+4. By Theorem 5.2 there are in�nitely many \good" m such that SD1(m) > mi+4.Claim 6.9 For all large enough good m, every estimate �̂i;m(w) satis�es j�̂i;m(w)� �i;m(w)j � �.Suppose not. First note that Equations (13) and (15) do not depend on all of w, just onthe up-to-3dlog2memi < mi+1 bits in w that index strings in J , and these can be hard-wired intocircuits. The tests [� �I Mi] can also be done by circuits of size o(mi+1), because a Turing machinecomputation of time r can be simulated by circuits of size O(r log r) [PF79]. Hence we get circuitsof size less than SD1(m) achieving a discrepancy greater than 1=SD1(m), a contradiction. Thisproves Claim 6.9.Finally, observe that the proof of Claim 6.8 gives us not only di;m(w) � �i;m(w) � m3, butalso di;m(w) = �(�i;m(w) �m3), when w v A. For w v A and good m, we thus obtain estimatesg(w) for di;m(w) within error bounds �0 = �(�) = �(1=mi+1). Now applying Lemma 5.1 for thisg(w) and J = Ji;m yields a martingale d0i;m(w) computable in time 2an, where the constant a isindependent of i. This d0i;m(w) is the martingale computed by the actions of share si;m. SinceK = Psi2J �0 = jJ j�0 � (1=m) �3dlog2me = o(1), we actually obtain jd0i;m(w) � di;m(w)j = o(1),which is stronger than what we needed to conclude that share si;m returns enough pro�t. Thiscompletes the proof of Theorem 6.6.To prove Theorem 6.7, we need to construct sets I = Ii;m with properties similar to Equa-tion (12), in the case where Mi is no longer a �ptt -autoreduction, but makes its queries in lexico-graphic order. To carry out the construction of I, we use the pseudorandom generator D1 a secondtime, and actually need only that Mi on input 0m makes all queries of length < m before making20



any query of length � m. To play the modi�ed strategy for share si;m, however, appears to requirethat all queries observe lexicographic order.Proof. (of Theorem 6.7). Recall that the hypothesis EXP 6= MA yields a pseudo-random genera-tor D1 computable in time 2O(m) and stretchingm bits to r(m) bits such that for all i, all su�cientlylarge m give r(m) > mi, and in�nitely many m give hardness SD1(m) > mi. Let [Mi]1i=1 be a stan-dard enumeration of �pT -autoreductions that are constrained to make their queries in lexicographicorder, with each Mi running in time O(ni). We need to de�ne strategies for \shares" si;m suchthat whenever Mi autoreduces A, there are in�nitely many m such that share si;m grows its initialcapital from 1=m22i to 1=2i or more. The strategy for si;m must still be computable in time 2amwhere a is independent of i.To compute the strategy for si;m, we note �rst that si;m can be left inactive on strings oflength < m. The overall running time allowance 2O(m) permits us to suppose that by the time si;mbecomes active and needs to be considered, the initial segment w0 of A (where A is the languageon which the share happens to be playing) that indexes strings of length up to m � 1 is known.Hence we may regard w0 as �xed. For any � 2 f 0; 1 gmi let M�i (x) stand for the computation inwhich w0 is used to answer any queries of length < m and � is used to answer all other queries.Because of the order in which Mi makes its queries, those queries y answered by w0 are the samefor all �, so that those answers can be coded by a string u0 of length at most mi. Now for anystring y of length equal to m, de�neP (x; y) = Pr�[M�i (x) queries y]:Note that given u0 and �, the test \M�i (x) queries y" can be computed by circuits of size O(mi+1).Hence by using the pseudo-random generator D1 at length m, we can compute uniformly in E anapproximation P1(x; y) for P (x; y) such that for in�nitely many m, said to be \good" m, all pairsx; y give jP1(x; y) � P (x; y)j � �m, where we choose �m = 1=m4.Here is the algorithm for constructing I = Ii;m. Start with I := ;, and while jIj < 3 log2m,do the following: Take the lexicographically least string y 2 �m n I such that for all x 2 I,P1(x; y) � �m. The search for such a y will succeed within jIj �mi+4 trials, since for any particularx, there are fewer thanmi+4 strings y overall that will fail the test. (This is so even ifm is not good,because it only involves P1, and because P1 involves simulating MD1(s)i over all seeds s.) Thereis enough room to �nd such a y provided jIjmi+4 � 2m, which holds for all su�ciently large m.The whole construction of I can be completed within time 22am. It follows that for any su�cientlylarge good m and x; y 2 I with x < y, Pr�[M�i (x) queries y] < 2�m = 2=m4.At this point we would like to de�ne J to be \I together with the set of strings queried by Mion inputs in I" as before, but unlike the previous case where Mi was non-adaptive, this is not avalid de�nition. We acknowledge the dependence of the strings queried by Mi on the oracle A byde�ning JA := I [ f y : (9x 2 I)MAi (x) queries y g:Let r = mi � d3 logme. Then jJAj � r; that is, JA has the same size as J in the previous proof. Thislatter de�nition will be OK because Mi makes its queries in lexicographic order. Hence the sharesi;m, having already computed I without any reference to A, can determine the strings in JA onwhich it should be active on the y, in lexicographic order. Thus we can well-de�ne a mapping �from f 0; 1 gr to f 0; 1 g so that for any k � r, �(k) = 1 means that the query string y that happensto be kth in order in the on-the-y construction of JA is answered \yes" by the oracle. Then wemay write J� for JA, and then write �(y) = 1 in place of �(k) = 1. Most important, given any21



x 2 I, every such � well-de�nes a computation M�i (x). This entitles us to carry over the two\consistency" de�nitions from the proof of Theorem 6.6:� � � w if �(y) = w(y) for all y 2 J�;� � �I Mi if for all x 2 I, M�i (x) equals (i.e., \agrees with") �(x).Finally, we may apply the latter notion to initial subsets of I, and de�ne for 1 � ` � 3 logm thepredicate� R`(�) = (� �x1;:::;x` Mi) ^ (8j; k : 1 � j � k � `)M�i (xj) does not query xk.Claim 6.10 For all `, Pr�[R`(�)] � 1=2`.For the base case ` = 1, Pr�[R1(�)] = 1=2, because Mi(x) does not query x1, Mi being anautoreduction, and because whether � �x1 Mi depends only on the bit of � corresponding to x1.Working by induction, suppose Pr�[R`�1(�)] � 1=2`�1. If R`�1(�) holds, then taking �0 to be �with the bit corresponding to x` ipped, R`�1(�0) also holds. However, at most one of R`(�) andR`(�0) holds, again because Mi(x`) does not query x`. Hence Pr� [R`(�)] � (1=2)Pr�[R`�1(�)],and this proves Claim 6.10. (It is possible that neither R`(�) nor R`(�0) holds, as happens whenM�i (xj) queries x` for some j, but this does not hurt the claim.)Now we can rejoin the proof of Theorem 6.6 at Equation (13), de�ning the probability densityfunction �i;m(w) = Pr��w[� �I Mi]. We get a martingale di;m from �i;m as before, and thisrepresents an \ideal" strategy for share si;m to play. The statement corresponding to Claim 6.8 is:Claim 6.11 If Mi autoreduces A and m is good and su�ciently large, then the ideal strategy forshare si;m multiplies its value by at least m3=2 along A.To see this, note that we constructed I = fx1; : : : ; x3 logm g above so that for all j < k,Pr�[M�i (xj) queries xk] � 2=m4. It follows thatPr[(9j; k : 1 � j � k � 3 logm)Mi(xj) queries xk] �  d3 logme2 ! � 2m4 � 1m3 ;provided m � d3 logme2. Hence, using Claim 6.10 with ` = 3 logm, we get:Pr�[� �I Mi] � 123 logm + 1m3 = 2m3 :Since the � de�ned by A satis�es � �I Mi, it follows by the same reasoning as in Claim 6.8 thatdi;m pro�ts by at least a fraction of m3=2 along A. This proves Claim 6.11.Finally, we (re-)use the pseudo-random generator D1 as before to expand a seed s of length minto a string �s of (at least) r = 3dlog2memi bits. Given any w, �s well-de�nes a � and a set J�of size at most r as constructed above, by using w to answer queries in the domain of w and �s foreverything else. We again obtain the estimate �̂i;m(w) = Prjsj=m[�s �I Mi] from Equation (15),with the same time complexity as before. Now we repeat Claim 6.9 in this new context:Claim 6.12 For all large enough good m, every estimate �̂i;m(w) satis�es j�̂i;m(w)��i;m(w)j � �.If not, then for some �xed w the estimate fails. The �nal key point is that because Mi alwaysmakes its queries in lexicographic order, the queries in the domain of w that need to be covered are22



the same for every �s. Hence the corresponding bits of w can be hard-wired by circuitry of size atmost r. The test [�s �I Mi] can thus still be carried out by circuits of size less than mi+1, and wereach the same contradiction of the hardness value SD1 .Finally, we want to apply Lemma 5.1 to replace di;m(w) by a martingale d0i;m(w) that yieldsvirtually the same degree of success and is computable in time 2O(n). Unlike the truth-table casewe cannot apply Lemma 5.1 verbatim because we no longer have a single small set J that d0 isactive on. However, along any set A, the values d0i;m(w) and d0i;m(wb) (b = 0 or 1) can di�er onlyfor cases where b indexes a string in the small set J corresponding to A, and the reader may checkthat the argument and bounds of Lemma 5.1 go through unscathed in this case. This �nishes theproof of Theorem 6.7.7 ConclusionsThe initial impetus for this work was a simple question about measure: is the pseudo-randomnessof a characteristic sequence invariant under simple permutations such as that induced by ip in theIntroduction? The question for ip is tantalizingly still open. However, in Section 6.2 we showedthat establishing a \yes" answer for any permutation that intuitively should preserve the samecomplexity-theoretic degree of pseudo-randomness, or even for a single speci�c such permutationas that in the simple proof of the non-adaptive version of Theorem 6.1, would have the majorconsequence that EXP 6= BPP.Our \betting games" in themselves are a natural extension of Lutz's measures for deterministictime classes. They preserve Lutz's original idea of \betting" as a means of \predicting" membershipin a language, without being tied to a �xed order of which instances one tries to predict, or to a�xed order of how one goes about gathering information on the language. We have shown somesenses in which betting games are robust and well-behaved. We also contend that some currentdefects in the theory of betting games, notably the lack of a �nite-unions theorem pending thestatus of pseudo-random generators, trade o� with lacks in the resource-bounded measure theory,such as being tied to the lexicographic ordering of strings.The main open problems in this paper are interesting in connection with recent work byImpagliazzo and Wigderson [IW98] on the BPP vs. EXP problem. First we remark that the mainresult of [IW98] implies that either BPP = EXP or BPP has E-measure zero [vM98]. Amongthe many measure statements in the last section that imply BPP 6= EXP, the most constrainedand easiest to attack seems to be item 4 in Corollary 6.5. Indeed, in the speci�c relevant casestarting with the assumption BPP = EXP, one is given a non-adaptive E-betting game G andan E-martingale d, and to obtain the desired contradiction that proves BPP 6= EXP, one needonly construct an EXP-betting game G0 that covers S1[G] [ S1[d]. What we can obtain is a\randomized" betting game G00 that ips one coin at successive intervals of input lengths to decidewhether to simulate G or d on that interval. (The intervals come from the proof of Theorem 6.4.)Any hypothesis that can de-randomize this G00 implies BPP 6= EXP. We do not know whether theweak hypotheses considered in [IW98], some of them shown to follow from BPP 6= EXP itself, aresu�cient to do this.Stepping back from trying to prove BPP 6= EXP outright or trying to prove that these measurestatements are equivalent to BPP 6= EXP, we also have the problem of narrowing the gap betweenBPP 6= EXP and the su�cient condition EXP 6= MA used in our results. Moreover, does EXP 6=MA su�ce to make the �pT -autoreducible sets have E-measure zero? Does that su�ce to simulate23
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