A Generalization of Resource-Bounded Measure, With Application to the
BPP vs. EXP Problem

Harry Buhrman' Dieter van Melkebeek?
CWI University of Chicago
Kruislaan 413 Department of Computer Science
1098SJ Amsterdam 1100 E. 58th St.
The Netherlands Chicago, IL 60637 USA
Kenneth W. Regan?® D. Sivakumar*
State Univ. of N.Y. at Buffalo Department of Computer Science
Computer Science, 226 Bell Hall University of Houston
Buffalo, NY 14260-2000 USA Houston, TX 77204-3475, USA.

Martin Strauss®

AT&T Labs Room C216
180 Park Ave
Florham Park, NJ 07932-0971 USA

August 4, 1999

'Partially supported by the Dutch foundation for scientific research (NWQ) through STON project 612-
34-002, and by the European Union through NeuroCOLT ESPRIT Working Group Nr. 8556, and HC&M
grant nr. ERB4050PL93-0516. E-mail: buhrman@cwi.nl.

2Partly supported by the European Union through Marie Curie Research Training Grant ERB-4001-GT-
96-0783 at CWI and at the University of Amsterdam; by NSF Grant CCR 92-53582; and by the Fields
Institute of the University of Toronto. E-mail: dieter@cs.uchicago.edu

3Supported in part by the National Science Foundation under Grant CCR-9409104. E-mail:
regan@cse.buffalo.edu

4Part of this research was performed while the author was at the State Univ. of N.Y. at Buffalo, supported
in part by National Science Foundation Grant CCR-9409104. E-mail: siva@cs.uh.edu

SResearch performed while the author was at Rutgers University and Iowa State University, supported
by NSF grants CCR-9204874 and CCR-9157382. E-mail: mstrauss@research.att.com

Abstract

We introduce resource-bounded betting games, and propose a generalization of Lutz’s resource-
bounded measure in which the choice of next string to bet on is fully adaptive. Lutz’s martingales
are equivalent to betting games constrained to bet on strings in lexicographic order. We show that
if strong pseudo-random number generators exist, then betting games are equivalent to martingales,
for measure on E and EXP. However, we construct betting games that succeed on certain classes
whose Lutz measures are important open problems: the class of polynomial-time Turing-complete
languages in EXP, and its superclass of polynomial-time Turing-autoreducible languages. If an
EXP-martingale succeeds on either of these classes, or if betting games have the “finite union
property” possessed by Lutz’s measure, one obtains the non-relativizable consequence BPP # EXP.
We also show that if EXP # MA, then the polynomial-time truth-table-autoreducible languages
have Lutz measure zero, whereas if EXP = BPP, they have measure one.

1 Introduction

Lutz’s theory of measure on complexity classes is now usually defined in terms of resource-bounded
martingales. A martingale can be regarded as a gambling game played on unseen languages A. Let
S1, 89, 83, . .. be the standard lexicographic ordering of strings. The gambler G starts with capital
Co = $1 and places a bet By € [0,Cp] on either “s; € A” or “s; ¢ A.” Given a fixed particular
language A, the bet’s outcome depends only on whether s; € A. If the bet wins, then the new
capital Cy equals Cy + By, while if the bet loses, C7 = Cy — B;. The gambler then places a bet
By € [0,C4] on (or against) membership of the string so, then on s3, and so forth. The gambler
succeeds if G’s capital C; grows toward 4+o0o. The class C of languages A on which G succeeds
(and any subclass) is said to have measure zero. One also says G covers C. Lutz and others (see
[Lut97]) have developed a rich and extensive theory around this measure-zero notion, and have
shown interesting connections to many other important problems in complexity theory.

We propose the generalization obtained by lifting the requirement that G must bet on strings
in lexicographic order. That is, G may begin by choosing any string x; on which to place its first
bet, and after the oracle tells the result, may choose any other string zs for its second bet, and so
forth. Note that the sequences x1,x9,23,... (as well as By, By, Bs,...) may be radically different
for different oracle languages A in complexity-theory parlance, G’s queries are adaptive. The lone
restriction is that G may not query (or bet on) the same string twice. We call G a betting game.

Our betting games remedy a possible lack in the martingale theory, one best explained in the
context of languages that are “random” for classes D such as E or EXP. In this paper, E stands for
deterministic time 29(™), and EXP stands for deterministic time on?M A language L is D-random
if L cannot be covered by a D-martingale. Based on one’s intuition about random 0-1 sequences,
the language L' = { flip(x) : x € L} should likewise be D-random, where flip(x) changes every 0
in x to a 1 and vice-versa. However, this closure property is not known for E-random or EXP-
random languages, because of the way martingales are tied to the fixed lexicographic ordering of >:*.
Betting games can adapt to easy permutations of ¥* such as that induced by flip. Similarly, a class
C that is small in the sense of being covered by a (D-) betting game remains small if the languages
L € C are so permuted. In the r.e./recursive theory of random languages, our generalization is
similar to “Kolmogorov-Loveland place-selection rules” (see [Lov69]). We make this theory work
for complexity classes via a novel definition of “running in time #(n)” for an infinite process.

Our new angle on measure theory may be useful for attacking the problem of separating BPP
from EXP, which has recently gained prominence in [[W98]. In Lutz’s theory it is open whether the
class of EXP-complete sets under polynomial-time Turing reductions has EXP-measure zero. If
so (in fact if this set does not have measure one), then by results of Allender and Strauss [AS94],
BPP # EXP. Since there are oracles A such that BPP4 = EXP# [Hel86], this kind of absolute
separation would be a major breakthrough. We show that the EXP-complete sets can be covered
by an EXP betting game in fact, by an E-betting game. The one technical lack in our theory as
a notion of measure is also interesting here: If the “finite unions” property holds for betting games
(viz. Cy small A Cy small = C; UCy small), then EXP # BPP. Likewise, if Lutz’s martingales do
enjoy the permutation-invariance of betting games, then BPP # EXP. Finally, we show that if a
pseudo-random number generator of security gn) exists, then for every EXP-betting game G one
can find an EXP-martingale that succeeds on all sets covered by G. Pseudo-random generators of
higher security 292n) likewise imply the equivalence of E-betting games and E-measure. Ambos-
Spies and Lempp [ASLY6] proved that the EXP-complete sets have E-measure zero under a different
hypothesis, namely P = PSPACE.

Measure theory and betting games help us to dig further into questions about pseudo-random

generators and complexity-class separations. Our tool is the notion of an autoreducible set, whose
importance in complexity theory was argued by Buhrman, Fortnow, van Melkebeek, and Torenvliet
[BEVMTY8] (after [BFT95]). A language L is <%.-autoreducible if there is a polynomial-time oracle
Turing machine Q such that for all inputs 2, Q" correctly decides whether 2 € L without ever
submitting x itself as a query to L. If () is non-adaptive (i.e., computes a polynomial-time truth-
table reduction), we say L is <},-autoreducible. We show that the class of <’.-autoreducible sets is
covered by an E-betting game. Since every EXP-complete set is </.-autoreducible [BEvMT98], this
implies results given above. The subclass of <},-autoreducible sets provides the following tighter
connection between measure statements and open problems about EXP:

o If the <} ,-autoreducible sets do not have E-measure zero, then EXP = MA.

o If the <} ,-autoreducible sets do not have E-measure one in EXP, then EXP # BPP.

Here MA is Babai’s “Merlin-Arthur” class, which contains BPP and NP and is contained in the
level ¥4 NTIY of the polynomial hierarchy [Bab85, BMS8S8]. Since EXP # MA is strongly believed,
one would expect the class of <},-autoreducible sets to have E-measure zero, but proving this—or
proving any of the dozen other measure statements in Corollaries 6.2 and 6.5 would yield a proof
of EXP # BPP.

In sum, the whole theory of resource-bounded measure has progressed far enough to wind the
issues of (pseudo-)randomness and stochasticity within exponential time very tightly. We turn the
wheels a few more notches, and seek greater understanding of complexity classes in the places where
the boundary between “measure one” and “measure zero” seems tightest.

Section 2 reviews the formal definitions of Lutz’s measure and martingales. Section 3 intro-
duces betting games, and shows that they are a generalization of martingales. Section 4 shows
how to simulate a betting game by a martingale of perhaps-unavoidably higher time complexity.
Section 5, however, demonstrates that strong pseudo-random generators (if there are any) allow
one to compute the martingale in the same order of time. Section 6 presents our main results per-
taining to autoreducible sets, including our main motivating example of a concrete betting game.
The concluding Section 7 summarizes open problems and gives prospects for future research.

A preliminary version of this paper without proofs appeared in the proceedings of STACS’98,
under the title “A Generalization of Resource-Bounded Measure, With an Application.”

2 Martingales

A martingale is abstractly defined as a function d from {0,1}* into the nonnegative reals that
satisfies the following “average law”: for all w € {0,1 }*,

d(w) = w (1)

The interpretation in Lutz’s theory is that a string w € { 0,1 }* stands for an initial segment of
a language over an arbitrary alphabet X as follows: Let s, s9, $3, ... be the standard lexicographic
ordering of ¥*. Then for any language A C ¥*, write w C A if for all 4, 1 < i < |wl|, s; € A iff
the ith bit of w is a 1. We also regard w as a function with domain dom(w) = {s1,...,s),| } and
range { 0,1}, writing w(s;) for the ith bit of w. A martingale d succeeds on a language A if the
sequence of values d(w) for w C A is unbounded.

Let S°°[d] stand for the (possibly empty, often uncountable) class of languages on which d
succeeds. Lutz originally defined the complexity of a martingale d in terms of computing fast-
converging rational approximations to d. Subsequently he showed that for certain classes of time

bounds one loses no generality by requiring that martingales themselves have rational values a/b
such that all digits of the integers a and b (not necessarily in lowest terms) are output within
the time bound. That is, given any martingale d meeting the original definition of computability
within the time bound, one can obtain a rational-valued d’ computable within that bound such
that S*®[d] C S*°[d'] [May94, JL95]. We adopt this requirement throughout the paper, and specify
that integers are represented in standard binary notation, and rationals as pairs of integers, not
necessarily in lowest terms. We use the fact that a sum a;/b; + ... ay, /b, can be computed and
written down in £9(Y) time, where £ is the sum of the lengths of the integers a; and b;.

Definition 2.1 (cf. [Lut92, May94]). Let A be a complexity class of functions. A class C of
languages has A-measure zero, written ua(C) = 0, if there is a martingale d computable in A such
that C C S°°[d]. One also says that d covers C.

Lutz measured the time to compute d(w) in terms of the length N of w, but one can also work
in terms of the largest length n of a string in the domain of w. For N > 0, n equals |logy N |; all
we care about is that n = O(log N) and N = 20(7) " Because complexity bounds on languages we
want to analyze will naturally be stated in terms of n, we prefer to use n for martingale complexity
bounds. The following correspondence is helpful:

Lutz’s “p” ~ NOM) = 20(m) o measure on E

2(logN)O(1) — QnO(l)

Lutz’s “ps” ~ ~ measure on EXP

Since we measure the time to compute d(w) in terms of n, we write “up” for E-measure and
“upxp’ for EXP-measure, and generally ua for any A that names both a language and function
class. Abusing notation similarly, we define:

Definition 2.2 ([Lut92]). A class C has A-measure one, written ua(C) = 1, if ua(A\C) = 0.

The concept of resource bounded measure is known to be robust under several changes [May94].
The following lemma has appeared in various forms [May94, BL96]. It essentially says that we can
assume a martingale grows almost monotonically (sure winnings) and not too fast (slow winnings).

Lemma 2.1 (“Slow-but-Sure-Winnings” lemma for martingales) Let d be a martingale.
Then there is a martingale d' with S*°[d] C S*°[d'] such that

(Vw)(Vu) : d'(wu) > d'(w) —2d()), and (2)
(Vw) : d'(w) < 2(Jw| + 1)d(N). (3)

If d is computable in time t(n) , then d' is computable in time (2"t(n))?W).

The idea is to play the strategy of d, but in a more conservative way. Say we start with an
initial capital of $1. We will deposit a part ¢ of our capital in a bank and only play the strategy
underlying d on the remaining liquid part e of our capital. We start with no savings and a liquid
capital of $1. If our liquid capital reaches or exceeds $2, we deposit an additional $1 or $2 to our
savings account ¢ so as to keep the liquid capital in the range $[1,2) at all times. If d succeeds, it
will push the liquid capital infinitely often to $2 or above, so ¢ grows to infinity, and d' succeeds
too. Since we never take money out of our savings account ¢, and the liquid capital e is bounded
by $2, once our total capital d = ¢ + e has reached a certain level, it will never go more than $2
below that level anymore, no matter how bad the strategy underlying d is. On the other hand,
since we add at most $2 to ¢ in each step, d'(w) cannot exceed 2(|w| + 1) either.

We now give the formal proof.

Proof. (of Lemma 2.1) Define d' : ¥* — [0, 00) by
d'(w) = (c(w) + e(w))d(N),

where ¢(A) =0 and e(\) = 1, and

c(wb) = c(w)+2 and e(wb) = dd(gfub))e(w) —2 ifd(w) # 0 and d[l(gfub))e(11)) >3
c(wb) clw)+1 and e(wb) = cfi((zuub))e(w) —1 ifd(w)#0and2< cfi(gfub))e(w) <3
c(wb) = c(w) and e(wb) = 'Jld((zfub))e(w) if d(w) # 0 and 'il(gful)))e(zJ)) <2
c(wb) c(w) and e(wb) e(w) otherwise.

To see that the recursion does not excessively blow up the time complexity or size of the answer,
note that owing to cancellation of values of d, every value e(w) where d(w) # 0 is given by a sum
of the form

Z“’“d(...k

where each ay isin { —2,—1,0,1}, N = |w|, and w][l ... k] stands for the first & bits of w. Each term
in the sum is computable in time O(¢(n)2N) (using the naive quadratic algorithms for multiplication
and integer division). Then by the property noted just before Definition 2.1, these terms can be
summed in time (Nt(n))?().

By induction on |w| we observe that

0 <e(w) <2, (1)
and that
d'(wh) = { [C(w) T 'ff{ff))e(w)] d(\) if d(w) £0
d'(w) otherwise,

from which it follows that d’ is a martingale.
Now let w be an infinite 0-1 sequence denoting a language on which d succeeds. Then e(w)

will always remain positive for w C w, and d[l(gfub))e(w) will become 2 or more infinitely often.

Consequently, limg,c, |0 ¢(w) = co. Since d'(w) > c(w)d(N), it follows that S¥[d] C S*[d'].
Moreover, by Equation (4) and the fact that ¢ does not decrease along any sequence, we have that

d'(wu) > c(wu)d(N) > c(w)d(N) = d'(w) — e(w)d(N) > d'(w) — 2d(N).

Since ¢ can increase by at most 2 in every step, ¢(w) < 2|w|. Together with Equation (4), this
yields that
d'(w) = (e(w) + e(w))d(N) < 2(Jw| + 1)d(N).

O

One can also show that S*°[d'] C S°°[d] in Lemma 2.1, so the success set actually remains intact
under the above transformation.

As with Lebesgue measure, the property of having resource-bounded measure zero is monotone
and closed under union (“finite unions property”). A resource-bounded version of closure under
countable unions also holds. The property that becomes crucial in resource-bounded measure is

that the whole space A does not have measure zero, which Lutz calls the “measure conservation”
property. With a slight abuse of meaning for “#,” this property is written ua(A) # 0. In particular,
pr(E) # 0 and ppxp(EXP) # 0. Subclasses of A that require substantially fewer resources, do have
A-measure zero. For example, P has E-measure zero. Indeed, for any fixed ¢ > 0, DTIME[2¢"] has
E-measure zero, and DTIME[2™] has EXP-measure zero [Lut92].

Apart from formalizing rareness and abundance in complexity theory, resource-bounded mar-
tingales are also used to define the concept of a random set in a resource-bounded setting.

Definition 2.3. A set A is A-random if ua({A}) # 0.

In other words, A is A-random if no A-martingale succeeds on A.

3 Betting Games

To capture intuitions that have been expressed not only for Lutz measure but also in many earlier
papers on random sequences, we formalize a betting game as an infinite process, rather than as a
Turing machine that has finite computations on string inputs.

Definition 3.1. A betting game G is an oracle Turing machine that maintains a “capital tape” and
a “bet tape,” in addition to its standard query tape and worktapes, and works in stages i =1,2,3...
as follows: Beginning each stage i, the capital tape holds a nonnegative rational number C; ;. The
initial capital Cy is some positive rational number. G computes a query string z; to bet on, a bet
amount Bj, 0 < B; < Cj_1, and a bet sign b; € {—1,+1}. The computation is legal so long as z;
does not belong to the set {z1,...,2;_1 } of strings queried in earlier stages. G ends stage i by
entering a special query state. For a given oracle language A, if x; € A and b; =41, or if z; ¢ A
and b; = —1, then the new capital is given by C; := C;_1 + B, else by C; := C;_1 — B;. We charge
M for the time required to write the numerator and denominator of the new capital C; down. The
query and bet tapes are blanked, and G proceeds to stage i + 1.

In this paper, we lose no generality by not allowing G to “crash” or to loop without writing a next
bet and query. Note that every oracle set A determines a unique infinite computation of G, which
we denote by G**. This includes a unique infinite sequence 1, zs, . .. of query strings, and a unique
sequence Cy, C1, Cs, ... telling how the gambler fares against A .

Definition 3.2. A betting machine G runs in time t(n) if for all oracles A, every query of length
n made by G* is made in the first £(n) steps of the computation.

Definition 3.3. A betting game G succeeds on a language A, written A € S*°[G], if the sequence
of values C; in the computation G* is unbounded. If A € S®[G], then we also say G covers A.

Our main motivating example where one may wish not to bet in lexicographic order, or accord-
ing to any fixed ordering of strings, is deferred to Section 6. There we will construct an E-betting
game that succeeds on the class of <?.-autoreducible languages, which is not known to have Lutz
measure zero in E or EXP.

We now want to argue that the more liberal requirement of being covered by a time ¢(n)
betting game, still defines a smallness concept for subclasses of DTIME[¢(n)] in the intuitive sense
Lutz established for his measure-zero notion. The following result is a good beginning.

Theorem 3.1 For every time-t(n) betting game G, we can construct a language in DTIME[t(n)]
that is not covered by G.

Proof. Let () be a non-oracle Turing machine that runs as follows, on any input . The machine
() simulates up to t(|x|) steps of the single computation of G on empty input. Whenever G bets
on and queries a string y, () gives the answer that causes G to lose money, rejecting in case of a
zero bet. If and when G queries z, @ does likewise. If ¢(]z|) steps go by without = being queried,
then Q) rejects x.

The important point is that ()’s answer to a query y # z is the same as the answer when @)
is run on input y. The condition that G cannot query a string x of length n after ¢(n) steps have
elapsed ensures that the decision made by @ when z is not queried does not affect anything else.
Hence @) defines a language on which G never does better than its initial capital Cy, and so does
not succeed. |

In particular, the class E cannot be covered by an E-betting game, nor EXP by an EXP-betting
game. Put another way, the “measure conservation axiom” [Lut92] of Lutz’s measure carries over
to betting games.

To really satisfy the intuition of “small,” however, it should hold that the union of two small
classes is small. (Moreover, “easy” countable unions of small classes should be small, as in [Lut92].)
Our lack of meeting this “finite union axiom” will later be excused insofar as it has the non-
relativizing consequence BPP # EXP. Theorem 3.1 is still good enough for the “measure-like”

i

results in this paper.

We note also that several robustness properties of Lutz’s measure treated in Section 2 carry
over to betting games. This is because we can apply the underlying transformations to the capital
function cq of G, which is defined as follows:

Definition 3.4. Let GG be a betting game, and 7 > 0 an integer.

a play « of length 7 is a sequence of i-many oracle answers. Note that o determines the firs
A pl f length i i fi 1 Note that a determines the first
1-many stages of GG, together with the query and bet for the next stage.

(b) cq(«) is the capital C; that G has at the end of the play « (before the next query).

Note that the function ¢¢ is a martingale over plays «. The proof of Lemma 2.1 works for ¢g. We
obtain:

Lemma 3.2 (“Slow-But-Sure Winnings” lemma for betting games) Let G be a betting
game that runs in time t(n). Then we can construct a betting game G' running in time (2"t(n))°(")
such that S®[G] C S®[G'], G' always makes the same queries in the same order as G, and:

VB, Yy :ca (By) > cqr(B) — 2ca(N) (5)
Va:cg(a) <2(al +1)ea(N). (6)
Proof. The proof of Lemma 2.1 carries over.]

To begin comparing betting games and martingales, we note first that the latter can be con-
sidered a direct special case of betting games. Say a betting game G is lex-limited if for all oracles
A, the sequence 1, zy, x5 ... of queries made by G4 is in lexicographic order. (It need not equal
the lexicographic enumeration si, s, s3, ... of ¥*.)

Theorem 3.3 Let T(n) be a collection of time bounds that is closed under squaring and under
multiplication by 2", such as 290 or Y Then a class C has time-T (n) measure zero iff C is
covered by a time-T (n) lez-limited betting game.

Proof. From a martingale d to a betting game G, each stage i of G* bets on s; an amount B; with
sign b; € { —1,41} given by b; B; = d(wl) —d(w), where w is the first i — 1 bits of the characteristic
sequence of A. This takes O(2") evaluations of d to run G up through queries of length n, hence
the hypothesis on the time bounds 7 (n). In the other direction, when G is lex-limited, one can
simulate G on a finite initial segment w of its oracle up to a stage where all queries have been
answered by w and G will make no further queries in the domain of w. One can then define d(w)
to be the capital entering this stage. That this is a martingale and fulfills the success and run-time
requirements is left to the reader. O

Hence in particular for measure on E and EXP, martingales are equivalent to betting games con-
strained to bet in lexicographic order. Now we will see how we can transform a general betting
game into an equivalent martingale.

4 From Betting Games to Martingales

This section associates to every betting game G a martingale d¢ such that S®[G] C S*[d¢], and
begins examining the complexity of dg. Before defining d¢, however, we pause to discuss some
tricky subtleties of betting games and their computations.

Given a finite initial segment w of an oracle language A, one can define the partial computation
G" of the betting game up to the stage ¢ at which it first makes a query =z; that is not in the domain
of w. Define d(w) to be the capital C;_; that G had entering this stage. It is tempting to think
that d is a martingale and succeeds on all A for which G succeeds—but neither statement is true
in general. The most important reason is that d may fail to be a martingale.

To see this, suppose z; itself is the lexicographically least string not in the domain of w. That
is, z; is indexed by the bit b of wb, and wl C A iff z; € A. Tt is possible that G4 makes a small
(or even zero) bet on x;, and then goes back to make more bets in the domain of w, winning lots of
money on them. The definitions of both d(w0) and d(w1) will then reflect these added winnings,
and both values will be greater than d(w). For example, suppose G first puts a zero bet on z; = 55,
then bets all of its money on x;11 = s; 1 not being in A, and then proceeds with x; ;o = sj41. If
w(sj—1) =0, then d(w0) = d(wl) = 2d(w).

Put another way, a finite initial segment w may carry much more “winnings potential” than
the above definition of d(w) reflects. To capture this potential, one needs to consider potential plays
of the betting game outside the domain of w. Happily, one can bound the length of the considered
plays via the running time function ¢ of G. Let n be the maximum length of a string indexed by
w; i.e., n = |logy(Jw|)|. Then after t(n) steps, G cannot query any more strings in the domain of
w, so w’s potential is exhausted. We will define dg(w) as an average value of those plays that can
happen, given the query answers fixed by w. We use the following definitions and notation:

Definition 4.1. For any #(n) time-bounded betting game G and string w € ¥*, define:

(a) A play « is t-mazimal if G completes the first || stages, but not the query and bet of the
next stage, within ¢ steps.

play « is G-consistent with w, written o ~g w, if for all stages j suc at the querie

b) A pl is G istent with itt if for all st] h that th ied
string «; is in the domain of w, o;j = w(x;). That is, a is a play that could possibly happen
given the information in w. Also let m(«,w) stand for the number of such stages j whose
query is answered by w.

(c) Finally, put dg(X) = c¢(A), and for nonempty w, with n = |log,(Jw|)] as above, let

dg(w) = > cq(a) 2mlew)=lal (7)

a t(n)—maximal,a~gw

The weight 2™(®®)=lel in Equation (7) has the following meaning. Suppose we extend the simulation
of G by flipping a coin for every query outside the domain of w, for exactly i stages. Then the
number of coin-flips in the resulting play « of length i is i — m(q, w), so 2™®®)~% ig its probability.
Thus dg(w) returns the suitably-weighted average of ¢(n)-step computations of G with w fixed.
The interested reader may verify that this is the same as averaging d(wv) over all v of length 2t(n)
(or any fixed longer length), where d is the non-martingale defined at the beginning of this section.

Lemma 4.1 The function dg(w) is a martingale.

Proof. First we argue that

do(w)= Y cgla’)2mmim, (8)

la'|=t(n),a’~qw

Observe that when o = af and « is t(n)-maximal, @ ~g w <= o' ~g w. This is because none of
the queries answered by (can be in the domain of w, else the definition of G running in time ¢(n)
would be violated. Likewise if @ ~g w then m(a/,w) = m(a,w). Finally, since ¢ is a martingale,
cG(@) = X2 8/=t(n)—|a| cc(aB) 2lal=t(n) " These facts combine to show the equality of Equations (7)
and (8).

By the same argument, the right-hand side of Equation (8) is unchanged on replacing “t(n)”
by any t' > t(n).

Now consider w such that |w|+1 is not a power of 2. Then the “n” for w0 and w1 is the same
as the “n” for dg(w). Let Py stand for the set of « of length #(n) that are G-consistent with w0
but not with w1, P; for those that are G-consistent with w1 but not w0, and P for those that are
consistent with both. Then the set { a : |a| = t(n), a ~g w} equals the disjoint union of P, Py,
and P;. Furthermore, for o € Py we have m(a,w0) = m(a,w) + 1, and similarly for P;, while for
a € P we have m(«, w0) = m(a, wl) = m(a,w). Hence:

d(;(U)O)—{—d(;(U)l) = Z CG()Qm(a ,w0)— + Z 2m a,wl)—t(n)
acPUPy a€PUP;
= Z CG()2maw0 + Z CG 2m (a,wl)— +QZCG 2m a,w)—t(n)
ac Py acP acP
= QZCG 2maw +QZ(=G Qmaw +22(’G Qmaw —t(n)
achy a€ Py a€P
= 2dg(w).

Finally, if |w| 4+ 1 is a power of 2, then dg(w0) and dg(wl) use ' := t(n + 1) for their length of
a. However, by the first part of this proof, we can replace t(n) by ¢ in the definition of dg(w)
without changing its value, and then the second part goes through the same way for t'. Hence dg
is a martingale. [l

It is still the case, however, that dg may not succeed on the languages on which the betting
game G succeeds. To ensure this, we first use Lemma 3.2 to place betting games G into a suitable
“normal form” satisfying the sure-winnings condition (5).

Lemma 4.2 If G is a betting game satisfying the sure-winnings condition (5), then S®[G] C
S>®[dq].

Proof. First, let A € S*®[G], and fix £ > 0. Find a finite initial segment w C A long enough to
answer every query made in a play « of G such that a ~¢ w and c¢g(«) > k + 2; and long enough
to make #(n) in the definition of dg(w) (Equation 7) greater than |«|. Then every o of length
t(n) such that o ~¢ w has the form o/ = af. The sure-winnings condition (5) implies that the
right-hand side of Equation (7) defining dg(w) is an average over terms that all have size at least
k. Hence dg(w) > k. Letting k grow to infinity gives A € S*[d]. O

Now we turn our attention to the complexity of dg. If G is a time-t(n) betting game, it
is clear that dg can be computed deterministically in O(t(n)) space, because we need only cycle
through all « of length ¢(n), and all the items in Equation (7) are computable in space O(¢(n)). In
particular, every E-betting game can be simulated by a martingale whose values are computable
in deterministic space 20" (even counting the output against the space bound), and every EXP-
betting game by a martingale similarly computed in space on®). However, we show in the next
section that one can estimate dg(w) well without having to cycle through all the «, using a pseudo-
random generator to “sample” only a very small fraction of them.

5 Sampling Results

First we determine the accuracy to which we need to estimate the values d(w) of a hard-to-compute
martingale. We state a stronger version of the result than we need in this section. In the next
section, we will apply it to martingales whose “activity” is restricted to subsets J of {0,1}* in
the following sense: for all strings x ¢ J, and all w such that 5,41 = 2, d(w0) = d(wl) = d(w).
Intuitively, a martingale d is inactive on a string z if there is no possible “past history” w that
causes a nonzero bet to be made on x. For short we say that such a d is inactive outside J. Recall
that N = ©(2").

Lemma 5.1 Let d be a martingale that is inactive outside J C {0,1}*, and let [e(i)]72, be a
non-negative sequence such that ZsiEJ €(i) converges to a number K. Suppose we can compute in
time t(n) a function g(w) such that |g(w) — d(w)| < e(N) for all w of length N. Then there is a
martingale d' computable in time (2"t(n))°") such that for all w, |d'(w) — d(w)| < 4K + 2¢(0).

In this section, we will apply Lemma 5.1 with J = {0,1}* and ¢(N) = 1/N? = 1/2?". In
Section 6.3 we will apply Lemma 5.1 in cases where J is finite.
Proof. First note that for any w (with N = |w)),

~ glw) + g(wl)
2

IN

g(w) d(w0) — g(w0) n d(wl) — g(wl)

9(w) — d(w)| + 5 5
< €(N) +e(N+1). (9)

In case J = {0,1}*, we inductively define:

d(N) = g(\) +2K +¢(0)
d'(wb) = d(w)+ g(wb) — LeOFalwl)

Note that d' satisfies the average law (1), and that we can compute d'(w) in time O(2"t(n)).
By induction on |w|, we can show using the estimate provided by Equation (9) that

oo N—-1
g(w) +€(N) +2 Z (i) < d(w) < glw)+2 Z €(i) + e(N) + 2K.
i=N+1 i=0

It follows that

d(w) > g(w)+
= +

~~ 0
R}
—~
S
~
\
S
—~
S
~
~—
l
m
—~
3
v
S
—~
S
~

and that

d(w) = dw)+ (g(w) = d(w)) + (d'(w) - g(w))

< d(w) +4K + 26(02):.

This establishes the lemma in case J = {0,1}*. The generalization to other subsets J of
{0,1}* is left to the reader. |

Next, we specify precisely which function f; we will sample in order to estimate dg, and how
we will do it.

Let G be a t(n) time-bounded betting game. Consider a prefix w, and let n denote the largest
length of a string in the domain of w. With any string p of length ¢(n), we can associate a unique
“play of the game” G defined by using w to answer queries in the domain of w, and the successive
bits of p to answer queries outside it. We can stop this play after ¢(n) steps—so that the stopped
play is a ¢(n)-maximal o and then define fg(w,p) to be the capital cg(«). Note that we can
compute fg(w,p) in linear time, i.e. in time O(|w| 4 ¢(n)). The proportion of strings p of length
t(n) that map to the same play a is exactly the weight 27{(®®)=lel in the equation (7) for dg(w).
Letting F stand for mathematical expectation, this gives us:

da(w) = Ejp—ym)[fa(w, p)]-

To obtain good and efficient approximations to the right-hand side, we employ pseudo-random
generators. The following supplies all relevant definitional background.

Definition 5.1 ([NW94]). (a) The hardness H4(n) of a set A at length n is the largest integer
s such that for any circuit C of size at most s with n inputs,
1 1
Pr,[C(r) = A(r)] — 3] < ©.
s

where z is uniformly distributed over X".

10

(b) A pseudo-random generator is a function D that, for each n, maps X" into ¥ where
r(n) > n+ 1. The function r is called the stretching of D.

(¢) The security Sp(n) of D at length n is the largest integer s such that for any circuit C of size
at most s with r(n) inputs

Pr,[C(z) = 1] = Pr,[C(D(y)) =1]| <

[V

3

where z is uniformly distributed over X" and y over %"
We will use pseudo-random generators with the following characteristics:

(1) an E-computable pseudo-random generator D that stretches seeds super-polynomially and
has super-polynomial security at infinitely many lengths;

(2) an EXP-computable pseudo-random generator Dy of security 2”9(1); and

(3) an E-computable pseudo-random generator D3 of security 292(n)

D, will be applied in the next section; in this section we will use Dy and Ds. None of these
generators is known to exist unconditionally. However, a highly plausible hypothesis suffices for
the weakest generator Dq, as follows simply by combining work of [BFNW93] and [NW94] with
some padding.

Theorem 5.2 If MA # EXP, then there is an E-computable pseudo-random generator D1 with
stretching n®1°8™) such that for any integer k, there are infinitely many n with Sp,(n) > nk.

Proof. From the proof of Lemma 4.1 of [BENW93], it follows that if MA # EXP, then there is a
set A € EXP such that for any integer j, there are infinitely many m such that H4(m) > m/. From
the proof of the main Theorem 1 in [NW94], it follows that for any set A € EXP, there is an EXP-
computable pseudo-random generator D with stretching n®1°€™) such that Sp(n) = Q(H(\/n)/n).
Say that D is computable in time 2" for some integer constant ¢ > 0. For any k > 0, the infinitely
many m promised above with j = 2(ck 4+ 1) yield infinitely many n of the form m?/¢ such that
Sp(n'/¢) > n*. Defining D (z) = D(z'), where z' denotes the prefix of = of length |z|'/¢, yields
the required pseudo-random generator.]

Exponential-time computable pseudo-random generators with exponential security have the
interesting property that we can blow up the stretching exponentially without significantly reducing
the security. As with Theorem 5.2, credit for this observation should be distributed among the
references cited in the proof.

Theorem 5.3 (a) Given an EXP-computable pseudo-random generator Dy of security 2"9(1),

o)

we can construct an EXP-computable pseudo-random generator Do of security and

stretching on

(b) Given an E-computable pseudo-random generator Dy of security 29Un) we can construct an
E-computable pseudo-random generator Dy of security 2 and stretching 294,

Proof. For (a), Nisan and Wigderson [NW94] showed that the existence of an E-computable
pseudo-random generator with stretching n + 1 (a “quick extender” in their terminology) with

11

security on™ g equivalent to the existence of an E-computable pseudo-random generator with
stretching and security 2. See Statements (3) and (4) of their Main Theorem (Theorem 1)
instantiated with s(¢) = 2¢. As used in [BFNW93], their main result carries through if we replace
“E-computable” by “EXP-computable” in both statements, owing to padding. Since the existence
of Dy implies the existence of an EXP-computable extender with security 2"9(1), the existence of
D5 follows.

For (b), first define D'(z) to be the first || + 1 bits of Dg(x). Then D’ is an extender with
security 24" and this implies that the range of D' is a language in E requiring circuits of size 24
Impagliazzo and Wigderson, in their proof of Theorem 2 in [IW97], showed how to transform such
a language into a language A € E such that H4(n) = 22", Using this A in part (3) of Theorem 2
of [NW94] yields an E-computable pseudo-random generator D3 of security and stretching 29"
(It is also possible to argue that the range of D’ is sufficiently hard to employ the technique of
[INW94], without going through [IW97].) O

Pseudo-random generators of security gn (even polynomial-time computable ones) are fairly
widely believed to exist (see [BM84, RR97, Bon99]), and while those of security 22" are more
controversial even for EXP-computability, their existence was made more plausible by the result of
[IW97] used in the proof of (b) above. Polynomial-time computable pseudo-random generators of
security 290" exist relative to a random oracle [Zim95, Imp99], and E-computable ones also exist
if P = NP. (The latter observation follows by combining the techniques of Kannan [Kan82] with
padding and the above-mentioned result of [[W97]; it is noted by the second author as “Corollary
2.2.19” in his dissertation [vM99].)

The following general result shows how pseudo-random generators can be used to approximate
averages. It provides the accuracy and time bounds needed for applying Lemma 5.1 to get the
desired martingale.

Theorem 5.4 Let D be a pseudo-random generator computable in time 6(n) and with stretching
r(n). Let f : ¥* x ¥* — (—00,00) be a function that is computed in linear time on a Turing
machine, and let s, R,m : N — N be fully time-constructible functions such that s(N) > N and
the following relations hold for any integer N >0, w e XN, and p € 250V

[f(w,p)] < R(N)
r(m(N)) = s(N)
Sp(m(N)) > (s(N)+ R(N))°. (10)
Then we can approximate
h(w) = Ejp—sn)Lf (w, p)] (11)

to within N~2 in time O(2™N) . (s(N) 4+ R(N))* - 6(m(N))).

Proof. For any integer N > 0, let Zyy be a partition of the interval [-R(N), R(V)] into subinter-
vals of length # Note that |Zy| = 4N2R(N). Define for any I € Zy and any string w of length
N,

TI'(I,’U)) - Pr\p\:s(N)[f(wu p) € I]

The predicate underlying 7(I,w) can be computed by circuits of size O(s(IN)log s(NV)), using the
t-to-O(tlog t) Turing-machine-time-to-circuit-size construction of Pippenger and Fischer [PF79].

12

Since Sp(m(N)) = w(s(N)log s(N)), it follows that
#(1,0) = Prig) [(w0, D)1 s(N))) € 1

approximates 7 (I, w) to within an additive error of (Sp m~(N)))*1, and we can compute it in time
0(2™N) . 5(N) - §(m(N))). We define the approximation h(w) for h(w) as

h(w) = Z (I, w) min([l).
IEIN
Since we can write h(w) as
h(w) = Z W(Ia U))E\p\:s(N) [f(wap) | f(wap) € I]a
IEIN

and we can bound the approximation error as follows:

h(w) — (w)
> (nu,w)\Ep_s(N)[f(w,p)f(w,m e 1)~ min(1) | + w(1,w) — #(I,w) \min(n)
1€l

< max(|I]) + [Iy|- (Sp(m(N))~" - R(N)

1 2 p2 1 1
< gz HANT-BAN) - (Sp(m(N))) 7 < o
Computing h(w) requires [Zy| = leQR(N) evaluations of 7, which results in the claimed upper
bound for the time complexity of hA.]

Now, we would like to apply Theorem 5.4 to approximate h = dg given by Equation (7)
to within N2, by setting f = fg and s(N) = t(log N). However, for a general betting game G
running in time #(n), we can only guarantee an upper bound of R(N) = 2106 N) ¢ () on | f (w, p)|.
Since Sp can be at most exponential, condition (10) would force m(N) to be Q(¢(log V)). In that
case, Theorem 5.4 can only yield an approximation computable in time 20(tlog N)) - However, we
can assume without loss of generality that G satisfies the slow-winnings condition (6) of Lemma 3.2,
in which case an upper bound of R(/N) € O(N) holds. Then the term s(/N) in the right-hand side
of Equation (10) dominates, provided #(n) = 2",

Taking everything together, we obtain the following result about transforming E- and EXP-
betting games into equivalent E- respectively EXP-martingales:

Theorem 5.5 If there is a pseudo-random generator computable in E with security 22 | then for
every E-betting game G, there exists an E-martingale d such that S®[G] C S*®[d]. If there is a

pseudo-random generator computable in EXP with security 2"9(1), then for every EXP-betting game
G, there exists an EXP-martingale d such that S®[G] C S*°[d].

Proof. By Lemma 3.2, we can assume that ¢ satisfies both the sure-winnings condition (5) as
well as the slow-winnings condition (6). Because of Lemma 4.2 and Lemma 5.1 (since the series
3521 7 converges), it suffices to approximate the function dg(w) given by Equation (7) to within
N~2 in time 29 respectively 2"0(1), where N = |w| and n = log N.

Under the given hypothesis about the existence of an E-computable pseudo-random generator
Dy, we can take D to be the pseudo-random generator D3 provided by Theorem 5.3(b). Thus we

13

meet the conditions for applying Theorem 5.4 to h = d¢; with s(N) = N°) | R(N) = O(N), and
m(N) = O(log N), and we obtain the approximation of d¢ that we need. In the case of an EXP-
betting game G, to obtain an EXP-martingale we can take D to be the pseudo-random generator
Dy of weaker security guarantee gnt) provided by Theorem 5.3(a). Then we meet the requirements
of Theorem 5.4 with s(N) = 20e M°Y "R(N) = O(N), and m(N) = (log N)°W). O

6 Autoreducible Sets

An oracle Turing machine M is said to autoreduce a language A if L(M“) = A, and for all strings
x, M* on input z does not query z. That is, one can learn the membership of z by querying
strings other than z itself. If M runs in polynomial time, then A is P-autoreducible—we also write
<I.-autoreducible. If M is also non-adaptive, then A is <,-autoreducible.

One can always code M so that for all oracles, it never queries its own input—then we call
M an autoreduction. Hence we can define an effective enumeration [M;]5°; of polynomial-time
autoreductions, such that a language A is autoreducible iff there exists an i such that L(M/') = A.
(For a technical aside: the same M, may autoreduce different languages A, and some M; may
autoreduce no languages at all.) The same goes for <%,-autoreductions.

Autoreducible sets were brought to the polynomial-time context by Ambos-Spies [AS84]. Their
importance was further argued by Buhrman, Fortnow, Van Melkebeek, and Torenvliet [BFvMT98],
who showed that all <?.-complete sets for EXP are </.-autoreducible (while some complete sets
for other classes are not). Here we demonstrate that autoreducible sets are important for testing
the power of resource-bounded measure.

6.1 Adaptively Autoreducible Sets

As stated in the Introduction, if the S’}—autoreducible sets in EXP (or sufficiently the S’}—complete
sets for EXP) are covered by an EXP-martingale, then EXP # BPP, a non-relativizing consequence.
However, it is easy to cover them by an E-betting game. Indeed, the betting game uses its adaptive
freedom only to “look ahead” at the membership of lexicographically greater strings, betting nothing
on them.

Theorem 6.1 There is an E-betting game G that succeeds on all <V.-autoreducible sets.

Proof. Let M, M>,... be an enumeration of S’}—autoreductions such that each M; runs in time
n' 4 i on inputs of length n. Our betting game G regards its capital as composed of infinitely many
“shares” ¢;, one for each M;. Initially, ¢; = 1/2°. Letting (-,-) be a standard pairing function,
inductively define ng = 0 and n; ;11 = (n<2-7j>)i + 1.

During a stage s = (i,j), G simulates M; on input 0"s-1. Whenever M; makes a query of
length less than n, 1, G looks up the answer from its table of past queries. Whenever M; makes
a query of length ng_1 or more, G places a bet of zero on that string and makes the same query.
Then @ bets all of the share ¢; on 0™+~ according to the answer of the simulation of M;. Finally,
G “cleans up” by putting zero bets on all strings with length in [ns_1,n,) that were not queries in
the previous steps.

If M; autoreduces A, then share ¢; doubles in value at each stage (i,), and makes the total
capital grow to infinity. And G runs in time 20() indeed, only the “cleanup” phase needs this
much time. O

14

Corollary 6.2 FEach of the following statements implies BPP £ EXP:
1. The class of <h.-autoreducible sets has E-measure zero.
2. The class of <V.-complete sets for EXP has E-measure zero.
3. E-betting games and E-martingales are equivalent.
4. E-betting games have the finite union property.
The same holds if we replace E by EXP in these statements.

Proof. Let C stand for the class of languages that are not <%.-hard for BPP. Allender and
Strauss [AS94] showed that C has E-measure zero, so trivially it is also covered by an E-betting
game. Now let D stand for the class of <!.-complete sets for EXP. By Theorem 6.1 and the result
of [BEvMT98] cited above, D is covered by an E-betting game.

If EXP = BPP, the union C U D contains all of EXP, and:

e If D would have E-measure zero, so would C UD and hence EXP, contradicting the measure
conservation property of Lutz measure.

e If E-betting games would have the finite-union property, then C U D and EXP would be
covered by an E-betting game, contradicting Theorem 3.1.

Since Equation (1) implies (2), and Equation (3) implies (4), these observations suffice to establish
the corollary for E. The proof for EXP is similar.]

Since there is an oracle A giving EXP4 = BPP# [Hel86], this shows that relativizable techniques
cannot establish the equivalence of E-martingales and E-betting games, nor of EXP-martingales
and EXP-betting games. They cannot refute it either, since there are oracles relative to which
strong pseudo-random generators exist—all “random” oracles, in fact [Zim95].

6.2 Non-Adaptively Autoreducible Sets

It is tempting to think that the non-adaptively P-autoreducible sets should have E-measure zero,
or at least EXP-measure zero, insofar as betting games are the adaptive cousins of martingales.
However, it is not just adaptiveness but also the freedom to bet out of the fized lexicographic order
that adds power to betting games. If one carries out the proof of Theorem 6.1 to cover the class of
<},-autoreducible sets, using an enumeration [M;] of <,-autoreductions, one obtains a non-adaptive
E-betting game (defined formally below) that (independent of its oracle) bets on all strings in order
given by a single permutation of ¥X*. The permutation itself is E-computable. It might seem that an
E-martingale should be able to “un-twist” the permutation and succeed on all these sets. However,
our next results, which strengthen the above corollary, close the same “non-relativizing” door on
proving this with current techniques.

Theorem 6.3 For any k > 1, the <},-complete sets for A} are <},-autoreducible.

Here is the proof idea, which follows techniques of [BFvMT98] for the theorem that all EXP-
complete sets are S’}—autoreducible. Call a closed propositional formula that has at most k& blocks
of like quantifiers (i.e., at most k — 1 quantifier alternations) a “QBF} formula,” and let TQBF,,
stand for the set of true QBF formulas. Let A be a <}-complete set for A} | = Pk, Since

15

TQBF,, is ¥}-hard, there is a deterministic polynomial-time oracle Turing machine M that accepts
A with oracle TQBF,. Let g(x,4) stand for the i-th oracle query made by M on input z. Whether
q(z,1) belongs to TQBF, forms a Aiﬂ—question, so we can <%,-reduce it to A. It is possible that
this latter reduction will include x itself among its queries. Let b;“ denote the answer it gives to
the question provided that any query to z is answered “yes,” and similarly define b, in case x is
answered “no.”

If b;“ = b; , which holds in particular if = is not queried, then we know the correct answer
b; to the i-th query. If this situation occurs for all queries, we are done: We just have to run
M on input x using the b;’s as answers to the oracle queries. The b;’s themselves are obtained
without submitting the (possibly adaptive) queries made by M, but rather by applying the latter
<%.-reduction to A to the pair (z,7), and without submitting any query on z itself. Hence this
process satisfies the requirements of a <!,-autoreduction of A for the particular input .

Now suppose that bi+ # b; for some 7, and let 4 be minimal. Then we will have two players
play the k-round game underlying the QBFj-formula that constitutes the i-th oracle query. One
player claims that bi+ is the correct value for b;, which is equivalent to claiming that x € A, while
his opponent claims that b, is correct and that = ¢ A. Write x4(z) =1 if x € A, and xa(z) =0 if
x ¢ A. The players’ strategies will consist of computing the game history so far, determining their
optimal next move, <} -reducing this computation to A, and finally producing the result of this
reduction under their respective assumption about x4(x). This approach will allow us to recover
the game history in polynomial time with non-adaptive queries to A different from x. Moreover, it
will guarantee that the player making the correct assumption about y 4(z) plays optimally. Since
this player is also the one claiming the correct value for b;, he will win the game. So, we output
the winner’s value for b;.

It remains to show that we can compute the above strategies in deterministic polynomial time
with a EZ oracle, i.e. in FP>E. It seems crucial that the number & of alternations be constant here.

Proof. (of Theorem 6.3) Let A be a <},-complete set for AZH accepted by the polynomial-time

oracle Turing machine M with oracle TQBF. Let g(x,7) denote the i-th oracle query of MTQBF,
on input z. Then ¢(z,7) can be written in the form (Jy1)(Vy2) ... (Qkryr) ¢2,i(y1,Y2,---,yr), where
Y1,..., Yk stand for the vectors of variables quantified in each block, or in the opposite form be-
ginning with the block (Vy;). By reasonable abuse of notation, we also let y, stand for a string
of 0-1 assignments to the variables in the r-th block. Without loss of generality, we may suppose
every oracle query made by M has this form where each y; is a string of length |z|°, and M makes
exactly |z|¢ queries, taking the constant ¢ from the polynomial time bound on M. Note that the
function ¢ belongs to FP”+. Hence the language

Lo ={{(z,y) : q(z,i) € TQBF, }

p p
k+1- k+1°

oracle Turing machine Ny that accepts Ly with oracle A. Now define b (z) = Naqu{z}(m,i))
and b, (z) = Naq\{z}(@,i)). We define languages Ly, Lo,..., L € A}, and <}-reductions
Ny, No, ..., Ni inductively as follows:

Let 1 < ¢ < k. The set Ly consists of all pairs (z,j) with 1 < j < |z|% such that there
is a smallest i, 1 < 4 < |z|°, for which b/ (z) # b; (x), and the following condition holds. For
1 <r < -1, let the s-th bit of y, equal Nfu{gc}((x,s)) if 7 = b (x) mod 2, and Nf\{w}((:c,s))
otherwise. We put (z,j) into Ly iff there is a lexicographically least y, such that

belongs to A Since A is <} ,-complete for A there is a polynomial-time nonadaptive

XU Qe41Ye41)(Qet2yes2) - - - (QrYk) bai(y1, Y2, - ., yk)] = £ mod 2,

16

and the j-th bit of y, is set to 1. The form of this definition shows that L, belongs to Aﬁﬂ. Hence
we can take Ny to be a polynomial-time non-adaptive oracle Turing machine that accepts L, with
oracle A.

Now, we construct a <}-autoreduction for A. On input x, we compute b; (z) and b; (z) for
1 <i < |z|¢ as well as yﬁb) for b € {0,1} and 1 < r < |z|°. The latter quantity yﬁb) is defined as
follows: for 1 < s < |z|° the s-th bit of yﬁb) equals NTAU{I}(@, s)) if r = b mod 2, and NTA\{‘T}((JJ, s))
otherwise. Note that we can compute all these values in polynomial time by making non-adaptive
queries to A none of which equals x.

If b (x) = b; (z) for every 1 < i < |z[°, we run M on input z using b (z) = b; (z) as the
answer to the i-th oracle query. Since it always holds that at least one of b;" (z) and b; (x) equals
the correct oracle answer b;(x), we faithfully simulate M on input x, and hence compute x4 ()
correctly.

Otherwise, let i be the first index for which b; (z) # b; (z). Since bj(z) = b;“(.r) = b, (z) for
j < i, we can determine ¢(z,7) by simulating M on input = until it asks the i-th query. We then
output 1 if

b (z b (z b (z
b (@) = dualyy T),

and output 0 otherwise. We claim that this gives the correct answer to whether x € A.
(b () | (b (2)) (b7 (x))

In order to prove the claim, consider the game history y,* 2 Yo e Y . The player
claiming the correct value for b;(x) gets to play the rounds that allow him to win the game no
matter what his opponent does. Since this player is also the one making the correct assumption
about x4(x), an inductive argument shows that he plays optimally: At his stages ¢, the string y,
in the above construction of L, exists, and he plays it. The key for the induction is that at later
stages ¢' > £, the value of y; at stage ¢’ remains the same as what it was at stage £. Thus the player

+ + +
with the correct assumption about y 4 () wins the game—that is, ¢x,i(y§bi (I)), yébi (z)), o ,y,(gb" (z)))

equals his guess for b;(z) (and not the other player’s guess). |

In order to formalize the strengthening of Corollary 6.2 that results from Theorem 6.3, we call

a betting game G non-adaptive if the infinite sequence x1, 9, x3,... of queries G* makes is the
same for all oracles A. If G runs in 2°() time, and this sequence hits all strings in X*, then the
permutation 7 of the standard ordering s1, s9, s3, ... defined by m(s;) = x; is both computable and

invertible in 2" time. It is computable in this amount of time because in order to hit all strings,
G must bet on all strings in {0, 1 }” within the first 2°(") steps. Hence its ith bet must be made in
a number of steps that is singly-exponential in the length of s;. And to compute 7! (x;), G need
only be run for 2907 gteps, since it cannot query z; after this time. Since 7 and its inverse are
both E-computable, 7 is a reasonable candidate to replace lexicographic ordering in the definition
of E-martingales, and likewise for EXP-martingales. We say a class C has w-E-measure zero if C
can be covered by an E-martingale that interprets its input as a characteristic string in the order
given by .

Theorem 6.4 The class of <},-autoreducible languages can be covered by a non-adaptive E-betting
game. Hence there is an E-computable and invertible permutation © of X* such that this class has
m-E-measure zero.

Proof. With reference to the proof of Theorem 6.1, we can let M7, Ms, ... be an enumeration of
<P -autoreductions such that each M; runs in time n’+i. The machine G in that proof automatically

17

becomes non-adaptive, and since it queries all strings, it defines a permutation 7 of ¥* as above
with the required properties.]

Corollary 6.5 Each of the following statements implies BPP # EXP, as do the statements ob-
tained on replacing “E” by “EXP.”

1. The class of <! -autoreducible sets has E-measure zero.
The class of <%,-complete sets for EXP has E-measure zero.

Non-adaptive E-betting games and E-martingales are equivalent.

e

If two classes can be covered by non-adaptive E-betting games, then their union can be covered
by an E-betting game.

5. For all classes C and all E-computable and invertible orderings m, if C has w-E-measure zero,
then C has E-measure zero.

Proof. It suffices to make the following two observations to argue that the proof of Corollary 6.2
carries over to the truth-table cases:

e The construction of Allender and Strauss [AS94] actually shows that the class of sets that
are not <! -hard for BPP has E-measure zero.

e If EXP = BPP, Theorem 6.3 implies that all <},-complete sets for EXP are <} -autoreducible,
because BPP C) C AY C EXP.

Theorem 6.4 and the finite-unions property of Lutz’s measures on E and EXP do the rest. O

The last point of Corollary 6.5 asserts that Lutz’s definition of measure on E is invariant under all
E-computable and invertible permutations. These permutations include flip from the Introduction
and (crucially) 7 from Theorem 6.4. Hence this robustness assertion for Lutz’s measure implies
BPP # EXP. Our “betting-game measure” (both adaptive and non-adaptive) does enjoy this
permutation invariance, but asserting the finite-unions property for it also implies BPP # EXP.
The rest of this paper explores conditions under which Lutz’s martingales can cover classes of
autoreducible sets, thus attempting to narrow the gap between them and betting games.

6.3 Covering Autoreducible Sets By Martingales

This puts the spotlight on the question: Under what hypotheses can we show that the <%,-
autoreducible sets have E-measure zero? Any such hypothesis must be strong enough to imply
EXP # BPP, but we hope to find hypotheses weaker than assuming the equivalence of (E- or
EXP-) betting games and martingales, or assuming the finite-union property for betting games.
Do we need strong pseudo-random generators to cover the <! -autoreducible sets? How close can
we come to covering the <.-autoreducible sets by an E-martingale?

Our final results show that the hypothesis MA # EXP suffices. This assumption is only known
to yield pseudo-random generators of super-polynomial security (at infinitely many lengths) rather
than exponential security (at almost all lengths). Recall that MA contains both BPP and NP; in
fact it is sandwiched between NPBY and BPPMY,

18

Theorem 6.6 If MA # EXP, then the class of <! -autoreducible sets has E-measure zero.
We actually obtain a stronger conclusion.

Theorem 6.7 If MA # EXP, then the class of languages A autoreducible by polynomial-time
oracle Turing machines that always make their queries in lexicographic order has E-measure zero.

To better convey the essential sampling idea, we prove the weaker Theorem 6.6 before the stronger
Theorem 6.7. The extra wrinkle in the latter theorem is to use the pseudo-random generator twice,
to construct the set of “critical strings” to bet on as well as to compute the martingale.

Proof. (of Theorem 6.6) Let [M;]3°, enumerate the <} -autoreductions, with each M; running
in time n’. Divide the initial capital into shares sim for i,m > 1, with each s;,, valued initially
at (1/m?)(1/2%). For each share $;,,, we will describe a martingale that is active only on a finite
number of strings x. The martingale will be active only if i < m/2[logym] and m < |z| < m?,
and further only if = belongs to a set J = J; ,, constructed below. Hence the martingale will be
inactive outside .JJ, and we will be able to apply Lemma 5.1. We will arrange that whenever M;
autoreduces A, there are infinitely many m such that share s;,, attains a value above 1 (in fact,
close to m) along A. Hence the martingale defined by all the shares succeeds on A. We will also
ensure that each active share’s bets on strings of length n are computable in time 29", where the
constant a is independent of 7. This is enough to make the whole martingale E-computable and
complete the proof.

To describe the betting strategy for s; ,, first construct a set I = I; ,, starting with I = {0™ }
and iterating as follows: Let y be the lexicographically least string of length m that does not appear
among queries made by M; on inputs x € I. Then add y to I. Do this until I has 3[log, m] strings
in it. This is possible because the bound 3[log, m]m’ on the number of queries M; could possibly
make on inputs in [is less than 2™. Moreover, 2 bounds the time needed to construct I. Thus
we have arranged that

for all z,y € I with z <y, M;(x) does not query y. (12)

Now let J stand for I together with all the queries M; makes on inputs in /. Adapting ideas from
Definition 4.1 to this context, let us define a finite Boolean function 5 : J — {0,1} to be consistent
with M; on I, written 3 ~; M;, if for all x € I, M; run on input x with oracle answers given by
[agrees with the value 3(x). Given a characteristic prefix w, also write § ~ w if 5(z) and w(x)
agree on all z in J and the domain of w. Since I and .J depend only on 7 and m, we obtain a
“probability density” function for each share s; ,,, via

7ri,m(w) = Pr,BNw [ﬁ ~ Mz] (13)

The martingale d; ,,, standardly associated to this density (as in [Lut92]) is definable inductively
by d;m(X) =1 and
m’m(wl)

Tim(w)

i, m (w0)

7Ti7m(w) '

dim(wl) = d; (W) dim (w0) = dj (W) (14)
(In case m; ,m = 0, we already have d; ,(w) = 0, and so both d; ,,,(wl) and d; ,, (w0) are set to 0.)
Note that the values m; ., (wb) for b = 0,1 can only differ from 7; ,,,(w) if the string 2 indexed

by b belongs to J; i.e., d; , is inactive outside J.

19

Claim 6.8 If M; autoreduces A, then for all sufficiently large m, if share s; ;, could play the strategy
dim, then on A its value would rise to (at least) m/2". That is, S;m would multiply its initial value
by (at least) m3.

To see this, first note that for any w T A long enough to contain J in its domain, m; py,(w) = 1.
We want to show that for any v short enough to have domain disjoint from I, m;,,(v) = 1/2‘”.
To do this, consider any fixed 0-1 assignment [y to strings in J \ I that agrees with v. This
assignment determines the computation of M; on the lexicographically first string « € I, using
Bo to answer queries, and hence forces the value of 3(z) in order to maintain consistency on I.
This in turn forces the value ((z') on the next string x’ in I, and so on. Hence only one out
of 2/l possible completions of Gy to 3 is consistent with M; on I. Thus Tim(v) = 1/21l. Since
din (W) = di g (0) - (75 (W) /7 1 (0)) by Equation (14), and 21 = 2310821 > 43 Claim 6.8 is
proved.

The main obstacle now is that m; ,,, in Equation (13), and hence d; , (w), may not be computable
in time 2%" with a independent of ¢. The number of assignments 3 to count is on the order of
21~ 2m" ~ 27" Here is where we use the E-computable pseudo-random generator Dy, with super-
polynomial stretching and with super-polynomial security at infinitely many lengths, obtained via
Theorem 5.2 from the hypothesis MA # EXP. For all i and sufficiently large m, D, stretches a
seed s of length m into at least 3[log, m]m’ bits, which are enough to define an assignment 3, to
J (agreeing with any given w). We estimate m; ,, (w) by

7}17m(w) = Pr‘s‘:m[ﬁs ~r Mz] (15)

Take € = 1/m'*4. By Theorem 5.2 there are infinitely many “good” m such that Sp, (m) > m**+*,

Claim 6.9 For all large enough good m, every estimate 7 ,,(w) satisfies |7ty pm(w) — 75 m(w)| < €.

Suppose not. First note that Equations (13) and (15) do not depend on all of w, just on
the up-to-3[log, m]m® < m'*! bits in w that index strings in .J, and these can be hard-wired into
circuits. The tests [3 ~; M;] can also be done by circuits of size o(m'*!), because a Turing machine
computation of time r can be simulated by circuits of size O(rlogr) [PF79]. Hence we get circuits
of size less than Sp,(m) achieving a discrepancy greater than 1/Sp,(m), a contradiction. This
proves Claim 6.9.

Finally, observe that the proof of Claim 6.8 gives us not only d; m(w) > m; m(w) - m3, but
also d; m(w) = O(m; m(w) - m?), when w C A. For w C A and good m, we thus obtain estimates
g(w) for d; m(w) within error bounds ¢ = ©(¢) = O(1/m**!). Now applying Lemma 5.1 for this
g(w) and J = J; yields a martingale d; ,,(w) computable in time 2", where the constant a is
independent of 7. This dé,m(“’) is the martingale computed by the actions of share s;,,. Since
K =3, c;¢ =Jl¢ < (1/m)-3[logym] = o(1), we actually obtain |d; ,,(w) — dim(w)| = o(1),
which is stronger than what we needed to conclude that share s; ,, returns enough profit. This
completes the proof of Theorem 6.6.]

To prove Theorem 6.7, we need to construct sets I = I; ,, with properties similar to Equa-
tion (12), in the case where M; is no longer a <} -autoreduction, but makes its queries in lexico-
graphic order. To carry out the construction of I, we use the pseudorandom generator D a second
time, and actually need only that M; on input 0™ makes all queries of length < m before making

20

any query of length > m. To play the modified strategy for share s; ,,, however, appears to require
that all queries observe lexicographic order.

Proof. (of Theorem 6.7). Recall that the hypothesis EXP # MA yields a pseudo-random genera-
tor Dy computable in time 2°(™) and stretching m bits to r(m) bits such that for all 4, all sufficiently
large m give r(m) > m’, and infinitely many m give hardness Sp, (m) > m’. Let [M;]3°; be a stan-
dard enumeration of <’.-autoreductions that are constrained to make their queries in lexicographic
order, with each M; running in time O(n'). We need to define strategies for “shares” s;,, such
that whenever M, autoreduces A, there are infinitely many m such that share s; ,,, grows its initial
capital from 1/m?2’ to 1/2¢ or more. The strategy for s;.m must still be computable in time 29"
where «a is independent of 1.

To compute the strategy for s;,,, we note first that s;,, can be left inactive on strings of
length < m. The overall running time allowance 20(m) permits us to suppose that by the time s; .,
becomes active and needs to be considered, the initial segment wgy of A (where A is the language
on which the share happens to be playing) that indexes strings of length up to m — 1 is known.
Hence we may regard wy as fixed. For any o € {0,1}™ let M?(z) stand for the computation in
which wy is used to answer any queries of length < m and « is used to answer all other queries.
Because of the order in which M; makes its queries, those queries y answered by wg are the same
for all «, so that those answers can be coded by a string ug of length at most m’. Now for any
string y of length equal to m, define

P(z,y) = Pro[M;*(x) queries y].

Note that given ug and a, the test “M®(x) queries y” can be computed by circuits of size O(m*+1).
Hence by using the pseudo-random generator D; at length m, we can compute uniformly in E an
approximation P (z,y) for P(z,y) such that for infinitely many m, said to be “good” m, all pairs
z,y give | Py (x,y) — P(x,y)| < €, where we choose ¢, = 1/m?*.

Here is the algorithm for constructing I = I; ,. Start with I :=), and while |I| < 3log, m,
do the following: Take the lexicographically least string y € X™ \ I such that for all z € I,
Py (z,y) < €. The search for such a y will succeed within |I| - m'** trials, since for any particular
x, there are fewer than m’** strings y overall that will fail the test. (This is so even if m is not good,

because it only involves P;, and because P; involves simulating MiDI(S) over all seeds s.) There
is enough room to find such a y provided |I|m/*t* < 2™, which holds for all sufficiently large m.
The whole construction of I can be completed within time 22%™. It follows that for any sufficiently
large good m and x,y € I with z <y, Pro[M2(z) queries y] < 2¢,, = 2/m*.

At this point we would like to define .J to be “I together with the set of strings queried by M;
on inputs in I” as before, but unlike the previous case where M; was non-adaptive, this is not a
valid definition. We acknowledge the dependence of the strings queried by M; on the oracle A by
defining

Ja:=ITU{y: 3z € I)M(x) queries y }.

Let r = m'-[3logm]. Then |J4| < r; that is, J4 has the same size as .J in the previous proof. This
latter definition will be OK because M; makes its queries in lexicographic order. Hence the share
Si,m, having already computed I without any reference to A, can determine the strings in J4 on
which it should be active on the fly, in lexicographic order. Thus we can well-define a mapping [
from {0,1}" to {0,1} so that for any & < r, B(k) = 1 means that the query string y that happens
to be kth in order in the on-the-fly construction of Jy, is answered “yes” by the oracle. Then we
may write Jg for J4, and then write §(y) = 1 in place of §(k) = 1. Most important, given any

21

x € I, every such [well-defines a computation Mf(a:). This entitles us to carry over the two
“consistency” definitions from the proof of Theorem 6.6:

o f~wif By) =w(y) for all y € Jg;
e B~y M;ifforall z€l, Mf(T) equals (i.e., “agrees with”) G(x).

Finally, we may apply the latter notion to initial subsets of I, and define for 1 < ¢ < 3logm the
predicate

o Ry(B) = (0 ~ur,w, Mi) N (V5. k:1<j<Ek< E)Mzﬁ(:c]) does not query .
Claim 6.10 For all £, Prg[Ry(B)] < 1/2°.

For the base case £ = 1, Prg[Ri(8)] = 1/2, because M;(x) does not query x1, M; being an
autoreduction, and because whether 5 ~,, M; depends only on the bit of 8 corresponding to ;.
Working by induction, suppose Prg[Ry_1(3)] < 1/2¢°1. If R,_1(B3) holds, then taking 8’ to be £
with the bit corresponding to x, flipped, Ry 1(3') also holds. However, at most one of R;((3) and
Ry(4') holds, again because M;(zy) does not query x,. Hence Prg[R,(f)] < (1/2)Prg[R,—1(5)],
and this proves Claim 6.10. (It is possible that neither Ry(3) nor Ry(3') holds, as happens when
Mf(T]) queries z, for some j, but this does not hurt the claim.)

Now we can rejoin the proof of Theorem 6.6 at Equation (13), defining the probability density
function m; ., (w) = Prgoyw(B ~r M;]. We get a martingale d;,, from m; ,, as before, and this
represents an “ideal” strategy for share s; ,, to play. The statement corresponding to Claim 6.8 is:

Claim 6.11 If M; autoreduces A and m is good and sufficiently large, then the ideal strategy for
share s; m multiplies its value by at least m3/2 along A.

To see this, note that we constructed I = {x1,...,%310gm } above so that for all j < k,
Pro[Mg(z;) queries zx] < 2/m?. It follows that

31) 2 1
Pr[(3j,k : 1 <j <k < 3logm) M;(x;) queries] < ([02gm]> e’ < —

provided m > [3log m]2. Hence, using Claim 6.10 with ¢ = 3logm, we get:

1 1 2
Prﬁ[ﬂ ~T Ml] < W =+ ﬁ = ﬁ
Since the 3 defined by A satisfies § ~; M;, it follows by the same reasoning as in Claim 6.8 that
di m profits by at least a fraction of m3/2 along A. This proves Claim 6.11.

Finally, we (re-)use the pseudo-random generator D; as before to expand a seed s of length m
into a string s of (at least) 7 = 3[logy m]m’® bits. Given any w, (5 well-defines a 3 and a set Jg
of size at most r as constructed above, by using w to answer queries in the domain of w and [, for
everything else. We again obtain the estimate 7;,,(w) = Prj—p[Bs ~; M;] from Equation (15),
with the same time complexity as before. Now we repeat Claim 6.9 in this new context:

Claim 6.12 For all large enough good m, every estimate 7ty (w) satisfies |7 m(w) — m m(w)] < e.

If not, then for some fixed w the estimate fails. The final key point is that because M; always
makes its queries in lexicographic order, the queries in the domain of w that need to be covered are

22

the same for every ;. Hence the corresponding bits of w can be hard-wired by circuitry of size at
most 7. The test [3s ~; M;] can thus still be carried out by circuits of size less than m!*!, and we
reach the same contradiction of the hardness value Sp,.

Finally, we want to apply Lemma 5.1 to replace d;,,(w) by a martingale d; , (w) that yields

virtually the same degree of success and is computable in time 20(n) Unlike the truth-table case
we cannot apply Lemma 5.1 verbatim because we no longer have a single small set .J that d’ is
active on. However, along any set A, the values d;,, (w) and d; ,,(wb) (b = 0 or 1) can differ only
for cases where b indexes a string in the small set J corresponding to A, and the reader may check
that the argument and bounds of Lemma 5.1 go through unscathed in this case. This finishes the
proof of Theorem 6.7. O

7 Conclusions

The initial impetus for this work was a simple question about measure: is the pseudo-randomness
of a characteristic sequence invariant under simple permutations such as that induced by flip in the
Introduction? The question for flip is tantalizingly still open. However, in Section 6.2 we showed
that establishing a “yes” answer for any permutation that intuitively should preserve the same
complexity-theoretic degree of pseudo-randomness, or even for a single specific such permutation
as that in the simple proof of the non-adaptive version of Theorem 6.1, would have the major
consequence that EXP # BPP.

Our “betting games” in themselves are a natural extension of Lutz’s measures for deterministic
time classes. They preserve Lutz’s original idea of “betting” as a means of “predicting” membership
in a language, without being tied to a fixed order of which instances one tries to predict, or to a
fixed order of how one goes about gathering information on the language. We have shown some
senses in which betting games are robust and well-behaved. We also contend that some current
defects in the theory of betting games, notably the lack of a finite-unions theorem pending the
status of pseudo-random generators, trade off with lacks in the resource-bounded measure theory,
such as being tied to the lexicographic ordering of strings.

The main open problems in this paper are interesting in connection with recent work by
Impagliazzo and Wigderson [IW98] on the BPP vs. EXP problem. First we remark that the main
result of [IW98] implies that either BPP = EXP or BPP has E-measure zero [vM98]. Among
the many measure statements in the last section that imply BPP # EXP, the most constrained
and easiest to attack seems to be item 4 in Corollary 6.5. Indeed, in the specific relevant case
starting with the assumption BPP = EXP, one is given a non-adaptive E-betting game G and
an FE-martingale d, and to obtain the desired contradiction that proves BPP # EXP, one need
only construct an EXP-betting game G’ that covers S®[G] U S*°[d]. What we can obtain is a
“randomized” betting game G" that flips one coin at successive intervals of input lengths to decide
whether to simulate G or d on that interval. (The intervals come from the proof of Theorem 6.4.)
Any hypothesis that can de-randomize this G” implies BPP # EXP. We do not know whether the
weak hypotheses considered in [IW98], some of them shown to follow from BPP # EXP itself, are
sufficient to do this.

Stepping back from trying to prove BPP # EXP outright or trying to prove that these measure
statements are equivalent to BPP # EXP, we also have the problem of narrowing the gap between
BPP # EXP and the sufficient condition EXP # MA used in our results. Moreover, does EXP #
MA suffice to make the S’ir—autoreducible sets have E-measure zero? Does that suffice to simulate

23

every betting game by a martingale of equivalent complexity? We also inquire whether there exist
oracles relative to which EXP = MA but strong pseudo-random generators still exist. Our work
seems to open many opportunities to tighten the connections among pseudo-random generators,
the structure of classes within EXP, and resource-bounded measure.

The kind of statistical sampling used to obtain martingales in Theorems 5.4 and 5.5
was originally applied to construct martingales from “natural proofs” in [RSC95]. The de-
randomization technique from [BFNW93] based on EXP # MA that is used here is also applied
in [BvM98, KL98, LSW98]. “Probabilistic martingales” that can use this sampling to simulate
betting games are formalized and studied in [RS98]. This paper also starts the task of determining
how well the betting-game and random-sampling ideas work for measures on classes below E. Even
straightforward attempts to carry over Lutz’s definitions to classes below E run into difficulties,
as described in [May94] and [AS94, AS95]. We look toward further applications of our ideas in
lower-level complexity classes.

Acknowledgments The authors specially thank Klaus Ambos-Spies, Ron Book (pace), and Jack
Lutz for organizing a special Schloss Dagstuhl workshop in July 1996, where preliminary versions of
results and ideas in this paper were presented and extensively discussed. We thank the STACS’98
referees and the referees of this journal paper for helpful comments—one of the latter gave us many
insightful notes that helped us steer away from errors and ambiguities in this final version.

References

[AS84] K. Ambos-Spies. P-mitotic sets. In E. Borger, G. Hasenjager, and D. Roding, editors,
Logic and Machines, Lecture Notes in Computer Science 177, pages 1 23. Springer-
Verlag, 1984.

[AS94] E. Allender and M. Strauss. Measure on small complexity classes, with applications
for BPP. Technical Report DIMACS TR 94-18, Rutgers University and DIMACS,
April 1994.

[AS95] E. Allender and M. Strauss. Measure on P: Robustness of the notion. In Proc. 20th

International Symposium on Mathematical Foundations of Computer Science, volume
969 of Lect. Notes in Comp. Sci., pages 129 138. Springer Verlag, 1995.

[ASL96] K. Ambos-Spies and S. Lempp, July 1996. Presentation at a Schloss Dagstuhl workshop
on “Algorithmic Information Theory and Randomness”.

[Bab85] L. Babai. Trading group theory for randomness. In Proc. 17th Annual ACM Sympo-
stum on the Theory of Computing, pages 421-429, 1985.

[BFNW93] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time sim-
ulations unless EXPTIME has publishable proofs. Computational Complezity, 3:307
318, 1993.

[BFT95] Harry Buhrman, Lance Fortnow, and Leen Torenvliet. Using autoreducibility to sep-
arate complexity classes. In 36th Annual Symposium on Foundations of Computer
Science, pages 520 527, Milwaukee, Wisconsin, 23 25 October 1995. IEEE.

24

[BFvMT98] H. Buhrman, L. Fortnow, D. van Melkebeek, and L. Torenvliet. Separating complexity

[BLY6]

[BM84]

[BMSS]

[Bon99]

[BvMO9S]

[Hel86]

[Imp99]

[TW97]

[TW98]

[JL95]

[Kang2]

[KL98]

[Lov69]

[LSWOS]

[Lut92]

classes using autoreducibility. Technical Report FI-CXT1998-002, Fields Institute,
1998. This is the journal version of [BFT95], and is to appear in STAM J. Comput.

Harry Buhrman and Luc Longpré. Compressibility and resource bounded measure. In
18th Annual Symposium on Theoretical Aspects of Computer Science, volume 1046 of
Incs, pages 13-24, Grenoble, France, 22-24 February 1996. Springer.

M. Blum and S. Micali. How to generate cryptographically secure sequences of pseu-
dorandom bits. SIAM J. Comput., 13:850-864, 1984.

L. Babai and S. Moran. Arthur-Merlin games: A randomized proof system, and a
hierarchy of complexity classes. J. Comp. Sys. Sci., 36:254 276, 1988.

D. Boneh. Twenty years of attacks on the RSA cryptosystem. Notices of the American
Mathematical Society, 46(2):203 213, February 1999.

H. Buhrman and D. van Melkebeek. Hard sets are hard to find. In Proc. 13th Annual
IEEE Conference on Computational Complexity, pages 170-181, 1998.

F. Heller. On relativized exponential and probabilistic complexity classes. Inform.
and Control, 71:231-243, 1986.

R. Impagliazzo. Very strong one-way functions and pseudo-random generators exist
relative to a random oracle, 1999. Unpublished manuscript/personal communication.

R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits: De-
randomizing the XOR Lemma. In Proc. 29th Annual ACM Symposium on the Theory
of Computing, pages 220-229, 1997.

R. Impagliazzo and A. Wigderson. Randomness vs. time: De-randomization under
a uniform assumption. In Proc. 39th Annual IEEE Symposium on Foundations of
Computer Science, 1998. to appear.

D. Juedes and J. Lutz. Weak completeness in E and Eo. Theor. Comp. Sci., 143:149
158, 1995.

R. Kannan. Circuit-size lower bounds and reducibility to sparse sets. Inform. and
Control, 55:40 56, 1982.

J. Kébler and W. Lindner. On the resource bounded measure of P/poly. In Proc. 15th
Annual IEEE Conference on Computational Complexity, pages 182 185, 1998.

D. W. Loveland. A variant of the Kolmogorov concept of complexity. Inform. and
Control, 15:510-526, 1969.

W. Lindner, R. Schuler, and O. Watanabe. Resource bounded measure and learn-
ability. In Proc. 13th Annual IEEE Conference on Computational Complexity, pages
261 270, 1998.

J. Lutz. Almost everywhere high nonuniform complexity. J. Comp. Sys. Sci., 44:220
258, 1992.

25

[Lut97]

[May94]

[NW4]

[PF7Y]

[RRY7]
(RS98|

[RSCY5]

[vMO98]

[vM99]

[Zim95]

J. Lutz. The quantitative structure of exponential time. In L. Hemaspaandra and
A. Selman, editors, Complexity Theory Retrospective II, pages 225 260. Springer Ver-
lag, 1997.

E. Mayordomo. Contributions to the Study of Resource-Bounded Measure. PhD thesis,
Universidad Polytécnica de Catalunya, Barcelona, April 1994.

N. Nisan and A. Wigderson. Hardness versus randomness. J. Comp. Sys. Sci., 49:149—
167, 1994.

N. Pippenger and M. Fischer. Relations among complexity measures. J. Assn. Comp.
Mach., 26:361-381, 1979.

A. Razborov and S. Rudich. Natural proofs. J. Comp. Sys. Sci., 55:24 35, 1997.

K. Regan and D. Sivakumar. Probabilistic martingales and BPTIME classes. In Proc.
138th Annual IEEE Conference on Computational Complexity, pages 186-200, 1998.

K. Regan, D. Sivakumar, and J.-Y. Cai. Pseudorandom generators, measure the-
ory, and natural proofs. In Proc. 36th Annual IEEE Symposium on Foundations of
Computer Science, pages 26 35, 1995.

D. van Melkebeek. On the measure of BPP. Technical Report TR-98-07, Department
of Computer Science, University of Chicago, July 1998.

D. van Melkebeek. Randomness and Completeness in Computational Complexity. PhD
thesis, University of Chicago, Department of Computer Science, June 1999. Available
as UC CS Technical Report TR 99-04.

Marius Zimand. On randomized cryptographic primitives. Technical Report TR586,
University of Rochester, Computer Science Department, November 1995.

26

