
Approximate Parameterized Matching

CARMIT HAZAY AND MOSHE LEWENSTEIN

Bar-Ilan University

AND

DINA SOKOL

Brooklyn College of the City University of New York

Abstract. Two equal length strings s and s ′, over alphabets �s and �s′ , parameterize match if there
exists a bijection π : �s → �s′ such that π (s) = s ′, where π (s) is the renaming of each character
of s via π . Parameterized matching is the problem of finding all parameterized matches of a pattern
string p in a text t , and approximate parameterized matching is the problem of finding at each location
a bijection π that maximizes the number of characters that are mapped from p to the appropriate
|p|-length substring of t .

Parameterized matching was introduced as a model for software duplication detection in software
maintenance systems and also has applications in image processing and computational biology. For
example, approximate parameterized matching models image searching with variable color maps in
the presence of errors.

We consider the problem for which an error threshold, k, is given, and the goal is to find all locations
in t for which there exists a bijection π which maps p into the appropriate |p|-length substring of
t with at most k mismatched mapped elements. Our main result is an algorithm for this problem
with O(nk1.5 + mk log m) time complexity, where m = |p| and n = |t |. We also show that when
|p| = |t | = m, the problem is equivalent to the maximum matching problem on graphs, yielding a
O(m + k1.5) solution.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Non-numerical Algorithms and Problems—Pattern Matching; Computations on Discrete Structures

General Terms: Algorithms, Design

Additional Key Words and Phrases: Hamming distance, maximum matching, mismatch pair, param-
eterize match

Part of this work appeared in a preliminary version of Hazay et al. [2004.]
M. Lewenstein was partially supported by an IBM faculty award grant and a GIF young scientists grant.
This work was done in part while D. Sokol was a postdoctoral student at Bar-Ilan University; partially
supported by the Israel Science Foundation Grant 282/01. D. Sokol was also partially supported by
NSF Grant DBI-0542751.
Authors’ addresses: C. Hazay and M. Lewenstein, Bar-Ilan University, Ramat Gan 52900, Israel, e-
mail: {harelc,moshe}@cs.biu.ac.il; D. Sokol, Brooklyn College of the City University of NY, e-mail:
sokol@sci.brooklyn.cuny.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701,
New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1549-6325/2007/08-ART29 $5.00 DOI 10.1145/1273340.1273345 http://doi.acm.org/
10.1145/1273340.1273345

ACM Transactions on Algorithms, Vol. 3, No. 3, Article 29, Publication date: August 2007.

2 C. HAZAY ET AL.

ACM Reference Format:

Hazay, C., Lewenstein, M., and Sokol, D. 2007. Approximate parameterized matching. ACM Trans.
Algor. 3, 3, Article 29 (August 2007), 15 pages. DOI = 10.1145/1273340.1273345 http://doi.acm.org/
10.1145/1273340.1273345

1. Introduction

In the traditional pattern matching model [Boyer and Moore 1977; Knuth et al.
1977], one seeks exact occurrences of a given pattern p in a text t , that is, text
locations where every text symbol is equal to its corresponding pattern symbol. For
two equal length strings s and s ′, we say that s is a parameterized match of s ′ if
there exists a bijection π from the alphabet of s to the alphabet of s ′ such that every
symbol of s ′ is equal to the image under π of the corresponding symbol of s. In the
parameterized matching problem, introduced by Baker [1993, 1997], one seeks all
text locations for which the pattern p parameterize matches the substring of length
|p| beginning at that location.

Baker [1993, 1997] introduced parameterized matching for applications that
arise in software tools for analyzing source code. Specifically, the application is
to identify duplicate code in large software systems for reuse. Here it is desirable
to find not only exact matches between program fragments but also parameterized
matches, namely, where the two program fragments are equal but possibly use
interchangeable identifiers (representing variable, constant, or function names).

When program fragments that repeat are discovered, other files of the program
are searched to find repetitions of the program fragment in other locations. (It is
often the case that repeating fragments have many appearances.) This application
is exactly captured by the notion of the parameterized matching problem. It turns
out that the parameterized matching problem arises in other applications such as in
image processing and computational biology, see Amir et al. [2003].

In Baker [1993, 1997], an optimal, linear time algorithm was given for param-
eterized matching. However, it was assumed that the alphabet was of constant
size. Amir et al. [1994] presented tight bounds for parameterized matching in the
presence of an unbounded size alphabet.

In Baker [1996], a novel method was presented for parameterized matching by
constructing parameterized suffix trees, which also allows for online parameterized
matching. The parameterized suffix trees are constructed by converting the pattern
string into a predecessor string. A predecessor string of a string s has at each location
i the distance between i and the location containing the previous appearance of the
symbol. The first appearance of each symbol is replaced with a 0. For example, the
predecessor string of aabbaba is 0, 1, 0, 1, 3, 2, 2. A simple and well-known fact
is that:

OBSERVATION 1. s and s ′ parameterize match if and only if they have the same
predecessor string.

The parameterized suffix tree is constructed in a manner that every path corre-
sponds to a suffix, in the standard sense, but is labeled with the predecessor string
of the appropriate suffix. Branching in the parameterized suffix tree occurs ac-
cording to the labels of the predecessor strings. The parameterized suffix tree was
further explored by Kosaraju [1995] and faster constructions were given by Cole
and Hariharan [2000].

ACM Transactions on Algorithms, Vol. 3, No. 3, Article 29, Publication date: August 2007.

Approximate Parameterized Matching 3

One of the interesting problems in Web searching is searching for color images,
see Amir et al. [2002]; Babu et al. [1995]; Swain and Ballard [1991]. The simplest
possible case is searching for an icon in a screen, a task that the Human-Computer
Interaction Lab at the University of Maryland was confronted with. If the colors are
fixed, this is exact 2-dimensional pattern matching [Amir et al. 1994]. However, if
the color maps in pattern and text differ, the exact matching algorithm would not
find the pattern. Parameterized 2-dimensional search is precisely what is needed.
A nearly optimal algorithm to solve the 2-dimensional parameterized matching
problem was given in Amir et al. [2003].

In reality, when searching for an image, one needs to take into account the
occurrence of errors that distort the image. Errors occur in various forms, depending
upon the application. Several distance metrics have been defined to account for such
errors. Two of the most classical distance metrics are the Hamming distance and
the edit distance [Levenshtein 1966]. The Hamming distance between two equal-
length strings is the number of mismatching characters when the strings are aligned.
The edit distance is the minimal number of character replacements, insertions, and
deletions needed to convert one string into another [Levenshtein 1966].

In Baker [1999], the parameterized match problem was considered in conjunction
with the edit distance. Here the definition of edit distance was slightly modified
so that the edit operations are defined to be insertion, deletion, and parameterized
replacements, that is, the replacement of a substring with a string that parameterize
matches it. An algorithm was devised for finding the parameterized edit distance
of two strings whose efficiency is close to the efficiency of the algorithms for
computing the classical edit distance. Also an algorithm was suggested for the
decision variant of the problem where a parameter k is given, and it is necessary to
decide whether the strings are within (parameterized edit) distance k.

However, it turns out that the operation of parameterized replacement relaxes the
problem to an easier problem. The reason that the problem becomes easier is that
two substrings that participate in two parameterized replacements are independent
of each other (in the parameterized sense).

A more rigid, but more realistic, definition for the Hamming distance variant
was given in Apostolico et al. [2007]. For a pair of equal length strings s and s ′
and a bijection π defined on the alphabet of s, the π -mismatch is the Hamming
distance between the image under π of s and s ′. The minimal π -mismatch over all
bijections π is the approximate parameterized match. The problem considered in
Apostolico et al. [2007] is to find for each location i of a text t the approximate
parameterized match of a pattern p with the substring beginning at location i . In
Apostolico et al. [2007], the problem was defined, and linear time algorithms were
given for the case were the pattern is binary or the text is binary. However, this
solution does not carry over to larger alphabets.

Unfortunately, under this definition the methods for classical string matching
with errors for Hamming distance, for example, Galil and Giancarlo [1986] and
Landau and Vishkin [1988], also known as pattern matching with mismatches, seem
to fail. Following is an outline of the method [Galil and Giancarlo 1986] for pattern
matching with mismatches.

The pattern is compared separately to each suffix of the text, beginning at loca-
tions 1 ≤ i ≤ n. Using a suffix tree of the text and precomputed longest common
ancestor (LCA) information (which can be computed once in linear time, see Harel
and Tarjan [1984], and Schieber and Vishkin [1988]), one can find the longest

ACM Transactions on Algorithms, Vol. 3, No. 3, Article 29, Publication date: August 2007.

4 C. HAZAY ET AL.

common prefix of the pattern and the corresponding suffix (in constant time). There
must be a mismatch immediately following. The algorithm jumps over the mismatch
and repeats the process taking into consideration the offsets of the pattern and
suffix.

When attempting to apply this technique to a parameterized suffix tree, it fails.
To illustrate this, consider the first matching substring (up until the first error) and
the next matching substring (after the error). Both of these substrings parameterize
match the substring of the text that they are aligned with. However, it is possi-
ble that combined they do not form a parameterized match. (See Example 1.) In
Example 1, abab parameterize matches cdcd, followed by a mismatch and sub-
sequently followed by abaa parameterized matching efee. However, different π ’s
are required for the local parameterized matches. This example also emphasizes
why the definition of Baker [1999] is a simplification. Specifically, each local pa-
rameterized matching substring is one replacement, that is, abab with cdcd is one
replacement, and abaa with efee is one more replacement. However, a more precise
definition would capture the globality of the parameterized matching not allowing,
in this case, abab to parameterize match to two different substrings.

Example 1.

p = a b a b a a b a a . . .

t = . . . c d c d d e f e e . . .

In this article we consider the problem of parameterized matching with k mis-
matches. The parameterized matching problem with k mismatches seeks all param-
eterized matches of a pattern p in a text t , with at most k mismatches.

For the case where |p| = |t | = m, which we call the string comparison problem,
we show an O(m1.5) algorithm for the problem by using maximum matching algo-
rithms. For the string comparison problem with threshold k, we show an O(m+k1.5)
time algorithm. We also show that improving on either of these will lead to better
maximum matching algorithms for sparse graphs, a long open question.

The main result of the article is an algorithm that solves the parameterized match-
ing with k mismatches problem, given a pattern of length m and a text of length n,
in O(nk1.5 + mk log m) time. This immediately yields a 2-dimensional algorithm
of time complexity O(n2mk1.5 + m2k log m), where |p| = m2 and |t | = n2.

Roadmap. In Section 2, we give preliminaries and definitions of the problem.
In Section 3, we present an algorithm that compares two equal length strings for a
parameterized match with k mismatches. A reduction from maximum matching in
graphs to the string comparison problem is also given in Section 3. The algorithmic
techniques introduced in Section 3 are used in the following section, Section 4,
where we present the algorithm for the general problem of parameterized string
matching with k mismatches. In Section 5, we discuss the pattern preprocessing
stage of the algorithm. In Section 6, we show an extension of our algorithm for
images, and finally, in Section 7, we discuss future directions for research.

2. Preliminaries and Definitions

Given a string s = s1s2 · · · sn of length |s| = n over an alphabet �s , and a bijection
π from �s to some other alphabet �s ′ , the image of s under π is the string s ′ =
π (s) = π (s1) · . . . · π (sn), that is obtained by applying π to all characters of s.

ACM Transactions on Algorithms, Vol. 3, No. 3, Article 29, Publication date: August 2007.

Approximate Parameterized Matching 5

Given two equal-length strings w and u over alphabets �w and �u and a bijec-
tion π from �w to �u , the π -mismatch between w and u is Ham(π (w), u), where
Ham(s, t) is the Hamming distance between s and t . We say that w parameter-
ized k-matches u if there exists a π such that the π -mismatch ≤ k. The approxi-
mate parameterized match between w and u is the minimum π -mismatch (over all
bijections π).

For given input text x, |x | = n, and pattern y, |y| = m, the problem of approx-
imate parameterized matching for y in x consists of computing the approximate
parameterized match between y and every (consecutive) substring of length m of
x . Hence, approximate parameterized searching requires computing the π yielding
minimum π -mismatch for y at each position of x . Of course, the best π is not
necessarily the same at every position. The problem of parameterized matching
with k mismatches consists of computing for each location i of x whether y param-
eterized k-matches the (consecutive) substring of length m beginning at location i .
Sometimes π itself is also desired (however, any π with π -mismatch of no more
than k will be satisfactory).

3. String Comparison Problem

We begin by evaluating two equal-length strings for a parameterized k-match as
follows.

Input: Two strings, s = s1, s2, . . . , sm and s ′ = s ′
1, s ′

2, . . . , s ′
m , and an integer k.

Output: True, if there exists π such that the π -mismatch of s and t is no more
than k.
False, otherwise.

In standard string comparison, we simply compare the characters and count the
number of mismatches in O(m) time. In approximate parameterized matching the
naive method of solving the problem is to check the π -mismatch for every possible
π . However, this takes exponential time.

One way to solve the problem is to reduce the problem to a maximal bipartite
weighted matching in a graph. We construct a bipartite graph B = (U ∪ V, E) in
the following way. U = �s and V = �s ′ . There is an edge between a ∈ �s and
b ∈ �s ′ if and only if there is at least one a in s that is aligned with a b in s ′. The
weight of this edge is the number of a’s in s that are aligned to b’s in s ′. It is easy
to see the following.

OBSERVATION 2. A maximum weighted matching in B corresponds to a mini-
mal π -mismatch where π is defined by the edges of the matching.

The problem of maximum bipartite matching has been widely studied and ef-
ficient algorithms have been devised, for example, Fredman and Tarjan [1987],
Gabow [1985], Gabow and Tarjan [1989], and Kao et al. [2001]. For integer weights
where the largest weight is bounded by |V |, the fastest algorithm runs in time
O(E

√
V) [Kao et al. 2001]. This solution yields an O(m1.5) time algorithm for the

problem of parameterized string comparison with mismatches. The advantage of
the algorithm is that it views the whole string at once and efficiently finds the best
function. In the case where we have a general text (i.e., of length longer than m),
which is the parameterized pattern matching problem with inputs t of length n, and
p of length m, the bipartite matching solution yields an O(nm1.5) time algorithm.

ACM Transactions on Algorithms, Vol. 3, No. 3, Article 29, Publication date: August 2007.

6 C. HAZAY ET AL.

FIG. 1. An example of a bipartite graph and its corresponding strings. The maximum matching and
bijection is of size 2.

3.1. REDUCING MAXIMUM MATCHING TO THE STRING COMPARISON PROBLEM.
While we have seen that the maximum matching problem can be used to solve the
string comparison problem, we will now see the reverse.

LEMMA 3.1. Let B = (U ∪V, E) be a bipartite graph. If the string comparison
problem can be solved in O(f (m)) time then a maximum matching in B can be
found in O(f (|E |) time.

PROOF. Let U = {u1, u2, . . . , u|U |}, V = {v1, v2, . . . , v|V |}, and E = {e1, . . . ,
e|E |}. Create two strings sU and sV of length |E |, where for edge ei = {u j , vl} we
set the i th location of sU to be u j and the i th location of sV to be vl . See Figure 1
for an example.

We let sU and sV be the input of the string comparison problem and note that by
construction the alphabet of sU is U , and the alphabet of sV is V . Hence a bijection
in the string comparison problem is a bijection from U to V which is a matching in
B. In the string comparison problem, we want to minimize the mismatches, which
are those edges that are not in the bijection, and, in the matching problem, we
want to maximize the number of edges in the bijection. Since these two objective
functions are equivalent, the result follows.

Since it is always true that |E | < |V |2, it follows that |E |1/4 <
√|V |. Hence, it

would be surprising to solve the string comparison problem in o(m1.25). In fact, even
for graphs with a linear number of edges, the best known algorithm is O(E

√
V),

and hence an algorithm for the string comparison problem in o(m1.5) would have
implications on the maximum matching problem as well.

Note that for the string comparison problem one can reduce the approximate
parameterized matching version to the parameterized matching with k mismatches
version. This is done by binary searching on k to find the optimal solution for the
string comparison problem in the approximate parameterized matching version.
Hence an algorithm for detecting whether the string comparison problem has a
bijection with fewer than k mismatches with time o(k1.5

log k + m) would imply a faster
maximum matching algorithm.

ACM Transactions on Algorithms, Vol. 3, No. 3, Article 29, Publication date: August 2007.

Approximate Parameterized Matching 7

3.2. MISMATCH PAIRS AND PARAMETERIZED PROPERTIES. Obviously, one may
use the solution of approximate parameterized string comparison to solve the prob-
lem of parameterized matching with k, mismatches. However, it is desirable to
construct an algorithm with running time dependent on k rather than m. The bipar-
tite matching method does not seem to give insight into how to achieve this goal. In
order to give an algorithm dependent on k, we introduce a new method for detecting
whether two equal-length strings have a parameterized k-match. The ideas used in
this new comparison algorithm will be used in the following section to yield an
efficient solution for the problem of parameterized matching with k mismatches.

When faced with the problem of parameterized matching with mismatches, the
initial difficulty is to decide for a given location whether it is a match or a mismatch.
Simple comparisons do not suffice since any symbol can match (or mismatch) every
other symbol. In the bipartite solution, this difficulty is overcome by viewing the
entire string at once. A bijection is found over all characters, excluding at most k
locations. Thus, it is obvious that the locations that are excluded from the matching
are mismatched locations. For our purposes, we would like to be able to decide
locally, that is, before π is ascertained, whether a given location is good or bad.

Definition 3.2. Let s and s ′ be two equal-length strings. A mismatch pair be-
tween s and s ′ is a pair of locations (i,j) such that one of the following holds,

1. si = s j and s ′
i 	= s ′

j 2. si 	= s j and s ′
i = s ′

j .

It immediately follows from the definition Lemma 3.3

LEMMA 3.3. Given two equal-length strings, s and s ′, if (i, j) is a mismatch
pair between s and s ′, then for every bijection � : �s → �s ′ either location i
or location j , or both locations i and j are mismatches, that is, π (si) 	= s ′

i or
π (s j) 	= s ′

j or both are unequal.

Conversely,

LEMMA 3.4. Let s and s ′ be two equal-length strings, and let S ⊆ {1, . . . , m} be
a set of locations which does not contain any mismatch pair. Then there exists a bi-
jection π : �s → �s ′ that is parameterized on S, that is, for every i ∈ S, π (si) = s ′

i .

PROOF. S does not contain any mismatch pair. Hence, for any two locations i
and j in S, if si = s j , then s ′

i = s ′
j , and if si 	= s j , then s ′

i 	= s ′
j . Hence there is a

bijection π : �s → �s ′ that is a parameterized match on the set of locations S.

The idea of our algorithm is to count the mismatch pairs between s and s ′. Since
each pair contributes at least one error to the parameterized match between s and
s ′, it follows immediately from Lemma 3.3 that if there are more than k mismatch
pairs, then s does not parameterize k-match s ′. We claim that if there are fewer than
k/2 + 1 mismatch pairs, then s parameterize k-matches s ′.

Definition 3.5. Given two equal-length strings, s and s ′, a collection L of mis-
match pairs is said to be a maximal disjoint collection if (1) all mismatch pairs in L
are disjoint, that is, do not share a common location, and (2) there is no mismatch
pair that can be added to L without violating disjointness.

COROLLARY 3.6. Let s and s ′ be two strings, and let L be a maximal disjoint
collection of mismatch pairs of s and s ′. If |L| > k, then for every � : �s → �′

s ,

ACM Transactions on Algorithms, Vol. 3, No. 3, Article 29, Publication date: August 2007.

8 C. HAZAY ET AL.

the �-mismatch is greater than k. If |L| ≤ k/2, then there exists � : �s → �′
s

such that the �-mismatch counter is less than or equal to k.

PROOF. Combining Lemma 3.3 and Lemma 3.4 yields the proof.

3.3. PARAMETERIZED COMPARISON OF TWO EQUAL LENGTH STRINGS. The
method uses Corollary 3.6. First the mismatch pairs need to be found. In fact, by
Corollary 3.6 only k+1 of them need to be found since k+1 mismatch pairs implies
that there is no parameterized k-match. After the mismatch pairs are found, if the
number of mismatch pairs mp is less than k/2 or more than k, we can immediately
announce a match or mismatch according to Corollary 3.6. The difficult case to
detect is whether there indeed is a parameterized k-match for k/2 < mp ≤ k. This
is done with the bipartite matching algorithm. However, here the bipartite graph
needs to be constructed somewhat differently. While the case where mp ≤ k/2
implies an immediate match, for simplicity of presentation, we will not differentiate
between the case of mp ≤ k/2 and k/2 < mp ≤ k. Thus from here on, we will
only bother with the cases mp ≤ k and mp > k.

3.3.1. Find Mismatch Pairs. In order to find the mismatch pairs of equal-length
strings s and s ′, we use a simple stack scheme, one stack for each character in
the alphabet. We do the search in two phases. First mismatch pairs are searched
according to the first rule of Definition 3.2, that is, si = s j , but s ′

i 	= s ′
j . This is done

by scanning the strings from left-to-right, and, for each character si = σ of the first
string s, we go to the stack designated for σ and do the following. If it is empty, we
push the character s ′

i of the second string s ′ onto the stack along with the location
i . If it is not empty, we check the top of the stack designated for σ and compare
the character at the top of the stack with s ′

i . If they are the same, we push s ′
i and

i onto the stack. If they are not the same, we pop from the stack the <character,
location> pair < τ, j > and (i, j) is declared a mismatch pair.

In the second phase, we consider the locations that have not been declared
as mismatch pairs and look for mismatch pairs that satisfy the second rule of
Definition 3.2, that is, si 	= s j , but s ′

i = s ′
j . This is done as in phase one with

the roles of s and s ′ reversed (and disregarding locations that have already been
declared as part of mismatch pairs).

Time Complexity. The algorithm makes two simple scans of the strings and each
character in the string is pushed/popped onto at most one stack. Hence the running
time and space is O(m), where m is the length of the strings.

3.3.2. Verification. The verification is performed only when the number of
mismatch pairs that were found, mp, satisfies mp ≤ k. Verification consists of a
procedure that finds the minimal π -mismatch over all bijections π . The technique
used is similar to the bipartite matching algorithm discussed in the beginning of the
section. It is easier to comprehend the algorithm if it is assumed that the alphabets
�s and �s ′ do not have characters in common, even though this assumption is not
necessary at all.

Let L̂ ⊂ {1, . . . , m} be the locations that appear in a mismatch pair. We say
that a symbol a ∈ �s is mismatched if there is a location i ∈ L̂ such that si = a.
Likewise, b ∈ �s ′ is mismatched if there is a location i ∈ L̂ such that s ′

i = b. A
symbol a ∈ �s , or b ∈ �s ′ , is free if it is not mismatched.

ACM Transactions on Algorithms, Vol. 3, No. 3, Article 29, Publication date: August 2007.

Approximate Parameterized Matching 9

Construct a bipartite graph B = (U ∪ V, E) defined as follows. U contains all
mismatched symbols a ∈ �s and V contains all mismatched symbols b ∈ �s ′ .
Moreover, U contains all free symbols a ∈ �s for which there is a location i ∈
{1, . . . , m} − L̂ such that si = a, and s ′

i is a mismatched symbol. Likewise, V
contains all free symbols b ∈ �s ′ for which there is a location i ∈ {1, . . . , m} − L̂
such that s ′

i = b and si is a mismatched symbol. The edges as before have weights
that correspond to the number of locations where they are aligned with each other.

LEMMA 3.7. The bipartite graph B is of size O(k). Moreover, given the mis-
match pairs it can be constructed in O(k) time.

PROOF. This lemma follows by observing that, for any a ∈ �s , all appearances
of a in locations of {1, . . . , m} − L̂ are aligned with a given symbol b ∈ �s ′ by
definition of mismatch pairs. Symmetrically, the same is true for any b ∈ �s ′ . On
the other hand, L̂ is of size O(k).

While Lemma 3.7 states that the bipartite graph is of size O(k), it still may be
the case that the edge weights may be substantially larger. However, if there exists
an edge e = (a, b) with weight > k, then it must be that π (a) = b for otherwise we
immediately have > k mismatches. Thus, we may remove every edge with weight
> k, along with their vertices. Note that we will need to account for the other
edges that were removed and connected to one of these vertices. What remains is
a bipartite graph with edge weights between 1 and k.

THEOREM 3.8. Given two equal-length strings s and s ′ with mp ≤ k mismatch
pairs, it is possible to verify whether there is a parameterized k-match between s
and s ′ in O(k1.5) time.

PROOF. A bijection π : �s → �′
s is equivalent to a matching in the constructed

graph B as each is a one-one mapping of the same vertex/alphabet set. In a maximum
matching, we desire to maximize the sum of the weights of the edges chosen and
in a bijection to minimize the number of edges that are not selected that is, the
mismatches. These objective functions are equivalent.

Since the size of the bipartite graph B is O(k) by Lemma 3.7, it follows that the
maximum weighted bipartite matching can be solved in O(k1.5) time [Kao et al.
2001].

Time Complexity. Given two equal-length strings s and s ′, it is possible to de-
termine whether s parameterized k-matches s ′ in O(m + k1.5) time, O(m) to find
the mismatch pairs and O(k1.5) to check these pairs with the appropriate bipartite
matching.

4. An Algorithm for Parameterized Matching with k Mismatches

We are now ready to introduce our algorithm for the problem of parameterized
matching with k mismatches:

Input: Two strings, t = t1, t2, . . . , tn and p = p1, p2, . . . , pm , and an integer k.
Output: All locations i in t where p parameterized k-matches ti , . . . , ti+m−1.

Our algorithm has two phases, the pattern preprocessing phase and the text
scanning phase. In this section, we present the text scanning phase and will assume

ACM Transactions on Algorithms, Vol. 3, No. 3, Article 29, Publication date: August 2007.

10 C. HAZAY ET AL.

FIG. 2. An example of a maximal set of 3 mismatch pairs. This is a 3-good witness and a 2-bad
witness.

that the pattern preprocessing phase is given. The output of the preprocessing phase
is described in Section 4.1. In the following section, we describe an efficient method
to preprocess the pattern for the needs of the text scanning phase.

Definition 4.1. Let s and s ′ be two-equal length strings. Let L be a collection
of disjoint mismatch pairs between s and s ′. If L is maximal and |L| ≤ k, then L
is said to be a k-good witness for s and s ′. If |L| > k, then L is said to be a k-bad
witness for s and s ′.

See Figure 2 for an example of a 3-good witness and a 2-bad witness.
The text scanning phase has two stages the (a) filter stage and the (b) verification

stage. In the filter stage, for each text location i , we find either a k-good witness
or a k-bad witness for p and ti . . . ti+m−1. Obviously, by Corollary 3.6, if there is
a k-bad witness, then p cannot parameterize k-match ti . . . ti+m−1. Hence, after the
filter stage, it remains to verify for those locations i which have a k-good witness
whether p parameterize k-matches ti . . . ti+m−1. The verification stage is identical
to the verification procedure in Section 3.3.2, and hence we will not dwell on this
stage.

4.1. THE FILTER STAGE. The underlying idea of the filter stage is similar to
Landau and Vishkin [1986]. Like the KMP algorithm [Knuth et al. 1977], one loca-
tion after another is evaluated utilizing the knowledge accumulated at the previous
locations combined with the information gathered in the pattern preprocessing
stage. The information of the pattern preprocessing stage is the following.

Output of Pattern Preprocessing. For each location i of p, a maximal disjoint collection

of mismatch pairs L for some pattern prefix p1, . . . , p j−i+1 and pi , . . . , p j such that either

|L| = 3k + 3 or j = m and |L| ≤ 3k + 3.

As the first step of the algorithm, we consider the first text location, that is, when
text t1 . . . tm is aligned with p1 . . . pm . Using the method in Section 3.3.1, we can
find all the mismatch pairs in O(m) time, and hence find a k-good or k-bad witness
for the first text location. When evaluating subsequent locations i , we maintain
the following invariant: For all locations l < i , we have either a k-good or k-bad
witness for location l.

It is important to observe that, when evaluating location i of the text, if we
discover a maximal disjoint collection of mismatch pairs of size k + 1, that is, a
k-bad witness, between a prefix p1, . . . , p j of the pattern and ti , . . . , ti+ j−1, we will
stop our search since this immediately implies that p1, . . . , pm and ti , . . . , ti+m−1
have a k-bad witness. We say that i + j is a stop location for i . If we have a k-good
witness at location i then i + m is its stop location. When evaluating location i of
the text, each of the previous locations has a stop location. The location � that has
a maximal stop location over all locations l < i , is called a maximal stopper at i .

The reason for working with the maximal stopper at i is that the text beyond the
stop location of the maximal stopper has not yet been scanned. If we can show that

ACM Transactions on Algorithms, Vol. 3, No. 3, Article 29, Publication date: August 2007.

Approximate Parameterized Matching 11

FIG. 3. The maximal stopper and the current location.

FIG. 4. The overlap to be computed.

FIG. 5. The two cases hinge on the pattern preprocessing of this overlap.

the time to compute a k-bad witness or find a maximal disjoint collection of mis-
match pairs for location i up until the maximal stopper, that is, for p1, . . . , p�′−i+1
with ti , . . . , t�′ where �′ is the stop location of �, is O(k), then we will spend overall
O(n + nk) time for computing, O(nk) to compute up until the maximal stopper
for each location, and O(n) for the scanning and updating the current maximal
collection of mismatch pairs.

4.1.1. Computing Up Until the Maximal Stopper. The situation now is that
we are evaluating a location i of t . Let � be the maximal stopper at i . We utilize
two pieces of precomputed information; (1) the pattern preprocessing for location
i −�+1 of p and (2) the k-good witness or k-bad witness (of size k +1) for location
� of t . Let �′ be the stop location of �. See Figure 3. We would like to evaluate the
overlap of p1, . . . , p�′−i+1 with ti , . . . , t�′ and to find a maximal disjoint collection
L of mismatch pairs on this overlap or, if it exists, a maximal disjoint collection L
of mismatch pairs of size k + 1 on a prefix of the overlap. See Figure 4.

There are two possible cases. One possibility is that the pattern preprocessing
returns 3k + 3 mismatch pairs for a prefix p1, . . . , p j and pi−�+1, . . . , pi−�+ j+1
where j ≤ �′ − i + 1. See Figure 5. Yet, there are ≤ k + 1 mismatch pairs between
p1, . . . , p�′−�+1 and t�, . . . , t�′ , as shown in Figure 6.

ACM Transactions on Algorithms, Vol. 3, No. 3, Article 29, Publication date: August 2007.

12 C. HAZAY ET AL.

FIG. 6. The maximal stopper location has at most k + 1 mismatches until its stop location.

LEMMA 4.2. Let s, s ′ and s ′′ be three equal-length strings such that there is a
maximal collection of mismatch pairs, Ls,s ′ , between s and s ′ of size ≤ M, and a
maximal collection of mismatch pairs Ls ′,s ′′ between s ′ and s ′′ of size ≥ 3M. Then
there must be a maximal collection of mismatch pairs Ls,s ′′ between s and s ′′ of
size ≥ M.

PROOF. Since each mismatch pair is composed of 2 locations, there must be
at least M mismatch pairs between s ′ and s ′′ which do not participate in mismatch
pairs between s and s ′. It follows from the definition of mismatch pairs that these
M mismatch pairs are also mismatch pairs between s and s ′′.

Set M to be k + 1 and one can use Lemma 4.2 for the case at hand, namely,
there must be at least k + 1 mismatch pairs between p1, . . . , p�′−i+1 and ti , . . . , t�′ ,
which defines a k-bad witness.

The second case is where the pattern preprocessing returns fewer than 3k + 3
mismatch pairs or it returns 3k + 3 mismatch pairs but it does so for a prefix
p1, . . . , p j and p�−i+1, . . . , p�−i+ j+1 where j > �′ − i +1. See Figure 5. However,
since �’s stop location is �′, we still have an upper bound of k + 1 mismatch pairs
between p1, . . . , p�′−�+1 and t�, . . . , t�′ . So, we can utilize this fact.

LEMMA 4.3. Given three strings, s, s ′, s ′′, such that there are maximal disjoint
collections of mismatch pairs, Ls,s ′ and Ls ′,s ′′ , of sizes O(k), O(k) time, one can
find a k-good or k-bad witness for s and s ′′.

PROOF. Let L̄s,s ′ be the indices that are not in any mismatch pair between s
and s ′. By Lemma 3.4, there exists a bijection π : �s → �s ′ such that π defines
a parameterized match on L̄s,s ′ . Likewise, if L̄s ′,s ′′ are the indices that are not in
any mismatch pair between s ′ and s ′′, then there is a bijection π ′ : �s ′ → �s ′′ that
defines a parameterized match on L̄s ′,s ′′ .

The set of indices that participates in no mismatch pair in either of the pairs is
L̄s,s ′ ∩ L̄s ′,s ′′ . On this set, π ′ ·π defines a parameterized match. However, the number
of locations participating in the mismatch pairs is bounded by k. Using linked lists
for each character, one can now construct the, at most, O(k) mismatch pairs in O(k)
time.

4.1.2. Putting it All Together. The filter stage takes O(nk) time and the verifi-
cation stage takes O(nk1.5).

THEOREM 4.4. Given the preprocessing stage, we can announce for each lo-
cation i of t whether p parameterized k-matches ti , . . . , ti+m−1 in O(nk1.5) time.

5. Pattern Preprocessing

In this section, we solve the pattern preprocessing necessary for the general algo-
rithm.

ACM Transactions on Algorithms, Vol. 3, No. 3, Article 29, Publication date: August 2007.

Approximate Parameterized Matching 13

Input: A pattern p = p1, . . . , pm and an integer k.
Output: For each location i, 1 ≤ i ≤ m a maximal disjoint collection of mismatch

pairs L for the minimal pattern prefix p1, . . . , p j−i+1 and pi , . . . , p j such
that either |L| = 3k + 3 or j = m and |L| ≤ 3k + 3.

The naive method takes O(m2) by applying the method from Section 3.3.1.
However, this does not exploit any previous information for a new iteration. Since
every alignment combines two previous alignments, we can get a better result.
Assume, without loss of generality, that m is a power of 3. We divide the set of
alignments into log3 m + 1 sequences as follows;

R1 = [2, 3], R3 = [4, 5, 6, 7, 8, 9], . . . , Ri = [3i−1 + 1, . . . , 3i], . . . , Rlog3 m =
[3log3 m−1 + 1, . . . , 3log3 m] 1 ≤ i ≤ log3 m.

At each step, we compute the desired mismatches for each set of alignments Ri .
Step i uses the information computed in steps 1 · · · i − 1. We further divide each
set into two halves and compute the first half followed by the second half. This is
possible since each Ri contains an even number of elements as 3i −3i−1 = 2∗3i−1.
We split each sequence Ri into two equal-length sequences R1

i [3i−1+1, . . . , 2∗3i−1]
and R2

i = [2 ∗ 3i−1 + 1, . . . , 3i]. For each of the new sequences, we have the
following.

LEMMA 5.1. If r1, r2 ∈ R1
i (the first half of set Ri) or r1, r2 ∈ R2

i (the second
half of Ri) such that r1 < r2 then r2 − r1 ∈ R j for j < i .

PROOF. We assume that r1, r2 ∈ R1
i (the proof for the other case is symmetric).

Obviously r2 ≤ 2 ∗ 3i−1 and r1 ≥ 3i−1 + 1, then r2 − r1 ≤ 2 ∗ 3i−1 − 3i−1 − 1 =
3i−1 − 1.

This gives a handle on how to compute our desired output. Denote fi = min{ j ∈
R1

i } and mi = min{ j ∈ R2
i } the representatives of their sequences. We compute

the following two stages for each group Ri , in order R1, . . . , Rlog3 m .

(1) Compute a maximal disjoint collection of mismatch pairs L for some pattern
prefix p1, . . . , p j+1 and p fi , . . . , p fi + j such that |L| = (3k + 3)3log3 m−i or
fi + j = m and |L| ≤ (3k + 3)3log3 m−i . Do the same with pmi , . . . , pmi + j .

(2) Now for each j ∈ R1
i apply the algorithm for the text described in the previous

section on the pattern p, the pattern shifted by fi (R1
i ’s representative) and the

pattern shifted by j . Do the same with mi for R2
i .

The central idea and importance behind the choice of the number of mismatch
pairs that we seek is to satisfy Lemma 4.2. It can be verified that indeed our choice
of sizes always satisfies that there are 3 times as many mismatch pairs as in the
previous iteration.

THEOREM 5.2. Given a pattern p of length m, it is possible to precompute its
3k + 3 mismatch pairs at each alignment in O(km log3 m) time.

PROOF. The time complexity for each group Ri with O(3i−1) members is
3log3 m−i+1(3k + 3) for finding the mismatches, multiply by O(3i−1) members,
which is O(mk) for a group, plus O(m) for the first and the middle elements. All
together it is O(km log3 m).

ACM Transactions on Algorithms, Vol. 3, No. 3, Article 29, Publication date: August 2007.

14 C. HAZAY ET AL.

COROLLARY 5.3. Given a pattern p and text t , we can solve the parameterized
matching with k mismatches problem in O(nk1.5 + km log m) time.

6. 2-D Parameterized Matching with k Mismatches

Two-dimensional parameterized matching has applications in image search with
variable colors and errors. In this section, we present an extension of our algorithm
for 2-dimensional approximate parameterized matching.

Input: Two images, text T [1 · · · n][1 · · · n], and pattern P[1 · · · m][1 · · · m], and
an integer k.

Output: All locations (i, j) in T such that P parameterized k-matches the m × m
image whose upper left corner is T [i, j].

We begin with the assumption that the text has exactly m rows and then multiply
the resulting time complexity by n. Both the text and the pattern are linearized
column-by-column. Our string matching algorithm of Section 4 can be applied to
the linear pattern and text. Care must be taken that only those locations whose index
is divisible by m will be considered. This can clearly be accomplished in O(n) time.
Thus, the time complexity for each m rows of the text is O(nmk1.5).

THEOREM 6.1. Given an m × m image P and an n × n image T , we can solve
the parameterized matching with k mismatches problem in O(n2mk1.5+m2k log m)
time.

7. Future Work

The first obvious question to be asked is whether faster solutions for the problem
exist. For the one-dimensional case, the reduction to bipartite matchings seem to
make this a somewhat challenging problem to answer. However, the 2-dimensional
case leaves room for improvement.

Another interesting question suggested by an anonymous referee is to consider
the problem of enumerating all the bijections of the solution. Recall that the solution
is approximate and hence the bijection that maximizes matches need not be unique.
In this case, would the time complexity still be independent of the size of the
alphabets? This can be further explored asking for all bijections matching within
threshold k, that is, all bijections that are within k mismatches of the maximal
approximate match.

Naturally, one may ask what happens if you consider the edit distance. Recall
the discussion in the introduction which pointed to the work of Baker [1999].
However, as alluded to in the introduction, the correct way for defining the edit
distance problem in our opinion is to allow the operations and then apply the edit
distance. This gives a global definition which presents another interesting problem.

REFERENCES

AMIR, A., AUMANN, Y., COLE, R., LEWENSTEIN, M., AND PORAT, E. 2003. Function matching: Al-
gorithms, applications, and a lower bound. In Proceedings of the 30th International Colloquium on
Automata, Languages and Programming (ICALP). 929–942.

AMIR, A., BENSON, G., AND FARACH, M. 1994. An alphabet independent approach to two-dimensional
pattern matching. SIAM J. Comput. 23, 2, 313–323.

ACM Transactions on Algorithms, Vol. 3, No. 3, Article 29, Publication date: August 2007.

Approximate Parameterized Matching 15

AMIR, A., CHURCH, K. W., AND DAR, E. 2002. Separable attributes: a technique for solving the sub matri-
ces character count problem. In Proceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms
(SODA). 400–401.

AMIR, A., FARACH, M., AND MUTHUKRISHNAN, S. 1994. Alphabet dependence in parameterized match-
ing. Information Process. Lett. 49, 3, 111–115.

APOSTOLICO, A., ERDŐS, P., AND LEWENSTEIN, M. 2007. Parameterized matching with mismatches. J.
Discrete Algor. 5, 1, 135–140.

BABU, G. P., MEHTRE, B. M., AND KANKANHALLI, M. S. 1995. Color indexing for efficient image
retrieval. Multimed. Tools Applic. 1, 4, 327–348.

BAKER, B. S. 1993. A theory of parameterized pattern matching: algorithms and applications. In Pro-
ceedings of the 25th Annual ACM Symposium on the Theory of Computation (STOC). 71–80.

BAKER, B. S. 1996. Parameterized pattern matching: Algorithms and applications. J. Comput. Syst.
Sci. 52, 1, 28–42.

BAKER, B. S. 1997. Parameterized duplication in strings: Algorithms and an application to software
maintenance. SIAM J. Comput. 26, 5, 1343–1362.

BAKER, B. S. 1999. Parameterized diff. In Proceedings of the 10th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA). 854–855.

BOYER, R. S., AND MOORE, J. S. 1977. A fast string searching algorithm. Comm. ACM 20, 10, 762–772.
COLE, R., AND HARIHARAN, R. 2000. Faster suffix tree construction with missing suffix links. In Pro-

ceedings of the 32nd ACM Symposium on Theory of Computing (STOC). 407–415.
FREDMAN, M. L., AND TARJAN, R. E. 1987. Fibonacci heaps and their uses in improved network opti-

mization algorithms. J. ACM 34, 3, 596–615.
GABOW, H. N. 1985. Scaling algorithms for network problems. J. Comput. Syst. Sci. 31, 2, 148–168.
GABOW, H. N., AND TARJAN, R. E. 1989. Faster scaling algorithms for network problems. SIAM J.

Comput. 18, 5, 1013–1036.
GALIL, Z., AND GIANCARLO, R. 1986. Improved string matching with k mismatches. SIGACT News 17, 4,

52–54.
HAREL, D., AND TARJAN, R. E. 1984. Fast algorithms for finding nearest common ancestors. SIAM J.

Comput. 13, 2, 338–355.
HAZAY, C., LEWENSTEIN, M., AND SOKOL, D. 2004. Approximate parameterized matching. In Proceed-

ings of the 12th Annual European Symposium on Algorithms (ESA), S. Albers and T. Radzik, Eds. Lecture
Notes in Computer Science, vol. 3221. Springer, 414–425.

KAO, M.-Y., LAM, T. W., SUNG, W.-K., AND TING, H.-F. 2001. A decomposition theorem for maximum
weight bipartite matchings. SIAM J. Comput. 31, 1, 18–26.

KNUTH, D. E., JR., J. H. M., AND PRATT, V. R. 1977. Fast pattern matching in strings. SIAM J. Comput. 6, 2,
323–350.

KOSARAJU, S. R. 1995. Faster algorithms for the construction of parameterized suffix trees (preliminary
version). In Proceedings of the 36th IEEE Annual Symposium on Foundations of Computer Science
(FOCS). 631–637.

LANDAU, G. M., AND VISHKIN, U. 1986. Efficient string matching with k mismatches. Theoret. Comput.
Sci. 43, 239–249.

LANDAU, G. M., AND VISHKIN, U. 1988. Fast string matching with k differences. J. Comput. Syst.
Sci. 37, 1, 63–78.

LEVENSHTEIN, V. I. 1966. Binary codes capable of correcting, deletions, insertions and reversals. Soviet
Phys. Dokl. 10, 707–710.

SCHIEBER, B., AND VISHKIN, U. 1988. On finding lowest common ancestors: Simplification and paral-
lelization. SIAM J. Comput. 17, 6, 1253–1262.

SWAIN, M. J., AND BALLARD, D. H. 1991. Color indexing. Int. J. Comput. Vision 7, 1, 11–32.

RECEIVED FEBRUARY 2005; ACCEPTED JUNE 2006

ACM Transactions on Algorithms, Vol. 3, No. 3, Article 29, Publication date: August 2007.

