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Abstract

Using an ensemble of classifiers, instead of a single classifier, can lead to improved gener-
alization. The gains obtained by combining however, are often affected more by the selection
of what is presented to the combiner, than by the actual combining method that is chosen.
In this paper we focus on data selection and classifier training methods, in order to “prepare”
classifiers for combining. We review a combining framework for classification problems that
quantifies the need for reducing the correlation among individual classifiers. Then, we discuss
several methods that make the classifiers in an ensemble more complementary. Experimental
results are provided to illustrate the benefits and pitfalls of reducing the correlation among

classifiers, especially when the training data is in limited supply.



1 Introduction

A classifier’s ability to meaningfully respond to novel patterns, or generalize, is perhaps its most
important property (Levin et al., 1990; Wolpert, 1990). In general however, the generalization
is not unique, and different classifiers provide different generalizations by realizing different
decision boundaries (Ghosh and Tumer, 1994). For example, when classification is performed
using a multilayered, feed-forward artificial neural network, different weight initializations, or
different architectures (number of hidden units, hidden layers, node activation functions, etc.),
result in differences in performance. It is therefore necessary to train a multitude of networks
when approaching a classification problem to ensure that a good model/parameter set is found.
However, selecting the “best” classifier is not necessarily the ideal choice, because potentially
valuable information may be wasted by discarding the results of less-successful classifiers. This
observation leads to the concept of “combining” wherein the outputs of several classifiers are

pooled before a decision is made.

Currently, the most popular way of combining multiple classifiers is via simple averaging
of the corresponding output values (Lincoln and Skrzypek, 1990; Perrone and Cooper, 1993b;
Tumer and Ghosh, 1996). Weighted averaging has also been proposed, and different methods for
computing the proper classifier weights have been studied (Benediktsson et al., 1994; Hashem
and Schmeiser, 1993; Jacobs, 1995; Lincoln and Skrzypek, 1990). Such linear combining tech-
niques have been mathematically analyzed both for classification (Tumer and Ghosh, 1995c;
Tumer and Ghosh, 1996), and regression problems (Perrone and Cooper, 1993a; Hashem and
Schmeiser, 1993). Some researchers have investigated non-linear combiners using rank-based
information (Ho et al., 1994; Al-Ghoneim and Vijaya Kumar, 1995), belief-based methods (Ro-
gova, 1994; Yang and Singh, 1994; Xu et al., 1992), or voting schemes (Hansen and Salamon,
1990; Battiti and Colla, 1994). We have introduced “order statistics” combiners, and analyzed
their properties (Tumer and Ghosh, 1995b; Tumer and Ghosh, 1995¢). Wolpert introduced the
concept of “stacking” classifiers, allowing each stage to correct the mistakes of the previous
one (Wolpert, 1992). Combiners have also been successfully applied to a multitude of real world

problems (Baxt, 1992; Ghosh et al., 1996; Lee et al., 1991).

Most research in this area focuses on finding the types of combiners that improve perfor-

mance. Yet, it is important to note that if the classifiers to be combined repeatedly provide



the same (either erroneous or correct) classification decisions, there is little to be gained from
combining, regardless of the chosen scheme. Therefore, the selection and training of the clas-
sifiers that will be combined is as critical an issue as the selection of the combining method.
Indeed, classifier/data selection is directly tied to the amount of correlation among the various
classifiers, which in turn affects the amount of error reduction that can be achieved. For re-
gression problems, Perrone and Cooper show that their combining results are weakened if the
networks are not independent (Perrone and Cooper, 1993b). Ali and Pazzani discuss the rela-
tionship between error correlations and error reductions in the context of decision trees (Ali and
Pazzani, 1995). The Boosting algorithm trains subsequent classifiers on training patterns that
have been “selected” by earlier classifiers (Drucker et al., 1994), thus reducing the correlation
among them. However, one can quickly run out of training data in practice if this approach is
used. Twomey and Smith discuss combining and resampling in the context of a 1-d regression
problem (Twomey and Smith, 1995). Meir discusses the effect of independence on combiner
performance (Meir, 1995), and Jacobs reports that N’ < N independent classifiers are worth
as much as N dependent classifiers (Jacobs, 1995). Breiman also addresses this issue, and dis-
cusses methods aimed at reducing the correlation among estimators (Breiman, 1993; Breiman,
1994). Krogh and Vedelsky discuss how cross-validation can be used to improve ensemble per-
formance (Krogh and Vedelsby, 1995). The influence of the amount of training on ensemble
performance is studied in (Sollich and Krogh, 1996), and the selection of individual classifier
through a genetic algorithm is suggested in (Opitz and Shavlik, 1996). For classification prob-
lems, the influence of the correlation among the classifiers on the error rate of multiple classifiers

was quantified by Tumer and Ghosh (Tumer and Ghosh, 1995¢; Tumer and Ghosh, 1996).

In this paper we address four methods for reducing the correlations among the individual
classifiers. First we use a cross-validation like partitioning of the training set and train a different
classifier on each partition. The second method focuses on generating new training sets by
pruning the inputs. This method relies on the redundant information among input features.
By varying the criterion for pruning, a variety of training sets can be obtained for training
different classifiers. The third correlation reduction method focuses on generating new training
sets through resampling methods. For classification problems, Breiman first discussed this idea
for combiners based on majority voting (Breiman, 1994). The final method we explore has a
different feel from the previous ones, and needs a weighted averaging of the outputs. Instead

of partitioning the training patterns randomly (e.g., as in cross-validation or bootstrapping),



we partition them spatially. The net result is a reduction of complexity for each classifier.
In all four techniques, the individual classifiers see less data, and thus there is a fundamental
trade-off between decreased correlation and reduced individual performance. This trade-off is

experimentally studied through simulation results on a common data set.

2 Background

In this section we outline a recently introduced mathematical framework that yields a quanti-
tative relationship between classifier correlations and the reduction in error, when an averaging

combiner is used. For more details, see (Tumer and Ghosh, 1995¢; Tumer and Ghosh, 1996).

The outputs of parametric classifiers that are trained to minimize a cross-entropy or mean
square error (MSE) function, given “one-of-L” desired output patterns, approximate the a poste-
riori probability densities of the corresponding class (Richard and Lippmann, 1991; Ruck et al.,
1990). Therefore, the ith output unit of a one-of-L classifier network to a given input x can be

modeled as!:

fi(x) = pleilz) + ni(z) , (1)

where p(c¢;|x) is the a posteriori probability distribution of the ith class given input z, and 7;(z)

is the error associated with the ith output.

For the Bayes optimum decision, a vector x is assigned to class i if p(¢;|z) > p(ck|z), VEk # i.
Therefore, the Bayes optimum boundary is the loci of all points «* such that p(c;|z*) = p(cj|z*)
where p(cjlz*) = maxg,; p(cklr). Since our classifier provides f;(-) instead of p(c;i|-), the
decision boundary obtained may vary from the optimum boundary (see Figure 1). The amount

by which the boundary of the classifier, x;, differs from the optimum boundary, x*

, is given by
b = z, — z*. By performing a linear approximation of p(cx|z) around z*, one can express the
density function fj,(b) of b in terms of the n;(z)s (see (Tumer and Ghosh, 1995¢; Tumer and

Ghosh, 1996) for details).

Figure 1 shows the a posteriori probabilities obtained by a non-ideal classifier, and the

associated added error region. The lightly shaded area provides the Bayesian error region. The

'If two or more classifiers need to be distinguished, a superscript is added to f;(z) and 7;(z) to indicate the

classifier number.
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Figure 1: Decision boundaries and error regions associated with approximating the a posterior:

probabilities (Tumer and Ghosh, 1996).

darkly shaded area is the added error region, A(b), associated with selecting a decision boundary
that is offset by b. Patterns corresponding to the darkly shaded region belong to class j, but are

erroneously assigned to class ¢ by the classifier. The expected added error, E, 44, is given by:

o
Faaa = [ AG)fu(b)db e
—oc
where fj is the density function for b. For example, if the n(z)s are zero-mean i.i.d., then one
202
can show b to be a zero-mean random variable with variance, o*g = —7*; and:
2
so
Eaia = Tb (3)
Etot = Eadd + Ebay- (4)

where Ey,; is the total error, Fjy,y is the Bayes error, and s is the difference between the deriva-

tives of the two posteriors.

For analyzing the error regions after combining, and comparing them to the single clas-
sifier case, one needs to determine the variance of the boundary obtained with the combiner.
In (Tumer and Ghosh, 1996), we show that when the classifier errors are i.i.d., combining reduces
the added error by N, or that Ef;9 = %Eadd. In the next section we derive the added error of

a combiner when the assumption that the classifiers be i.i.d is removed.



3 Combining Correlated Classifiers

Suppose the combiner denoted by ave performs an arithmetic average in output space. If N
classifiers are available, the ith output of the ave combiner provides an approximation to p(c¢;|z)

given by:

1 N
fUle) =y 3 He) = plalo) + i) (5)

where:
1
N Z:

The variance of 7; is given by:

) | NN l
Uﬁi = m;glcm)(ni (T)anz(T))
| N
= 2 Zo’ Z Z(*m) ' (z 771( )

m=1 m=11#m

where cou(-, ) represents the covariance. Expressing the covariances in term of the correlations

(cov(z,y) = corr(z,y) oz 0y), leads to:
1N
Uﬁi N2 Z 07272"1 N2 Z Z corr Th 771( )) Opm (m)ani(a:) (6)

m=1[l#m

Equation 6 is significantly simplified by using the common variance o,,, and the average corre-

lation factor among classifiers, §;, given by:
5i=m22007”7”771 z( ),
m=1m#l
leading to:

1 N —1
2 2 2
= N0ty 0 O -

In Section 2, the variance of the boundary offset was given in terms of the variances of each

classifier’s error. Extending that analysis to V¢ yields:
2 2
_ Omt

Ubave - 92 .



Therefore:

or:

) t e | N1
Ns? Ns?

2
Ubave ==

(0i07,(a) + 057 (a))- (7)

Recalling that the noise between classes are i.i.d. leads to?:

1 N —1.207 ) 6; + 6,
2 _ 2 nj(z) 04 7
S v S A
2
= %1y (N-iTYY 8
%1+ -3 ®)

This correlation term in Equation 8 only applies to classes ¢ and j. In order to extend this
expression to include all the classes, we use the following expression:

L

5=3 P6, (9)

i=1
where P; is the prior probability of class . The correlation contribution of each class to the

overall correlation, is proportional to the prior probability of that class.

Qualitatively, the reduction in variance can be readily translated into a reduction in error
rates, because a narrower boundary distribution means the likelihood that a boundary will be

near the ideal one is increased. Quantitatively, the corresponding error region is given by:

ave s s o (146N —1)
add = 3 Ohwe = 50 <T>
14+6(V -1
= Eadd( (N )> (10)

Note that Equation 10 only relates to the added error rate, i.e. the error rate beyond the
Bayes rate. The effect of the correlation between the errors of each classifier is readily apparent
from Equation 10. If the errors are independent, then the second part of the reduction term
vanishes and the combined error is reduced by N. If on the other hand, the error of each classifier
has correlation 1, then the error of the combiner is equal to the initial errors and there is no
improvement due to combining. Figure 2 shows how the error reduction is affected by N and §

(using Equation 10).

2The errors between classifiers are correlated, not the errors between classes.
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Figure 2: Error reduction (7%44) for different classifier error correlations.
a

In general, the correlation values lie between these two extremes, and some reduction is
achieved. It is important to understand the interaction between N and § in order to maximize
the reduction. As more and more classifiers are used (increasing N), it becomes increasingly
difficult to find lowly correlated classifiers. Therefore, methods aimed at explicitly reducing the

correlations must be considered.

4 Correlation Reduction Methods

The importance of the correlation values among individual classifiers in a combiner system was
established in Section 3. When it is possible to extract different types of feature sets (e.g.
power spectrum based vs. auto-regression based from a time signal) from the raw data, or to
use radically different types of classifiers, one can avoid combining highly correlated classifiers.
However, when only a single feature set is available and only one type of classifier (say, an
MLP) is used, care must be taken during the combining process. In such a case, alternatives to

combining N instances of the same classifier trained on the same training set are needed.



4.1 Combining k—1-of-k Trained Classifiers

Cross-validation, a statistical method aimed at estimating the “true’ error (Friedman, 1994;
Stone, 1974; Weiss and Kulikowski, 1991), provides a method for lowering correlations. In k-
fold cross-validation, the training set is divided into k£ subsets. Then, k—1 of these subsets are
used to train the network and results are tested on the subset that was left out of the training.
By averaging the different errors obtained on the “left out” sets, a measure of the true error
can be obtained. Similarly, by changing the subset that is left out of the training process, one
can construct k classifiers, each of which is trained on a slightly different training set. The
correlation among the k classifiers will be less than if each had been trained on the full (and
identical) training set. We will call this “k—1-of-k” training. Note that if cross-validation is
anyway being used to determine when to stop training for best generalization (Moody, 1994), we
already get k trained classifiers, i.e. the extra overhead of combining is very little (Lippmann,

1995).

4.2 Input Decimation Combining

Another approach to reducing the correlation of classifiers can be found in input decimation, or
in purposefully withholding some parts of each pattern from a given classifier. The method of
the previous section can be called a pattern-level method, as it focuses on decoupling patterns
in the training set of each classifier. In the same way, input decimation is a feature-level (or
dimension-level) method as it reduces the dimensionality of a training set in order to reduce the

correlation between classifiers.

The effect each single input dimension has on each output of the classifier can be measured.
By selectively pruning the inputs that have the least effect on the outputs, one can train a
classifier with partial inputs without compromising the overall performance. However, prun-
ing too many inputs may lead to substantial reduction in discriminating power. Furthermore,
determining which inputs to prune can be difficult. One method that provides a satisfactory
solution is to train L classifiers where L is the number of output classes. For each class, a subset
of inputs with low correlation to that class can be removed. The resulting L classifiers will each
have seen a slightly different feature set. The degree of correlation between the classifiers can

be controlled by the threshold chosen to include or dismiss a given input element.

10



4.3 Resampled Set Combining

The third correlation reduction method we address consists of generating different training sets
for each classifier by resampling the original set. This resampling method is called bootstrapping.
It is generally used for estimating the true error rate for problems with very little data (Efron,
1982; Efron, 1983; Jain et al., 1987; Weiss and Kulikowski, 1991). Breiman first used this
idea to improve the performance of predictors, and dubbed it “bagging” predictors (Breiman,
1994). For regression problems, bagging uses the average of all the available predictors, whereas
for classification problems, it takes a majority vote. Since in this article we deal with linear
combiners, we will continue to perform the combining outlined in Section 3. However, since
this is a minor variation on bagging, we will also report the bagging results, i.e. when majority

voting is used.

4.4 'Weighted Experts

The final method of correlation reduction that we present has a different flavor than the previous
ones. The method is based on the mixture of experts framework (Haykin, 1994; Jacobs et al.,
1991; Xu et al., 1995), where the output is a weighted sum of the outputs of individual networks
or "experts”. The weights are determined by a gating network, and are a function of the inputs.
In a given region of the input space, a particular expert will be weighted more than others.
Moreover, the parameter updates during training of individual networks are proportional to the
gating weights. In effect, the training set is soft-partitioned according to spatial similarity, rather
than the random partitions of Sections 4.1 and 4.3. Then, during training, different classifiers

(experts) try to model different parts of the input space.

In the typical mixture of experts, each individual network is single layered (Haykin, 1994),
and thus has limited capabilities. Consequently, a large number of experts may be needed for
realistic problems (Ramamurti and Ghosh, 1996). To make a fair comparison with the training
and combining schemes analyzed earlier, we use a smaller number of more powerful experts,
namely MLP or RBF networks. The localized network of (Xu et al., 1995) is used for the gating

network.

11



5 Experimental Results

In order to provide both details and insight, we have divided this section into two parts. First
we will provide detailed experimental results on one difficult data set, outlining all the relevant
design steps/parameters. Then we will summarize results on some other data sets taken from
the UCI depository/Probenl benchmarks (Prechelt, 1994), and discuss the implications of those

results.

5.1 Underwater Sonar Data

In order to examine the benefits of combining and the effect of correlation on combining re-
sults, we use a difficult data set extracted from underwater acoustic signals. From the original
passive sonar returns from four different underwater objects, a 25-dimensional feature set was
extracted (Ghosh et al., 1992; Ghosh et al., 1996). Each patterns consists of 16 Gabor wavelet
coefficients, 8 temporal descriptors and spectral measurements and 1 value denoting signal du-
ration. There were 496 patterns in the training set, and 823 in the test set (Table I). The data

is available at URL hitp://www.lans.ece.utezas.edu. This data set was selected because:

e The classification task is reasonably complex;
e The input dimensionality is high;

e We have an estimate of the Bayes error rate (Fpq, ~ 3.61, see (Tumer and Ghosh, 1995a)),

and thus a yardstick to measure classifier performance.

e The number of training patterns is moderate, allowing various methods to be tested with-

out biasing the experiments towards highly data intensive methods.

5.1.1 Results on Full Training Set

In this section we present the base results obtained from the oceanic data set. All classification
results given in this article are the test set results, and report the average error and standard
deviation (o) over 20 runs. Each run starts from a different random initial set of weights,

trains on the same 496 samples. Two types of feed forward networks, namely a multi-layered

12



Table I: Description of Data.

Class Number of Patterns
Description Training Test
Porpoise Sound 116 284
Cracking Ice 116 175
Whale Sound 1 116 129
Whale Sound 2 148 235
Total 496 823

perceptron (MLP) with a single hidden layer with 50 units and a radial basis function (RBF)

network with 50 kernels, are used to classify the patterns. Both types of networks are trained

until the classification rate of the validation set reaches a plateau.

Table II: Combining Results.

Classifier(s) Ave Estimated
‘ N Error ‘ o | Correlation
1 7.47 | 0.44
MLP 3 7.19 | 0.29 0.89
7 7.11 | 0.23
1 6.79 | 0.41
RBF 3 6.15 | 0.30 0.79
7 597 |0.22

Table II provides the test set results for single classifiers (N = 1), the combining results,
as well as the estimated average error correlations between different runs of a given classifier.
Because the main purpose of this experiment is to study the effect of the correlation on the

improvements over the base results, MLP/RBF hybrid models are not considered.

5.1.2 k—1-of-k Training

Table III presents 2-of-3 training results for the sonar data presented in Section 5.1, and the cor-
responding combining results. Table IV shows the correlation values between classifiers trained
on different partitions of the training set. The correlation values among different runs of a clas-
sifier trained on a particular set (the diagonal elements) are comparable to the values obtained

from the full training set in Section 5.1.1. The correlation values between different partitions

13




however, are noticeably lower. 2-of-3 training provides less correlated classifiers which in turn
improve percentage performance gains. For example, combining three MLPs trained on different
partitions of the data provides improvements of 12.4% over the average result of each classifier.
In contrast, combining three MLPs trained on the full training set only provides improvements

of 3.75% over single MLP results (from results in Section 5.1.1).

Table III: 2-0f-3 Training Results.

Classifier(s) Ave
‘ N Error | o
1 9.37 | 0.98
MLP 3 8.21 |0.35
1 7.98 | 0.98
RBF 3 6.16 | 0.34

Table IV: Correlations between 2-of-3 Trained Classifiers.
[ cvi|cv2 | Cvs |

CV1 | 0.90 | 0.51 | 0.58
MLP | CV2 0.89 | 0.54
CVv3 0.89
CV1 || 0.81 | 0.56 | 0.57
RBF | CV2 0.82 | 0.52
CV3 0.81

It is important to note that reducing the correlation among classifiers is only helpful if the
classification performance is not significantly affected by the reduced training set size. In the case
where k = 3, only two thirds of the original training data was used in each partition. This proved
to be insufficient to train the networks successfully, and resulted in poor final performance even
though the correlations among individual classifiers were brought down. Therefore, we conclude

that k£ was chosen too low, and this observation leads us to repeat the experiments with & = 7.

In this case, each training set possesses six sevenths of the original data, a value deemed
high enough to avoid the pitfalls encountered in the previous section. The individual classifier

results (N = 1) and the combining results are shown in Table V.

Table VI shows the correlation values between classifiers trained on different partitions of
the training set. Although the between partition correlations are higher than they were for

k = 3, they are still noticeably lower than the within partition correlations. The combining

14



Table V: 6-0f-7 Training Results.

Classifier(s) Ave
‘ N Error | o
1 8.24 | 0.56
MLP 7 7.39 | 0.24
1 6.51 | 0.61
RBF 7 5.48 | 0.31

Table VI: Correlations between 6-of-7 Trained Classifiers.

[Cvi|Cv2|CV3 | CV4 |

CV5 [ CV6 | CVT7

Cvl || 0.88 | 0.79 | 0.74 | 0.76 | 0.72 | 0.73 | 0.78
Cv2 090 | 0.77 | 0.81 | 0.75 | 0.75 | 0.80
CV3 0.89 | 0.80 | 0.77 | 0.74 | 0.79
MLP | CV4 0.89 | 0.76 | 0.75 | 0.79
CVbh 0.89 | 0.74 | 0.78
CVé6 0.90 | 0.78
Ccvr 0.89
CV1l | 0.78 | 0.70 | 0.70 | 0.71 | 0.70 | 0.67 | 0.73
Cv2 0.80 | 0.70 | 0.69 | 0.69 | 0.66 | 0.71
CVv3 0.80 | 0.70 | 0.69 | 0.67 | 0.72
RBF | CV4 0.79 | 0.69 | 0.66 | 0.70
CV5 0.79 | 0.67 | 0.71
CV6 0.82 | 0.66
Cv7 0.79

results for MLPs were still not up to the level of the results obtained when the full training sets

were used. However, for the RBF network, 6-of-7 training and subsequent combining provided

moderate improvements for N = 7.

The trade-off between the reduced training size and correlation is apparent with the results
presented in this section. As k is increased, the training set contains more and more similar
patterns and the differences between classifiers diminish, increasing the correlation among them.
As k becomes smaller, the correlations decrease, but one must ensure that the partitions of the
training set still contain enough patterns to properly train the individual classifiers. The balance

where the gains due to decreased correlations outweigh the losses due to reduced training size

must be found for this method to provide the best results.

15



5.1.3 Input Decimation Combining

Table VII presents the results obtained after reducing the input dimensionality of the sonar data
set. The four partitions are obtained by retaining the 22 inputs that have the highest correlation
to each output. Retaining more features did not result in a significant drop in correlations,
whereas removing more features resulted in drops in individual classifier performance that were
too large to be compensated by combining. The results indicate that the deletion of even lowly-
correlated inputs affects the performance of the classifier significantly. For this experiment,
we chose N = 4,8 rather than N = 3.7 because of the method used for decimation. Since the
decimation depended on each output’s correlation to the inputs, the natural number of classifiers

to combine were multiples of four (this is a four-class problem).

Table VIII: Correlations between Input Decimated Partitions.

Classifier(s) Ave
‘ N Error | o
1 8.38 | 0.61
MLP 4 7.10 | 0.32
8 6.99 | 0.27
1 7.85 | 0.72
RBF 4 6.78 | 0.29
8 6.70 | 0.26

Table VII: Input Decimation Results.

| PARI | PAR2 | PAR3 | PAR4 |

PAR1 || 0.88 0.63 0.65 0.65
PAR2 0.88 0.74 0.71
MLP | PAR3 0.86 0.69
PAR4 0.87
PAR1 || 0.83 0.59 0.60 0.59
PAR2 0.80 0.72 0.72
RBF | PAR3 0.81 0.67
PAR4 0.79

Table VIII shows the correlation values between the classifiers trained on different decima-
tions, and underlines the correlation reduction among different partitions. There are percentage
performance improvements accompanying this correlation drop. This scheme failed to signif-

icantly improve on the combining results of the classifiers trained on the full inputs for the

16




RBF network, but provided minor improvements over MLP results®. Once again, the chief
barrier to improved generalization results is the drop in individual classifier performance which

accompanies the drop in correlation factors.

5.1.4 Resampled Set Combining

In the first set of “resample/combine” experiments, the number of training patterns is kept at
the same level as the number of patterns that were present in the original data. That is, from
496 original points, 496 are randomly picked with resampling. With this method, also referred
to as e0 bootstrap, each resampled set contains 63.2% of the original training data, on the

average (Weiss and Kulikowski, 1991).

Table IX: Resampling Results.

Classifier(s) Ave Bagging

Error o Error o

8.60 | 0.65
7.47 1041 | 7.68 | 0.15

MLP 749 | 037 | 745 | 0.11
8.15 | 0.71
6.72 | 0.38 | 6.68 | 0.39
RBF 6.22 | 0.33 | 6.40 | 0.36

N
1
3
)
7 747 | 0.27 | 742 | 0.12
1
3
)
7

6.01 | 0.35 | 6.29 | 0.41

Table IX shows classification results obtained using training sets with resampling, as well as
the combining results. The correlation factors are given in Table X. The correlations between
partitions were lowered, but the drop was accompanied with a significant drop in individual

classifier performance, negating any potential gains.

As with the k—1-of-k training results, using approximately two thirds of the data proved to
be insufficient. To alleviate this concern the size of the resampled set was doubled. We expect
higher correlations between classifiers, because the amount of correlation is controlled through
the size of the resampled set. Table XI shows classification results obtained when the training

set was doubled through resampling. In order to make sure amount of training does not alter

3The hypothesis that input decimated error with N = 8 is lower than the base error with NV = 7 is rejected at
the @ = .05 level but not o = .1 level.
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Table X: Correlations between Resampled Partitions.

| RS1 | RS2 | RS3 | RS4 | RS5 | RS6 | RST7 |

RS1 || 0.89 | 0.67 | 0.70 | 0.68 | 0.68 | 0.64 | 0.67
RS2 0.89 | 0.74 | 0.67 | 0.62 | 0.63 | 0.57
RS3 0.90 | 0.70 | 0.65 | 0.65 | 0.64
MLP | RS4 0.89 | 0.70 | 0.67 | 0.62
RS5 0.90 | 0.63 | 0.68
RS6 0.88 | 0.55
RS7 0.89
RS1 | 0.82 | 0.49 | 0.56 | 0.51 | 0.59 | 0.57 | 0.56
RS2 0.79 | 0.55 | 0.55 | 0.57 | 0.52 | 0.50
RS3 0.78 | 0.54 | 0.58 | 0.56 | 0.56
RBF | RS54 0.77 1 0.54 | 0.54 | 0.54
RS5 0.81 | 0.56 | 0.59
RS6 0.80 | 0.51
RS7 0.82

the results, the classifiers in this section are trained for half as many epochs as those in the
previous section (since in each epoch twice as many patterns are seen). The correlation values

between classifiers trained on different resampled training sets are shown in Table XII.

Table XI: Resampling Results (training set size doubled).

Classifier(s) Ave Bagging
‘ N Error ‘ o Error o
1 8.02 | 0.57
3 7.36 | 0.34 | 7.65 | 0.41
MLP 5 731 | 0.13 | 7.35 | 0.28
7 7.27 | 0.17 | 7.38 | 0.31
1 6.70 | 0.76
3 5.56 | 0.36 | 6.11 | 0.54
RBF 5 5.29 | 0.28 | 5.51 | 0.36
7 5.07 | 0.25 | 5.34 | 0.33

The correlations among classifiers still shows a reduction for the different partitions. How-
ever, because this reduction was not obtained at the cost of a significant decrease in the individual
classifier performance, the combining results are promising. Indeed, in this case the RBF net-
work results showed mild improvements over simply combining multiple runs of the classifiers

trained on the full data.
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Table XII: Correlations between Resampled Partitions (training set size doubled).

| RS1 | RS2 | RS3 | RS4 | RS5 | RS6 | RST7 |

RS1 || 0.88 | 0.76 | 0.78 | 0.80 | 0.80 | 0.77 | 0.78
RS2 091 | 0.79 | 0.77 | 0.77 | 0.77 | 0.77
RS3 0.89 |1 0.81 | 0.80 | 0.78 | 0.80
MLP | RS4 0.89 | 0.89 | 0.78 | 0.81
RS5 0.88 | 0.78 | 0.81
RS6 0.88 | 0.82
RS7 0.91
RS1 || 0.76 | 0.60 | 0.62 | 0.62 | 0.62 | 0.65 | 0.63
RS2 0.76 | 0.61 | 0.64 | 0.64 | 0.65 | 0.60
RS3 0.76 | 0.64 | 0.64 | 0.63 | 0.60
RBF | RS54 0.76 1 0.76 | 0.63 | 0.60
RS5 0.77 1 0.63 | 0.60
RS6 0.79 | 0.64
RS7 0.77

5.1.5 Weighted Experts

Since this approach is based on the mixture of experts framework as discussed in Section 4.4,
we first tried a network of eight linear experts trained with the EM algorithm (Ramamurti
and Ghosh, 1996). A softmax based gating network, which partitions the input space using
soft hyperplanes (Jacobs et al., 1991), gave poor results; a localized gating network initialized
through k-means clustering (Xu et al., 1995) fared better, providing an average test set error

rate of 8.97%.

Table XIIT shows the performance when (i) three and (i7) seven experts (as described
in Section 4.4 were used. The combining of three experts failed to surpass the base results.
For seven experts, the weighted combining of MLPs provides satisfactory results, whereas the
weighed combining of RBFs does not. Tables XIV and XV show the correlations between the
experts. As expected, these correlations vary greatly, since the experts are trained on different

spatial partitions.

The large disparity among individual experts (large standard deviations) is to be expected,
because each expert focuses on a smaller section of the input space. However, because the
combining result relies on a weighted average, and the weights depend on the classifier’s expertize

in a given region, these disparities do not disrupt the performance of the combiner.
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Table XIII: Combining Weighted Experts.

Type of Experts | Number of Experts || Error | o
1 9.00 | 1.25
MLP 3 7.58 | 0.49
7 7.00 | 0.30
1 8.34 | 1.23
RBF 3 7.33 | 0.45
7 6.59 | 0.31

Table XIV: Correlations between Three Weighted Experts.

| WEL-3 | WE2-3 | WE3-3

WEI1-3 0.90 0.81 0.68
MLP | WE2-3 0.91 0.72
WE3-3 0.92
WE1-3 0.77 0.65 0.37
RBF | WE2-3 0.76 0.47
WE3-3 0.74

5.2 Results on Probenl Benchmarks

In this section, we discuss results obtained from the Probenl benchmark set? (Prechelt, 1994).
The data sets that were included in this study are the CANCER1, GLASS1, and GENE1 sets,
and the name and number combinations correspond to a specific training/validation/test set
split®. Note that in all cases, half the data is used for training, and a quarter of the data is
used for validating and testing respectively. A more detailed description of these data sets, as
well as comparative studies between the Probenl results, individual classifiers and ensembles of

classifiers is available in (Tumer and Ghosh, 1995c).

CANCERI is based on breast cancer data, obtained from the University of Wisconsin
Hospitals, from Dr. William H. Wolberg (Mangasarian et al., 1990; Wolberg and Mangasarian,
1990). This set has 9 inputs, 2 outputs and 699 patterns, of which 350 are used for training.
GENELI is based on intron/exon boundary detection, or the detection of splice junctions in DNA
sequences (Noordewier et al., 1991; Towell and Shavlik, 1992). 120 inputs are used to determine

whether a DNA section is a donor, an acceptor or neither. There are 3175 examples, of which

* Available at URL ftp://ftp.ira.uka.de/pub/papers/techreports /1994/1994-21.ps. Z.

®We are using the same notation as in the Probenl benchmarks.
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Table XV: Correlations between Seven Weighted Experts.

| WE1-7 | WE2-7 | WE3-7 | WE4-7 | WE5-7 | WE6-7 | WET7-7

WE1-7 0.93 0.43 0.58 0.44 0.43 0.49 0.48
WE2-7 0.85 0.45 0.70 0.77 0.78 0.76
WE3-7 0.97 0.52 0.48 0.50 0.50
MLP | WE4-7 0.89 0.76 0.70 0.70
WE5-7 0.90 0.78 0.79
WE6-7 0.90 0.87
WET7-7 0.90
WE1-7 0.73 0.22 0.46 0.32 0.32 0.33 0.34
WE2-7 0.74 0.23 0.48 0.54 0.51 0.53
WE3-7 0.81 0.51 0.39 0.32 0.35
RBF | WE4-7 0.75 0.54 0.49 0.54
WE5-7 0.77 0.59 0.62
WEG6-7 0.75 0.68
WET7-7 0.75

1588 are used for training. The GLASS1 data set is based on the chemical analysis of glass
splinters. The 9 inputs are used to classify 6 different types of glass. There are 214 examples in

this set, and 107 of them are used for training.

Before discussing the results, let us note that general classification problems can be di-
vided into the following cases according to their complexity: (i) individual classifiers provide
satisfactory results, and combining is used to reduce the standard deviation; (ii) combining pro-
vides all the potential improvements; (iii) combining provides performance gains, but further

improvements are possible using the methods discussed in this paper.

The CANCERI data falls into the first category. The error rate for a single MLP is 0.69%,
whereas the error rate for an ensemble of MLPs is 0.60% (for N=3,5,7). These error rates
represent an average of 1 or 2 errors per classifier, since there are 174 test patterns. In this case,
combining only increases the reliability of the classifier, by reducing the standard deviation of

the error.

The GLASSI set belongs to the second category where combining improves the perfor-
mance, but correlation reduction methods fail to provide added improvements. In this case, the
limitation comes from the small sample size of the data. Since there are only 107 samples for a

6 class problem, each class only has about 17 examples (on the average). Any further reduction
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of the training set size, e.g., though cross validation or resampling, causes significant increases

in the individual classifier error rates, negating any potential gains through combining.

The GENE1 data provides a good example of the third type of problem. Combining im-
proves the results, yet there is potential for further improvements. For these experiments, we
selected an MLP consisting of a single hidden layer network with 20 hidden units, and an RBF
network with 15 kernels. Table XVI shows the base performance for the GENE1 data, along with
the Probenl results®, and the estimated correlations. Table XVII shows the results of combining
ensembles of MLPs and RBF networks trained on resampled training sets, the corresponding

7. For these experiments, the architecture and

bagging results and the estimated correlations
sizes of the MLLP and RBF networks were identical to those of the base experiments, and the
training set size was doubled through resampling. The improvements are minimal for MLP

ensembles, but significant for RBF ensembles for both N =5 and N = 10.

Table XVI: Combining Results for GENEL.

Classifier(s) Ave Estimated

Error o Correlation

N

1 13.47 | 0.44
5 12.23 | 0.39 0.74
10 12.16 | 0.22
1 14.34 | 0.52
RBF 5 13.93 | 0.17 0.96
10 13.83 | 0.22
Probenl:
pivot 15.05 | 0.89
no-shortcut || 16.67 | 3.75

MLP

6 Discussion

Major steps in the design of any ensemble based system include extracting the relevant features,

determining the individual classifier architectures, and selecting the classifier training and com-

5Probenl results reported here correspond to the “pivot” and “no-shortcut” architectures, discussed in

(Prechelt, 1994).
"There are two correlations, the within sample (N = 1) and between sample (N = 5,10) correlations,

respectively.
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Table XVII: Resampling/Combining Results for GENEL.

Classifier(s) Ave Bagging Estimated
‘ N Error ‘ o | Error ‘ o Correlation
1 13.97 | 0.43 0.76
MLP 5) 12.09 | 0.49 | 12.30 | 0.48 0.68
10 12.01 | 0.38 | 12.14 | 0.48
14.82 | 1.12 0.98
RBF ) 13.59 | 0.17 | 13.75 | 0.14 0.87
10 13.00 | 0.21 | 13.24 | 0.14

bining methodologies. In this paper, we focused on the effect of using non-identical training sets
on the overall classification performance of a combiner system. In theory, reducing the correla-
tion among classifiers that are combined increases the ensemble classification rates. In practice
however, since each classifier uses a subset of the training set, individual classifier performance
can deteriorate, thus offsetting any potential gains at the ensemble level. This phenomenon
is even more pronounced for small data sets where reducing the training set size can lead to

significant problems for individual classifiers.

The methods that we investigated can be categorized into three groups:

1. Statistical partitioning of the training sets, resulting in a change in which patterns a

classifiers sees (k — 1-of-k training and resampling).

2. Statistical partitioning of the feature space, resulting in the modification of which aspects

of each pattern is seen by each classifier (input decimation).

3. Spatial partitioning of patterns using proximity of patterns in input space, in order to
reduce the complexity of the task each individual classifier needs to perform (weighted

expert combining).

Neither feature space partitioning, nor spatial partitioning provided significant improve-
ments over the base results. Furthermore, both methods are difficult to fine-tune, as a small
change in the design step (say, modifying the number of inputs that is decimated) leads to large
changes in combiner performance. Statistical partitioning of the training sets on the other hand

yielded promising results.
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A particularly interesting observation is that for & — 1-of-k training and resampled set
combining, the RBF networks improved upon the base results. That the RBF network ensembles
outperform their MLP counterparts is not surprising when one considers that RBFs are more
locally “tuned” to their training sets. Indeed, the selection of the kernel locations directly

influences the performance of an RBF network.

In our experiments, the final classification decision of each variation that was studied fell
within a very narrow range. These results highlight the difficulties in obtaining significant
improvements over combiners which use classifiers trained on all the available training data. It
is therefore important to reduce the correlations without increasing error rates. If there is no
shortage of data this may be possible through k—1-of-k training or resampling. If the amount
of data is limited, as it often is the case, however, the performance gains may not justify the
increased computational cost of training a large set of classifiers on slightly modified versions of
the original data. An exception occurs when cross-validation is in any case being used for model
selection or for estimating generalization. Here several networks trained on slightly different data

sets are obtained as a byproduct, so combining them adds little to the computational burden.

Acknowledgements: The authors would like to thank Viswanath Ramamurti for providing

the EM algorithm result and the data partitions in Section 4.4.
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