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AbstractUsing an ensemble of classi�ers, instead of a single classi�er, can lead to improved gener-alization. The gains obtained by combining however, are often a�ected more by the selectionof what is presented to the combiner, than by the actual combining method that is chosen.In this paper we focus on data selection and classi�er training methods, in order to \prepare"classi�ers for combining. We review a combining framework for classi�cation problems thatquanti�es the need for reducing the correlation among individual classi�ers. Then, we discussseveral methods that make the classi�ers in an ensemble more complementary. Experimentalresults are provided to illustrate the bene�ts and pitfalls of reducing the correlation amongclassi�ers, especially when the training data is in limited supply.
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1 IntroductionA classi�er's ability to meaningfully respond to novel patterns, or generalize, is perhaps its mostimportant property (Levin et al., 1990; Wolpert, 1990). In general however, the generalizationis not unique, and di�erent classi�ers provide di�erent generalizations by realizing di�erentdecision boundaries (Ghosh and Tumer, 1994). For example, when classi�cation is performedusing a multilayered, feed-forward arti�cial neural network, di�erent weight initializations, ordi�erent architectures (number of hidden units, hidden layers, node activation functions, etc.),result in di�erences in performance. It is therefore necessary to train a multitude of networkswhen approaching a classi�cation problem to ensure that a good model/parameter set is found.However, selecting the \best" classi�er is not necessarily the ideal choice, because potentiallyvaluable information may be wasted by discarding the results of less-successful classi�ers. Thisobservation leads to the concept of \combining" wherein the outputs of several classi�ers arepooled before a decision is made.Currently, the most popular way of combining multiple classi�ers is via simple averagingof the corresponding output values (Lincoln and Skrzypek, 1990; Perrone and Cooper, 1993b;Tumer and Ghosh, 1996). Weighted averaging has also been proposed, and di�erent methods forcomputing the proper classi�er weights have been studied (Benediktsson et al., 1994; Hashemand Schmeiser, 1993; Jacobs, 1995; Lincoln and Skrzypek, 1990). Such linear combining tech-niques have been mathematically analyzed both for classi�cation (Tumer and Ghosh, 1995c;Tumer and Ghosh, 1996), and regression problems (Perrone and Cooper, 1993a; Hashem andSchmeiser, 1993). Some researchers have investigated non-linear combiners using rank-basedinformation (Ho et al., 1994; Al-Ghoneim and Vijaya Kumar, 1995), belief-based methods (Ro-gova, 1994; Yang and Singh, 1994; Xu et al., 1992), or voting schemes (Hansen and Salamon,1990; Battiti and Colla, 1994). We have introduced \order statistics" combiners, and analyzedtheir properties (Tumer and Ghosh, 1995b; Tumer and Ghosh, 1995c). Wolpert introduced theconcept of \stacking" classi�ers, allowing each stage to correct the mistakes of the previousone (Wolpert, 1992). Combiners have also been successfully applied to a multitude of real worldproblems (Baxt, 1992; Ghosh et al., 1996; Lee et al., 1991).Most research in this area focuses on �nding the types of combiners that improve perfor-mance. Yet, it is important to note that if the classi�ers to be combined repeatedly provide3



the same (either erroneous or correct) classi�cation decisions, there is little to be gained fromcombining, regardless of the chosen scheme. Therefore, the selection and training of the clas-si�ers that will be combined is as critical an issue as the selection of the combining method.Indeed, classi�er/data selection is directly tied to the amount of correlation among the variousclassi�ers, which in turn a�ects the amount of error reduction that can be achieved. For re-gression problems, Perrone and Cooper show that their combining results are weakened if thenetworks are not independent (Perrone and Cooper, 1993b). Ali and Pazzani discuss the rela-tionship between error correlations and error reductions in the context of decision trees (Ali andPazzani, 1995). The Boosting algorithm trains subsequent classi�ers on training patterns thathave been \selected" by earlier classi�ers (Drucker et al., 1994), thus reducing the correlationamong them. However, one can quickly run out of training data in practice if this approach isused. Twomey and Smith discuss combining and resampling in the context of a 1-d regressionproblem (Twomey and Smith, 1995). Meir discusses the e�ect of independence on combinerperformance (Meir, 1995), and Jacobs reports that N 0 � N independent classi�ers are worthas much as N dependent classi�ers (Jacobs, 1995). Breiman also addresses this issue, and dis-cusses methods aimed at reducing the correlation among estimators (Breiman, 1993; Breiman,1994). Krogh and Vedelsky discuss how cross-validation can be used to improve ensemble per-formance (Krogh and Vedelsby, 1995). The inuence of the amount of training on ensembleperformance is studied in (Sollich and Krogh, 1996), and the selection of individual classi�erthrough a genetic algorithm is suggested in (Opitz and Shavlik, 1996). For classi�cation prob-lems, the inuence of the correlation among the classi�ers on the error rate of multiple classi�erswas quanti�ed by Tumer and Ghosh (Tumer and Ghosh, 1995c; Tumer and Ghosh, 1996).In this paper we address four methods for reducing the correlations among the individualclassi�ers. First we use a cross-validation like partitioning of the training set and train a di�erentclassi�er on each partition. The second method focuses on generating new training sets bypruning the inputs. This method relies on the redundant information among input features.By varying the criterion for pruning, a variety of training sets can be obtained for trainingdi�erent classi�ers. The third correlation reduction method focuses on generating new trainingsets through resampling methods. For classi�cation problems, Breiman �rst discussed this ideafor combiners based on majority voting (Breiman, 1994). The �nal method we explore has adi�erent feel from the previous ones, and needs a weighted averaging of the outputs. Insteadof partitioning the training patterns randomly (e.g., as in cross-validation or bootstrapping),4



we partition them spatially. The net result is a reduction of complexity for each classi�er.In all four techniques, the individual classi�ers see less data, and thus there is a fundamentaltrade-o� between decreased correlation and reduced individual performance. This trade-o� isexperimentally studied through simulation results on a common data set.2 BackgroundIn this section we outline a recently introduced mathematical framework that yields a quanti-tative relationship between classi�er correlations and the reduction in error, when an averagingcombiner is used. For more details, see (Tumer and Ghosh, 1995c; Tumer and Ghosh, 1996).The outputs of parametric classi�ers that are trained to minimize a cross-entropy or meansquare error (MSE) function, given \one-of-L" desired output patterns, approximate the a poste-riori probability densities of the corresponding class (Richard and Lippmann, 1991; Ruck et al.,1990). Therefore, the ith output unit of a one-of-L classi�er network to a given input x can bemodeled as1: fi(x) = p(cijx) + �i(x) ; (1)where p(cijx) is the a posteriori probability distribution of the ith class given input x, and �i(x)is the error associated with the ith output.For the Bayes optimum decision, a vector x is assigned to class i if p(cijx) > p(ckjx); 8k 6= i.Therefore, the Bayes optimum boundary is the loci of all points x� such that p(cijx�) = p(cj jx�)where p(cj jx�) = maxk 6=i p(ckjx). Since our classi�er provides fi(�) instead of p(cij�), thedecision boundary obtained may vary from the optimum boundary (see Figure 1). The amountby which the boundary of the classi�er, xb, di�ers from the optimum boundary, x�, is given byb = xb � x�. By performing a linear approximation of p(ckjx) around x�, one can express thedensity function fb(b) of b in terms of the �i(x)s (see (Tumer and Ghosh, 1995c; Tumer andGhosh, 1996) for details).Figure 1 shows the a posteriori probabilities obtained by a non-ideal classi�er, and theassociated added error region. The lightly shaded area provides the Bayesian error region. The1If two or more classi�ers need to be distinguished, a superscript is added to fi(x) and �i(x) to indicate theclassi�er number. 5
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Figure 1: Decision boundaries and error regions associated with approximating the a posterioriprobabilities (Tumer and Ghosh, 1996).darkly shaded area is the added error region, A(b), associated with selecting a decision boundarythat is o�set by b. Patterns corresponding to the darkly shaded region belong to class j, but areerroneously assigned to class i by the classi�er. The expected added error, Eadd, is given by:Eadd = Z 1�1A(b)fb(b)db; (2)where fb is the density function for b. For example, if the �k(x)s are zero-mean i.i.d., then onecan show b to be a zero-mean random variable with variance, �2b = 2 �2�ks2 ; and:Eadd = s�2b2 (3)Etot = Eadd +Ebay: (4)where Etot is the total error, Ebay is the Bayes error, and s is the di�erence between the deriva-tives of the two posteriors.For analyzing the error regions after combining, and comparing them to the single clas-si�er case, one needs to determine the variance of the boundary obtained with the combiner.In (Tumer and Ghosh, 1996), we show that when the classi�er errors are i.i.d., combining reducesthe added error by N , or that Eaveadd = 1NEadd. In the next section we derive the added error ofa combiner when the assumption that the classi�ers be i.i.d is removed.6



3 Combining Correlated Classi�ersSuppose the combiner denoted by ave performs an arithmetic average in output space. If Nclassi�ers are available, the ith output of the ave combiner provides an approximation to p(cijx)given by: favei (x) = 1N NXm=1 fmi (x) = p(cijx) + ��i(x) ; (5)where: ��i(x) = 1N NXm=1 �mi (x) :The variance of ��i is given by:�2��i = 1N2 NXl=1 NXm=1 cov(�mi (x); �li(x))= 1N2 NXm=1 �2�mi (x) + 1N2 NXm=1Xl 6=m cov(�mi (x); �li(x))where cov(�; �) represents the covariance. Expressing the covariances in term of the correlations(cov(x; y) = corr(x; y) �x �y), leads to:�2��i = 1N2 NXm=1 �2�mi (x) + 1N2 NXm=1Xl 6=m corr(�mi (x); �li(x))��mi (x)��li(x): (6)Equation 6 is signi�cantly simpli�ed by using the common variance ��i , and the average corre-lation factor among classi�ers, �i, given by:�i = 1N (N � 1) NXm=1Xm6=l corr(�mi (x); �li(x));leading to: �2��i = 1N �2�i(x) + N � 1N �i �2�i(x) :In Section 2, the variance of the boundary o�set was given in terms of the variances of eachclassi�er's error. Extending that analysis to bave yields:�2bave = �2��i + �2��js2 :7



Therefore: �2bave = 1s2 � 1N �2�i(x)(1 + (N � 1)�i) + 1N �2�j(x)(1 + (N � 1)�j)�or: �2bave = �2�i(x) + �2�j(x)Ns2 + N � 1Ns2 (�i�2�i(x) + �j�2�j(x)): (7)Recalling that the noise between classes are i.i.d. leads to2:�2bave = 1N �2b + (N � 1N )2�2�j (x)s2 �i + �j2= �2bN �1 + (N � 1)�i + �j2 � : (8)This correlation term in Equation 8 only applies to classes i and j. In order to extend thisexpression to include all the classes, we use the following expression:� = LXi=1 Pi �i (9)where Pi is the prior probability of class i. The correlation contribution of each class to theoverall correlation, is proportional to the prior probability of that class.Qualitatively, the reduction in variance can be readily translated into a reduction in errorrates, because a narrower boundary distribution means the likelihood that a boundary will benear the ideal one is increased. Quantitatively, the corresponding error region is given by:Eaveadd = s2 �2bave = s2 �2b �1 + �(N � 1)N �= Eadd �1 + �(N � 1)N � : (10)Note that Equation 10 only relates to the added error rate, i.e. the error rate beyond theBayes rate. The e�ect of the correlation between the errors of each classi�er is readily apparentfrom Equation 10. If the errors are independent, then the second part of the reduction termvanishes and the combined error is reduced by N . If on the other hand, the error of each classi�erhas correlation 1, then the error of the combiner is equal to the initial errors and there is noimprovement due to combining. Figure 2 shows how the error reduction is a�ected by N and �(using Equation 10).2The errors between classi�ers are correlated, not the errors between classes.8
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2.00 4.00 6.00 8.00 10.00Figure 2: Error reduction (EaveaddEadd ) for di�erent classi�er error correlations.In general, the correlation values lie between these two extremes, and some reduction isachieved. It is important to understand the interaction between N and � in order to maximizethe reduction. As more and more classi�ers are used (increasing N), it becomes increasinglydi�cult to �nd lowly correlated classi�ers. Therefore, methods aimed at explicitly reducing thecorrelations must be considered.4 Correlation Reduction MethodsThe importance of the correlation values among individual classi�ers in a combiner system wasestablished in Section 3. When it is possible to extract di�erent types of feature sets (e.g.power spectrum based vs. auto-regression based from a time signal) from the raw data, or touse radically di�erent types of classi�ers, one can avoid combining highly correlated classi�ers.However, when only a single feature set is available and only one type of classi�er (say, anMLP) is used, care must be taken during the combining process. In such a case, alternatives tocombining N instances of the same classi�er trained on the same training set are needed.9



4.1 Combining k�1-of-k Trained Classi�ersCross-validation, a statistical method aimed at estimating the \true' error (Friedman, 1994;Stone, 1974; Weiss and Kulikowski, 1991), provides a method for lowering correlations. In k-fold cross-validation, the training set is divided into k subsets. Then, k�1 of these subsets areused to train the network and results are tested on the subset that was left out of the training.By averaging the di�erent errors obtained on the \left out" sets, a measure of the true errorcan be obtained. Similarly, by changing the subset that is left out of the training process, onecan construct k classi�ers, each of which is trained on a slightly di�erent training set. Thecorrelation among the k classi�ers will be less than if each had been trained on the full (andidentical) training set. We will call this \k�1-of-k" training. Note that if cross-validation isanyway being used to determine when to stop training for best generalization (Moody, 1994), wealready get k trained classi�ers, i.e. the extra overhead of combining is very little (Lippmann,1995).4.2 Input Decimation CombiningAnother approach to reducing the correlation of classi�ers can be found in input decimation, orin purposefully withholding some parts of each pattern from a given classi�er. The method ofthe previous section can be called a pattern-level method, as it focuses on decoupling patternsin the training set of each classi�er. In the same way, input decimation is a feature-level (ordimension-level) method as it reduces the dimensionality of a training set in order to reduce thecorrelation between classi�ers.The e�ect each single input dimension has on each output of the classi�er can be measured.By selectively pruning the inputs that have the least e�ect on the outputs, one can train aclassi�er with partial inputs without compromising the overall performance. However, prun-ing too many inputs may lead to substantial reduction in discriminating power. Furthermore,determining which inputs to prune can be di�cult. One method that provides a satisfactorysolution is to train L classi�ers where L is the number of output classes. For each class, a subsetof inputs with low correlation to that class can be removed. The resulting L classi�ers will eachhave seen a slightly di�erent feature set. The degree of correlation between the classi�ers canbe controlled by the threshold chosen to include or dismiss a given input element.10



4.3 Resampled Set CombiningThe third correlation reduction method we address consists of generating di�erent training setsfor each classi�er by resampling the original set. This resampling method is called bootstrapping.It is generally used for estimating the true error rate for problems with very little data (Efron,1982; Efron, 1983; Jain et al., 1987; Weiss and Kulikowski, 1991). Breiman �rst used thisidea to improve the performance of predictors, and dubbed it \bagging" predictors (Breiman,1994). For regression problems, bagging uses the average of all the available predictors, whereasfor classi�cation problems, it takes a majority vote. Since in this article we deal with linearcombiners, we will continue to perform the combining outlined in Section 3. However, sincethis is a minor variation on bagging, we will also report the bagging results, i.e. when majorityvoting is used.4.4 Weighted ExpertsThe �nal method of correlation reduction that we present has a di�erent avor than the previousones. The method is based on the mixture of experts framework (Haykin, 1994; Jacobs et al.,1991; Xu et al., 1995), where the output is a weighted sum of the outputs of individual networksor "experts". The weights are determined by a gating network, and are a function of the inputs.In a given region of the input space, a particular expert will be weighted more than others.Moreover, the parameter updates during training of individual networks are proportional to thegating weights. In e�ect, the training set is soft-partitioned according to spatial similarity, ratherthan the random partitions of Sections 4.1 and 4.3. Then, during training, di�erent classi�ers(experts) try to model di�erent parts of the input space.In the typical mixture of experts, each individual network is single layered (Haykin, 1994),and thus has limited capabilities. Consequently, a large number of experts may be needed forrealistic problems (Ramamurti and Ghosh, 1996). To make a fair comparison with the trainingand combining schemes analyzed earlier, we use a smaller number of more powerful experts,namely MLP or RBF networks. The localized network of (Xu et al., 1995) is used for the gatingnetwork.
11



5 Experimental ResultsIn order to provide both details and insight, we have divided this section into two parts. Firstwe will provide detailed experimental results on one di�cult data set, outlining all the relevantdesign steps/parameters. Then we will summarize results on some other data sets taken fromthe UCI depository/Proben1 benchmarks (Prechelt, 1994), and discuss the implications of thoseresults.5.1 Underwater Sonar DataIn order to examine the bene�ts of combining and the e�ect of correlation on combining re-sults, we use a di�cult data set extracted from underwater acoustic signals. From the originalpassive sonar returns from four di�erent underwater objects, a 25-dimensional feature set wasextracted (Ghosh et al., 1992; Ghosh et al., 1996). Each patterns consists of 16 Gabor waveletcoe�cients, 8 temporal descriptors and spectral measurements and 1 value denoting signal du-ration. There were 496 patterns in the training set, and 823 in the test set (Table I). The datais available at URL http://www.lans.ece.utexas.edu. This data set was selected because:� The classi�cation task is reasonably complex;� The input dimensionality is high;� We have an estimate of the Bayes error rate (Ebay ' 3:61, see (Tumer and Ghosh, 1995a)),and thus a yardstick to measure classi�er performance.� The number of training patterns is moderate, allowing various methods to be tested with-out biasing the experiments towards highly data intensive methods.5.1.1 Results on Full Training SetIn this section we present the base results obtained from the oceanic data set. All classi�cationresults given in this article are the test set results, and report the average error and standarddeviation (�) over 20 runs. Each run starts from a di�erent random initial set of weights,trains on the same 496 samples. Two types of feed forward networks, namely a multi-layered12



Table I: Description of Data.Class Number of PatternsDescription Training TestPorpoise Sound 116 284Cracking Ice 116 175Whale Sound 1 116 129Whale Sound 2 148 235Total 496 823perceptron (MLP) with a single hidden layer with 50 units and a radial basis function (RBF)network with 50 kernels, are used to classify the patterns. Both types of networks are traineduntil the classi�cation rate of the validation set reaches a plateau.Table II: Combining Results.Classi�er(s) Ave EstimatedN Error � Correlation1 7.47 0.44MLP 3 7.19 0.29 0.897 7.11 0.231 6.79 0.41RBF 3 6.15 0.30 0.797 5.97 0.22Table II provides the test set results for single classi�ers (N = 1), the combining results,as well as the estimated average error correlations between di�erent runs of a given classi�er.Because the main purpose of this experiment is to study the e�ect of the correlation on theimprovements over the base results, MLP/RBF hybrid models are not considered.5.1.2 k�1-of-k TrainingTable III presents 2-of-3 training results for the sonar data presented in Section 5.1, and the cor-responding combining results. Table IV shows the correlation values between classi�ers trainedon di�erent partitions of the training set. The correlation values among di�erent runs of a clas-si�er trained on a particular set (the diagonal elements) are comparable to the values obtainedfrom the full training set in Section 5.1.1. The correlation values between di�erent partitions13



however, are noticeably lower. 2-of-3 training provides less correlated classi�ers which in turnimprove percentage performance gains. For example, combining three MLPs trained on di�erentpartitions of the data provides improvements of 12:4% over the average result of each classi�er.In contrast, combining three MLPs trained on the full training set only provides improvementsof 3:75% over single MLP results (from results in Section 5.1.1).Table III: 2-of-3 Training Results.Classi�er(s) AveN Error �1 9.37 0.98MLP 3 8.21 0.351 7.98 0.98RBF 3 6.16 0.34Table IV: Correlations between 2-of-3 Trained Classi�ers.CV1 CV2 CV3CV1 0.90 0.51 0.58MLP CV2 0.89 0.54CV3 0.89CV1 0.81 0.56 0.57RBF CV2 0.82 0.52CV3 0.81It is important to note that reducing the correlation among classi�ers is only helpful if theclassi�cation performance is not signi�cantly a�ected by the reduced training set size. In the casewhere k = 3, only two thirds of the original training data was used in each partition. This provedto be insu�cient to train the networks successfully, and resulted in poor �nal performance eventhough the correlations among individual classi�ers were brought down. Therefore, we concludethat k was chosen too low, and this observation leads us to repeat the experiments with k = 7.In this case, each training set possesses six sevenths of the original data, a value deemedhigh enough to avoid the pitfalls encountered in the previous section. The individual classi�erresults (N = 1) and the combining results are shown in Table V.Table VI shows the correlation values between classi�ers trained on di�erent partitions ofthe training set. Although the between partition correlations are higher than they were fork = 3, they are still noticeably lower than the within partition correlations. The combining14



Table V: 6-of-7 Training Results.Classi�er(s) AveN Error �1 8.24 0.56MLP 7 7.39 0.241 6.51 0.61RBF 7 5.48 0.31Table VI: Correlations between 6-of-7 Trained Classi�ers.CV1 CV2 CV3 CV4 CV5 CV6 CV7CV1 0.88 0.79 0.74 0.76 0.72 0.73 0.78CV2 0.90 0.77 0.81 0.75 0.75 0.80CV3 0.89 0.80 0.77 0.74 0.79MLP CV4 0.89 0.76 0.75 0.79CV5 0.89 0.74 0.78CV6 0.90 0.78CV7 0.89CV1 0.78 0.70 0.70 0.71 0.70 0.67 0.73CV2 0.80 0.70 0.69 0.69 0.66 0.71CV3 0.80 0.70 0.69 0.67 0.72RBF CV4 0.79 0.69 0.66 0.70CV5 0.79 0.67 0.71CV6 0.82 0.66CV7 0.79results for MLPs were still not up to the level of the results obtained when the full training setswere used. However, for the RBF network, 6-of-7 training and subsequent combining providedmoderate improvements for N = 7.The trade-o� between the reduced training size and correlation is apparent with the resultspresented in this section. As k is increased, the training set contains more and more similarpatterns and the di�erences between classi�ers diminish, increasing the correlation among them.As k becomes smaller, the correlations decrease, but one must ensure that the partitions of thetraining set still contain enough patterns to properly train the individual classi�ers. The balancewhere the gains due to decreased correlations outweigh the losses due to reduced training sizemust be found for this method to provide the best results.
15



5.1.3 Input Decimation CombiningTable VII presents the results obtained after reducing the input dimensionality of the sonar dataset. The four partitions are obtained by retaining the 22 inputs that have the highest correlationto each output. Retaining more features did not result in a signi�cant drop in correlations,whereas removing more features resulted in drops in individual classi�er performance that weretoo large to be compensated by combining. The results indicate that the deletion of even lowly-correlated inputs a�ects the performance of the classi�er signi�cantly. For this experiment,we chose N = 4; 8 rather than N = 3; 7 because of the method used for decimation. Since thedecimation depended on each output's correlation to the inputs, the natural number of classi�ersto combine were multiples of four (this is a four-class problem).Table VII: Input Decimation Results.Classi�er(s) AveN Error �1 8.38 0.61MLP 4 7.10 0.328 6.99 0.271 7.85 0.72RBF 4 6.78 0.298 6.70 0.26Table VIII: Correlations between Input Decimated Partitions.PAR1 PAR2 PAR3 PAR4PAR1 0.88 0.63 0.65 0.65PAR2 0.88 0.74 0.71MLP PAR3 0.86 0.69PAR4 0.87PAR1 0.83 0.59 0.60 0.59PAR2 0.80 0.72 0.72RBF PAR3 0.81 0.67PAR4 0.79Table VIII shows the correlation values between the classi�ers trained on di�erent decima-tions, and underlines the correlation reduction among di�erent partitions. There are percentageperformance improvements accompanying this correlation drop. This scheme failed to signif-icantly improve on the combining results of the classi�ers trained on the full inputs for the16



RBF network, but provided minor improvements over MLP results3. Once again, the chiefbarrier to improved generalization results is the drop in individual classi�er performance whichaccompanies the drop in correlation factors.5.1.4 Resampled Set CombiningIn the �rst set of \resample/combine" experiments, the number of training patterns is kept atthe same level as the number of patterns that were present in the original data. That is, from496 original points, 496 are randomly picked with resampling. With this method, also referredto as e0 bootstrap, each resampled set contains 63:2% of the original training data, on theaverage (Weiss and Kulikowski, 1991).Table IX: Resampling Results.Classi�er(s) Ave BaggingN Error � Error �1 8.60 0.653 7.47 0.41 7.68 0.15MLP 5 7.49 0.37 7.45 0.117 7.47 0.27 7.42 0.121 8.15 0.713 6.72 0.38 6.68 0.39RBF 5 6.22 0.33 6.40 0.367 6.01 0.35 6.29 0.41Table IX shows classi�cation results obtained using training sets with resampling, as well asthe combining results. The correlation factors are given in Table X. The correlations betweenpartitions were lowered, but the drop was accompanied with a signi�cant drop in individualclassi�er performance, negating any potential gains.As with the k�1-of-k training results, using approximately two thirds of the data proved tobe insu�cient. To alleviate this concern the size of the resampled set was doubled. We expecthigher correlations between classi�ers, because the amount of correlation is controlled throughthe size of the resampled set. Table XI shows classi�cation results obtained when the trainingset was doubled through resampling. In order to make sure amount of training does not alter3The hypothesis that input decimated error with N = 8 is lower than the base error with N = 7 is rejected atthe � = :05 level but not � = :1 level. 17



Table X: Correlations between Resampled Partitions.RS1 RS2 RS3 RS4 RS5 RS6 RS7RS1 0.89 0.67 0.70 0.68 0.68 0.64 0.67RS2 0.89 0.74 0.67 0.62 0.63 0.57RS3 0.90 0.70 0.65 0.65 0.64MLP RS4 0.89 0.70 0.67 0.62RS5 0.90 0.63 0.68RS6 0.88 0.55RS7 0.89RS1 0.82 0.49 0.56 0.51 0.59 0.57 0.56RS2 0.79 0.55 0.55 0.57 0.52 0.50RS3 0.78 0.54 0.58 0.56 0.56RBF RS4 0.77 0.54 0.54 0.54RS5 0.81 0.56 0.59RS6 0.80 0.51RS7 0.82the results, the classi�ers in this section are trained for half as many epochs as those in theprevious section (since in each epoch twice as many patterns are seen). The correlation valuesbetween classi�ers trained on di�erent resampled training sets are shown in Table XII.Table XI: Resampling Results (training set size doubled).Classi�er(s) Ave BaggingN Error � Error �1 8.02 0.573 7.36 0.34 7.65 0.41MLP 5 7.31 0.13 7.35 0.287 7.27 0.17 7.38 0.311 6.70 0.763 5.56 0.36 6.11 0.54RBF 5 5.29 0.28 5.51 0.367 5.07 0.25 5.34 0.33The correlations among classi�ers still shows a reduction for the di�erent partitions. How-ever, because this reduction was not obtained at the cost of a signi�cant decrease in the individualclassi�er performance, the combining results are promising. Indeed, in this case the RBF net-work results showed mild improvements over simply combining multiple runs of the classi�erstrained on the full data. 18



Table XII: Correlations between Resampled Partitions (training set size doubled).RS1 RS2 RS3 RS4 RS5 RS6 RS7RS1 0.88 0.76 0.78 0.80 0.80 0.77 0.78RS2 0.91 0.79 0.77 0.77 0.77 0.77RS3 0.89 0.81 0.80 0.78 0.80MLP RS4 0.89 0.89 0.78 0.81RS5 0.88 0.78 0.81RS6 0.88 0.82RS7 0.91RS1 0.76 0.60 0.62 0.62 0.62 0.65 0.63RS2 0.76 0.61 0.64 0.64 0.65 0.60RS3 0.76 0.64 0.64 0.63 0.60RBF RS4 0.76 0.76 0.63 0.60RS5 0.77 0.63 0.60RS6 0.79 0.64RS7 0.775.1.5 Weighted ExpertsSince this approach is based on the mixture of experts framework as discussed in Section 4.4,we �rst tried a network of eight linear experts trained with the EM algorithm (Ramamurtiand Ghosh, 1996). A softmax based gating network, which partitions the input space usingsoft hyperplanes (Jacobs et al., 1991), gave poor results; a localized gating network initializedthrough k-means clustering (Xu et al., 1995) fared better, providing an average test set errorrate of 8:97%.Table XIII shows the performance when (i) three and (ii) seven experts (as describedin Section 4.4 were used. The combining of three experts failed to surpass the base results.For seven experts, the weighted combining of MLPs provides satisfactory results, whereas theweighed combining of RBFs does not. Tables XIV and XV show the correlations between theexperts. As expected, these correlations vary greatly, since the experts are trained on di�erentspatial partitions.The large disparity among individual experts (large standard deviations) is to be expected,because each expert focuses on a smaller section of the input space. However, because thecombining result relies on a weighted average, and the weights depend on the classi�er's expertizein a given region, these disparities do not disrupt the performance of the combiner.19



Table XIII: Combining Weighted Experts.Type of Experts Number of Experts Error �1 9.00 1.25MLP 3 7.58 0.497 7.00 0.301 8.34 1.23RBF 3 7.33 0.457 6.59 0.31Table XIV: Correlations between Three Weighted Experts.WE1-3 WE2-3 WE3-3WE1-3 0.90 0.81 0.68MLP WE2-3 0.91 0.72WE3-3 0.92WE1-3 0.77 0.65 0.37RBF WE2-3 0.76 0.47WE3-3 0.745.2 Results on Proben1 BenchmarksIn this section, we discuss results obtained from the Proben1 benchmark set4 (Prechelt, 1994).The data sets that were included in this study are the CANCER1, GLASS1, and GENE1 sets,and the name and number combinations correspond to a speci�c training/validation/test setsplit5. Note that in all cases, half the data is used for training, and a quarter of the data isused for validating and testing respectively. A more detailed description of these data sets, aswell as comparative studies between the Proben1 results, individual classi�ers and ensembles ofclassi�ers is available in (Tumer and Ghosh, 1995c).CANCER1 is based on breast cancer data, obtained from the University of WisconsinHospitals, from Dr. William H. Wolberg (Mangasarian et al., 1990; Wolberg and Mangasarian,1990). This set has 9 inputs, 2 outputs and 699 patterns, of which 350 are used for training.GENE1 is based on intron/exon boundary detection, or the detection of splice junctions in DNAsequences (Noordewier et al., 1991; Towell and Shavlik, 1992). 120 inputs are used to determinewhether a DNA section is a donor, an acceptor or neither. There are 3175 examples, of which4Available at URL ftp://ftp.ira.uka.de/pub/papers/techreports/1994/1994-21.ps.Z.5We are using the same notation as in the Proben1 benchmarks.20



Table XV: Correlations between Seven Weighted Experts.WE1-7 WE2-7 WE3-7 WE4-7 WE5-7 WE6-7 WE7-7WE1-7 0.93 0.43 0.58 0.44 0.43 0.49 0.48WE2-7 0.85 0.45 0.70 0.77 0.78 0.76WE3-7 0.97 0.52 0.48 0.50 0.50MLP WE4-7 0.89 0.76 0.70 0.70WE5-7 0.90 0.78 0.79WE6-7 0.90 0.87WE7-7 0.90WE1-7 0.73 0.22 0.46 0.32 0.32 0.33 0.34WE2-7 0.74 0.23 0.48 0.54 0.51 0.53WE3-7 0.81 0.51 0.39 0.32 0.35RBF WE4-7 0.75 0.54 0.49 0.54WE5-7 0.77 0.59 0.62WE6-7 0.75 0.68WE7-7 0.751588 are used for training. The GLASS1 data set is based on the chemical analysis of glasssplinters. The 9 inputs are used to classify 6 di�erent types of glass. There are 214 examples inthis set, and 107 of them are used for training.Before discussing the results, let us note that general classi�cation problems can be di-vided into the following cases according to their complexity: (i) individual classi�ers providesatisfactory results, and combining is used to reduce the standard deviation; (ii) combining pro-vides all the potential improvements; (iii) combining provides performance gains, but furtherimprovements are possible using the methods discussed in this paper.The CANCER1 data falls into the �rst category. The error rate for a single MLP is 0.69%,whereas the error rate for an ensemble of MLPs is 0.60% (for N=3,5,7). These error ratesrepresent an average of 1 or 2 errors per classi�er, since there are 174 test patterns. In this case,combining only increases the reliability of the classi�er, by reducing the standard deviation ofthe error.The GLASS1 set belongs to the second category where combining improves the perfor-mance, but correlation reduction methods fail to provide added improvements. In this case, thelimitation comes from the small sample size of the data. Since there are only 107 samples for a6 class problem, each class only has about 17 examples (on the average). Any further reduction21



of the training set size, e.g., though cross validation or resampling, causes signi�cant increasesin the individual classi�er error rates, negating any potential gains through combining.The GENE1 data provides a good example of the third type of problem. Combining im-proves the results, yet there is potential for further improvements. For these experiments, weselected an MLP consisting of a single hidden layer network with 20 hidden units, and an RBFnetwork with 15 kernels. Table XVI shows the base performance for the GENE1 data, along withthe Proben1 results6, and the estimated correlations. Table XVII shows the results of combiningensembles of MLPs and RBF networks trained on resampled training sets, the correspondingbagging results and the estimated correlations7. For these experiments, the architecture andsizes of the MLP and RBF networks were identical to those of the base experiments, and thetraining set size was doubled through resampling. The improvements are minimal for MLPensembles, but signi�cant for RBF ensembles for both N = 5 and N = 10.Table XVI: Combining Results for GENE1.Classi�er(s) Ave EstimatedN Error � Correlation1 13.47 0.44MLP 5 12.23 0.39 0.7410 12.16 0.221 14.34 0.52RBF 5 13.93 0.17 0.9610 13.83 0.22Proben1:pivot 15.05 0.89no-shortcut 16.67 3.756 DiscussionMajor steps in the design of any ensemble based system include extracting the relevant features,determining the individual classi�er architectures, and selecting the classi�er training and com-6Proben1 results reported here correspond to the \pivot" and \no-shortcut" architectures, discussed in(Prechelt, 1994).7There are two correlations, the within sample (N = 1) and between sample (N = 5; 10) correlations,respectively. 22



Table XVII: Resampling/Combining Results for GENE1.Classi�er(s) Ave Bagging EstimatedN Error � Error � Correlation1 13.97 0.43 0.76MLP 5 12.09 0.49 12.30 0.48 0.6810 12.01 0.38 12.14 0.481 14.82 1.12 0.98RBF 5 13.59 0.17 13.75 0.14 0.8710 13.00 0.21 13.24 0.14bining methodologies. In this paper, we focused on the e�ect of using non-identical training setson the overall classi�cation performance of a combiner system. In theory, reducing the correla-tion among classi�ers that are combined increases the ensemble classi�cation rates. In practicehowever, since each classi�er uses a subset of the training set, individual classi�er performancecan deteriorate, thus o�setting any potential gains at the ensemble level. This phenomenonis even more pronounced for small data sets where reducing the training set size can lead tosigni�cant problems for individual classi�ers.The methods that we investigated can be categorized into three groups:1. Statistical partitioning of the training sets, resulting in a change in which patterns aclassi�ers sees (k � 1-of-k training and resampling).2. Statistical partitioning of the feature space, resulting in the modi�cation of which aspectsof each pattern is seen by each classi�er (input decimation).3. Spatial partitioning of patterns using proximity of patterns in input space, in order toreduce the complexity of the task each individual classi�er needs to perform (weightedexpert combining).Neither feature space partitioning, nor spatial partitioning provided signi�cant improve-ments over the base results. Furthermore, both methods are di�cult to �ne-tune, as a smallchange in the design step (say, modifying the number of inputs that is decimated) leads to largechanges in combiner performance. Statistical partitioning of the training sets on the other handyielded promising results. 23



A particularly interesting observation is that for k � 1-of-k training and resampled setcombining, the RBF networks improved upon the base results. That the RBF network ensemblesoutperform their MLP counterparts is not surprising when one considers that RBFs are morelocally \tuned" to their training sets. Indeed, the selection of the kernel locations directlyinuences the performance of an RBF network.In our experiments, the �nal classi�cation decision of each variation that was studied fellwithin a very narrow range. These results highlight the di�culties in obtaining signi�cantimprovements over combiners which use classi�ers trained on all the available training data. Itis therefore important to reduce the correlations without increasing error rates. If there is noshortage of data this may be possible through k�1-of-k training or resampling. If the amountof data is limited, as it often is the case, however, the performance gains may not justify theincreased computational cost of training a large set of classi�ers on slightly modi�ed versions ofthe original data. An exception occurs when cross-validation is in any case being used for modelselection or for estimating generalization. Here several networks trained on slightly di�erent datasets are obtained as a byproduct, so combining them adds little to the computational burden.Acknowledgements: The authors would like to thank Viswanath Ramamurti for providingthe EM algorithm result and the data partitions in Section 4.4.ReferencesAl-Ghoneim, K. and Vijaya Kumar, B. V. K. (1995). Learning ranks with neural networks(Invited paper). In Applications and Science of Arti�cial Neural Networks, Proceedings ofthe SPIE, volume 2492, pages 446{464.Ali, K. M. and Pazzani, M. J. (1995). On the link between error correlation and error reduction indecision tree ensembles. Technical Report 95-38, Department of Information and ComputerScience, University of California, Irvine.Battiti, R. and Colla, A. M. (1994). Democracy in neural nets: Voting schemes for classi�cation.Neural Networks, 7(4):691{709.Baxt, W. G. (1992). Improving the accuracy of an arti�cial neural network using multipledi�erently trained networks. Neural Computation, 4:772{780.24
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