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ABSTRACT 
 
High precision GPS surveying and navigation applications have been constrained to the short-range case due to the 
presence of distance-dependent biases in the between-receiver single-differenced observables. Over the past few years, 
the use of a GPS reference station network approach, to extend the inter-receiver distances (user-to-reference receiver 
separation), has shown great promise. In order to account for the distance-dependent residual biases, such as the 
atmospheric biases and orbit errors, several techniques have been developed. They include the Linear Combination 
Model, Distance-Based Linear Interpolation Method, Linear Interpolation Method, Lower-Order Surface Model, and 
Least Squares Collocation. All of these methods aim to model (or interpolate) the distance-dependent biases between 
the reference station(s) and the user receiver with the support of a reference station network. 
 
In this paper the interpolation methods associated with these techniques are compared in detail, and the advantages and 
disadvantages of each are discussed. On an epoch-by-epoch and satellite-by-satellite basis, all of the abovementioned 
methods use a n-1 independent error vector generated from a n reference station network to model the distance-
dependent biases at the user station. General formulas for all of the methods involve the computation of the n-1 
coefficients first, and then the formation of a n-1 linear combination with a n-1 error vector from the reference stations 
to mitigate the spatially correlated errors for the user station(s). Test data from GPS (and Glonass) reference stations 
was used to evaluate the performance of the interpolation methods. The numerical results show that all of the proposed 
implementations of the multiple reference station approach can significantly reduce the distance-dependent biases 
associated with carrier phase and pseudo-range measurements at the GPS user station. The performance of all the 
methods is similar. 
 
INTRODUCTION  
 
High precision GPS surveying and navigation techniques have been constrained to ’short-range’ due to the presence of 
distance-dependent biases in the between-receiver single-differenced observables. Over the past few years the concept 
of using reference station networks for kinematic GPS positioning (including in real-time) has been promoted strongly 
by several investigator groups. The basic idea is that, with the pre-determined coordinates of reference stations and 
fixed GPS carrier phase ambiguities, the so-called ’correction terms’ for the atmospheric biases and orbit errors can be 
generated to support ’medium-range’ carrier phase-based positioning. See, for example, Gao et al. (1997), Han & Rizos 
(1996); Raquet (1997); Wanninger (1995, 1997); Wübbena et al. (1996). A detailed review and comparison of the 
various multi-reference receiver approaches can be found in Fotopoulos & Cannon (2001) and Dai et al. (2001b).  
 
After the double-differenced ambiguities associated with the reference station receivers have been fixed to their correct 
values (for more details concerning this issue see, e.g., Gao et al., 1997; Colombo et al., 1999; Chen, 2000; Dai et al., 
2001a), the double-differenced GPS/Glonass residuals can be generated. The spatially correlated errors to be 
interpolated could be the pseudo-range and carrier phase residuals for the L1 and/or L2 frequencies, or other linear 
combinations.  
 
One core issue for multi-reference receiver techniques is how to interpolate the distance-dependent biases generated 
from the reference station network for the user's location? Over the past few years, in order to interpolate (or model) the 
distance-dependent residual biases, several interpolation methods have been proposed. They include the Linear 
Combination Model (Han & Rizos, 1996; 1998), the Distance-Based Linear Interpolation Method (Gao et al., 1997; 
1998), the Linear Interpolation Method (Wanniger, 1995; Wübbena  et al., 1996), the Low-Order Surface Model 
(Wübbena et al., 1996; Fotopoulos & Cannon, 2000), and the Least Squares Collocation Method (Raquet, 1997; Marel, 
1998). (It should be emphasised that the Virtual Reference Station (VRS) technique promoted by the Trimble GPS 
Company is merely an implementation of the multiple-reference receiver approach, and all of the aforementioned 
interpolation methods can be applied.) 
 
In this paper, the aforementioned interpolation methods are compared in detail, and the advantages and disadvantages of 
each of these techniques are discussed. An underlying common formula for all of the interpolation methods has been 
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identified, and their performance will be demonstrated through case study examples of GPS (and Glonass) reference 
station networks. 
 
INTERPOLATION METHODS 
 
Linear Combination Model (LCM) 
 
A linear combination of single-differenced observations was proposed by Han & Rizos (1996, 1998) to model the 
spatially correlated biases (i.e. orbit bias iorb,rD , residual ionospheric bias iiond ,D  and residual tropospheric bias 
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where n is the number of reference stations in the network, i indicates the ith reference station, and u the user station. A 
set of parameters ia  is estimated, satisfying the following conditions: 
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where uX̂  and iX̂  are horizontal coordinate vectors for the user station and the ith reference station respectively. 
 
Based on Equations (1)-(4), the impact of orbit errors can be eliminated, and ionospheric biases, tropospheric biases, 
multipath and measurement noise can be significantly mitigated. As a result, the double-differenced observables can be 
formed after ambiguities in the reference station network have been fixed to their correct integer values: 
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where Vi, n  (referred to her as the ‘correction terms’) is the residual vector generated from the double-differenced 

measurements between reference stations n and i: 
 
 1)-n ,..., 1(i ,,,, =D¶-D¶-D¶= nininini NV lrf    (6) 

 
Distance-Based Linear Interpolation Method (DIM) 
 
A distance-based linear interpolation algorithm for ionospheric correction estimation has been suggested by Gao et al. 
(1997), described by the following equations: 
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where n is the number of reference stations in the network, and id  is the distance between the ith  reference station and 

the user station. iÎD¶  is the double-differenced ionospheric delay at the ith reference station. 
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In order to improve interpolation accuracy, two modifications were made by Gao & Li (1998). The first modification is 
to replace the ground distance with a distance defined on a single-layer ionospheric shell at an altitude of 350km. The 
second modification is to extend the model to take into account the spatial correction with respect to the elevation angle 
of the ionospheric delay paths on the ionospheric shell.  
 
Linear Interpolation Method (LIM) 
 
Wanninger (1995) first suggested a regional differential ionospheric model derived from dual-frequency phase data 
from at least three GPS monitor stations surrounding the user station. Unambiguous double-differenced ionospheric 
biases can be obtained on a satellite-by-satellite and epoch-by-epoch basis after ambiguities in the reference station 
network have been fixed to their correct integer values. Ionospheric corrections for any station in the area can be 
interpolated by using the known coordinates of the reference stations and approximate coordinates of the station(s) of 
interest. Wübbena et al. (1996) extended this method to model the distance-dependent biases such as the residual 
ionospheric and tropospheric biases, and the orbit errors. Similar methods have been proposed by Wanninger (1999), 
Schaer (1999), Chen et al. (2000), Vollath et al. (2000), and others. 
 
For a network with three or more stations, the linear model can be described by:  
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where XD  and YD  are the plane coordinate differences referred to the master reference station. Parameters a and b are 
the coefficients for XD  and YD  (the so-called 'network coefficients' according to Wübbena et al., 1996). In the case of 
more than three reference stations, the coefficients a and b can be estimated by a Least Squares adjustment on an epoch-
by-epoch, satellite-by-satellite basis. Then the GPS user within the coverage of the network can apply the following 2D 
linear model to interpolate the distance-dependent biases: 
 

ununun YbXaV D+D¼= .  (11) 

 
Low-Order Surface Model (LSM) 
 
The distance-dependent biases exhibit a high degree of spatial correlation across a reference station network. Low-order 
surfaces can be used to 'fit' the distance-dependent biases (Wübbena et al., 1996; Fotopoulos, 2000). The fitted surfaces 
are known as trend or regression surfaces, and they model the major trend of the distance-dependent biases. The 
coefficients of the low-order surfaces can be estimated via a Least Squares adjustment using data from the reference 
station network. The variables of the fitting function could be two (i.e. the horizontal coordinates), or three (horizontal 
coordinates and height). The fitting orders could be one, two or higher. Some fitting functions are: 
 
 cYbXaV +D+D¼= .  (12) 

fYXeYdXcYbXaV +DD¼+D+D¼+D+D¼= 22 ..  (13) 

dHcYbXaV +D¼+D+D¼= .  (14) 

eHdHcYbXaV +D+D¼+D+D¼= 2..  (15) 
 
Schaer et al. (1999) have proposed that Equation (12) be used to model residual ionospheric refraction on a satellite-by-
satellite and epoch-by-epoch basis after double-differencing, and that Equation (14) could be used to estimate the 
tropospheric zenith delay. Equations (14) and (15) can be derived by applying partial derivative principles (Varner & 
Cannon, 1997; Varner, 2000). After the fitted coefficients are computed, they can be used to predict the biases for the 
user station(s).  
 
Least Squares Collocation (LSC) 
 
Least Squares Collocation has been used for many years to interpolate gravity at any given location using only 
measurements at some discrete locations (e.g., Tscherning, 1974; 2001; Schwartz, 1978). The following is the basic 
interpolation equation: 
 

VCCU vvu ¼¼= � 1ˆ   (16) 
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where vC  is the covariance matrix of the measurement vector V , and uvC  is the cross-covariance matrix between the 

interpolated vector Û  and the measurements vector V . If these covariance matrices are computed correctly, and the 
measurements satisfy the conditions of zero mean and a normal distribution, Equation (16) gives the optimal estimator 
(Raquet & Lachapelle, 2001). Least Squares Collocation is also well suited to interpolating the distance-dependent 
biases in a network. Raquet (1997) proposed the NetAdjust method, which in essence is equivalent to Least Squares 
Collocation.  
 
The challenge for this method is to calculate the covariance matrices vC  and uvC . The following covariance function 

was proposed (Raquet, 1998): 
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where the computation of the double-differenced covariance matrices can be decomposed into two mathematical 
functions. First, a correlated variance function which maps the zenith variance of the correlated errors over the network 
area is computed: 
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where ),(2
mnc PP

z
d  is the differential zenith variance of the correlated errors for points pn and pm in the network. This 

function is based on the two-dimensional distance d between the reference stations. k1 and k2  are constant coefficients 
(k1 = 1.1204e-4 and k2 = 4.8766e-7 for L1 phase in their paper). Secondly, a mapping function is needed to map the 
zenith correlated and uncorrelated errors to the elevation of the satellite at each epoch: 
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where )(em  is a dimensionless scale factor which, when multiplied by the zenith variance obtained from Equation (18), 

gives the correlated variance for the specified satellite elevation e, and µk is a constant coefficient (µk = 3.9393 for L1 
phase in their paper). Tests have shown that the estimated corrections are not sensitive to the choice of the covariance 
function. However, estimated variances are sensitive to the covariance function used (Raquet & Lachapelle, 2001). 
 
Based on the principles of Least Squares Collocation, a practical interpolator for ionospheric biases (or tropospheric 
biases) is (Marel, 1998; Odijk et al., 2000): 
 

[ ]
ß
ß
ß
ß
ß

à

Þ

Ï
Ï
Ï
Ï
Ï

Ð

Î

=

¼

ß
ß
ß
ß
ß

à

Þ

Ï
Ï
Ï
Ï
Ï

Ð

Î

¼=

�

0ˆ

ˆ

ˆ

 

C

C

C

1
1

1
13

1
12

1

011

2021

1
s
120

21
1
1

s
n

s

s

s
n

s
n

s
n

s

s
n

s
un

s
u

s
u

s
u

I

I

I

CC

CC

CC

CCCI
M

L

MOMM

L

L

L  (20) 

 

The spatial covariance function s
klC  is linearly dependent on the distance between the stations, or rather, the distance 

between their ionospheric pierce points: 
 

s
ks

s
kl llC -= max  (21) 

 

In this covariance function s
klC  is the distance between the ionospheric points of stations k and l with respect to satellite 

s, with s
klll >max , where maxl  (300km was used in their paper) is a distance which is larger than the longest distance 

between the ionospheric points of the stations in the network. Therefore, the larger the distance between the points, the 
smaller the correlation.  
 
COMPARISON OF INTERPOLATION METHODS 
 
General Formula 
 
On an epoch-by-epoch and satellite-by-satellite basis all of the abovementioned methods use a n-1 independent error 
vector generated from a n reference station network to interpolate (or estimate) the distance-dependent biases for the 
user station location. One significant characteristic shared by all of the methods is that it is necessary to first compute 
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the n-1 coefficients, and then to form a n-1 linear combination with the n-1 error vector generated by the reference 
station network:  
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It should be emphasised that all the coefficients can be calculated without using any actual measurements, and are 
constant if the user receiver is not in motion. The coefficients depend on the geometry between the user station and the 
reference station network (and the GPS satellite geometry). They refer to one master reference station and one reference 
satellite. 
 
The formulas for the determination of the coefficients, and a discussion of the advantages and disadvantages of each 
interpolation method, are presented below.  
 
Coefficient Determination  
 
Linear Combination Model 
 
Equations (2) and (3) can be re-written as: 
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If three or more reference stations are used, the n coefficient vector a  can be determined using the Least Squares 
condition adjustment based on Equation (4): 
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In this method, although a total of n coefficients can be derived from Equation (24), only n-1 coefficients are used to 
interpolate the distance-dependent biases. Coefficient an is related to the master reference station.  

     
The Linear Combination Model is formed from the single-differenced functional equation for baselines from the user 
receiver to two or more reference stations. The advantage of this model is the elimination of the orbit bias. The residual 
ionospheric delay and the tropospheric delay can also be reduced to the same degree that the epoch-by-epoch and 
satellite-by-satellite ionosphere and the troposphere models are able to. Multipath and measurement noises can be 
reduced if the user receiver is located within the network of reference stations, so that the coefficients are less than one. 
Otherwise the multipath and noise may be amplified (because the coefficients might be larger than one).  
 
Distance-Based Linear Interpolation Method 
 
From Equation (7), it can be seen that the n-1 coefficients can be determined as follows: 
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In this method it should emphasised that the coefficients always are less than one, even if the user receiver is located 
outside the network of reference stations. Although this method was originally proposed by Gao et al. (1997) to 
interpolate residual ionospheric biases, it can also, to a certain degree, mitigate other distance-dependent biases such as 
tropospheric bias and orbit errors. 
 
 
 
 



 

 6

Linear Interpolation Method 
 

If three or more reference stations are available, the parameters â  and b̂  can be estimated using Least Squares based 
on Equation (10): 
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After the parameters â  and b̂  have been estimated, the biases at the user location within the coverage of the network 
can be interpolated using Equation (11): 
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From Equation (29) it can be seen that the n-1 coefficient vector a can be written as: 
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The coefficients can also be derived using the satellite-by-satellite, epoch-by-epoch ionospheric model, to reduce 
residual ionosphere and troposphere delay. It can be proven that if only three reference station are used, the coefficients 

1a  and 2a  are exactly the same for the Linear Combination Model as for the Linear Interpolation Method. However, 

they are different when the number of reference stations is greater than 3 (see Experiments) because the Linear 
Combination Model eliminates the orbit bias as well. The advantage of this method for real-time implementation is that 
the implementation is easier because only two coefficients for each satellite pair are required for transmission to the 
user. 
 
Low-Order Surface Model 
 
The different variables and orders of the fitting surfaces result in a different n-1 coefficient vector a. However, the 
computation procedure is the same. Here, an example of a plane-fitting function will be used.  
 

If four or more reference stations are available, the parameters â , b̂  and ĉ  can be estimated using Least Squares based 
on Equation (12): 
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After the parameters â , b̂ and ĉ  have been estimated, the biases at the user location within the coverage of the network 
can be interpolated using Equation (12): 
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From Equation (33) it can be seen that the n-1 coefficient vector a can be written as: 
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For a Low-Order Surface Model the required number of reference stations depends on the fitting variable and the fitting 
order. In general, the minimum number of reference stations is four if the plane-fitting function is used. It is obvious 
that the Linear Interpolation Method is a special case of the plane-fitting function. 
 
Least Squares Collocation  
 
For the Least Squares Collocation Method the n-1 coefficients can be determined using Equation (16): 
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The n coefficients in the interpolator suggested by Marel (1998) can be determined from: 
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It should be emphasised that although there are n coefficients in this interpolator, only the first n-1 coefficients are used 
for interpolation because the nth coefficient is related to the reference satellite and a zero error value has been assigned 
to this satellite. 
 
This method explicitly attempts to minimise the differenced phase-code biases between any reference station receiver 
and the user receiver. Note that the accuracy of the Least Squares Collocation Method is dependent upon the accuracy 
of the covariance matrix (Raquet, 1998). In practice it is very difficult to calculate precise covariance matrices.   
 
Coefficient Comparison in a Simulated Multiple-Reference Station Network 
 
From the previous discussion it can be seen that all the methods use n-1 coefficients to form a linear combination with 
the ‘correction terms’ to mitigate spatially correlated biases at user stations. In fact the coefficients can be considered as 
weighting for the ‘correction terms’. Therefore, the major differences between all the methods are only the coefficients. 
In order to further analyse the coefficient differences for the different interpolation methods, a simulation study has 
been carried out. Figure 1 shows the configuration of the reference station network used in the simulation. ‘Ref. 1’-‘Ref. 
7’ and ‘Master Ref.’ indicate the seven reference stations and one master reference station respectively. 
 

 
Figure 1. Configuration of the simulated reference station network 
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Figures 2a to 2g show the distribution of all the coefficients for the user location within (100km x 100km) and outside 
(50km) the reference station network, using the seven different interpolation methods respectively. Figures 2d and 2e 
refer to the Low-Order Surface Model using the Equations (12) and (13) respectively. It can be seen from Figures 2a, 2c 
and 2d that for the Linear Combination Model, the Linear Interpolation Method, and the 1st Order Surface Model, each 
coefficient distribution lies in one plane whose form is defined by the reference station coordinates. This can be proven 
using Equations (24), (30) and (34) respectively. Figures 2a and 2c also show that the corresponding coefficients (a1 to 
a7) are quite similar. Therefore, the performance of the two methods should be similar too. Figure 2e shows that each 
coefficient form is a 2nd order surface defined by the reference station coordinates. Figures 2b, 2f and 2g show that the 
closer to the reference station the user location is, the larger (up to 1) the corresponding coefficient. It is interesting that 
every coefficient trend is almost the same for the Least Squares Collocation methods suggested by Raquet (1998) and 
Marel (1998), even though their derived formulas are quite different.   
 
 

Figure 2a. Coefficients generated by the Linear Combination Model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2b. Coefficients generated by the Distance-Based Linear Interpolation Method 
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Figure 2c. Coefficients generated by the Linear Interpolation Method 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2d. Coefficients generated by the Low-Order Surface Model (1st order) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2e. Coefficients generated by the Low-Order Surface Model (2nd order) 
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Figure 2f. Coefficients generated by the Least Squares Collocation Method proposed by Raquet (1998) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2g. Coefficients generated by the Least Squares Collocation Method proposed by Marel (1998) 
 
 
EXPERIMENTS 
 
In order to compare the performance of the different interpolation methods, two experiments were carried out.   
 
Sydney: GPS and Glonass Reference Stations 
 
This experiment was carried out on 15 May 2000, using four dual-frequency integrated GPS/Glonass JPS receivers to 
simulate a reference station network (Figure 3). One of the reference stations was located on the roof of the Geography 
and Surveying Building, at The University of New South Wales (UNSW). The other two reference stations were located 
at Camden and Richmond. The distances between the reference stations were 55.9km, 48.2km and 49.5km. The user 
receiver was located at the side of Motorway No.4, 31.4km, 26.5km and 32.4km away from the UNSW, Richmond and 
Camden stations respectively. The station UNSW was selected as the master reference station. The experiment 
commenced at 8:30AM and concluded at 12:30PM. A total of 3 hours of GPS and Glonass measurements for all the 
receivers, with one-second sampling rate and a 15o cut-off angle, were collected. During the period, between 5 and 9 
GPS, and between 3 and 5 Glonass satellites were tracked. 
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Figure 3. Configuration of the Sydney GPS/Glonass reference receiver network 

 
The reference station ambiguities were correctly determined in the post-processing mode using the recorded GPS and 
Glonass measurements. Table 1 shows the coefficients for the different interpolation methods. The last two columns 
denote the sum and square sum of the n-1 coefficients. The square sum factor is an indicator of noise for the ’correction 
terms’, hence the smaller the better. The LSC1 and LSC2 refer to the Least Squares Collocation Method suggested by 
Raquet (1998) and Marel (1998) respectively. It can be seen that the coefficients for the LCM and LIM are exactly same, 
and that the coefficients for LSC1 and LSC2 are very close. However, there is a larger difference for the DIM method. 
  

Table 1. Coefficients generated for the different methods (experiment 1) 
 Ref. Sta. LCM DIM LIM LSC1 LSC2 
a1 CAMD 0.193 0.450 0.193 0.249 0.256 
a2 RICH 0.448 0.550 0.448 0.421 0.424 
a3 UNSW 0.360    0.337 
/

i
i 0 1

2

Ê   0.640 1.000 0.640 0.670 0.680 

1
i
2

i 2 1

2

Ê   0.487 0.711 0.487 0.489 0.495 

 
Figures 4a to 4d show the L1 and L2 residuals for the baseline UNSW-USER, for satellite pairs PRN39-41 and PRN16-
11, with and without the Linear Combination Model. The distance-dependent biases have been reduced significantly 
after the ’correction terms’ from the reference station network were applied. In this experiment there are two data gaps 
caused by data loss at the user receiver when recording. If the data gap had occurred at the reference station receivers, 
correction terms can be predicted for up to a few minutes using a Kalman filter or by linear function fitting (see Dai et 
al., 2002). 

 
Figure 4a. L1 residuals for Glonass PRN39-41 with (black) and without (grey) the Linear Combination Model 

 

 
Figure 4b. L2 residuals for Glonass PRN39-41 with (black) and without (grey) the Linear Combination Model 



 

 12

 
Figure 4c. L1 residuals for GPS satellite pair PRN16-11 with (black) and without (grey) the Linear Combination Model 

 
Figure 4d. L2 residuals for GPS satellite pair PRN16-11 with (black) and without (grey) the Linear Combination Model 
 
Figure 5a shows the original L1 resiudals for all the satellite pairs at the baseline UNSW-USER. It can be seen that the 
residuals can be up to 20cm for the 31.6km baseline. Figures 5b, 5c, and 5d show the L1 residuals after the correction 
terms from the reference stations are applied using the LIM, DIM and LSC methods respectively. As the coefficients 
are the same, or very close, for the LCM and LIM, and the LSC1 and LSC2, the results for these are not plotted. It can 
be seen that the LCM and LSC methods give almost the same results, but the DIM method gives slightly worse results. 
 

 
Figure 5a. Original double-differenced L1 residuals for all the satellites pairs 

 
Figure 5b. Double-differenced L1 residuals for all the satellites pairs using the Linear Combination Model 

 

 
Figure 5c. Double-differenced L1 residuals for all the satellites using the Distance-Based Linear Interpolation Method 
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Figure 5d. Double-differenced L1 residuals for all the satellites pairs using the Least Squares Collocation Method 

 
Figure 6 shows the L1, L2, P1 and P2 RMS statistics for the original residuals (ORG), and after the different 
interpolation methods (LCM, DIM, LIM, SC1 and LSC2) were applied. The conclusion can be made that all the 
interpolation methods can significantly mitigate the distance-dependent biases in the L1, L2, P1 and P2 double-
differenced observables.  
 

 
Figure 6. L1, L2, P1 and P2 RMS statistics for the different interpolation methods (experiment 1) 

 
Taiwan: Multiple Reference Receiver Test 
 
In order to further investigate the performance of the different interpolation methods, data from permanent GPS stations 
established for deformation monitoring purposes in the Taiwan region (Figure 7) have also been analysed. The data was 
collected on 31 December 2000, logged at a 30-second sampling rate and a cut-off angle of 15o. Of the six reference 
stations (S011, S104, S058, I007, FCWS and S01R) S011 was selected as the master reference station and I007 as the 
user. There were two Leica CRS1000 recevers at stations S011 and I007, and four Trimble SSI receivers at stations 
S01R, FCWS, S058 and S104.   
 

 
 

Figure 7. Configuration of the Taiwan reference receiver network 
 
The reference station ambiguities were determined using the Bernese software v4.2 in the standard post-processing 
mode. Due to the high geomagnetic activity in the Taiwan region over recent years, the ambiguities between the 
reference stations were very difficult to determine correctly. Therefore, a cut-off angle 25° was used in the data 
processing. Table 2 shows the coefficients for the LCM, DIM, LIM, LSM, LSC1 and LSC2 interpolation methods. The 
coefficients for LSC1 and LSC2 are very similar. 
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Table 2. Coefficients generated for the different methods (experiment 2) 
  Ref. Sta. LCM DIM LIM LSM LSC1 LSC2 
a1 FCWS 0.297 0.209 0.329 0.283 0.316 0.266 
a2 S01R 0.208 0.225 0.004 0.305 0.024 0.163 
a3 S104 0.142 0.244 0.016 0.202 -0.081 0.004 
a4 S058 0.180 0.322 0.114 0.211 0.282 0.330 
a5 S011 0.173     0.344 
3
4
4

1i
i
5   0.827 1.000 0.463 1.000 0.540 0.763 

6
7
4

1

2

i
i
8   0.429 0.507 0.349 0.508 0.431 0.454 

 
Figure 8a shows the original L1 residuals for all the satellite pairs. It can be seen that the residuals can be up to 3 metres 
for the 75km baseline between S011 and I007! It should be emphasised that the distance-dependent biases became quite 
large and variable between local time 13:00-22:00. This is likely to be due to the high solar activity. Figures 8b to 8g 
show the L1 residuals after the ’correction terms’ from the reference station network have been applied, using the LIM, 
DIM, LIM, LSM, LSC1 and LSC2 interpolation methods respectively. It can be seen that all six methods can 
significantly reduce the distance-dependent biases, and demonstrate similar interpolation accuracy. Again, the DIM 
method does give slightly worse results. It is obvious that during high solar activity the accuracy of the interpolation for 
all the methods is reduced significantly. 

 
Figure 8a. Original double-differenced L1 residuals for all the satellites pairs 

 
Figure 8b. Double-differenced L1 residuals for all the satellites pairs using the Linear Combination Model 

 
Figure 8c. Double-differenced L1 residuals for all the satellites using the Distance-Based Linear Interpolation Method 

 
Figure 8d. Double-differenced L1 residuals for all the satellites pairs using the Linear Interpolation Method 
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Figure 8e. Double-differenced L1 residuals for all the satellites pairs using the Low-Order Surface Method  

(bivariate linear function fitting) 

 
Figure 8f. Double-differenced L1 residuals for all the satellites pairs  

using the Least Squares Collocation Method proposed by Raquet (1998) 

 
Figure 8g. Double-differenced L1 residuals for all the satellites pairs  

using the Least Squares Collocation Method proposed by Marel (1998) 
 
Figure 9 shows the L1, L2, P1 and P2 RMS statistics for the original residuals (ORG) and after the different 
interpolation methods (LCM, DIM, LIM, LSM, SC1 and LSC2) have been applied. It can be seen that in the case of the 
original residuals (in Figure 9) there are similar RMS values for L1 and P1, and for L2 and P2. This could be due to the 
dominant ionospheric biases compared to the pseudo-range noise. However, the RMS values for carrier phase are much 
smaller than for pseudo-ranges after the correction terms are applied. The conclusion can be made again that all the 
interpolation methods can significantly mitigate the distance-dependent biases in the L1, L2, P1 and P2 double-
differenced observables. 
 

 
Figure 9. L1, L2, P1 and P2 RMS statistics using the different interpolation methods (experiment 2) 

 
CONCLUDING REMARKS 
 
In this paper several interpolation methods suitable for reference station network techniques, including the Linear 
Combination Model, the Distance-Based Linear Interpolation Method, the Linear Interpolation Method, the Low-Order 
Surface Model, and the Least Squares Collocation Method, have been compared in detail. The advantages and 
disadvantages of each of these techniques have been discussed, and for all of the abovementioned methods, the essential 
common formula has been identified. All use n-1 coefficients and the n-1 independent ‘correction terms’ generated 
from a n reference station network to form a linear combination that mitigates spatially correlated biases at user stations.  
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Test data from several GPS/Glonass reference station networks were used to evaluate the performance of these methods. 
The numerical results show that all of the methods for multiple-reference receiver implementations can significantly 
reduce the distance-dependent biases in the carrier phase and pseudo-range measurements at the user station. The 
performance of all of the methods is similar, although the distance-dependent Linear Interpolation Method does 
demonstrate slightly worst results in the two experiments analysed. 
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