COMPARISON OF INTERPOLATION ALGORITHMSIN
NETWORK-BASED GPSTECHNIQUES

Liwen Dai, Shaowei Han, Jinling Wang and Chris Rizos
School of Surveying & Spatial Information Systems
The University of New South Wales
Sydney, NSW 2052
Australia

ABSTRACT

High precision GPS surveying and navigation applications have been constrained to the short-range case due to the
presence of distance-dependent biases in the between-receiver single-differenced observables. Over the past few years,
the use of a GPS reference station network approach, to extend the inter-receiver distances (user-to-reference receiver
separation), has shown great promise. In order to account for the distance-dependent residual biases, such as the
atmospheric biases and orbit errors, several techniques have been developed. They include the Linear Combination
Model, Distance-Based Linear Interpolation Method, Linear Interpolation Method, Lower-Order Surface Model, and
Least Squares Collocation. All of these methods aim to model (or interpolate) the distance-dependent biases between
the reference station(s) and the user receiver with the support of a reference station network.

In this paper the interpolation methods associated with these techniques are compared in detail, and the advantages and
disadvantages of each are discussed. On an epoch-by-epoch and satellite-by-satellite basis, al of the abovementioned
methods use a n-1 independent error vector generated from a n reference station network to model the distance-
dependent biases at the user station. General formulas for al of the methods involve the computation of the n-1
coefficients first, and then the formation of a n-1 linear combination with a n-1 error vector from the reference stations
to mitigate the spatially correlated errors for the user station(s). Test data from GPS (and Glonass) reference stations
was used to evaluate the performance of the interpolation methods. The numerical results show that all of the proposed
implementations of the multiple reference station approach can significantly reduce the distance-dependent biases
associated with carrier phase and pseudo-range measurements at the GPS user station. The performance of al the
methodsis similar.

INTRODUCTION

High precision GPS surveying and navigation techniques have been constrained to 'short-range’ due to the presence of
distance-dependent biases in the between-receiver single-differenced observables. Over the past few years the concept
of using reference station networks for kinematic GPS positioning (including in real-time) has been promoted strongly
by several investigator groups. The basic idea is that, with the pre-determined coordinates of reference stations and
fixed GPS carrier phase ambiguities, the so-called 'correction terms’ for the atmospheric biases and orbit errors can be
generated to support 'medium-range’ carrier phase-based positioning. See, for example, Gao et al. (1997), Han & Rizos
(1996); Raquet (1997); Wanninger (1995, 1997); Wibbena et al. (1996). A detailed review and comparison of the
various multi-reference receiver approaches can be found in Fotopoulos & Cannon (2001) and Dai et al. (2001b).

After the double-differenced ambiguities associated with the reference station receivers have been fixed to their correct
values (for more details concerning this issue see, e.g., Gao et al., 1997; Colombo et al., 1999; Chen, 2000; Dai et al.,
2001a), the double-differenced GPS/Glonass residuals can be generated. The spatially correlated errors to be
interpolated could be the pseudo-range and carrier phase residuals for the L1 and/or L2 frequencies, or other linear
combinations.

One core issue for multi-reference receiver techniques is how to interpolate the distance-dependent biases generated
from the reference station network for the user's location? Over the past few years, in order to interpolate (or model) the
distance-dependent residual biases, several interpolation methods have been proposed. They include the Linear
Combination Model (Han & Rizos, 1996; 1998), the Distance-Based Linear Interpolation Method (Gao et al., 1997;
1998), the Linear Interpolation Method (Wanniger, 1995; Wibbena et al., 1996), the Low-Order Surface Model
(Wibbena et al., 1996; Fotopoulos & Cannon, 2000), and the Least Squares Collocation Method (Raquet, 1997; Marel,
1998). (It should be emphasised that the Virtual Reference Station (VRS) technique promoted by the Trimble GPS
Company is merely an implementation of the multiple-reference receiver approach, and all of the aforementioned
interpolation methods can be applied.)

In this paper, the aforementioned interpolation methods are compared in detail, and the advantages and disadvantages of
each of these techniques are discussed. An underlying common formula for all of the interpolation methods has been
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identified, and their performance will be demonstrated through case study examples of GPS (and Glonass) reference
station networks.

INTERPOLATION METHODS
Linear Combination Model (LCM)

A linear combination of single-differenced observations was proposed by Han & Rizos (1996, 1998) to model the
spatially correlated biases (i.e. orbit bias Ap,,; , residua ionospheric bias Ad,,,; and residual tropospheric bias
Adyep; ) @nd to mitigate multipath Ad,; and noise ¢,

YoAd
=1

%04 A =%04 QA% +%04 A —0%04 -AdT+/1~%04 -AN —%04 Moy +%04 “Mhop
i= r|1= i= i= i= i= i= (1)
+§a5 ~Adff1pi +&n

€
pregls

i=1

where n is the number of reference stations in the network, i indicates the i reference station, and u the user station. A
set of parameters «; is estimated, satisfying the following conditions:
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where >2u and Xi are horizontal coordinate vectors for the user station and the i"" reference station respectively.

Based on Equations (1)-(4), the impact of orbit errors can be eliminated, and ionospheric biases, tropospheric biases,
multi path and measurement noise can be significantly mitigated. As a result, the double-differenced observables can be
formed after ambiguitiesin the reference station network have been fixed to their correct integer values:
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where \/i'n (referred to her as the ‘correction terms’) is the residual vector generated from the double-differenced
measurements between reference stations n and i:

Vin=VAg , —VAD , —AVAN, , (i=1,...n-1) (6)
Distance-Based Linear Interpolation Method (DIM)

A distance-based linear interpolation algorithm for ionospheric correction estimation has been suggested by Gao et al.
(1997), described by the following equations:
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where n is the number of reference stations in the network, and d; is the distance between the i reference station and
the user station. VAfi is the double-differenced ionospheric delay at the i™" reference station.



In order to improve interpolation accuracy, two modifications were made by Gao & Li (1998). The first modification is
to replace the ground distance with a distance defined on a single-layer ionospheric shell at an altitude of 350km. The
second modification is to extend the model to take into account the spatial correction with respect to the elevation angle
of the ionospheric delay paths on the ionospheric shell.

Linear Interpolation Method (LIM)

Wanninger (1995) first suggested a regional differential ionospheric model derived from dual-frequency phase data
from at least three GPS monitor stations surrounding the user station. Unambiguous double-differenced ionospheric
biases can be obtained on a satellite-by-satellite and epoch-by-epoch basis after ambiguities in the reference station
network have been fixed to their correct integer values. lonospheric corrections for any station in the area can be
interpolated by using the known coordinates of the reference stations and approximate coordinates of the station(s) of
interest. Wilbbena et al. (1996) extended this method to model the distance-dependent biases such as the residual
ionospheric and tropospheric biases, and the orbit errors. Similar methods have been proposed by Wanninger (1999),
Schaer (1999), Chen et al. (2000), Vollath et al. (2000), and others.

For a network with three or more stations, the linear model can be described by:
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where AX and AY are the plane coordinate differences referred to the master reference station. Parameters a and b are
the coefficients for AX and AY (the so-called 'network coefficients' according to Wilbbena et al., 1996). In the case of
more than three reference stations, the coefficients a and b can be estimated by a Least Squares adjustment on an epoch-
by-epoch, satellite-by-satellite basis. Then the GPS user within the coverage of the network can apply the following 2D
linear model to interpolate the distance-dependent biases:

Vin =a-AX, +b.AY,, (11)

Low-Order Surface Model (LSM)

The distance-dependent biases exhibit a high degree of spatial correlation across a reference station network. Low-order
surfaces can be used to 'fit' the distance-dependent biases (W(bbena et al., 1996; Fotopoulos, 2000). The fitted surfaces
are known as trend or regression surfaces, and they model the major trend of the distance-dependent biases. The
coefficients of the low-order surfaces can be estimated via a Least Squares adjustment using data from the reference
station network. The variables of the fitting function could be two (i.e. the horizontal coordinates), or three (horizontal
coordinates and height). The fitting orders could be one, two or higher. Some fitting functions are:

V =a-AX +bAY +c 12)
V =a-AX +bAY +c-AX? +d.AY? + e- AXAY + f (13)
V=a-AX+bAY +c-AH +d (14)
V=a-AX +bAY +c-AH +d.AH? + e (15)

Schaer et al. (1999) have proposed that Equation (12) be used to model residual ionospheric refraction on a satellite-by-
satellite and epoch-by-epoch basis after double-differencing, and that Equation (14) could be used to estimate the
tropospheric zenith delay. Equations (14) and (15) can be derived by applying partial derivative principles (Varner &
Cannon, 1997; Varner, 2000). After the fitted coefficients are computed, they can be used to predict the biases for the
user station(s).

L east Squares Collocation (L SC)
Least Squares Collocation has been used for many years to interpolate gravity at any given location using only

measurements at some discrete locations (e.g., Tscherning, 1974; 2001; Schwartz, 1978). The following is the basic
interpolation equation:

U=c,-C,V (16)



where C, is the covariance matrix of the measurement vector V , and C, is the cross-covariance matrix between the

interpolated vector U and the measurements vector V . If these covariance matrices are computed correctly, and the
measurements satisfy the conditions of zero mean and a normal distribution, Equation (16) gives the optimal estimator
(Raguet & Lachapelle, 2001). Least Squares Collocation is also well suited to interpolating the distance-dependent
biases in a network. Raquet (1997) proposed the NetAdjust method, which in essence is equivalent to Least Squares
Collocation.

The challenge for this method is to calculate the covariance matrices C, and C,, . The following covariance function
was proposed (Raquet, 1998):

Cl = 2(2) - 52 (Po.P) + 62 (R Py) — 62 (Pu,Ry)| )

where the computation of the double-differenced covariance matrices can be decomposed into two mathematical
functions. First, a correlated variance function which maps the zenith variance of the correlated errors over the network
areais computed:

5 (Py,Py) = kyd +k,d? (18)

where cfczz (P,,R,) isthe differentia zenith variance of the correlated errors for points p, and py, in the network. This

function is based on the two-dimensional distance d between the reference stations. k; and k, are constant coefficients
(ky = 1.1204e-4 and k, = 4.8766e-7 for L1 phase in their paper). Secondly, a mapping function is needed to map the
zenith correlated and uncorrel ated errors to the elevation of the satellite at each epoch:
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where u(e) isadimensionless scale factor which, when multiplied by the zenith variance obtained from Equation (18),

gives the correlated variance for the specified satellite elevation €, and i is a constant coefficient (i, = 3.9393 for L1
phase in their paper). Tests have shown that the estimated corrections are not sensitive to the choice of the covariance
function. However, estimated variances are sensitive to the covariance function used (Raquet & Lachapelle, 2001).

Based on the principles of Least Squares Collocation, a practical interpolator for ionospheric biases (or tropospheric
biases) is (Marel, 1998; Odijk et al., 2000):
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The spatial covariance function Cj is linearly dependent on the distance between the stations, or rather, the distance
between their ionospheric pierce points:

Clj :Imax_llfs (21)

In this covariance function Cj isthe distance between the ionospheric points of stations k and | with respect to satellite

S, With |5 > 1§ . wWhere |, (300km was used in their paper) is a distance which is larger than the longest distance

between the ionospheric points of the stations in the network. Therefore, the larger the distance between the points, the
smaller the correlation.

COMPARISON OF INTERPOLATION METHODS

General Formula

On an epoch-by-epoch and satellite-by-satellite basis al of the abovementioned methods use a n-1 independent error
vector generated from a n reference station network to interpolate (or estimate) the distance-dependent biases for the

user station location. One significant characteristic shared by al of the methods is that it is necessary to first compute
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the n-1 coefficients, and then to form a n-1 linear combination with the n-1 error vector generated by the reference
station network:

V=V =aVy, +aNn ++ap Von (22)
It should be emphasised that al the coefficients can be calculated without using any actual measurements, and are
constant if the user receiver is not in motion. The coefficients depend on the geometry between the user station and the
reference station network (and the GPS satellite geometry). They refer to one master reference station and one reference
satellite.

The formulas for the determination of the coefficients, and a discussion of the advantages and disadvantages of each
interpolation method, are presented below.

Coefficient Deter mination
Linear Combination Model

Equations (2) and (3) can be re-written as:

21
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If three or more reference stations are used, the n coefficient vector ¢ can be determined using the Least Squares
condition adjustment based on Equation (4):

a=B"(BB")'W (24)
1 1 .. o1 o1 | 1

where B=|AXy, AXgy - AYpy, Ola=|“2|w=|aX,, (25)
AYy Ay, -+ AYpg, O a AYyn

n

In this method, although a total of n coefficients can be derived from Equation (24), only n-1 coefficients are used to
interpol ate the distance-dependent biases. Coefficient ¢, is related to the master reference station.

The Linear Combination Model is formed from the single-differenced functional equation for baselines from the user
receiver to two or more reference stations. The advantage of this model is the elimination of the orbit bias. The residual
ionospheric delay and the tropospheric delay can also be reduced to the same degree that the epoch-by-epoch and
satellite-by-satellite ionosphere and the troposphere models are able to. Multipath and measurement noises can be
reduced if the user receiver is located within the network of reference stations, so that the coefficients are less than one.
Otherwise the multipath and noise may be amplified (because the coefficients might be larger than one).

Distance-Based Linear I nterpolation Method

From Equation (7), it can be seen that the n-1 coefficients can be determined as follows:

0—(:{& W Wn-l_} (26)
W W w

In this method it should emphasised that the coefficients dways are less than one, even if the user receiver is located
outside the network of reference stations. Although this method was originally proposed by Gao et a. (1997) to
interpolate residual ionospheric biases, it can also, to a certain degree, mitigate other distance-dependent biases such as
tropospheric bias and orbit errors.



Linear Interpolation Method

If three or more reference stations are available, the parameters a and b can be estimated usi ng Least Squares based
on Equation (10):

a
H =(ATA ATV (27)
Vln AXln AY1n
V. AX AY.
where V = :2" A= an : an (28)
Vn—l,n AX n-1n AYn—l,n

After the parameters a4 and b have been esti mated, the biases at the user location within the coverage of the network
can be interpol ated using Equation (11):

R a
Vy, = [AX un AYun]' |:6:| = [AX un AYun]' (AT A)_l ATV (29

From Equation (29) it can be seen that the n-1 coefficient vector o can be written as:
@ = [AXyy AV |- (ATA) AT (30)

The coefficients can also be derived using the satellite-by-satellite, epoch-by-epoch ionospheric model, to reduce
residual ionosphere and troposphere delay. It can be proven that if only three reference station are used, the coefficients
oy and a, are exactly the same for the Linear Combination Model as for the Linear Interpolation Method. However,
they are different when the number of reference stations is greater than 3 (see Experiments) because the Linear
Combination Model eliminates the orbit bias as well. The advantage of this method for real-time implementation is that
the implementation is easier because only two coefficients for each satellite pair are reguired for transmission to the
user.

Low-Order Surface Model

The different variables and orders of the fitting surfaces result in a different n-1 coefficient vector a. However, the
computation procedure is the same. Here, an example of a plane-fitting function will be used.

If four or more reference stations are available, the parameters &, b and & can be estimated usi ng Least Squares based
on Equation (12):

a
b|=(ATA) ATV (31)
¢
Vin AXq, AYy,
V. AX AY.
whereV =| " [Aa=| 2 (32)
Vn—Ln AX n-1,n AYn—l,n 1

After the parameters 4, band & have been estimated, the biases at the user location within the coverage of the network
can be interpol ated using Equation (12):
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From Equation (33) it can be seen that the n-1 coefficient vector o can be written as:
d = [AX y Ay, 1]- (AT A)TEAT (34)

For aLow-Order Surface Model the required number of reference stations depends on the fitting variable and the fitting
order. In general, the minimum number of reference stations is four if the plane-fitting function is used. It is obvious
that the Linear Interpolation Method is a special case of the plane-fitting function.

Least Squares Collocation

For the Least Squares Collocation Method the n-1 coefficients can be determined using Equation (16):
@=C, -C,* (39

The n coefficients in the interpolator suggested by Marel (1998) can be determined from:

Gl
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It should be emphasised that although there are n coefficientsin this interpolator, only the first n-1 coefficients are used
for interpolation because the n coefficient is related to the reference satellite and a zero error value has been assigned
to this satellite.

This method explicitly attempts to minimise the differenced phase-code biases between any reference station receiver
and the user receiver. Note that the accuracy of the Least Squares Collocation Method is dependent upon the accuracy
of the covariance matrix (Raquet, 1998). In practice it is very difficult to calculate precise covariance matrices.

Coefficient Comparison in a Simulated M ultiple-Reference Station Network

From the previous discussion it can be seen that all the methods use n-1 coefficients to form alinear combination with
the “correction terms’ to mitigate spatially correlated biases at user stations. In fact the coefficients can be considered as
weighting for the “correction terms’. Therefore, the major differences between all the methods are only the coefficients.
In order to further analyse the coefficient differences for the different interpolation methods, a simulation study has
been carried out. Figure 1 shows the configuration of the reference station network used in the simulation. ‘Ref. 1’-*Ref.
7’ and ‘Master Ref.” indicate the seven reference stations and one master reference station respectively.

150

100
- Ref 6 Ref 5 Reft 4
E
=
£ 50
€ Ref 7 Ref. 3
o
4
0
Master Ref. Refi 1 Ref 2
-50
-50 0 50 100 150
Easting (km)

Figure 1. Configuration of the simulated reference station network
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Coefficiental

Coefficient a3

Figures 2a to 2g show the distribution of all the coefficients for the user location within (100km x 100km) and outside
(50km) the reference station network, using the seven different interpolation methods respectively. Figures 2d and 2e
refer to the Low-Order Surface Model using the Equations (12) and (13) respectively. It can be seen from Figures 2a, 2¢c
and 2d that for the Linear Combination Model, the Linear Interpolation Method, and the 1% Order Surface Model, each
coefficient distribution lies in one plane whose form is defined by the reference station coordinates. This can be proven
using Equations (24), (30) and (34) respectively. Figures 2a and 2c also show that the corresponding coefficients (o; to
o7) are quite similar. Therefore, the performance of the two methods should be similar too. Figure 2e shows that each
coefficient form is a 2" order surface defined by the reference station coordinates. Figures 2b, 2f and 2g show that the
closer to the reference station the user location is, the larger (up to 1) the corresponding coefficient. It isinteresting that
every coefficient trend is almost the same for the Least Squares Collocation methods suggested by Raguet (1998) and
Marel (1998), even though their derived formulas are quite different.
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Figure 2a. Coefficients generated by the Linear Combination Model
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Figure 2b. Coefficients generated by the Distance-Based Linear Interpolation Method
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Figure 2c. Coefficients generated by the Linear Interpolation Method
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Figure 2e. Coefficients generated by the Low-Order Surface Model (2™ order)
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Figure 2f. Coefficients generated by the Least Squares Collocation Method proposed by Raquet (1998)
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Figure 2g. Coefficients generated by the Least Squares Collocation Method proposed by Marel (1998)

EXPERIMENTS

In order to compare the performance of the different interpolation methods, two experiments were carried out.

Sydney: GPS and Glonass Reference Stations

This experiment was carried out on 15 May 2000, using four dual-frequency integrated GPS/Glonass JPS receivers to
simulate a reference station network (Figure 3). One of the reference stations was located on the roof of the Geography
and Surveying Building, at The University of New South Wales (UNSW). The other two reference stations were located
at Camden and Richmond. The distances between the reference stations were 55.9km, 48.2km and 49.5km. The user
receiver was located at the side of Motorway No.4, 31.4km, 26.5km and 32.4km away from the UNSW, Richmond and
Camden stations respectively. The station UNSW was selected as the master reference station. The experiment
commenced at 8:30AM and concluded at 12:30PM. A total of 3 hours of GPS and Glonass measurements for al the
receivers, with one-second sampling rate and a 15° cut-off angle, were collected. During the period, between 5 and 9
GPS, and between 3 and 5 Glonass satellites were tracked.
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Figure 3. Configuration of the Sydney GPS/Glonass reference receiver network

The reference station ambiguities were correctly determined in the post-processing mode using the recorded GPS and
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Glonass measurements. Table 1 shows the coefficients for the different interpolation methods. The last two columns

denote the sum and square sum of the n-1 coefficients. The square sum factor is an indicator of noise for the 'correction
terms, hence the smaller the better. The LSC1 and LSC2 refer to the Least Squares Collocation Method suggested by
Raguet (1998) and Marel (1998) respectively. It can be seen that the coefficients for the LCM and LIM are exactly same
and that the coefficientsfor LSC1 and LSC2 are very close. However, there is alarger difference for the DIM method.

Table 1. Coefficients generated for the different methods (experiment 1)

Ref. Sta. LCM DIM LIM LSC1 LSC2
o1 CAMD 0.193 0.450 0.193 0.249 0.256
o RICH 0.448 0.550 0.448 0.421 0.424
s UNSW 0.360 0.337
2
>a 0.640 1.000 0.640 0.670 0.680
2
JZ aof 0.487 0.711 0.487 0.489 0.495
i=1

Figures 4ato 4d show the L1 and L2 residuals for the baseline UNSW-USER, for satellite pairs PRN39-41 and PRN16-
11, with and without the Linear Combination Model. The distance-dependent biases have been reduced significantly
after the 'correction terms’ from the reference station network were applied. In this experiment there are two data gaps
caused by data loss at the user receiver when recording. If the data gap had occurred at the reference station receivers,
correction terms can be predicted for up to a few minutes using a Kaman filter or by linear function fitting (see Dai et

a., 2002).

Figure 4a. L1 residuals for Glonass PRN39-41 with (black) and without (grey) the Linear Combination Model

Figure 4b. L2 residua s for Glonass PRN39-41 with (black) and without (grey) the Linear Combination Model
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Figure 4c. L1 residualsfor GPS satellite pair PRN16-11 with (black) and without (grey) the Linear Combination Model
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Figure 4d. L2 residuals for GPS satellite pair PRN16-11 with (black) and without (grey) the Linear Combination Model

Figure 5a shows the original L1 resiudals for all the satellite pairs at the baseline UNSW-USER. It can be seen that the
residuals can be up to 20cm for the 31.6km baseline. Figures 5b, 5c, and 5d show the L1 residuals after the correction
terms from the reference stations are applied using the LIM, DIM and LSC methods respectively. As the coefficients
are the same, or very close, for the LCM and LIM, and the LSC1 and LSC2, the results for these are not plotted. It can
be seen that the LCM and LSC methods give almost the same results, but the DIM method gives dightly worse results.
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Figure 5a. Original double-differenced L1 residualsfor al the satellites pairs
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Figure 5b. Double-differenced L1 residuas for al the satellites pairs using the Linear Combination Model
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Figure 5¢c. Double-differenced L1 residuals for all the satellites using the Distance-Based Linear Interpolation Method
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Figure 5d. Double-differenced L1 residuals for all the satellites pairs using the Least Squares Collocation Method

Figure 6 shows the L1, L2, P1 and P2 RMS satistics for the origina residuals (ORG), and after the different
interpolation methods (LCM, DIM, LIM, SC1 and LSC2) were applied. The conclusion can be made that al the
interpolation methods can significantly mitigate the distance-dependent biases in the L1, L2, P1 and P2 double-
differenced observables.
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Figure 6. L1, L2, P1 and P2 RMS statistics for the different interpolation methods (experiment 1)
Taiwan: Multiple Reference Receiver Test

In order to further investigate the performance of the different interpolation methods, data from permanent GPS stations
established for deformation monitoring purposes in the Taiwan region (Figure 7) have also been analysed. The data was
collected on 31 December 2000, logged at a 30-second sampling rate and a cut-off angle of 15°. Of the six reference
stations (S011, S104, S058, 1007, FCWS and SO1R) S011 was selected as the master reference station and 1007 as the
user. There were two Leica CRS1000 recevers at stations S011 and 1007, and four Trimble SSI receivers at stations
S01R, FCWS, S058 and S104.
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Figure 7. Configuration of the Taiwan reference receiver network

The reference station ambiguities were determined using the Bernese software v4.2 in the standard post-processing
mode. Due to the high geomagnetic activity in the Taiwan region over recent years, the ambiguities between the
reference stations were very difficult to determine correctly. Therefore, a cut-off angle 25° was used in the data
processing. Table 2 shows the coefficients for the LCM, DIM, LIM, LSM, LSC1 and LSC2 interpolation methods. The
coefficients for LSC1 and LSC2 are very similar.
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Table 2. Coefficients generated for the different methods (experiment 2

Ref.Sta |LCM | DIM | LIM LSM | LSCI | LsC2

- FCWS 0297 | 0209 |0329 |0283 | 0316 | 0266
o SOIR 0208 | 0225 |0004 | 0305 |0024 |0163
P S104 0142 | 0244 | 0016 | 0202 | -0081 | 0004
- S058 0180 | 0322 |0114 | 0211 | 0282 | 0330
s 011 0173 0.344
ilai 0827 | 1000 |0463 |1.000 | 0540 | 0763
g2 0429 | 0507 |0349 |0508 |0431 | 0454

Figure 8a shows the original L1 residuals for al the satellite pairs. It can be seen that the residuals can be up to 3 metres
for the 75km baseline between S011 and 1007! It should be emphasised that the distance-dependent biases became quite
large and variable between local time 13:00-22:00. This is likely to be due to the high solar activity. Figures 8b to 8g
show the L1 residuals after the 'correction terms’ from the reference station network have been applied, using the LIM,
DIM, LIM, LSM, LSC1 and LSC2 interpolation methods respectively. It can be seen that al six methods can
significantly reduce the distance-dependent biases, and demonstrate similar interpolation accuracy. Again, the DIM
method does give slightly worse results. It is obvious that during high solar activity the accuracy of the interpolation for
all the methods is reduced significantly.
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Figure 8a. Original double-differenced L1 residualsfor al the satellites pairs
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Figure 8b. Double-differenced L1 residuas for all the satellites pairs using the Linear Combination Model
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Figure 8c. Double-differenced L1 residuals for al the satellites using the Distance-Based Linear Interpolation Method
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Figure 8d. Double-differenced L1 residuasfor all the satellites pairs using the Linear Interpolation Method
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Figure 8e. Double-differenced L1 residuals for al the satellites pairs using the Low-Order Surface Method
(bivariate linear function fitting)
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Figure 8f. Double-differenced L1 residuals for all the satellites pairs
using the Least Squares Collocation Method proposed by Raquet (1998)
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Figure 8g. Double-differenced L1 residuals for al the satellites pairs
using the Least Squares Collocation Method proposed by Marel (1998)

Figure 9 shows the L1, L2, P1 and P2 RMS datistics for the origind residuals (ORG) and after the different
interpolation methods (LCM, DIM, LIM, LSM, SC1 and LSC2) have been applied. It can be seen that in the case of the
original residuals (in Figure 9) there are similar RMS valuesfor L1 and P1, and for L2 and P2. This could be due to the
dominant ionospheric biases compared to the pseudo-range noise. However, the RMS values for carrier phase are much
smaller than for pseudo-ranges after the correction terms are applied. The conclusion can be made again that al the
interpolation methods can significantly mitigate the distance-dependent biases in the L1, L2, P1 and P2 double-
differenced observables.
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Figure 9. L1, L2, P1 and P2 RMS statistics using the different interpolation methods (experiment 2)

CONCLUDING REMARKS

In this paper severa interpolation methods suitable for reference station network techniques, including the Linear
Combination Model, the Distance-Based Linear Interpolation Method, the Linear Interpolation Method, the Low-Order
Surface Model, and the Least Squares Collocation Method, have been compared in detail. The advantages and
disadvantages of each of these techniques have been discussed, and for all of the abovementioned methods, the essential
common formula has been identified. All use n-1 coefficients and the n-1 independent ‘correction terms’ generated
from a n reference station network to form a linear combination that mitigates spatially correlated biases at user stations.
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Test data from several GPS/Glonass reference station networks were used to eval uate the performance of these methods.
The numerical results show that all of the methods for multiple-reference receiver implementations can significantly
reduce the distance-dependent biases in the carrier phase and pseudo-range measurements at the user station. The
performance of al of the methods is similar, although the distance-dependent Linear Interpolation Method does
demonstrate dightly worst results in the two experiments analysed.
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