
ScaNS: Using Actors for Massive Simulation of Distributed
Routing Algorithms

Helier Alexander Waite (0804196)
May 5, 2013

ABSTRACT
Existing simulators designed for the evaluation of distributed
graph algorithms tend to be based on a threaded model of
concurrency. This leads to scaling issues when simulating
particularly large graphs such as Internet-like graphs or poor
utilisation of resources when using large multiprocessor ma-
chines. Here, I present a simulator that uses actor-model
concurrency to directly model the interactions between nodes
in a graph during the simulation of a distributed algorithm.
While more closely modelling the behaviour of an abstract
network, the actor model brings performance advantages.

1. INTRODUCTION
The Internet is a large distributed system that is continu-

ing to grow at a fast rate. Being able to forward information
and share routing information over such a distributed sys-
tem between any two arbitrary end-points is a essential to
the operation of the network. The networks that comprise
the Internet are called Autonomous Systems, or ASes. The
ASes are the building blocks that are interconnected to cre-
ate the internet. ASes are defined as being a single adminis-
trative domain, meaning they are administrated separately
from most other ASes. These are usually run by Instenet
Service Providers(ISP), and larger businesses.

The job of transferring reachability data between the sub-
systems in the Internet belongs to the Interdomain routing
protocols. Interdomain routing protocols treats the inter-
net as a series of nodes and links represented by ASes and
the routes through the network that connects them. This
node-link abstraction is known as the AS graph and is very
important in interdomain Internet research.

The currently used interdomain routing protocol for the
Internet is the Border Gateway Protocol(BGP)[14], which is
used to maintain tables containing route data to other ASes
at routers. BGP has some known scaling issues. Leading up
to the year 2001, BGP routing tables exhibited exponential
growth[11]. This represents a substantial problem as older
backbone routers start to run out of memory to store new
routes and lookups for existing routes start to take signifi-
cant time. In the time between 2001 and 2012, the size of
a full BGP graph has grown from just over 100,000 entries
to 400,000 entries. In [7], the authors discuss some of the
causes of this massive growth and conclude that the largest
factor is that of address fragmentation, where every prefix
requires an entry in the table but could be aggregated to a
single entry. It was also noted in [9] that IPv4 exhaustion
may have worked as a limiting factor in the growth of rout-
ing tables and that the wide-spread adoption of IPv6 may
exacerbate the situation.

The growth of the network continues to be a problem due
to the increased adoption of IPv6. IPv6 uses a much larger
address space to mitigate the exhaustion issue found in IPv4.
As the number of hosts using IPv6 increase, the size of rout-
ing tables will again be able to increase super-linearly as new
IPv6 addresses are allocated.

Due to this, replacements for BGP need to be considered
as the size of the Internet is guaranteed to grow. A full hard-
ware upgrade of the backbone network would be very costly
as well as largely infeasable due to the autonomous nature of
the Internet. The development of such such protocols often
require simulation of the new protocol over large Internet-
like graphs to try and gain an idea of how the protocol be-
haves at these scales. Such a simulator has the requirements
of being scalable in respect to graph size, as well as being
able to make effective use of multicore and multiprocessor
technology to achieve speedup.

This paper describes ScaNS, a scalable network simula-
tor. The simulator was designed specifically for use with
Internet-scale graphs and continues to perform well to multi-
million object simulations. The simulator allows users to
create a simulation of many million end-hosts running dis-
tributed algorithms such as new routing protocols, and study
the behaviour in a high level way that can be used to rea-
son about the behaviour of the algorithm. One of the main
design features is that ScaNS uses actors as it’s main unit
of concurrency, rather than threads. This allowed us to test
the hypothesis that as well as making the code easier to
write, actors work well for this domain of problems as it
maps directly to the underlying graph.

This paper makes several contributions. First, ScaNS is
the first high-level routing simulator that I could find in lit-
erature that makes use of actor concurrency. I present the
case for the use of actor model parallelism in relation to the
class of simulators which deal with the simulation of commu-
nicating entities, such as in a distributed system. I present
an evaluation of ScaNS against various metrics such as it’s
scalability and it’s ability to directly model networks of ob-
jects. I also present a real-world use-case for the system,
showing it’s worth as a usable system.

The rest of this paper is structured as follows. Section 2
further discusses the problems surround the use of currently
existing simulators for use with new interdomain routing al-
gorithms. Section 3 discusses the design of ScaNS as well
as some key concepts that it uses. Section 4 introduces low-
level details of how ScaNS is implemented including details
of how simulation objects work together using actors. Sec-
tion 5 provides evaluations of the system to test it’s perfor-
mance characteristics using various metrics as well as test-

ing it’s fit for purpose. Section 7 provides some more back-
ground information on simulators, the AS graph and routing
algorithms relevant to this paper, and section 8 concludes
and provides ideas for future work.

2. PROBLEM
There are two main classes of networking simulator that

exist. protocol-level and abstract simulations of the net-
work. The protocol-level class of simulators are focused on
the simulation of the network various degrees of realism.
These often have a focus on a particular aspect such as ac-
curately modelling wireless communication channels. These
are the sorts of simulators used for testing such aspects as
traffic flow in smaller networks. The abstract class of net-
work simulator concerns itself with abstracting away many
of the details used in the protocol-level simulations in favour
of a more abstract, instead of realistic, simulation. This type
of simulator are used less for fine grained simulation as they
lack the details required but are instead used for high level
overviews of how larger systems work.

The study of distributed algorithms, such as routing pro-
tocols, is often less concerned with the physical implemen-
tations of protocol and are more focused on showing that
the underlying algorithm works well. For this class of appli-
cations, standard network simulators do not work well. For
these sort of simulations, the type of the channel, the in-
stalled network stack and other low-level network constructs
become superfluous. Essentially what is required is a mas-
sively scalable distributed algorithm simulator. High-level
simulation abstract away ideas like these and instead aim for
a simpler “link and node” model. This allows users to exper-
iment with new distributed algorithms without the hassle of
having to define the protocol first.

For the simulation of low-level networks, several simula-
tors already exist. These allow very fine grained control
over many low-level aspects of a simulation node, such as
being able to install a specific networking stack in a partic-
ular node. While this allows for very accurate simulation of
small to medium topologies, the overhead of such network
stacks and other micro-managed parameters for large graphs
will become a restricting factor. These simulators are useful
for fine grained traffic analysis of networks. This is not the
sort of simulator that we need. The ability to specify these
parameters will only complicate the code of the simulation
and the granularity of the output from the simulation may
be too fine.

While there are numerous low-level network simulators
with various different features, there are very few high-level
simulators. This is likely due to the need for high-level simu-
lators being substantially lower than other types of network
simulator as they have somewhat limited use-cases. This
paper describes a high-level network simulator designed for
the use with very high-level routing problems, allowing the
user to disregard details such as defining network stacks and
only focus on nodes, links and the algorithm.

An example of an experimental routing problem in this
class is that of K-core decomposition [8]. The K-core de-
composition of a graph can be used to show the connectiv-
ity properties of a graph. Prior work [16] has shown the
the AS graph is an area where k-core decomposition would
be relevant in the area of choosing landmark sets within
the Thorup-Zwick compact routing scheme[17]. The algo-
rithm is a centralised algorithm with global knowledge of the

graph. A distributed version of the K-core decomposition
algorithm is introduced in [12]. This distributed version of
the algorithm could potentially be incorporated as part of a
new routing scheme. Since evaluation of this new algorithm
is currently a graph problem and not yet a protocol prob-
lem, a simulator for the evaluation of the distributed K-core
decomposition algorithm would not require all of the detail
of a low level network simulation and would instead wish
to trade that for higher performance. Requirements for the
simulation of this algorithm only require that the simulation
maintain a set of nodes, a set of edges and signal when it is
time for nodes to perform the algorithm.

3. SYSTEM DESIGN AND CONCEPTS
Here, I discuss ScaNS, the Scalable network simulator.

The simulator was designed from the ground up to support
the high-level study of the simulation of million-scale, dis-
tributed graphing problems with a particular emphasis on
routing algorithms. In this section I discuss various concepts
and design ideas important to the success of the system.

3.1 Actor Model Concurrency
ScaNS was designed to use the actor model of concur-

rency. The actor model, first introduced in [10], states that
every unit of concurrency is called an actor. The only way
to interact with an actor is to send messages to it. An actor
is responsible for creating local decisions on it’s behaviour
based on a message that is has just received. These deci-
sions could be performing computation, sending messages to
other actors or creating new actors. This paradigm fits sev-
eral real-world such as actors represent people and messages
representing interaction, or in networks where actors rep-
resent entities in the network and messages represent data
flowing between entities.

The actor model is in contrast to the threaded model
of concurrency. The threaded model allows blocks of exe-
cutable code to be run in different thread to attain speedup.
The main communication method between threads is through
shared memory regions protected by lock. The threaded
model is know for being particularly hard to program cor-
rectly as well as it being very easy to introduce subtle bugs
like deadlocks and inconsistent shared memory. The actor
model deals with all of these by using the message passing
mechanic. By not allowing functions to be called on actor
objects, there is no way for an actor to become in an in-
consistent state as there is when objects are modified from
different threads. Also, since the actor model uses explicitly
asynchronous message passing, this also removes the issue
of locking as the entire system is now event-based instead of
lock-based.

3.2 Scala
Scala[13] is a multi-paradigm programming language de-

signed at EPFL in Switzerland by Martin Odersky, sup-
porting simultaneous use of imperative, object-oriented and
functional styles. It’s main aim was to be a“component” lan-
guage used to create component systems. It was designed to
be fully interoperable with existing Java code while adding
several functional programming additions and amending a
few issues that the community saw in Java. Code written
in scala is compiled down to Java virtual machine (JVM)
bytecodes which is the mechanism for making it interoper-
able with existing Java code but also means that it can run

on standard JVM. Scala takes the object-oriented approach
of Java a step further with it’s idea of “everything is an ob-
ject”, or more formally a “unified type-system”. “Traits” are
scala’s version of Java’s “interfaces”but also allow behaviour
to be defined in them. Traits were designed to be âĂIJmixed
inâĂİ with class definitions to easily extend the functional-
ity for a class such as mixing in a “debugging” trait in to
any class to add a specific logging function. Traits were de-
signed to be chained together such as having the class using
debugging traits plus a trait that defines other component
behaviour. The traits mechanism aids the “component” as-
pect of Scala as it allows users to define traits of often used
functionality that can be easily mixed in to new classes when

Scala was chosen for this simulator for various reasons.
It’s heavy emphasis on being a component language allowed
us to build a modular architecture which can be easily ex-
tended through the use of traits. The language has a sub-
stantial standard library to use as well as being fully com-
patibly with all of Java’s standard library. This meant I
already had all of the tools at my disposal to create such a
system easily without having to re-implement standard con-
structs. Scala’s interoperability with existing java libraries
meant that users would also be able to use any existing
java software in conjunction with the simulator to extend
it’s functionality. Scala has also always had an emphasis on
providing an implementation of actor concurrency as part of
it’s standard distribution. This meant I could rely on having
this robust base to build out entire actor system upon.

Scala’s actor system is based heavily on the actor sys-
tem presented in Erlang [5]. Erlang is a language designed
for the use in robust telecommunication applications such
as switching equipment at telephone exchanges. Erlang is
a functional language that natively supports concurrency
through message passing. Despite this, there are a few rea-
sons that Erlang was not used for this project. Erlang being
a functional language may not have been a good fit for the
architecture I was trying to build due to immutable state.
Since all of the simulation objects in the system need to
maintain their own state, the paradigm of immutable state
would become costly as scale where new objects would need
to be created for every change. Erlang started as a mod-
ified version of Prolog and as such, has inherited many of
it’s syntax ideas. The syntax used by Erlang is one that is
unfamiliar to myself and will be unfamiliar to many other
developers who wish to use this application. This is in con-
tract to the well known C-style syntax used by Scala.

3.3 Architecture
Figure 1 shows the overall architecture of the simulator.

The system can be roughly split in to four sections: the
host application, the simulator, the clock distribution and
the graph.

3.3.1 The Graph
The graph section is the representation of the input to

the simulator. The graph is modelled as everything being
an actor, just in the same way as the physical world. Nodes,
which implement the algorithms to be run in the simulation
are represented by actors. This allows modelling of the re-
ceive, act, respond loop that is used in real hardware. When
a node receives a message, it decides how to process it and
then has the option to send other messages.

Links are also represented as actors within the system.

Figure 1: Overall architecture of the simulator

This allows us to have complete separation of behaviour of
the nodes and the links. If links were not modelled as actors,
messages would be passed directly from one node actor to
another. While this is a standard pattern, there may also be
other required behaviours of links. A user may wish to define
a link type that randomly drops messages to model a non-
perfect channel, or takes longer than a certain time frame to
deliver messages to represent a link with a particular latency.
Having links as separate actors allows us have this behaviour
defined separately instead of having it mixed in with the
code for the nodes.

Representing every single entity in the graph as an ac-
tor allows us to exploit the fact that within a single time
instance, the entire graph is an embarrassingly parallel sys-
tem. That is to say that all entities are able to execute
without having to wait on other entities finishing their ac-
tion first. This, coupled with an actor library that allows
us to run multiple actors simultaneously on a certain num-
ber of threads creates a system that will scale well when the
system resources are increased.

This idea of explicit links is shown in figure 2. In this
diagram, squares represent hosts or simulation nodes, and
circles represent the links between them. The nodes only
communicate directly with the link actor representing the
link to the node it wishes to contact. Nodes never contact
each other directly.

3.3.2 The Clock Distribution
ScaNS is structured as a synchronous, tick-based simula-

tor. This means that all simulation actors work simultane-
ously and they only perform their algorithm when instructed
with a “Tick” message. This way I could easily control the
concurrency of the system as tick based systems allow the

Figure 2: Showing the explicit nature of links in
the system. Circles representing hosts and squares
representing the links between them.

system to run indefinitely until all simulation objects have
returned a “Tock” message to say they have completed their
work for this time iteration.

The clock distribution system was designed in a way that
I could multiplex signals that were required by all actors.
Since the simulator is a tick-based simulator which requires
a tick to be sent to signal the start of every time instance,
and a response from every actor on every time instance,
this was very important. The clocks serve dual purpose:
sending messages from the simulation layer to all actors and
retrieving logging messages from the graph objects to return
to the simulation layer.

Initial testing showed that having a single clock entity
that had to deal with signals and responses for every graph
object created a bottleneck which caused a slow down of the
system. This is understandable as a single actor is a single
unit of concurrency so can only process ever receive message
serially. A system needed to be created that would spread
the work out over multiple actors, increasing parallelism.

The clock distribution system takes the form of a tree
where there is a single clock at the top which takes com-
mands from the simulation layer and there are several leaf
clocks which then communicate directly with the graph ob-
jects. This allows us to spread out the work of the clocks over
several leaf nodes, allowing us to increase the parallelism of
the system as multiple clock signals can be processed at
once.

Performance of the system is also increased through aggre-
gation. Instead of immediately forwarding a message from
the graph objects back up the tree, the clock will wait until
it has received messages from all of it’s children. It will then
aggregate all of these messages in to a single object which is
then passed up the tree. This removes the overhead of large
amounts of unnecessary message passing.

3.3.3 The Simulation Layer
The simulation layer consists of three components: the su-

pervisor, the simulator and the logger. The supervisor is the
entry point for commands from the users host application.
This creates a simple, single entry point to the simulator.
It also functions as the management for the entire system,
orchestrating the simulation and logger components.

The simulation layer is responsible for all aspects of the
graph. It has the responsibilities of creating the actors that

represent the graph from a given input, creating the clock
distribution and then connecting the clocks to the graph. It
is also responsible for maintaining state of the simulator to
allow the serialisation of sent commands to it.

The logging component is the only way to get output from
the simulator. The messages that were received at the su-
pervisor are sent to the logger where they can be aggregated
and finally output to a location and format defined by the
particular logging component in use.

All three of these components are implemented using ac-
tors and all communication with them and between them
are performed using message passing.

3.4 Host Application
The host application is the program which instantiates an

instance of the simulator. The host application only needs
to instantiate the supervisor and all other components are
automatically generated. This makes the simulator simpler
to use and doesn’t clutter host application code, making it
simple to integrate in to other applications. The host appli-
cation must communicate with the supervisor through mes-
sage passing as the supervisor is an actor, despite the host
application not being an actor. The implication of this is
that the simulator cannot directly pass data back to the host
application as the supervisor doesn’t know where to send the
data as the host application has no mailbox. Therefore, the
host application must rely on the logger component to get
output from the system.

4. SYSTEM IMPLEMENTATION
This section will discuss the implementation of the ScaNS

system. It will discuss low level ideas such as how I manage
concurrency control for the system and how traits are used
to create new simulation object types.

4.1 Simulation
The simulation component is the module in charge of the

low-level maintenance of the simulation. It has the respon-
sibility of creating and maintaining the simulation clocks,
creating and maintaining the simulation objects and dictat-
ing the behaviour of how the clocks and simulation objects
interact. The simulation component is structured as a finite
state machine. This is only in effect during the initialisation
phase of it’s lifetime as it ensures that instance variables
are instantiated in the correct order. Since during initiali-
sation various components rely on other components having
already been created, this can become an issue when ob-
jects are being created asynchronously using message pass-
ing. Using an FSM execution style allows a pipeline of ini-
tialisation to be performed where the next stage of initial-
isation is explicitly not started until the current stage has
successfully completed. Standard execution involves simply
flipping between the states of “working” and “ready”. At the
end of an working phase, as it’s last action just after the
component has moved to the ready stage, it sends a “Round
Complete” message to the system supervisor. This message
serves a few purposes. Firstly, it signals that this time iter-
ation is complete and that the supervisor is clear to execute
the next command in the future event list. This message
also returns all logging messages generated by the simula-
tion objects to the supervisor for processing, as well as a
count of the total number of messages that were sent this
time instance. This allows the supervisor to check for stable

Figure 3: Message flow within the system

conditions.
The simulation component is used by the way of traits.

A base trait for a simulation component is provided by the
package which is then mixed in by a user class which fills in
the abstract values. The most important function required is
the “process” function. The base trait handles the reading of
the input graph file in to a buffer and then calls the process
function on each line in the buffer. By abstracting this func-
tion, I allow users to provide their own which will be able
to handle the particular graph input format that is being
used for this simulation. Example simulation components
have been written to handle a subset of the graphviz DOT
language [2], DIMACS format [1] and UCLA IRL format [3].
The user must also provide function for creating/removing
a link and creating/removing a node. These functions are
used for runtime modifications to the graph and allow the
user to apply semantics to various operations such as defin-
ing the behaviour of the simulation when a link is removed.

4.2 Simulation Objects
The simulation objects of the system are the actors that

represent nodes and links of the simulation. Simulation ob-
jects are explicitly split in to the two categories of “link”
or “node”. This allows us to enforce correct behaviour on
how the simulator operates by always executing the the two
in the same order. The correct behaviour of the simulator
is that each time instance represents a single execution on
all of the nodes, followed by a single execution of all of the
links. This allows the simulator to perform deterministicly
as messages will always arrive on the same tick when sim-
ulations are rerun. This is opposed to if this system was
implemented with a unified simulation object type where
every object in the simulation is executed simultaneously,
leading to non-deterministic behaviour depending on which
actor is executed first.

Simulation objects have two behaviour functions. A “per
tick” function which is executed every time the object is
ticked and a “per message” function which is executed on
every message in the objects mailbox. This split allows the
situation where the simulation must be started with no ex-
ternal inputs. An example of this is where the first iteration
of an algorithm is to send it’s state to all neighbours. This
behaviour is not instigated by an incoming message and thus
cannot be executed in the “per message” function. The per
tick function also allows the used to output some state on
every iteration of the simulation or perform an action on
every tick. The per message function is executed for ev-
ery message stored in an objects mailbox. Both of these

def Tick(){

val perTickLogging = PerTickBehaviour()

var perMessageLogging = ArrayBuffer[LogMessage]()

for(msg <- messageBuffer){

perMessageLogging += nodeAlgorithm(msg)

}

val allLogging = perMessageLogging ++

perTickLogging

clock ! allLogging

}

Figure 4: The tick behaviour of a simulation object

def nodeAlgorithm(message){

message.payload match{

case x:TypeA => {...}

case x:TypeB => {...}

case _ => {...}

}

}

Figure 5: The node algorithm matching message
types

functions are specified by the user to embody the complete
behaviour of a node. This behaviour is shown in figure 4.
First the per tick behaviour is executed. This is executed
once every time the node receives a tick representing a new
time instance. The node algorithm is then called and ex-
ecuted on every message in it’s message buffer. The node
algorithm given in figure 5 shows the the typical structure
given to the node algorithm. The type of the message that I
am currently operating on is matched to a set of types that
I have known actions for. This allows a node algorithm to
handle various types of message such as handling both data
and control messages.

The final function that must be provided by a new node
type is“getState”which is executed in response to a stateRequest
message from the simulation actor. This function takes a
string argument, allows the user to optionally specify what
state is returned by the object. This is a useful way of query-
ing specific pieces of state of an object during runtime.

4.3 Supervisor

The supervisor component is responsible for the orches-
tration of the entire simulation from a high level. It re-
ceives commands from a host application via standard mes-
sage passing and performs the command based on the mes-
sage received. The supervisor maintains the future event
list required by the simulator as well as acting as the main
dispatcher for events within the system. This components
execution is also modelled as a finite state machine. This
allows the simulator to create a correct temporal ordering
of events while making use of asynchronous message passing
system. The supervisor maintains a state and the body of
the supervisor defines what actions can be performed while
in that state. Once an action has been performed by the
supervisor, it’s next action is to update it’s state to an ap-
propriate value as to block any other operation until the
current one has completed.

As an example, when the supervisor is instructed to per-
form a logging operation, it first checks if it is in a ready
state. If it is, then the supervisor can send logging informa-
tion to the logging component and will then set it’s state to
“logging”. While in the logging state, no other operations
can be performed and the system will only exit the logging
state when it has received a “logging completed” message
from the logger. This will then reset the state of the system
to ready and will dequeue the next event on the future event
list.

The finite state machine of the supervisor combined with
the future event list underpins the concurrency control of
this simulator. This is a simple form of concurrency con-
trol that maintains correct state of the simulation by only
allowing one operation to be performed at a time. This is in
contrast to more complicated concurrency control methods
which allow multiple operations to be performed simulta-
neously but require checks and rollbacks if an error is de-
tected. For use by host applications, a class using the stan-
dard supervisor trait must be made to fill in three abstract
values. These are a logging component, a simulation com-
ponent and a function that will be called when the system
is shutting down, allowing for custom shutdown behaviour
such as dumping extra logging information.

4.4 logging
The logging component makes up the“view”portion of the

MVC pattern. It’s purpose is to receive messages generated
by any other component and process them in some way.
As there are many ways that a user may wish to generate
output, a trait is used to provide the barebones of the logging
construct and then all the user must provide is an “output”
function which will take a message and generate some form
of output. There are two standard use cases for the logging
actor: Logging to StdOut and logging to a file. As such,
these two primitive are provided by default. The logger
component is general enough that it would be possible to
write a process method that updates a GUI with data upon
receiving each message as no return type is expected of the
process function.

5. EVALUATION
Evaluations were performed on various aspects of the sim-

ulator to assess qualities such as scalability, memory usage
and execution time. Assessments of the systems ability to
scale with graph size is important as the Internet will con-
tinue to grow and the simulator must be able to handle larger

def nodeAlgorithm(packet: SimMessage):SimReturn =

{

packet.payload match {

case x: floodPacket => {

var seen = seenBefore(x)

if(!seen){

for(interface<-interfaces){

if (interface._1 != packet.source) {

sentMessages += 1

interface._2 ! SimMessage(id,

interface._1, 0, packet.payload)

}

}

}

}

case _ => {}

}

}

Figure 6: The node algorithm for the flood type
node

datasets. Scalability with number of available cores, as well
as overall memory usage and execution time metrics allow us
to assess how the simulator would increase in performance
when given resourceful machines and how performance is
lowered when used on restricted resource machines.

Evaluations were performed on a machine comprising of
four 16-core AMD Opteron 6274 chips and 512GB of RAM
running FreeBSD 9.1. For every evaluation the JVM was set
to use the concurrent mark and sweep garbage collector, has
an Xmx value of 200G and was executed using the “-server”
flag. Basic variables that are tweaked in these evaluations
are the input graph used, the number of ticks performed, the
number of times the entire simulation is run without shut-
ting down the JVM, or“rounds”and the number of messages
that are injected in to the system before Tick one.

5.1 Scaling with Graph Size
The first evaluation was to assess how well the simulator

performed in response to increasing graph sizes. The pur-
pose of this evaluation was to see the effect on the simulator
when running million-scale simulations vs smaller scale sim-
ulations. This is important as it would show both the range
of potential applications for the simulator and will show that
the simulator will still be of use in years to come when the
size of the AS graph has continued to grow.

For this evaluation a “flood-type” node was used which
sends a message it has just received on all of it’s outputs
except the one it was received on. This is shown in figure
alg:flood. This allows us to generate a lot of traffic within the
system very quickly and for a short period of time. Sequence
numbers were used in the messages to avoid an exponential
flooding of messages.

Ten ticks were performed as no changes occur after this
point and the simulator would be simulating nothing hap-
pening. Only one injected message was used to start the
simulator to first test on light work-load and heavy work-
load could be tested later. To test on graphs of increasing
size, the AS graphs from 2004 to 2010 were used. This en-
tire evaluation was performed 5 times to produce minimum,

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 100000 200000 300000 400000 500000 600000 700000

E
x
e
c
u
ti
o
n
 T

im
e
 i
n
 m

s

Simulation Objects

Figure 7: Execution time shown against the total
number of simulation actors in the system using the
IRL AS graphs

maximum and average values for execution times.
If the simulator is scaling well with respect to the size

of the graph, I would expect to see a linear increase in the
execution time with respect to the number of simulation
objects in the system. This is due to the node algorithm
taking being the most expensive operation defined by the
system.

As shown in figure 7 the execution time indeed scales lin-
early with increasing size of the graph, showing that increas-
ing the size of the graph will increase the overall execution
time predictably.

As an extension of this evaluation, to test the execution
time against even larger, Internet-like graphs, a set of 10
graphs ranging in size from 100,000 to 1,000,000 million
nodes were created. These values were chosen as it was
though that these values would be high enough to stress
the system in to super-linear time growth. These graphs
were created using the Barabási-Albert model which gen-
erates graphs using a preferential attachment mechanism
as described in [6]. The purpose of this evaluation was to
test how well the simulator deals with theoretical future AS
graph sizes as well as other graphing problems that would
require the simulation of several million entities. Although
the number of nodes in these graph files seem reasonable
for a large scale simulation, the number of the links in the
system range from 1,403,922 for the 100,000 node graph to
13,998,616 for the 1,000,000 node graph. This creates a mas-
sive number of total simulation objects, ideal for stressing
the system.

Expected results for this evaluation were that the simula-
tor would continue to grow linearly in execution time with
respect to the number of simulation objects in the system.
Also expected was the towards the larger graphs I would
start to see super-linear growth as the system begins to reach
physical limits and exponential growth when it goes above
these, tending to a graph size where simulation is time in-
feasible. Interestingly, as shown in figure 8, the simulator
continues to have a linear increase in time with the number
of simulation objects introduced. This suggests that the sim-
ulator has the ability to work well with even larger graphs
than those used here as I have yet to reach the graph size of

 0

 5

 10

 15

 20

 25

 30

 35

 40

 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
 m

in
u
te

s

Node Objects

Figure 8: Showing execution time against graph size
using the preferential attachment graphs

exponential time increase.

5.2 Messages effect on Simulator
The number of messages that will be sent during a sim-

ulation is entirely variable depending on what is being sim-
ulated. Some simulations may have only certain nodes re-
sponding to messages, keeping the total number of messages
in the system quite low and others may have all nodes send-
ing messages on every clock tick. To cover for the case where
there are large numbers of messages in the system, I per-
formed an evaluation to test the effect of the number of mes-
sages in the system against the execution time. This allows
us to characterise how the system behaves under different
stresses caused by fluctuating numbers of sent messages.

For this I perform all evaluations on the same graph was
used, the 2008 AS graph. The evaluation was run for 10
ticks as no messages are sent after this point. Flood-type
nodes were used and the number of injected messages were
increased from 1 to 10. On the 10 injected messages point,
10 complete floods over the entire network will be performed
simultaneously for different locations, creating large quan-
tities of messages in the system and stressing the system.
The ten inject points were chosen randomly from the input
graph file. The flood type node is especially useful for this
evaluation as it allows us to demonstrate the properties of
messages within the system as these nodes have very little
overhead in terms of execution time. Most of the execu-
tion time used by the system will be used for the transit of
messages between nodes.

There are two parts to this evaluation: how the number
of messages in the system effects the overall memory us-
age of the system and how the number of messages effects
the execution time. Testing the memory usage allows us to
characterise how much memory will be needed for a given
simulation before it is run and testing the execution time will
allow us to measure the overhead associated with message
passing within the system.

As the number of injects to the system are increased, so
do the total number of messages sent in the course of an
entire simulation. Increasing from a single message inject
to ten increases the number of messages in the system from
around 2.27 million to 22.7 million, giving a large rage of

 52000

 54000

 56000

 58000

 60000

 62000

 64000

 66000

 68000

 70000

 72000

 74000

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
 m

ill
is

e
c
o
n
d
s

Messages

Figure 9: Execution time shown against the number
of messages in the system

 1900

 2000

 2100

 2200

 2300

 2400

 2500

 2600

 2700

 1 2 3 4 5 6 7 8 9 10

H
e
a
p
 S

iz
e

Injected Flood Messages

Figure 10: The size of the JVM heap against the
number of flood messages injected

values to evaluate.
While evaluating execution time, it was expected that I

would see an increase in the values with respect to the num-
ber of messages contained within the system. This is due to
the overhead of each node having to process more messages
and more links having to forward more messages. While
evaluating the memory usage during the simulation, I would
expect to see increases in heap size on iterations where ex-
ceptionally large numbers of messages are being send but for
the memory usage to remain fairly constant.

Results shown in figure 9 show that execution time is inde-
pendent of the number of messages within the system. This
is shown by there being no discernible trend to the data and
the large error bars showing that the range of values for all
evaluations lie in a similar range. This would lead to the
conclusion that there is no obvious statistical link between
the number of messages in the system and the execution
time.

Results shown in 10 show that memory usage behaves as
I had predicted. On simulation ticks where exceptionally
large numbers of messages are sent, the size of the heap is
increased slightly. The area of the chart showing that be-

tween 1 and 4 injected messages the heap size is constant,
shows the initial size of the heap as for this number of mes-
sages the heap size does not need increased. It can also be
seen that the increase in heap size from the 2.3 million mes-
sage run to the 22.7 million message run is rather minimal
considering the large jump in messages. I only see an in-
crease in the final heap size from about 1.9GB to 2.4GB.
This again highlights that the messages within the system
is of little consequence to performance of the system as the
majority of this heap is used to store data concerning the
simulated graph, which will increase linearly with the size
of the graph.

5.3 CPU Resource
In order for the system to scale well with the continued

increase of processing power, it was important to test how
well the simulator handles increases in current processing
power. This will enable us to see if, as the number of cores
on a chip increase and number of chips on a board increase,
I will continue to have an increase in speedup of the sys-
tem. To do this, I tested how the simulator performed in
constrained CPU environments. This would simulate the
increase from a small number of cores machine to a larger,
server-class machine.

To perform this evaluation, the cpuset utility was used to
constrain what processors the JVM was allowed access to.
This removed the need to use machines will less physical
cores. The simulator was executed using the same AS graph
for every iteration. The simulator performed ten ticks as no
messages are sent after this point and the simulator would be
simulating nothing. Ten message injects were performed at
the start of the simulation in an attempt to stress the system
and hence, achieve a high requirement for parallelism.

As shows in figure 11, the application exhibits super-linear
speedup at 2 cores used and then continues to increase to 30
cores where where no extra speedup is achieved. Interest-
ingly, the trend line shows speedup being reduced when the
system is given between 40 and 64 cores. There are a few
factors that could contribute to this result. It may be that
the system was not stressed enough to require the use of so
many cores and telling it to use so many cores was creating
large amounts of thread switching in the actor dispatcher.
Another possible explanation is that it is an artefact of the
type of simulation run and that a different simulation type
would yield a different speedup profile.

6. APPLICATIONS
To prove the worth of a system, it is required to show that

the system actually has potential applications. Here I show
ScaNS for use with evaluation of a particular algorithm: The
distributed K-core algorithm.

6.1 K-core Decomposition
To test that the simulator was fit to simulate the sort of

graph routing problems that I am targeting, a simulation
of the distributed K-core algorithm was create. This also
demonstrates that the simulator will work for real applica-
tions, as well as the synthetic flooding examples used for the
other evaluations.

A version of the distributed K-core algorithm defined in
[12] was written for use with this simulator. As the algo-
rithm already existed in Java, the translation to Scala was
purely mechanical. The resultant code was very similar to

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70

S
p
e
e
d
u
p

Available cores

Figure 11: Speedup shown in relation to the number
of available CPU cores

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 2004 2005 2006 2007 2008 2009 2010

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
 s

e
c
o
n
d
s

Year

Figure 12: The execution time to convergence for
ScaNS(lower line) and the custom K-core simula-
tor(upper line)

the original code as code translated from java to scala will
tend to be. The algorithm implementations have identi-
cal flow control and the only changes were small changes to
make the algorithm communicate with the new simulator in-
stead of the old simulator. The application was executed on
the AS graphs for 25th of October on both ScaNS and on an
existing simulator purpose built for running this algorithm
but only runs in a single thread.

6.1.1 AS graph evaluation
Expected results from this evaluation were that ScaNS

would outperform the bespoke simulator substantially, de-
spite being a general purpose simulator.

Figure 12 shows that ScaNS has a consistently lower exe-
cution time and also has slower increase in the time taken to
convergence with the size of the graph. This is explained by
the custom simulator being single threaded and ScaNS using
actor parallelism. The slower increase can be explained by
the simulator not having reached a point of saturation that
would cause time to increase.

The large increase in execution time shown between the

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

E
x
e
c
u
ti
o
n
 T

im
e
 i
n
 m

in
u
te

s

Nodes

Figure 13: The execution time to convergence on
preferential attachment generated graphs

years of 2008 and 2009 appear to be the result of a large
increase in links and several nodes that now have a very large
degree. This is potentially a glitch in the data for these years
or may be due to a new way that the topology was collected,
resulting in a more accurate picture containing more links.
The first explanation is more plausible as the data returns
to reasonable values after the year 2010. However, as this is
a glitch with the dataset which shows up on both simulators,
the results can still be counted as valid.

6.1.2 Large graph evaluation
To further test the simulator with distributed K-core de-

composition, an evaluation was run using the 100,000 to
1,000,000 node preferential attachment graphs to see how
well the simulator deals with both a realistic application
and a very large graph. This is an extension to the last
evaluation as it shows that even as the size of the AS graph
continues to grow, the simulator will still function and con-
tinue to be useful.

Expectations for this evaluation were that the execution
time would continue to increase linearly with the size of the
graph and at a certain saturation point the execution time
would begin to increase super-linearly.

Interestingly, figure 13 shows that the simulator continues
to exhibit a linear increase in execution with graph size.
This tells us two things: that I have still not reached a
saturation point with respect to the graph size where I begin
to see super-linear behaviour and that even for real world
applications, ScaNS still executes in a reasonable time.

6.2 Discussion
This section evaluated ScaNS against various metric to

determine it’s fit for purpose. There are several conclusions
that can be drawn from these results. First is that the exe-
cution time of the simulator increases linearly with the size
of the graph, adding a predictable quality to the simula-
tor and showing that simulations will take reasonable time
with even very large data sets. Next was that the over-
head of nodes passing messages within the system is very
minimal. The actions that are executed in response to the
messages may be substantial but the passing and processing
of the messages themselves has minimal impact on execu-

tion time and memory footprint of the system. The eval-
uation of execution time against number of available cores
presented interesting findings. While it can be seen that the
system will speed up substantially when given extra cores
to use up to around 32 cores, where it was expected that
speedup would remain constant at a point, speedup actu-
ally begins to decrease when given more cores. Finally, a
real-world application of K-core decomposition was given.
This evaluation showed that ScaNS, which is designed to be
a general simulator, outperforms a custom simulator built
for this application. This shows that ScaNS performs well
for very specific application even though it was deigned to
be general enough for many uses.

7. RELATED WORK
There are two main bodies of work on which this paper

is based: Simulators and data sets. In this section I will
present important examples of both which had an impact
on the development of this system.

7.1 Simulators
There are currently many packet-level simulators avail-

able. NS3 is a packet-level simulator aimed at research pur-
poses. NS3 has a large degree of flexibility in that many
aspects of simulations can be customised. These include be-
ing able to specify network stacks and being able to install
“applications” on particular nodes. It would be technically
possible to perform high-level simulations using this tool but
they would become impractical due to the number of nodes
that need to be defined. Also, at it’s core, NS3 is a single
threaded application. This would cause simulations of the
size I am studying to run slowly even if the computer had
extra available compute resources.

GTNetS [15] is another packet-level simulator but is closer
to our goal. This simulator is primarily for use with mod-
erate to large scale networks. It simulates fine-grained ele-
ments of the network, such as network stacks, just as NS3
does. However, GTNetS achieves it’s ability to support
larger networks as it is a multi-threaded application. Again,
a simulator which allows this fine-grained simulation is not
required for our class of applications and would lead to un-
needed code and potential over-verbosity of the output from
the simulator.

An example of a tick-based discrete event simulator that
provided the base ideas for ScaNS is presented in “Program-
ming in Scala” [13]. The authors present a tick-based simu-
lator which is used to simulate digital logic circuits in par-
allel. The main idea taken from this is that all entities in
the modelled logic circuit are represented as scala actors. It
also emulates this example in the way that the ticks are dis-
tributed from a clock component which is also represented
by an actor.

7.2 Data Sets
The graph input to the simulator is one of the most impor-

tant elements. There are a number of sources of AS graph
data all with pros and cons for various applications.

The Internet Research Lab (IRL) Topology data set [18]
from UCLA was the main data set used in evaluations in this
paper. This was due to it’s simple tab-delimited structure
being very easy to parse. The IRL topology project also
offer a “links” data set that removes a lot of the unneeded
data from the total data set and only represents the links

between ASes. As this is exactly the data that I required
and no more, this was the data set that was used.

Another popular source of AS graph topology data is the
Route Views project [4]. This project maintain machines
around the world that collect BGP data that can be used
in research. While using BGP data will give an accurate
image of the AS graph, using routeviews also has some dis-
advantages. The data available is low level BGP data which
must be processed to yield a data set representing the AS
graph. Also, to get the most accurate graph, the data must
be downloaded from all collector nodes around the world,
merged and processed in order to create a more complete
graph and remove duplicates.

8. CONCLUSIONS AND FUTURE WORK
There are two main areas I would wish to look at for future

work: The finite state machine and the evaluations.
ScaNS is implemented using a finite state machine that

was written from scratch. However, Akka offers a finite state
machine type simply called “FSM”. I would be interested in
looking in to if the custom implementation works more ef-
ficiently as it was written specifically for this simulator, in-
stead of being general purpose like FSM. It may also be the
case where FSM performs better as it has a more sophisti-
cated system underneath. If it was found that FSM works
better with scans then the major components would need
to be rewritten as FSM uses a domain specific language to
define finite state machines.

All of the evaluations presented in this paper are exam-
ples of a distributed algorithm running on a large network
where all nodes are running the same algorithm. This is not
representative of a real world network where many devices
are running different algorithms. An example of this is that
host PCs will be running a different algorithm to a router.
While it is possible for the graph to be represented as several
different distributed algorithms, this was not tested during
the evaluation. This was due to focus on specific applica-
tions where every node does run the same algorithm. This
evaluation would be especially interesting in the case where
some nodes have algorithms that take substantially longer
than others. I would hypothesise that the synchronous na-
ture of ScaNS would cause the execution time to grow faster
the more of these slow nodes are in the graph.

Finally, all evaluations shown in this paper are example
of algorithms being executed on static graphs. That is to
say that the graph is instantiated once at start up and it
not modified for the entire length of the evaluation. This
also presents an unrealistic scenario as devices are often con-
nected and disconnected from the network. ScaNS does have
the functionality to remove and add nodes and edges at run-
time although this was never evaluated. This is the next
logical step for the K-core application as this algorithm ex-
hibits different behaviour when a new node is added to the
graph than when the entire algorithm in initialised.

In this paper I presented ScaNS, the first scalable high-
level routing simulator to use the actors model of concur-
rency. ScaNS models everything as an actor in an attempt
to use as much of the computing resources available to it. I
have provided evaluations which demonstrate it’s scalability
in respect to the input graph sizes, as well as demonstrat-
ing the speedup available when moving to multi-core, multi-
processor machines. I have also demonstrated ScaNS fit-
for-purpose through the use case of a distributed algorithm

for use with next generation routing, K-core decomposition.
The final evaluation also demonstrated that the simulator
will still execute in reasonable time, even when presented
with very large graphs.

This simulator represents a new class of distributed al-
gorithm simulator where actors are used to directly model
graphing problems and this paper presents the case for this
model.

9. REFERENCES
[1] Dimacs implementation challenges,

http://dimacs.rutgers.edu/challenges/.

[2] The dot language,
http://www.graphviz.org/doc/info/lang.html.

[3] Internet topology collection file format,
http://irl.cs.ucla.edu/topology/#format.

[4] ANTC Oregon. RouteViews.

[5] J. Armstrong. Making reliable distributed systems in
the presence of software errors. PhD thesis, KTH,
2003.

[6] A.-L. Barabási and R. Albert. Emergence of scaling in
random networks. science, 286(5439):509–512, 1999.

[7] T. Bu, L. Gao, and D. Towsley. On characterizing
BGP routing table growth. Computer Networks,
45(1):45–54, May 2004.

[8] S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and
E. Shir. A model of internet topology using k-shell
decomposition. Proceedings of the National Academy
of Sciences, 104(27):11150–11154, 2007.

[9] K. F. D. Meyer, L. Zhang. RFC 4984.

[10] C. Hewitt, P. Bishop, and R. Steiger. A universal
modular ACTOR formalism. In Proceedings of the
International Joint Conference on Artificial
Intelligence, Stanford, CA, USA, August 1973.
Morgan Kaufmann.

[11] G. Huston. Analyzing the Internet’s BGP routing
table. The Internet Protocol Journal, (July):1–16,
2001.

[12] P. Jakma. Distributed k-core decomposition of
dynamic graphs. ACM CoNEXT, 2012.

[13] M. Odersky, L. Spoon, and B. Venners. Programming
in Scala. Artima Incorporated, 2008.

[14] Y. Rekhter and T. Li. RFC 1771.
http://tools.ietf.org/html/rfc1771.html, 1995.

[15] G. Riley. The georgia tech network simulator. on
Models, methods and tools for reproducible network,
(August):5–12, 2003.

[16] S. D. Strowes and C. Perkins. Harnessing internet
topological stability in thorup-zwick compact routing.
In INFOCOM, 2012 Proceedings IEEE, pages
2551–2555. IEEE, 2012.

[17] M. Thorup and U. Zwick. Compact routing schemes.
In Proceedings of the thirteenth annual ACM
symposium on Parallel algorithms and architectures,
pages 1–10. ACM, 2001.

[18] B. Zhang, R. Liu, D. Massey, and L. Zhang. Collecting
the Internet AS-level topology. ACM SIGCOMM
Computer Communication Review, 35(1):53–62, 2005.

	Introduction
	Problem
	System Design and Concepts
	Actor Model Concurrency
	Scala
	Architecture
	The Graph
	The Clock Distribution
	The Simulation Layer

	Host Application

	System Implementation
	Simulation
	Simulation Objects
	Supervisor
	logging

	Evaluation
	Scaling with Graph Size
	Messages effect on Simulator
	CPU Resource

	Applications
	K-core Decomposition
	AS graph evaluation
	Large graph evaluation

	Discussion

	Related Work
	Simulators
	Data Sets

	Conclusions and Future Work
	References

