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SUMMARY 

This study evaluated whether cortical reorganization occurs in response to 

macular degeneration (MD), a progressive disorder of the retina that results in central 

vision loss. Past research has observed the ability of V1 to adapt to retinal damage, 

demonstrating that deafferented cortex is activated by the stimulation of intact retinal 

areas. It is still unclear, however, if and to what degree cortical reorganization is 

associated with specific forms of the eye disease macular degeneration (MD). This study 

evaluated the retinal health of MD participants (both age-related and juvenile) as well 

age-matched controls with computerized microperimetry. Contrast-reversing stimuli were 

then presented to different parts of the visual field while participants were scanned with 

functional magnetic resonance imaging (fMRI). For MD participants, stimulation of 

peripheral retinal areas elicited activation in deafferented cortex. This activation occurred 

for retinal areas adapted for eccentric viewing (preferred retinal locations), but not in 

preserved retina at the same eccentricity. These findings add to the scientific knowledge 

of plasticity in sensory systems by supporting an input driven understanding cortical of 

reorganization. They could also have a meaningful impact on how the AMD and other 

forms of macular degeneration are treated by informing the design of therapeutic training 

regimes. 
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CHAPTER 1: INTRODUCTION 

Plasticity [. . .] means the possession of a structure weak enough to yield to an influence, 

but strong enough not to yield all at once. . . Organic matter, especially nervous tissue, 

seems endowed with a very extraordinary degree of plasticity of this sort; so that we may 

without hesitation lay down as our first proposition the following, that the phenomena of 

habit in living beings are due to the plasticity. 

 

-William James, Principles of Psychology   

 

The above quote by William James demonstrates a profound insight into what 

would become one of the most essential elements of psychology: the ability of the 

nervous system, and by consequence, the organism, to adapt structurally and functionally 

to an ever changing world.  James uses the world “plasticity” to express the flexibility of 

the nervous system in response to varying environmental conditions. Changes in 

exogenous input yield changes in nervous tissue. These neural modifications, in turn, 

affect the organism’s experience of the world and, ultimately, its behavior within it.  

Contemporaries and successors of James would go on to elaborate on the theory 

of plasticity in more biological terms. In his Textura del Sistema Nervioso, Santiago 

Ramon y Cajal wrote that behavioral change must be rooted in “the formation of new 

[neural] pathways through ramification and progressive growth of the dendritic 

arborization and the nervous terminals” (as cited in Kandel, 2000). This view 

conceptualizes plasticity as a type of structural modification, a physical property of 

neurons and their connections.  

Later, the mid 20
th
 century, the Polish psychologist, Jerzy Konorski (1948), 

advanced another version, stating that plasticity is the “permanent functional 

transformations [that] arise in particular systems of neurons as a result of appropriate 

stimuli and their combinations”. Konorski’s understanding is more operative in nature, 
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emphasizing the selective strengthening of synapses as an agent of plasticity and, 

consequently, learning. This conception emerged independently in the West in the form 

the Hebbian synapse (Hebb, 1949). 

On a fundamental level, all of these theorists wrote of a marked connection 

between behavior and the environment, one that is mediated by a malleable and reactive 

nervous system. The exploration of this relationship between brain, behavior, and 

environment would go one to be a mainstay of neuroscience and psychology.  While the 

latter two elements have been explored in depth by the first century of psychology, the 

inclusion of the brain is only now forging beyond the level of structural neuroanatomy, 

particularly in humans. The advent and development of imaging technologies towards 

this aim is promising. However, they are still in their infancy.  

Undoubtedly there are still theoretical and technical advancements to be made, 

but perhaps researchers can take confidence in James’s logic: If organisms are capable of 

responding to the environment in a timely and appropriate fashion, there must be some 

aspect of their biology that adjusts in accordance. Changes in behavior and cognition 

must be mirrored by changes in the brain. Science is now directing its attention toward 

these changes in an effort to discover what they are and how they fit into the 

psychological experience of human beings. 
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CHAPTER 2: THEORETICAL FOUNDATIONS 

2.1 The Concept of Plasticity 

The history of research on brain plasticity was originally developmental and 

neuropsychological in nature. Initial findings in lesioned animals demonstrated that the 

immature brain is more likely than the fully developed to regain lost motor capacities 

(Kennard, 1938). Research from the nineteen-sixties through the seventies sought to 

examine the critical periods and limitations associated with plasticity in humans by 

exploring the recovery of function after traumatic and acquired (e.g. stroke, meningitis) 

brain injury. Investigators documented the recovery of cognitive and language abilities 

after brain injuries suffered at different maturational periods. These studies generally 

reported that the earlier the age of injury the more likely the recovery of function (for a 

review see, Stiles, 2000).  

Plasticity in the sensory systems has also been a prominent area of investigation. 

The architecture of the sensory cortices generally develop along a prescribed path, both 

prenatally and after birth (Swindale, 1996). However, research has demonstrated 

windows in the development of somatosensory systems that are amenable to plasticity 

(for review see O’Leary et. al., 1994). Most notably, the work by Hubel, Wiesel and 

colleagues has demonstrated the existence of critical periods in the maturation of visual 

pathways that are crucial for development of visual preferences and skills (Bauer & Held, 

1973; Hein, Held, & Gower, 1970; Hubel, Wiesel, & LeVay, 1977; Wiesel & Hubel, 

1965). For example, lesioning the eye of a cat during such a critical period results the 

preferential representation of the remaining eye in the visual pathway, a state called 

ocular dominance (Hubel, Wiesel & LeVay, 1977). Other research has demonstrated 
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similar windows of plasticity in the development of the somatosensory (Fox, 1992) and 

the auditory cortices (Illing, 2004).  

Most early research has viewed plasticity as a reactive system, one that comes 

into play when principal connections are perturbed in some way. Under this 

conceptualization, plasticity was not necessarily viewed as a normal part of cortical 

functioning. Researchers generally agreed that it served an adaptive function and was 

more prominent in the juvenile brain (Stiles, 2000). It was understood, however, that 

adult brains must display some form of “plasticity” in response to sensory experience. 

After all, adult humans and animals are capable of sensory and motor learning that must 

reflect a functional neuronal change on some level. However, many theorists believed 

this type plasticity was located in “higher” perceptual processing areas, not in the primary 

sensory and motor cortices (Das, 1997).  

Recent years have seen more detailed studies on the neurobiological 

underpinnings of plasticity. However, the range of research scenarios has lead to 

confusion on how to exactly define the phenomenon. For example, the term “plasticity” 

has been used to describe changes at the synaptic level induced by environmental 

conditions (Greenough & Chang, 1989), in the reorganization of somatosensory 

representations after severing efferent nerves (Merzenich & Jenkins, 1983), and in the 

topographic relocation of sensory modalities via the rewiring of afferent pathways (Sur, 

Garraghty, & Roe, 1988).   

Moreover, new research is beginning to suggest that plasticity is not just an 

ancillary property of the juvenile brain but can occur in adults as well. Such studies have 

observed the reorganization of cortical maps in the visual, auditory, and somatosensory 
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cortices of adult animals (for a review see Buonomano & Merzenich, 1998). These 

investigations indicate there may be more to plasticity than originally conceived; that it is 

not just a reactive process of the immature brain, but a commonplace aspect of neural 

processes.  

In an effort to place early and more recent research on the same theoretical 

footing, Stiles (2000) proposed a conceptual modification of plasticity, extending its role 

beyond reparative processes and specific developmental windows. Specifically, she 

stressed the inclusion of plasticity as a normal part of brain functioning, a fundamental 

property that mediates the relationship between brain and environment. In this 

framework, plasticity is viewed as a dynamic feature of the brain that reflects the 

systematic relationship between input and neurological functioning. Plasticity is a part of 

learning, the acquisition of motor and perceptual skills, as well as strategy and problem 

solving, and, perhaps most importantly, it occurs throughout the lifespan. 

Advancing a similar idea, Das (1997) submitted that plasticity might be a key 

element in the neurological substrate that underlies sensory processing. In particular, he 

proposed the well-defined cortical representations of the retina and skin sections may not 

be the result of hard-wired neural architectures, but the dynamic interaction of cortical 

neurons. The boundaries of these representations are the result of a balance between 

inhibition and excitation. Altering this equilibrium by changing inputs can result in the 

reorganization of cortical maps. In his view, plasticity is a continuously active component 

of sensory processing, capable of altering processing patterns and cortical topography in 

response to input change. 
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The proposals of Stiles and Das point to a current reformation in the 

understanding of plasticity. There is no doubt that physiological research has expanded 

plasticity’s theoretical scope considerably. However, the challenge of making substantial 

connections between neural dynamics and psychological principles remains. As described 

next, this avenue of research may be best pursued using a sensory modality that has a 

history of both exacting behavioral and physiological research, namely vision.  

2.2 The Visual Modality 

We overwhelmingly rely on vision for our interaction with the world. This 

dependence is reflected in human neuroanatomy. Neural pathways extending to the 

auditory cortex have approximately 30,000 fibers while those to the occipital cortex 

contain over 1 million (Wurtz & Kandel, 2000). In the primate brain, visual processing 

takes place over a diffuse and highly interconnected series of cortical areas (Felleman & 

van Essen, 1991). A century of perceptual research attests to vision’s ability to parse, 

interpret, and learn from the measureless amounts of information in the visual world 

(Gibson, 1967). In short, out of all the senses, vision has the most sensitive and 

discriminating relationship with the environment, and for this reason, it seems the ideal 

candidate for the exploration the new conception of plasticity. 

As with other traditional approaches to plasticity, early sensory research on visual 

plasticity was conducted under a developmental paradigm (for reviews see Boothe, 

Dobson, & Teller, 1985; Movshon & Slutyers, 1981). Models of plasticity in the primary 

visual cortex have focused on the development of orientation maps in the immature brain 

(Swindale, 1996).  However, these developmental models do not address visual 

processing, only the formation and mutability of cortical features during development. In 
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contrast, models of processing in visual cortex often assume neurons are elements with 

fixed properties that do not change in response to exogenous pressure (Heeger et. al., 

1996).  

Unfortunately, developmental and process-oriented models of vision have 

developed largely independently. Das (1997) has proposed that forging connections 

between these domains may be fostered under the recent understanding of dynamic 

cortical plasticity. If this is possible, it would yield a foundation for understanding vision 

in terms of both developmental and process mechanisms. The key to doing this is 

demonstrating the applicability of plasticity, formally limited to developmental 

frameworks, to the physiological substrates and psychological characteristics of normal 

visual processing.  Methodologically, this means examining plasticity in adult brains in 

addition to juveniles, establishing plasticity as an intermediary in input and response 

relationships, and modeling it in a time frame that corresponds with behavioral 

adaptation.    

The challenge of this approach is that it necessitates observing plastic changes on 

a smaller physical and temporal scale than traditional investigations. Plasticity in the 

juveniles can yield very prominent neural and behavioral changes. Within the critical 

periods of the immature brain, plasticity can influence thalamic inputs and affect 

fundamental aspects of vision such as orientation preference, ocular dominance (Hubel & 

Wiesel, 1982), even the cortical location of modalities (Sadato et al., 2002). In contrast, 

plastic changes in the adult brain seem to be limited to intracortical connections and 

characterized by the reorganization of receptive fields (Das, 1997). This form of 

plasticity, referred to as cortical reorganization, may take months to become permanent 
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(for a review see Kaas, 1991), but immediate changes in receptive field size have been 

observed in response to discrimination tasks (Weinberger, 1995) and the controlled 

presentation of sensory inputs (Pettet & Gilbert, 1992).  

 The extension of plasticity to the adult cortex means its redefinition at the cellular 

level of neural organization. However, this can only be accomplished if our structural and 

functional levels of description are commensurate. Fortunately, the relationship between 

the retina and visual cortex in the primate brain is such that fine discriminations in 

organization and function are possible. There is, for example, a well understood 

correspondence between the stimulation of the retina and corresponding locations of 

activation in the primary visual cortex (for a review see, McFadzean, Hadley, & Condon, 

2002). A solid understanding of the topographic relationship between visual stimulation 

and cortical activity makes evidence of plasticity in the visual cortex potentially more 

observable and conclusive.  

Vision researchers, then, may be uniquely poised to add to the growing body of 

knowledge on cortical plasticity in the adult brain. Indeed, recent research spanning 

methodologies from controlled lesioning in animals to neuroimaging in humans seems to 

indicate the visual cortex’s capacity to reorganize to changes in retinal input (Kaas et al., 

1990; Darian-Smith & Gilbert, 1995; Calford et al., 2000; Baker et al., 2005). This body 

of research is not without its detractors (Horton & Hocking, 1998; Smirnakis, et al., 

2005) or unanswered questions (Sereno, 2005). Still, a solid path has been laid by vision 

research for pursuing a more complete understanding of cortical plasticity.  
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2.3 Current Directions 

Interests in basic science aside, a concrete understanding of visual plasticity could 

hold great value for the treatment of human visual ailments. If the primary visual cortex 

is able to respond in ways that allow adaptation to trauma or disease, then an 

understanding how such processes take place can inform therapies for those afflicted with 

visual impairments. The existence of a class of ocular diseases called retinopathies, for 

example, lends an important clinical dimension to research on visual plasticity.  

One such disease is macular degeneration (MD).  MD destroys retinal 

photoreceptors and causes the deafferentation (lack of input) of cortex representing the 

macular area of the retina. The condition ultimately results in central vision loss. A 

specific form of MD, age-related macular degeneration (AMD), is growing concern 

among health professionals due to its increasing rate of occurrence in the aging 

population (Eye Disease Prevalence Research Group, 2004). If a connection can be 

demonstrated between the progression of AMD and the factors dictating cortical 

reorganization, it could prove beneficial in developing treatment options for a condition 

that as no known cure (Foundation for Fighting Blindness, 2005).  

Recently, Cheung and Legge (2005) published a review calling attention to the 

application of advancements in neuroimaging and ocular perimetry (a technique for 

assessing the health of the retina) to studying cortical reorganization. They argue that the 

combination of neuroimaging and perimetry technology can be used to launch a detailed 

exploration of the nature of cortical reorganization in the AMD population. Research 

under this framework has the unique distinction of possessing both strong basic and 

applied values. The knowledge acquired could meaningfully contribute to an 
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understanding of cortical reorganization in the visual system as well as aid efforts to 

develop treatments and therapies to combat macular degeneration.   

Following this lead, the research described in this paper sought to draw on the 

relationship between the retina and primary visual cortex in order to shed light on the 

nature of cortical reorganization in individuals with macular degeneration. The findings 

are presented in supplement to the growing body of research on neural plasticity in the 

adult brain. The goal at this point was directed more toward basic science than clinical 

techniques. However, it is also hoped that any or all of the findings may prove useful in 

the treatment of MD.  
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CHAPTER 3: LITERATURE REVIEW 

3.1 Macular Degeneration 

The number of people over the age 65 in the U.S. will rise from 1.75 to nearly 3 

million by the year 2020 (Cheung & Legge, 2005). In such a population, the ailments of 

old age are a prominent societal concern. Age-related macular degeneration is 

increasingly becoming a prevalent disorder among the United States’ growing senior 

population. With 12% of people over the age of 80 afflicted with AMD, it is the most 

common cause of blindness in the elderly (Eye Disease Prevalence Research Group, 

2004). In addition, a similar genetic variant, known as juvenile macular degeneration 

(JMD), targets the younger population. JMD develops during childhood and is sometimes 

present at birth. It affects over 25,000 Americans.  

Both AMD and JMD are life altering. The consequences of their progression 

leads to difficulty performing all the everyday tasks that require focal vision: driving, 

reading, computer use (Decarlo, 2003; Fletcher, 1999; Jacko, Vitense, Scott, 2003). In 

short, due to their gravity and increasing prevalence, both AMD and JMD pose 

debilitating health problems with the potential to reduce the quality of life for millions of 

people.   

3.1.1 Pathology  

MD affects the macula of the eye, a 15 mm area of the retina representing the 

central 15 – 20° of the visual field (Cheung & Legge, 2005). The fovea, an area of the 

retina used specifically in focal vision, lies in the macula’s bounds. Macular vision is 

characterized by higher acuity than that of the peripheral retina. This discrepancy is due 

to physiological characteristics such as the concentration of cone photoreceptors and one-
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to-one mapping with ganglion cells (Tessier-Levigne, 2000). The functional consequence 

of this structure is that the macula acts as an area of high spatial resolution for use in 

central vision. The very reason MD is so debilitating is its effect is on this select but 

essential part of the retina.  

MD pathology is characterized by the deterioration of macular photoreceptors, the 

neurons that transduce light into neural signals. Photoreceptor loss results in the 

formation of a scotoma, an area of the visual field distinguished by the progressive and 

untreatable loss of visual perception (Cheung & Legge, 2005). As MD progresses, 

fixating on stimuli in the central visual field becomes increasingly difficult if not 

impossible. Though vision loss can be profound, people with scotomata often 

demonstrate some residual light sensitivity in the afflicted macula (Cheung & Legge, 

2005). Perhaps more importantly, many with MD maintain preserved photoreceptors in 

the peripheral areas of the retina. These areas come to shoulder a greater functional load 

for those afflicted with MD. Figure 1 illustrates a healthy retina and one scarred due to 

MD. 

A    B  

Figure 1. Healthy Retina (A) and Retina with MD (B) 

In Figure B scarring is the result of choroidal neovascularization in MD. Notice how the damage is 

confined to the central part of the retina. The periphery is largely unaffected.  
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3.1.2 Wet and Dry AMD 
 

MD can be categorized as wet or dry, based on pathological distinctions (Ambati 

et al., 2003; Chopdar et al., 2003). Dry MD is characterized by localized cell death on the 

retinal pigment epithelium (RPE), a vessel-rich layer that supports the metabolic needs of 

photoreceptor cells. This retinal deterioration is due to the build up of acellular debris 

called drusen. The accumulation of drusen underneath the RPE leads to the death of 

epithelium cells and eventually the disfunction of overlying photoreceptors. Vision loss 

resulting from dry MD is directly related to the amount and location of drusen (Bressler, 

1994). Most cases of AMD, approximately 85% to 90%, are atrophic or “dry” macular 

degeneration (Seddon, 2001). 

Wet or exudative MD stems from choroidal neovascularization (CNV) or the 

overgrowth of new blood vessels in the RPE. These blood vessels can penetrate the 

retinal epithelium and damage photoreceptors through the leakage of blood and lipids 

(Cheung & Legge, 2005). CNV progression can be classified as classic or occult. The 

classic form results in the formation of a distinct scotoma due to blood or fluid build up 

under the retina. Less leakage is involved in occult cases and, as a result, its effects are 

sometimes less apparent. Wet AMD is often more serious than dry because it progresses 

faster. In addition, individuals with the occult form sometimes do not notice the onset of 

wet AMD until neovascularization becomes more substantial (Fine, 1986).  

3.1.3 Scotomata 

Scotomata often appear as dark or blurry areas in the central field of view. They 

can be spotted or solid a mass as well as take on a variety of shapes: irregular, ring, 

horseshoe (Fletcher, 1999). A longitudinal study by Sunness et al. (1999) showed that 

approximately half the individuals with AMD had a solid scotoma. Over a period of three 
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years the approximate diameter of scotomata in their sample increased by a median of 

5.69°. Scotomata will continue to grow if left unchecked. To make matters worse, they 

often form in both eyes at the same time (Schuchard et al., 1999). These bilateral 

scotomata are a particularly hampering condition, due to the fact one eye can compensate 

for other’s deficit.  

A   B  

Figure 2. Normal Vision (A) Scotoma Obstructing Central Vision (B) 
 

From National Eye Institute, www.nei.nih.gov 

 

 

3.1.4 Preferred Retinal Locations 

The gradual loss of vision in MD allows individuals to alter behavioral patterns 

associated with vision in order to adapt to their condition. Because MD’s initial affect is 

on the macula, patients often begin to utilize other parts of the retina to focus and fixate 

in the absence of central vision. A peripheral area of the retina, often immediately 

adjacent to the degraded retina, is sometimes adopted as a substitute to the macula 

(Cheung & Legge, 2005). This area, the preferred retinal location or PRL, is key in an 
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adaptive technique called eccentric viewing, where individuals reorient their eyes in such 

a way that images fall on the PRL and not the damaged macula (Timberlake, Peli, 

Essock, & Augliere, 1987; Von Noorden & Mackensen, 1962). Often times, this is the 

only way those afflicted with MD can salvage some of their former visual abilities 

(Altpeter, Mackeben, & Trauzettel-Klosinski, 2000).  

The utility of the PRL as an alternate area of fixation has been of particular 

interest to vision researchers. Fuchs was the first to discover the existence of the PRL 

while researching individuals with hemianopia (as cited in Cheung & Legge, 2005). His 

analysis of what he called a “pseudo-fovea” depicted an area in peripheral vision that 

adopts the functions of the fovea when macular areas of the retina are damaged. Further 

research on the PRL has indicated that it has lower resolution and functionality compared 

to the macula. Studies have shown that the fixation ability within the PRL is substantially 

less than the normal fovea (Schuchard & Fletcher, 1994). For example, the diameter of 

the fixation area for a PRL is between 1 and 9 degrees, substantially larger than the 0.2 to 

0.5 degree area of the fovea (Schuchard, 1999). In addition, use of the normal fovea 

yields 3-4 times better fixation than a PRL (Sansbury, 1973).  

 The reduced ability to fixate using a PRL is a direct consequence of a general 

lack of acuity associated with the peripheral areas of the retina. In the periphery, several 

photoreceptors map to a single ganglion cell rather than the one to one correspondence 

found in the fovea (Tessier-Levigne, 2000). This means that input proceeding to the brain 

from the periphery has lower resolution. This is a limitation of peripheral vision inherent 

in the biology of the retina and visual pathways, no amount of training or experience with 

a PRL can change this structure. However, frequent use of a PRL may eventually yield 
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top-down or cortical influences that enhance its performance beyond normal capabilities. 

For example, Casco et al. (2003) showed the ability of a patient with JMD to better attend 

to peripheral retinal locations than normally sighted controls. 

It has been observed that PRLs tend to form in certain parts of the retina. A 

number of factors could influence this tendency, such as properties of the retina and 

cortex as well as the functional necessity of common tasks such as reading. For example, 

functional explanations of PRL formation involve learning to read “around” scotomata. 

Nilsson et al. (1998, 2003) demonstrated that MD patients can regain the ability to read 

after the development of a trained retinal location (TRL). The necessity of relearning 

such tasks as reading may influence PRL development, trained or not, but it is likely that 

other factors contribute the formation of a PRL. Fletcher and Schuchard (1997) found 

that many patients develop left-field PRLs even though they impair the reading of 

English text. 

Evidence indicates that certain biological factors may contribute to the location of 

a PRL. There are natural differences in peripheral retinal sensitivity that could influence 

this process (Wertheim, 1891). Altpeter and colleagues reported that attention capabilities 

vary according to locations on the peripheral retina (2000). Both low vision and normal 

sighted participants prefer horizontal, peripheral locations above those in the vertical 

plane. In further support of biological causes, the response of the visual cortex to the 

‘geographic’ distribution of the damage on the retina could be a possible factor. Research 

has shown that PRLs tend to develop on average no more than 2-2.5° from the peripheral 

border of a central scotoma, an indication that cortical restructuring affects their initial 

development (Fletcher & Schuchard, 1997; Sunness et. al., 1996).  
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3.1.5 Impact of MD 

MD can cause a substantial reduction in the quality of life for the people it afflicts 

(Brown et. al., 2002). For example, individuals with AMD have difficulty reading 

(Fletcher, 1999), and those with bilateral scotomata are less likely to drive (Decarlo, 

2003).  In light of such consequences, there is a great need to fully understand the 

etiology and progression of MD in order to develop ways to combat the condition. Work 

is under way on promising treatments, but as of now there is no cure for macular 

degeneration. One relatively unexplored area of research, however, focuses on the 

neurological consequences of the MD, how the visual cortex responds to sensory 

deprivation caused by scotomata (Cheung & Legge, 2005).  

Due to retinal deafferentation, MD patients initially have large regions of inactive 

visual cortex that correspond to the scotomatous retina (Sunnes, Lui, & Yantis, 2004). It 

is possible that MD’s affect on visual input may lead to structural modifications in visual 

processing, specifically, the topographic reorganization of the visual cortex. To establish 

a theoretical grounding for this question it is necessary to draw on two bodies of research, 

an older literature regarding the relationship between the retina and visual cortex and 

more recent research exploring the idea of cortical reorganization itself.     

3.2 Retinotopic Organization 

The connection between the retina and primary visual cortex (also called V1) has 

been examined for over a century. The structural location of V1 is along the calcarine 

sulcus, a landmark running from the caudal area of the occipital lobe to just below the 

corpus callosum, where it intersects with the parietooccipital fissure (Duvernory, 2000; 

Tailariach & Tourneax, 1988). Visual space is represented over this surface in the form of 
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a topographic map. Studies examining the relationship between the calcarine sulcus and 

the visual field describe an exact relationship between the stimulation of certain retinal 

areas and activity localized to specific parts of the sulcus (for a review see McFadzean et 

al., 2002).  

This relationship can be described by three general retinotopic principles: 

eccentricity, polar angle, and cortical magnification. Eccentricity refers to a spatial 

correspondence between areas of retinal stimulation and the location of activity along the 

calcarine sulcus.  Stimulation of the fovea and other central areas of the retina elicit 

activation in the posterior calcarine sulcus. As stimulation moves toward the periphery of 

the retina, cortical activation proceeds anteriorly. Polar angle refers to the relationship 

between the banks of the calcarine sulcus (dorsal and ventral) and the superior and 

inferior aspects of the visual field. The deepest part of the sulcus represents the horizontal 

meridian of the visual field. Surface area on the dorsal bank corresponds to the lower 

visual field, while the ventral surface represents the upper.  

Another principle, cortical magnification, describes the disproportionate amount 

of cortex devoted to central vision. The surface area of cortical activation becomes 

smaller as stimulation moves to the periphery of the retina. In contrast, stimulation of 

retinal locations closer to the fovea elicit progressively larger areas of cortical activation. 

In fact, though estimates vary, stimulation of the fovea accounts for the majority of 

activation in the primary visual cortex. The most posterior part of the calcarine sulcus 

represents just the fovea and is referred to as the occipital pole. The amount of cortical 

area representative of the fovea reflects its functional importance as an area for central 

vision (Azzopardi & Cowey, 1993). 
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Figure 3. Retinotopic Organization of the Calcarine Sulcus 

The central field of view occupies the majority of the calcarine sulcus. Cortical area diminishes for 

locations in the peripheral retina. 

 

3.2.1 Neuropsychological Research 

Early work examining the connection between the visual cortex and the retina 

involved the neuropsychological examination of war injured soldiers. During the Russo-

Japanese war, the physician Tatsuji Inouye examined visual deficits resulting from head 

wounds. The straight trajectories of the bullets and conventional x-rays allowed Inouye to 

accurately approximate the location of brain damage and then compare this information 

with patients’ reports of visual field deficits. His examination localized V1 to the 

calcarine sulcus as well as identified retinotopic principles such as the posterior to 

anterior mapping and the disproportionate relationship between central visual field and 

the posterior cortex. Inouye’s findings demonstrate the first account of a mapping 

between the visual field and the calcarine sulcus (Glickstein, 1988).  
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Similar results were compiled by two British doctors, Gordon Holmes and 

William Lister, during World War I.  Assigned to military hospitals, Holmes and Lister’s 

investigation proceeded in much the same way as Inouye’s, documenting the visual 

capacities of soldiers that had suffered gun shot and other war-related injuries to the 

occipital cortex (Holmes & Lister, 1916). Their work would gain widespread acceptance, 

eventually leading to the first retinotopic map of the human calcarine sulcus (Holmes, 

1945). The map quantified the amount of cortex representative of the macular visual 

field. Holmes projected that 25 % of the calcarine sulcus was devoted to processing input 

from the central 15° vision. These results were later confirmed by other 

neuropsychological examinations (Spalding, 1952).   

Technological advancement brought more methodical ways to investigate 

retinotopy, though brain injured patients were still key subjects. Brindley and Lewin 

(1968) used cortical stimulation on a patient who had become blind later in life. They 

found that stimulation of areas around the calcarine sulcus produced the perception light 

spots or phosphenes in different parts of his visual field. The relationship they observed 

was consistent with Holmes’ mapping. The 1970’s and 80’s saw the pairing visual field 

perimetry with computerized tomography (CT) in investigation patients with various 

occipital lesions and infarctions (Kattah et. al., 1981; McAuley & Russell, 1979; Orr et. 

al., 1977; Spector et. al., 1981). Again, these results largely supported the parameters of 

Holmes’ original map. 

Almost fifty years later, however, Horton and Hoyt (1991) presented research that 

lead to the popular revision of the Holmes map. Employing participants with occipital 

damage, they used modern perimetric techniques to map visual deficits and then 
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magnetic resonance imaging (MRI) to locate lesions along the calcarine. Comparing this 

information, the authors concluded that Holmes actually underrepresented the size of the 

cortical magnification factor by over half. Their revised map allocated 50% of the 

calcarine sulcus to the first 10° of the visual field. Further research by McFadzean et al. 

(1994) corroborated these findings. The revisions by Horton and Hoyt were also based on 

previous retinotopic research in non-human primates. This use of animal subjects, as 

detailed in the next section, afforded greater experimental control and accuracy in the 

investigation of retinotopy. 

3.2.2 Animal Research 

The cellular architecture of non-human primates has been extensively compared 

to that of humans revealing fundamental similarities (Zilles & Clarke, 1997). 

Accordingly, the flexibility of animal models has substantially added to an understanding 

of the relationship between the retina and visual cortex. Animal studies are 

experimentally stronger than neuropsychological investigations because they do not rely 

on inferential associations between the visual field and cortical damage. Instead they 

involve experimental manipulations, like recording changes in brain activity in response 

to stimulus presentation.  

Employing micro-electrode recordings and controlled lesioning in macaques, 

Talbot and Marshall (1941) revised early estimates of cortical magnification, showing 

that the active area of cortex representing the fovea is 40 times greater than the cortical 

area representing the retina at 60 degrees eccentricity. Using micro-electrodes other 

research have reported similar findings, suggesting that over 70% of the calcarine is 
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representative of the first 15° of central vision in macaques (Daniel & Whitteridge, 1961; 

Dow et al., 1985; Van Essen, Newsome, & Maunsell, 1984).  

Retinotopy has also been investigated using tracing techniques in animals. Tootell 

et al. (1988) injected macaques with a glucose infusion, C-2-deoxy-d-glucose (DG) that 

forms visually identifiably marks on areas of tissue that metabolically incorporates it. The 

authors presented macaques with high contrast concentric rings and radial lines at varying 

eccentricities.  The animals were sacrificed and their visual cortices were flattened and 

examined for 2-DG marks, the location of which would indicate the areas of the cortex 

that were activated by the stimuli. The results demonstrate an analog of Holmes map in 

monkeys, showing a cortical magnification of 15mm/deg at the fovea. In addition Tootell 

et al. found that the cortical magnification factor was larger along the vertical meridian 

compared to the horizontal. 

In another tracing study, Azzopardi and Cowey (1993) used a retrograde 

transneuronal tracer (agglutinin-horseradish peroxidase) in macaques to determine how 

many cortical neurons connect to ganglion cells from the fovea and peripheral retinal 

areas. They found that 3.5 to 5.9 more cortical neurons correspond to ganglion cells from 

the fovea than the periphery. Their results indicate that more cortex is devoted to the 

representation of the fovea than would be expected from the distribution of ganglion cells 

alone, another indication of cortical magnification in the primary visual cortex.  

Animal research on retinotopy has supported the initial scheme of Holmes map, 

but has evidenced a larger cortical magnification factor. These results would later on 

influence Horton and Hoyt’s revision, though this was primarily a neuropsychological 
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study. The experimental examination of human retinotopy would have to await the 

advent of neuroimaging methodologies.  

3.2.3 Neuroimaging 

Human research employing positron emission tomography (PET) and functional 

magnetic resonance imaging (fMRI) have substantially contributed to our knowledge of 

retinotopic organization. The first of such studies were executed using PET. PET 

involves tracking cerebral blood flow by radioactively labeling the oxygen atom in water 

molecules. The influx of oxygenated blood in specific areas of the cortex is an indication 

of cellular metabolism and increased neuronal activity. Fox et al. (1987) used PET to 

examine cortical activity in participants presented with circular annuli which stimulated 

macular, peri-macular, and peripheral retinal areas. Their results confirmed previous 

findings that increasingly peripheral stimulation corresponds to anterior activation in the 

visual cortex.    

The advent fMRI has allowed researchers to dynamically image the relationship 

between neural activity and cognitive tasks over time (Vellringer, 2000). Functional MRI 

measures blood oxygenation level dependence (BOLD). Neural activity is extrapolated 

from the overcompensation of oxygenated blood necessary to support neural metabolism 

(Fox & Raichle, 1986; Fox et al., 1988). fMRI has enough temporal resolution to allow 

researchers to explore relationships between the brain and cognitive processes on a finer 

time scale. PET integrates brain activity over intervals of one minute or longer while the 

temporal resolution of fMRI is on the order of seconds (Saper, Iversen, & Frackowiak, 

2000). 
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Researchers in the nineties began to use fMRI to study retinotopic organization in 

healthy human volunteers. Engle et al. (1994) employed an expanding annulus to 

selectively stimulate different cortical areas. The annulus was animated with an 

alternating checkerboard pattern and gradually expanded from a central fixation point to 

the periphery of the visual field. This property allowed cortical stimulation to be phase 

encoded to the annulus’s location in the visual field. The result was a time course that 

related cortical activation with stimulation of different parts of the retina. Another 

stimulus for mapping cortical activation was developed by DeYoe et al. (1996). They 

used a rotating, checkered half-circle to map the response of the cortex in terms of polar 

coordinates.  

More ambitious mapping studies have been undertaken using neuroimaging to 

precisely define to degree of cortical magnification in the human visual cortex. Sereno et 

al. (1995) as well as Engle, Glover, and Wandell (1997) demonstrated cortical 

magnification in humans using both annuli and rotating half-circles while scanning with 

fMRI. Both studies were able to map cortical activation to specific retinal areas with a 

high degree of accuracy. Duncan and Boyton (2003) used the same techniques and 

concluded on cortical magnification factors of 18.5, 8.4, and 1.4 mm/deg for 0, 1, and 10 

degrees of eccentricity, respectively. In general, the results of these studies are a more 

precise confirmation of earlier neuropsychological and animal research on the functional 

topography of V1. 
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3.3 Cortical Reorganization 

As discussed previously, a seminal attribute of the nervous system is its ever 

changing structure. The brain’s capability to alter neural configurations in response to 

environmental pressures allows organisms to adapt and respond in ways not hardwired by 

their genomes. This fundamental property, recognized by some of the earliest researchers 

in neuroscience and psychology, has been resurrected in recent years to address a new 

understanding of neural plasticity: one that expands its operation beyond injury response 

in juveniles.  

3.3.1 Reorganization due to Surgical Amputation 

Reorganization of somatosensory cortex has been examined in adult animals (for 

a review see Kaas, 1991). Many of these studies have involved the surgical manipulation 

of peripheral nerves in some way, whether by amputation (Rasmusson, 1982; Rasmusson 

& Turnbull, 1983; Kelahan & Doetsch, 1984), the transplantation of a patch of skin 

(Merzenich et al, 1988), or suturing digits together (Clark et al., 1988). These 

experiments then use micro-electrode arrays to record neural signals from representative 

cortex. Often times, substantial changes in RFs are observed, such as their initial 

silencing in cortex representative of an amputation and then their eventual expansion.  

Cortical reorganization of the somatosensory cortex has been examined in humans 

as well. In a series of papers Ramachandran and colleagues examined the perceptual 

experiences of post-operative amputees (Ramachandran, 1993; Ramachandran, Rogers-

Ramachandran, Stewart, 1992; Ramachandran, Stewart, & Rogers-Ramachandran, 1992). 

A systematic relationship was observed between the stimulation of specific areas on the 
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face and the perception of phantom limb phenomena for different parts of an amputated 

hand (Ramachandran, 1993).  

When patient’s cheeks were touched they felt the sensation in both the cheek and 

phantom thumb. When their chins were touched, they reported the sensation in the chin 

and as well as the fifth digit of the removed hand. These relationships are consistent with 

the topographic organization of the somatosenory cortex. Areas afferented with pathways 

from the hand and fingers are normally juxtaposed to those from the face. It seems that 

cortex that normally corresponds to the hand was marshaled to process input to its closest 

topographical location, the face. 

3.3.2 Reorganization Due to Training 

 Cortical reorganization in response to training regimes has been observed both 

behaviorally and biologically (Das, 1997). Tactile discrimination tasks in animals have 

offered some of the best evidence of the reorganization of the somatosensory cortex. 

Training of a single digit results in improved discrimination as well as the expansion of 

corresponding cortical areas in the somatosensory cortex (Recanzone et al, 1992, a-b). 

Interestingly, attention seems to be a critical determinant in this expansion. Animals 

trained the same way but distracted by another task (auditory discrimination) do not show 

the same cortical expansion (Recanzone et al, 1992c).  

 Training methodologies using human subjects have reported similar results. 

Pascual-Leone  et al. (2005) investigated plasticity in response to training. These 

experiments used transcranial magnetic stimulation (TMS) of the motor cortex to 

demonstrate that the locus of neural activation associated with a manual task (playing a 

series of keys on a piano) becomes heighten and expands with practice sessions over the 
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course of a week (Pascual-Leone, et. al., 1995; Pascual-Leone, et. al., 1996). The 

practice-related activation returns to a baseline levels with the cessation of the task. 

Amazingly this change in activation even occurs when participants refrain from actually 

performing the task and only think about performing it. Other findings include dramatic 

changes in activation between pre-practice and post-practice states in the first week of a 

training regime, but less pronounced differences after the fifth week. Pascual-Leone and 

colleagues (2005) believe this distinction may indicate a two-step process in cortical 

plasticity, first the excitation of dormant connections then the eventual growth of new 

axonal connections. 

 Psychophysical evidence from visual discrimination tasks also support a dynamic 

interpretation of adult cortical organization. Using behavioral measures, these studies 

evidence that the changes in characteristics of human and animal perceptual performance 

must be located in V1 (Gilbert, 1994). Visual perception in humans improves 

substantially with training. Moreover, the improvement is selective. Training a specific 

area of the visual field in a discrimination task (determining stimulus position or 

orientation) does not extend to other areas of the retina (Schoups et al., 1995) nor to 

different discriminations tasks (Crist et al., 1996; Fahle & Morgan, 1996). Top-down 

affects from higher processing stages can not account for the selective strengthening of a 

specific part of the visual field. The receptive fields in higher visual areas are larger than 

those of V1. There must be plasticity at the level of the primary visual cortex that allows 

such specificity in perceptual training. The structures and activity patterns that may allow 

this selective enhancement in V1 are discussed next. 
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3.4 Reorganization of the Primary Visual Cortex 

Training regimes and surgical alteration indicate the power of input to affect a 

neural change. Perhaps the most interesting aspect of many of these studies is that they 

were performed on adults, whose brains, by convention, are less susceptible to change. 

Though adult plasticity may be limited to the reorganization of neural topography, it 

seems clear that the adult brain is capable of adapting to changes in external input, as 

reflected in the alterations of neural structure and activity patterns. 

One of the reasons plasticity may be observable within a short time span for the 

somatosensory and motor cortices, is that sudden changes in the environment necessitate 

adaptation from these systems. If this is true, it seems reasonable that other sensory 

modalities may also have the same quick acting ability in response to environmental 

input. Due to the relationship between the retina and V1, a topic of interest is whether 

damage to the retina may result in timely reorganization of V1. The visual system of both 

humans and animals often suffer injuries that warrant reorganization. In the case of a 

lesion or malformation of the retina, neurons in the corresponding parts of the visual 

cortex are deafferented, that is, they lack visual input. The question is whether V1 can 

respond to this lack stimulation and reorganize as does the somatosensory cortex.  

3.4.1 Structure of V1 

 As perceptual training studies indicate, the locus of reorganization in the human 

visual system is the primary visual cortex. The size of RFs in higher processing areas 

makes their involvement in cortical reorganization unlikely. The only subcortical 

intermediary between the eye and cortex is the Lateral Geniculate Nucleus (LGN). 

However, it is unlikely that LGN facilitates reorganization because its involvement would 
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yield larger RFs than psychophysical and physiological studies demonstrate (Gilbert, 

1992). Many LGN fibers connect to single cortical neurons in V1. However, these 

neurons do not have comparable receptive fields. In fact, their RFs are small enough to 

suggest a single afferent. This may mean that the majority of the connections from the 

LGN are modulatory in nature. Moreover, studies examining reorganization after retinal 

lesions have shown that while the deafferented cortex begins to respond to stimulation 

outside of its receptive field, activity in the LGN remains silent even after cortical 

recovery (Gilbert & Wiesel, 1992; Darian-Smith & Gilbert, 1995). These findings 

suggest the LGN has little to no involvement in cortical reorganization. 

The primary visual cortex possesses at structure amenable to the process of 

reorganization. The neurons of V1, pyramidal cells, are arranged in cortical columns with 

inputs from the LGN but also extensive horizontal connections between columns 

(Rockland & Lund, 1982; Martin & Whitteridge, 1984). This plexus of horizontal 

connections is achieved through the collateral branching of axons extending up to 6 mm 

into the surrounding cortex (reviewed in Gilbert & Wiesel 1992).  

Moreover, connections are segregated to neurons with the same RF properties 

(Gilbert & Wiesel, 1989; Livingstone & Hubel, 1984). In addition to retinotopy, other 

mappings specific to color, orientation, and directionality characterize the surface of 

primary visual cortex (Blasdel & Salama, 1986; Ts’o et al, 1990). Pyramidal cells 

sensitive to color, for example, connect to other color sensitive cells in adjacent columns. 

These interconnections are both excitatory and inhibitory in nature, yielding an overall 

subthreshold effect (Hirsch & Gilbert, 1991; Ts’o et al., 1986; Weliky et al., 1995). The 

primary visual cortex, then, has the physical capacity of selectively altering the size and 
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shape of receptive fields. It is capable of the dynamic interactions that characterize 

cortical reorganization.  

3.4.2 The Process of Reorganization 

Evidence from anatomical and physiological studies indicates that the visual 

cortex may be able to respond to retinal deafferentation by reorganizing. This 

reorganization takes the form of an expansion of the receptive fields for neurons in the 

lesion projection zone (LPZ), the area of cortex deafferented by the lesion. Activity here 

is often ectopic; it is elicited by stimulation outside normal receptive fields. Resumption 

of ectopic activity in the LPZ may occur in two stages: first a short term step 

characterized by the immediate expansion of the receptive fields of deafferented neurons, 

then long term stage that involves the growth of axons and the formation of new neural 

connections (Pettet & Gilbert, 1992).  

Short term reorganization can occur almost immediately because it involves the 

unmasking of existing horizontal connections. Research using lesioning techniques, 

manipulation of the optic disk, and artificial scotomas induced by flooding the peripheral 

retina with over-stimulation, have evidenced an immediate change in receptive field size 

as the first response to retinal deafferentation (Fiorani et al., 1992; Schmid et al., 1995; 

Schmid et al., 1996). This expansion has been shown to occur within minutes (Gilbert & 

Wiesel, 1992; Pettet & Gilbert, 1992). 

  Research on long term reorganization implicates the arborization of new 

horizontal connections. Studies using the antegrade label biotcytin (Gilbert & Weisel, 

1992; Darian-Smith & Gilbert, 1995) have demonstrated that, in a matter of months, 

suprathreshold activity in lateral connections leads to new axonal sprouting. The 
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synaptogenesis of new axons is also evidenced by the presence of neurotrophins and 

insulin growth factors (IGF-1) in the plexus of horizontal connections, which encourage 

the growth and differentiation of new cells (Obata, et. al., 1999). Their presence indicates 

that deafferented neurons are forming new physiological connections in the surrounding 

tissue.  

3.4.3 Physiological Evidence 

The nineties saw physiological research demonstrating that the visual cortex can 

functionally adapt to lesions of the retina. Kaas et al. (1990) induced lesions in the eyes 

of cats and then monitored the activity of corresponding cortical neurons by single cell 

recording. After 2-6 months, deafferented neurons were responsive to stimulation of 

retinal areas on the border of the lesion. This was compelling evidence that the 

topography of the adult visual cortex may actually change in response to an alteration of 

inputs. Further research found that the expansion of receptive fields occurs initially at the 

perimeter of the LPZ and then spreads toward the center, although cortex corresponding 

to the very center may never respond to ectopic stimulation (Heinen & Skavenski, 1991). 

Research has also examined specifically whether patterns of neural activity 

induced by cortical reorganization differ from that of the normal cortex. Calford et al. 

(2000) lesioned the retinas of cats and examined the neurons of the LPZ. They found that 

after 24 weeks, stimulation of the intact retina produced ectopic activity in the neurons of 

the LPZ. The size of the discharge fields was similar to that of normal cells, although 

discharge rates were weaker. These results indicate that, for the most part, the 

characteristics of reorganized activity are no different from that of normal cortex, just 

located in areas not ascribed by retinotopy. 
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Other studies, however, has argued against long term, permanent reorganization 

of the primary visual cortex. Murakami et al. (1997) found no evidence of reorganized 

receptive fields to lesioning the macaque eye. They offer that perceptual recovery is due 

to a “filling in” process similar to that which masks the blind spot, not reorganization. In 

another study, Horton and Hocking (1998) lesioned a part of one eye in adult macaques 

and enucleated the other. Using levels cytochrome oxidase as an indicator of cellular 

metabolism, they found significant rise in LPZ activity after nearly five months, but they 

argue that perceived “reorganization” of the visual cortex is actually a consequence of 

retinal healing.  

Forgoing eletctrophysiology for fMRI, Smirnakis et al. (2005) lesioned the eyes 

of adult macaques and examined the BOLD response for reorganized activity. They 

found no evidence of reorganization in the LPZ even 7.5 months after the surgery. They 

contend that previous electrophysiological studies have selectively observed neurons. 

However, larger ensembles of cells, like those examined by fMRI, do not demonstrate 

reorganization. The studies discussed next challenge this claim. As to why these 

researchers did not find evidence of cortical reorganization is unclear. It could be that 

reorganization is dependent on number of factors (lesion characteristics, time, visual 

input, etc) that may interact to afford a wide variety of results.   

3.4.4 Neuroimaging Evidence 

Imaging technology has been employed to address the question of cortical 

reorganization in humans. Baseler et al. (2002) assessed cortical activity in rod 

monochromats and normally sighted controls. Because rod monochromats have 

nonfunctional cone photoreceptors and the central retina is comprised almost entirely of 
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cones, these individuals effectively have a small scotoma on the fovea. Using fMRI to 

measure cortical activation, they found that cortical areas corresponding to the fovea 

were responsive to stimulation from peripheral parts of the retina. In similar research, 

Morland et al. (2001) used fMRI to evidence cortical reorganization in response to other 

visual abnormalities such as lesions to the white matter and abnormal decussation of the 

optic chiasm. 

The demonstration of cortical reorganization in response to various types of 

retinopathy suggests that it may also occur in MD. Sunness, Lui, and Yantis (2004) 

investigated this idea with an fMRI study of a single individual with AMD. They found 

an unresponsive area in the primary visual cortex corresponding to the location of the 

scotoma. Though these results seem to suggest that cortical reorganization does not occur 

in response to AMD, only one participant was tested and she had symptoms of AMD for 

only three years. In fact, the authors considered their paper an indication of the feasibility 

of using technology such as fMRI for the assessment of cortical reorganization in 

response to macular degeneration, rather than definitive statement against it.  

A recent study by Baker et al. (2005) employed fMRI to investigate the cortical 

activity in two individuals with macular degeneration. In both the onset of the 

degeneration was in adolescence and had progressed for over ten years. When the authors 

presented them with whole screen pictures (places and faces) that stimulated the entire 

visual field they observed activity in areas of V1 that represented the degraded retina. 

Because this part of the cortex was deafferented, the authors’ reasoned that the activation 

must be the result of cortical reorganization. In further examination, they located the 

participant PRLs and selectively stimulated them. Again, activation occurred in the 
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deafferented areas of V1. This was the first neuroimaging evidence of cortical 

reorganization in response to MD.  

Shortly after, preliminary research has provided evidence both for and against 

reorganization of V1 in MD patients. Dilks et al. (2006) imaged six individuals with 

AMD, three with absolute scotomata on the fovea showed large scale reorganization, 

while the others with residual central vision did not. Masuda et al (2006), however, 

imaged individuals with both AMD and JMD but did not observe cortical reorganization 

in any participant. At present, researchers seem to agree that while cortical reorganization 

may be possible in those with MD, time since diagnosis, severity, age of onset, and other 

disease related factors may play a prominent role in whether or not reorganization is 

observed.  

3.5 Literature Summary 

Investigations of cortical reorganization are now moving beyond animal models 

in an effort to study how reorganization may manifest in the human brain. At present, the 

most appropriate focus for such research is on vision and its cortical representation in V1. 

This is partly due to advancements in technology such as fMRI and improved ocular 

perimetry. In addition, primate retinotopy, provides a solid neural foundation on which to 

examine cortical reorganization. This is complimented by the wealth of information from 

visual psychophysics and ophthalmology. In short, converging knowledge garnered from 

behavioral, clinical, and neurological approaches set vision science in a prime position to 

address the possibility and scope of reorganization in the human brain. The following 

research description hopes to add to this endeavor as well inspire future investigations. 
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CHAPTER 4: CURRENT STUDY 

4.1 Research Goals 

People with MD must deal the loss of high-acuity, central vision. The formation 

of a scotoma results in a substantial area of deafferented visual cortex that may grow with 

advancement of the disease. To cope, MD patients often begin to retrain their visual 

habits so that they are able fixate with a PRL instead of the diseased macula. 

Neurologically, these conditions could lead to a change in the relationship between 

retinal input and V1. Areas of the retina that had formally been the largest contributors to 

cortical afferentation (macula) are now silent, while input from peripheral areas (PRL) 

are more prominent. The interaction of these two factors: unused cortex and eccentric 

viewing, may be favorable to the reorganization of processing in V1.  

Animal and human studies provide evidence that the visual cortex is able to 

reorganize in response to retinal deafferentation (Kaas, et al., 1990; Darrian-Smith & 

Gilbert, 1995; Calford, et al., 2000, Morland et al., 2001; Baseler, et al., 2002). However, 

research on whether cortical reorganization occurs in humans with MD has been 

equivocal (Baker et al., 2005; Heinen & Skavenski, 1991; Dilks et al., 2006; Masuda et. 

al., 2006; Sunness et al., 2004). Moreover, recent research has simply attempted to show 

that cortical reorganization occurs in response to MD, not make empirical clams on 

critical factors affecting onset or progression. 

In light of these remaining questions, the goal of the present research was to 

investigate whether cortical reorganization occurs in response to the presence of MD, and 

more specifically, whether or not reorganization may be linked to physical and functional 
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attributes of the retina. Accordingly, this research addressed the relationship between 

different parts of the retina and the presence and/or extent of cortical reorganization.   

4.2 Hypotheses 

This research examined three hypotheses. The first is simply that activation in the 

primary visual cortex should mirror retinal health. The stimulation of retinal areas 

affected by scotomata should show reduced activation in the primary visual cortex 

compared to stimulation of the intact retina. This result would replicate earlier findings 

(Sunness, Liu, & Yantis, 2004). 

Secondly it was hypothesized that deafferented cortical areas in MD patients 

would show activation in the posterior calcarine sulcus to stimulation of the PRL. 

Because the PRL is in the peripheral retina, activity in the posterior calcarine would 

indicate the expansion of receptive fields for deafferented cortex and evidence cortical 

reorganization. In contrast, PRL stimulation in Controls should not elicit activation in the 

posterior calcarine because the normal structure of retinotopy is maintained in these 

subjects. These results would indicate that reorganization is taking place in the MD 

group, not the Controls, and confirm the findings of Baker et al. (2005). 

A final goal of this study was to specifically examine the relationship between the 

PRL and cortical reorganization. The proposed procedure allows for an analysis of how 

PRLs affect reorganization in relation to other retinal areas. The use of a PRL may induce 

cortical reorganization beyond that associated with the preserved retina in general. It was 

hypothesized that stimulation of a patient’s PRL will result greater activation in the 

posterior calcarine than other preserved retinal locations at the same eccentricity.  
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CHAPTER 5: METHODOLOGY 

5.1 Participants 

Fourteen individuals participated in this study. All provided written, informed 

consent and were compensated for their participation. Six were MD patients at the Emory 

University Eye Center. One patient had JMD since birth, the others developed AMD as 

adults and had lived with the condition for a maximum of ten years. The remaining eight 

participants were age-matched controls with normal or corrected to normal vision.  

Eligibility for the MD group was contingent on the diagnosis of exudative (e.g., 

wet) or atrophic (e.g., dry) forms of MD, defined by clinical characteristics within a 

3,000 µm radius of the fovea, including presence of drusen, evidence of changes in the 

retinal pigment epithelium, geographic atrophy, and choroidal neovascularization. The 

distinction between individuals with JMD and AMD was based on the age of disease 

diagnosis (typically, within 1
st
 or 2

nd
 decade of life for JMD individuals versus the 4

th
 to 

7
th
 decade of life for AMD individuals). Control group participants were selected based 

on age-matching criteria. Control participants did not have MD or any other eye disease 

that severely affected their vision. 

Certain ineligibility criteria applied to all participants, regardless of the 

experimental group. All potential participants with visual acuity (corrected) worse than 

20/400 were disqualified, as were participants with significant media opacities such as 

cataract, glaucoma, and corneal scarring. Minor cataract and pseudophakia were allowed 

to the extent that it does not preclude ocular testing or ability to view visual stimuli. The 

visual health and other pertinent characteristics for all participants are shown in Table 1. 
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Table 1. Participant Demographics 

 

Participant         Group        Age/Sex         Time since Onset       Eye Used  

 

CO   JMD  63/M  R: Birth, L: Birth  Left 

HG   AMD  82/F  R: ~ 10 yrs, L: ~ 10 yrs Left 

JJ   AMD  75/M  R: 3 yrs, L: 3 yrs  Left 

JR   AMD  78/F  R: ~ 2 yrs, L: ~ 6 yrs  Right 

SL   AMD  72/M  R: ~ 1 yrs, L: ~ 5 yrs  Right 

RD   AMD  71/M  R: ~ 2 yrs, L: ~ 2 yrs  Left 

AF   Control 72/M  N/A    Right 

AK   Control 48/F  N/A    Right 

AS   Control 75/M  N/A    Right 

BA   Control 71/M  N/A    Right 

BR   Control 78/F  N/A    Right 

EJ   Control 82/F  N/A    Right 

JT   Control 63/M  N/A    Left 

RP   Control 81/M  N/A    Left 

 

Time since onset is approximated in the table. The values (i.e. R: ~10 yrs, L: ~10 yrs) better reflect the time 

of diagnosis. The actual onset of disease is likely to have occurred before diagnosis. The far right column 

indicates the eye with the best visual acuity. It was identified for each participant and was used in 

subsequent phases of the experiment (e.g. MP-1, fMRI). Although AK was run, her match in the MD group 

cancelled. As a result her data was not used in the analyses. She is included in the table for documentation 

purposes. 
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5.2 Apparatus 

An MP-1 microperimeter (Nidek Inc.) was used to identify the location and extent 

of scotomata and PRL locations in MD participants. It was also used to confirm that 

control participants have normal vision. Functional MRI using a Siemens 3T magnet was 

employed to acquire functional brain images of participants while they viewed the 

presentation of stimuli to different parts of their visual field.  

5.2.1 Microperimetry 

The MP-1 microperimeter (Nidek, Inc) was employed to evaluate the health of 

participants’ retinas. It uses fundus tracking microperimetry and color digital 

photography to produce highly accurate assessments of retinal sensitivity and preferred 

fixation. The MP-1’s strength over more traditional methods of perimetry lies in its 

ability to determine the position of the retina despite eye movements. Traditional 

perimetry requires a stable fixation, which is often lacking in individuals with MD 

(Anderson, 2003). Newer microperimetry technology, like the MP-1, uses a low power 

laser that sweeps over the retina and continuously collects data on the position of 

anatomical structures (Webb et. al., 1980; Sharp et. al., 2004).  Active tracking in 

reference to biological landmarks allows visual field testing to be performed accurately 

even though the eye may have difficulty fixating.  

The MP-1 takes a continuously updated infrared image of the retina. The operator 

uses this image to accurately present stimuli at varying intensities to select parts of the 

retina. The luminous intensity of the stimuli varies on a logarithmic scale denoted by 

values ranging from 0 dB, the brightest stimulus (127 cd/m
2
), to 20 dB, the dimmest 
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(1.27 cd/m
2
). During examination, luminance is varied by a thresholding strategy that 

determines the dimmest detectable stimulus for a specific retinal location. 

 Two examination procedures were performed using the MP-1: an examination of 

retinal sensitivity to 20° eccentricity and a smaller more specific examination of PRLs in 

MD participants. The 20° test indicated the location of scotomata and/or healthy retina. In 

the fixation test, MD participants were allowed to fixate normally, naturally using their 

PRL. The MP-1 operator then performed a 12° sensitivity test on the location. This 

procedure provided evidence of the PRL’s location through fixation as well as detailed 

analysis of its sensitivity. Data from the visual field testing was then superimposed onto 

the fundus photograph allowing a diagnostic assessment of retinal sensitivity.  

5.2.2 fMRI 

A Siemens 3T Magnetom Trio fMRI scanner was used for neuroimaging of 

participants. The Magnetom Trio is a full-body scanner equipped with a Siemens 

radiofrequency (RF) head coil. The body coil was used for RF excitation and the head 

coil for signal detection. A BOLD echoplanar sequence was used with a TR of 2000 ms, 

TE of 30 ms, and a flip angle of 90°. Scans had a base resolution of 64 voxels and a voxel 

size of 3.4 × 3.4 × 3.4 mm. Each functional volume consisted of 33 slices. Data were 

acquired across six runs. Each run collected 194 volumes. Wedge functional scans lasted 

6 minutes and 32 seconds; section scans, 8 minutes and 8 seconds. 

After functional scanning, a T1, 3D, structural image was obtained for each 

participant. The structural scans consisted of a single slab oriented to sagittal plane and 

divided into 192 slices. The echoplanar sequence had a TR of 2300 ms and a TE of 3.93 

ms. Contrast parameters of the scan consisted of a TI 1100 ms and a flip angle of 8°. The 
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scans had a base resolution of 256 voxels and a voxel size of 1.0 × 1.0 × 1.0 mm. A total 

of 123 volumes were collected. Structural scans lasted 7 minutes and 23 seconds.  

5.3 Stimuli 

The stimulus presentation was programmed and presented on E-Prime software 

(version 1.1, Schneider, Eschman, & Zuccolotto, 2002) running on a 1GHz Pentium 3 

computer. During scanning, participants viewed two types of stimuli: wedge and section. 

Both were composed of contrast reversing black and white checks. All stimuli were 

presented over a homogenous, gray background. Fixation stimuli consisted of four red or 

black crosses on the vertical and horizontal meridians. Participant preference determined 

both cross color and eccentricity. Fixation stimuli were present during both stimulus trials 

and inter-stimulus intervals.  

5.3.1 Stimulus Construction 

The construction of all stimuli was based upon a template composed of 5 

concentric circles and 12 radii (Figure 4). Division by the radii alone produced 12 

equivalent wedges. The intersection of concentric circles and radii produced 60 sections 

(The innermost sections were cone shaped because of the convergence of radii). In order 

to induce the same amount of cortical activity from peripheral and central stimulation, 

sections were scaled so that larger stimuli were presented in the periphery of the visual 

field. Scaling was accomplished by adjusting the diameters of the five concentric circles 

according to the human cortical magnification factor (Horton & Hoyt, 1991).  The 

following equation was used to calculate the diameter in degrees of visual angle for each 

of the circles (Baseler, Sutter, Klein, & Carney, 1994).  

E(n) = e 
n/2.76 

-1         
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Degrees of visual angle for the innermost to outermost circles were 7.79, 11.63, 

17.14, 25.07, and 36.45 respectively. These values were then used to calculate the 

diameters of the circles in inches. A diameter of 8 inches was set for the fifth and 

outermost circle. The length of the diameters for each of the remaining 4 circles was then 

calculated from their corresponding visual angles. Table 2 indicates the visual angle, 

diameters and radii in inches for the nine base rings. 

The above specifications produced a template used to create all other stimuli. The 

major divisions of the template produced 12 wedges and 60 sections. Both stimulus types 

were composed of alternating black and white checks. The checkered pattern was created 

by the placement of equidistant circles and radii between the major divisions of the 

template. Three equidistant circles and radii between each of the major divisions resulted 

in a total of 48 radii, 21 concentric circles, and 1860 alternating checks. Figure 4 shows 

the stimulus template and the major divisions of wedge and section stimuli.  
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Figure 4. Stimulus Template 

 
Major divisions are indicated by the black lines in bold. In this depiction, the checks are gray so that the 

divisions are clearly distinguishable. The central most sections are actually wedge shaped due to the 

intersection of radial divisions. 

 

Table 2.  Stimulus Template Characteristics 

Ring                 Eccentricity (Visual Angle)                 Diameter 

 

1    7.79°     1.48" 

2              11.63°     2.23" 

3              17.14°     3.34" 

4              25.07°     5.07" 

5              36.45°     8.00" 
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5.3.2 Wedges 

Wedge stimuli (Figure 5) were used to stimulate the retina from the central part of 

the visual field to the periphery. The stimulus template was divided into 12 separate 

wedges. The major radii of the stimulus template were the boundaries of the wedges, 

each subtending 36.45° of visual angle toward the periphery of the display and 

converging at the center. The divergent ends were connected by a 30 degree arc, 

corresponding to the outermost circle. Each wedge also had four main internal arcs 

corresponding to the 4 remaining concentric circles. Equidistant arcs and radii between 

the major divisions resulted in 80 checks for each wedge.  

5.3.3 Sections 

Section stimuli (Figure 5) were used to stimulate more specific areas of the retina. 

The stimulus template was divided into 60 sections, 5 sections in each of the wedges. 

Each section was bounded by two radii and circles from the major divisions. Sections 

were also divided by equidistant arcs and radii to produce a total of 16 checks in each 

section.  

A  B  

Figure 5. Wedge Stimulus (A) Section Stimulus (B) 
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5.3.4 Stimulus Presentation 

Separate scanning runs were used to collect data from wedge and section stimuli. 

Each stimulus run began with the presentation of fixation crosses then the random 

presentation of either wedge or section stimuli. Wedge and sections were presented over 

the fixation crosses, partially occluding them on some trials. However, because stimuli 

were presented one at a time, no more than one of the crosses was occluded on any one 

trial.  

Each stimulus was presented for 1512 milliseconds. The contrast-reversing 

quality of the stimuli was created by the rapid, successive presentation of two forms for 

each stimulus. Every stimulus was actually composed of two contrasting images in which 

all the white checks in one image corresponded to the all the blacks checks in the other. 

Each image was presented in the same location for 63 ms, alternating 12 times to produce 

a stimulus contrast reversing at 8 Hz. At the end of each stimulus presentation the 

fixation crosses remained on the screen until the next presentation.  

The presentation of stimuli was synchronized with the onset of the functional 

volumes from the scanner. The inter-stimulus interval (ISI) varied randomly between 2, 

4, or 8 seconds. The 2 second intervals comprised 50% of ISIs while 4 and 8 second 

intervals comprised 25% each. The use of variable inter-stimulus intervals was based on a 

research showing that ISI length varied according to a Poisson distribution reduces 

residual activity across stimulus trials (Ollinger, Shulman, & Corbetta et al., 2001 a & b). 

The 48 wedge stimuli were presented randomly with four repetitions of each wedge 

within each fMRI run. The 60 section stimuli were presented randomly once per run. The 

presentation of stimuli during the scanning session is depicted in Figure 6. 
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Figure 6. Stimulus Presentation 

 
An event-related fMRI design was used. Stimuli were presented for ~ 1.5 seconds. The inter-stimulus 

interval varied between 2, 4, and 8 seconds. Stimulus presentation was synchronized with the collection of 

volumes. On a few trials volume collection was out of sync with the stimulus presentation; this was 

corrected by modifying the reference function in during data analysis 
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5.4 Procedure 

Before microperimetery and neuroimaging all participants underwent a standard 

ophthalmologic examination to assess visual function. Participants were evaluated with 

the MP-1 then scanned with fMRI. The entire session took approximately three hours.  

5.4.1 Ophthalmologic Exam 

Patient and control participants both had an eye exam consisting of assessments of 

visual acuity, contrast sensitivity, and color vision. The eye with best vision was 

determined by patient charts and corroborated with acuity tests. This eye was 

subsequently assessed by the MP-1 and used in the fMRI phase. In the case of MD 

participants, all had established medical files documenting previous eye exams. Native or 

corrected visual acuity was also assessed using vision charts and automatic testing of lens 

refraction (Frederick & Bailey, 1996; Ferris, et al., 1982).  

Contrast sensitivity, the ability to differentiate between degrees of luminosity in a 

fixed image, was tested using the Pelli-Robson chart (Pelli, Robson, & Wilkins, 1988). It 

presents a series of letters of constant size that decrease in contrast as the participant 

reads from top to bottom. Color sensitivity in all patients was tested using the Farnsworth 

Dichotomous Test for Color Blindness, Panel D15 (Farnsworth, 1947). The test assesses 

color sensitivity by having participants arrange an array of colored disks. The obtained 

order is an indicator of a participant’s ability to discriminate colors. Table 3 depicts the 

ophthalamological exam results. 
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Table 3.  Ophthalmologic Exam Results 

 

Participants   Visual Acuity/Eye    Contrast Score            Farnsworth Test Order 

 

MD 

CO  20/100 (Left)  1.20  1,2,3,4,7,6,5,14,15,13,10,12,11,9,8 

HG  20/400 (Left)  1.20  1,2,3,4,5,6,15,7,14,13,8,10,9,12,11 

JJ  20/250 (Left)  0.15  1,2,4,5,3,6,14,13,15,7,9,8,1,1,12,10 

JR  20/100 (Right)     1.20  2,1,3,5,6,4,7,8,9,11,10,13,1,3,14,15 

RD  20/160 (Left)          1.20  1,2,3,5,4,6,7,8,9,12,11,10,13,14,15 

SL  20/200 (Right)         1.50  1,2,3,4,5,6,7,11,10,13,12,14,9,8,15 

 

Control 

AF  20/20 (Right)  1.65  1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 

AS  20/40 (Right)  1.65  1,2,3,4,5,6,7,10,11,12,13,14,15,8,9 

BA  20/25 (Right)  1.65  1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 

BR  20/32 (Right)  1.50  1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 

EJ  20/20 (Right)  1.65  1,2,6,7,5,4,3,8,9,14,15,10,11,12,13 

JT  20/32 (Left)  1.65  1,2,3,4,5,6,7,8,9,10,11,12,13,15,14 

RP  20/25 (Left)  1.50  1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 

 
Visual acuity scores are standard Snellen fractions. Normal values for contrast scores in the older adults 

ranges from 1.6 to 1.7, where a higher score indicates better contrast sensitivity. In the Farnsworth 

Dichotomous Test, a correct consecutive ordering (i.e. 1, 2, 3) would indicate normal discrimination of 

colors. Aberrations of this order indicate a deficiency in color vision. 
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5.4.2 Microperimetry 

Assessment of visual field and retinal health involved a computerized 

microperimetry protocol. The stimuli used in the perimetry exam consisted of a 20° 

circular pattern of 76 Goldmann III stimuli (white, circular light) centered on the fovea 

and spaced approximately 2° apart. Each stimulus was presented individually to a 

specific part of the retina for 200 msec.  

Four fixation crosses, each 3° in diameter, positioned 10° apart in the horizontal 

and vertical planes. Participants were instructed to fixate centrally by looking at an 

imaginary point resulting from the logical intersection of these red crosses. Despite the 

lack of central vision, MD participants were able “fixate” on this imaginary center point 

and keep their eyes remarkably still during microperimetry. Both MD and control 

participants fixated centrally (not using PRLs) during the microperimetry exam. 

Participants were instructed to respond to the presence of a stimulus by pressing a 

handheld switch. 

Retinal sensitivity was measured in units of dB (dB = 10 log10 (Lmax/Lstim), where 

Lmax is the maximum stimulus luminance of the instrument and Lstim is the luminance of 

the presented stimulus). The MP-1 initially measures sensitivity at each testing location 

by varying the luminous intensity of the stimulus, the brightest level of which is 127 

cd/m
2
, the dimmest level 1.27 cd/m

2
. It then converts threshold values into dB units (0 to 

20).  
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A thresholding strategy was used to determine retinal sensitivity values. Stimuli 

were presented using a 4-2 staircase method that varied luminance based on participant 

responses. If a stimulus was detected, the threshold algorithm decreased luminance for 

the next presentation to the same location by 2 dB. Conversely, if a stimulus was missed, 

the algorithm increased luminance by 4 dB until it was detected. This procedure was 

iterated until a threshold value for retinal sensitivity was established at each of 76 

stimulus locations.  

5.4.3 Neuroimaging 

Scanning sessions began by orienting participants in the scanner. Foam padding 

was used to restrict head movement and head phones allowed communication from the 

control room. A patch was placed over the eye with worse vision. Once participants were 

comfortably positioned in the scanner, the stimulus template appeared on the screen. The 

mirror was adjusted so participants could see as much of the display as possible. For MD 

participants, central parts were often occluded by scotomata, but the mirror was adjusted 

so that they could see the edges of the template. Fixation crosses were then presented in 

different colors (red or black) and at different eccentricities. The crosses were moved 

toward the periphery until MD participants indicated they could see them. Participants 

also chose the most discernable color (Table 4).  
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Table 4. Participant Fixation and Stimulus Preference  

 

Participant             Fixation Cross Color      Eccentricity 

 

MD 

CO    Red    11° 

HG    Black    25° 

JJ    Red    25° 

JR    Black    30° 

RD    Red    7° 

  SL    Red    7° 

 

Control 

  AS    Red    7° 

AF    Red    7° 

AK    Red    7° 

BA    Red    7° 

BR    Red    7° 

EJ    Red    7° 

  JT    Black    7° 

  RP    Red    7°   

 

Participants choose between red and black fixation crosses. Red crosses were programmed in the original 

design because the fixation crosses in the MP-1 procedure are red. However, some participants had to wear 

stock frames in the scanner that did not match their exact prescription. For this reason black fixation 

crosses were added because they might be more discernable. The eccentricity of the crosses was adjusted 

between the following values in degrees of visual angle (viz. 7°, 11°, 25°, 30° ). Participants selected the 

value at which they could see the best. Notice how the controls all selected the lowest setting (7°). Only 

two MD patients selected this setting. 
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As in the mictoperimetry exam, participants were then instructed to “focus” on 

the logical intersection of these crosses and try to remain fixated in that position during 

the scanning runs. Eye movements were monitored throughout the scan with video 

equipment. If participants moved their eyes during the scan, they were encouraged to 

remain focused on the intersection of the fixation crosses. The stimuli were presented on 

a screen behind the head of participants and viewed through an angled mirror. Functional 

runs began with the wedge stimuli and then two consecutive runs with the sections. This 

order was repeated to complete the six functional runs. The structural scan was obtained 

last. Table 5 indicates functional and structural run characteristics. 

 

Table 5. Scan Run Characteristics 

        Run Type             Trial Number                Volumes                  Duration (min) 

 

Wedge  1   48   194   6:32 

Section 1   60   194   8:08 

Section 2   60   194   8:08 

Wedge 2   48   194   6.32 

Section 3   60   194   8:08 

Section 4   60   194   8:08 

Structural   N/A   123   7.23 

 
All participants with the exception of BA completed the entire scanning  procedure. BA’s scan was aborted 

at her request. However, before this happened, both wedge scans and two of the section scans (1 and 2) 

were obtained. These data were analyzed with the rest. 
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CHAPTER 6: DATA ANALYSIS 

6.1 Preprocessing 

Data analysis was performed with SPM2 software. Preprocessing involved the 

coregistration and reslicing of functional images to their respective structural scans. After 

reconstruction, head-motion artifacts were corrected to the last functional scan with a 

least squares approach using a six-parameter, rigid-body transformation algorithm 

(Friston et al., 1995). Slice acquisition timing differences were corrected and images 

coregistered to the T1 structural scan.  

6.2 GLM Analysis and Normalization 

A modified general linear model was used to analyze the data (Worsley & Friston, 

1995). Contrast files were created for each wedge and section relative to baseline. There 

were 60 total contrasts for the sections and 12 for the wedges. Contrast files were 

coregistered to structural images. An idealized hemodynamic response function and high-

pass filter removed frequencies below .0078 Hz. For display purposes, certain covariates 

were normalized to the Montreal Neurological Institute reference brain.  

6.3 Regions of Interest 

Regions of interest (ROI) representing the calcarine sulcus were drawn on 

structural images of each participant using the freeware MRIcro. Anatomical atlases were 

used to guide the drawing of ROIs in the sagittal plane (Duvernory, 2000; Tailariach & 

Tourneax, 1988). The region of interest spanned the calcarine sulcus from the occipital 

pole to the parietooccipital fissure. This ROI was then sliced into separate ROIs along the 

sagittal plane, each ROI 2 mm thick (Figure 7). Parameter estimates were extracted from 

these ROIs using the covariates represented in the contrast files.  
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A  

B  

Figure 7. Regions of Interest Across the Calcarine Sulcus 

Figure A depicts a single ROI slice in the coronal plane. Figure B shows several slices in the sagittal plane 

extending the length of the calcarine sulcus. The total number of ROI slices depended on individual 

neuroanatomy. Most participants had between 15 and 20. 
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CHAPTER 7: RESULTS 

7.1 Microperimetry Data 

The MP-1 microperimeter produced functional maps of retinal sensitivity for each 

participant. Analysis of the functional maps required associating specific retinal areas 

with the sections and wedges presented during the neuroimaging phase of the study. This 

was accomplished by overlaying a numbered depiction of the stimulus template onto the 

retinal maps. Figure 8 shows an example of a retinal map and color-coded sections that 

correspond to Scotoma, PRL, and Non-PRL areas of the retina (Non-PRL sections are 

explained below). The outlines of PRL and Non-PRL sections for MD participants are 

shown overlaid on the retinal maps in Figure 9. Table 6 shows the PRL and Non-PRL 

sections selected for MD and Control participants. 

 

A  B   

Figure 8. Symbolic Retinal Map (A) and Color-Coded Sections (B) 
 

Section 38 (yellow) is the PRL. Section 48 (orange) is the Non-PRL. Scotoma sections are in brown. 
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Table 6. PRL and Non-PRL Retinal Sections 

 

Participants                             PRL Section    Non-PRL Section 

 

MD   Control 

CO   JT    47   44   

HG   EJ & RP   47   42   

JJ   AS    44   46   

JR   BR    38   41   

RD   BA    32   34  

SL   AF    47   45 

 

7.1.1. Scotomata 

Sections corresponding to scotomata were identified on the template overlay for 

each participant. Sections were designated as part of a scotoma if stimuli within their 

bounds did not elicit a hit response from participants even at the highest levels of 

stimulus luminance (0 dB). On the symbolic retinal maps (Figure 8), these areas assumed 

a brownish color. For example, areas representing the scotoma correspond mostly to 

sections in the left half of the picture (viz. 8 to 12, 32 to 25, 32 to 36 and 45 to 47). In 

contrast, areas of preserved retinal sensitivity appeared in beige.  

7.1.2. PRL 

The fixation test during the microperimetry examine allowed localization of the 

PRL to a specific retinal quadrant (i.e. upper left, lower left, upper right, lower right). 

Within this quadrant the section with the highest retinal sensitivity was selected as the 

best representative of the PRL. PRLs usually assumed a yellow or greenish color on the 

retinal maps produced by the MP-1. They are yellow in the color coded representation 

(Figure 8). Control participants do not have actual PRLs, but for comparative purposes 
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PRLs were selected for controls based on those identified in the matched MD participants 

(see Table 6).   

7.1.3. Non-PRL 

 

Non-PRL sections were defined as areas of preserved retina at the same retinal 

eccentricity as the PRL. In order to make valid comparisons between PRL and Non-PRL 

areas, an effort was made to select sections away from the PRL. This is because the 

extent of the PRL is unknown. It is possible that sections adjacent to the PRL would 

actually serve the same functional role (e.g. they are actually part of the PRL). Therefore, 

Non-PRL sections outside of the PRL’s quadrant were selected. Non-PRL sections are 

orange in the color-coded representations (Figure 8). In Controls, Non-PRLs were 

determined the same way as PRLs, based on MD matches. 

7.1.4 Retinal Sensitivity T-Tests 

 

Individual variability in MD’s progression prevented an exact match between 

PRL and Non-PRL retinal sensitivity. For MD participants, the mean retinal sensitivity 

was 9.5 ± 3.7 dB for PRL sections and 6.8 ± 5.1 dB for Non-PRL sections. These values 

were significantly different t(5) = 2.96, p < .05 (Figure 11). In Controls, PRL and Non-

PRL sections were not significantly different: PRL = 14 ± 4.5 dB; Non-PRL = 13.4 ± 4.9; 

t(6) = 0.56, p > .5. Retinal sensitivity was highest in the PRL sections of Controls. It was 

lowest in Non-PRL sections of the MD participants. Table 7 shows the retinal sensitivity 

for PRL, Non-PRL, and Scotoma sections in both MD and Control participants. Figure 11 

depicts the difference between PRL and Non-PRL sections in MD participants 
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Table 7. Retinal Sensitivity (dB) in MD and Controls 

 

Participant         Scotoma            PRL        Non-PRL 

 

MD     

CO    0   13   14 

HG    0   7   2 

JJ    0   4   0 

JR    0   8   7 

RD    0   13   9 

 SL    0   12   8.5 

 

Control 

AF    18.19   15   16 

AS    16.67   15.5   16 

BA    15.14   16.5   18 

BR    9.95   4   5 

EJ    15.79   17   15 

JT    15   *   * 

RP    14.96   15   8  

 

* Participant JT had difficulty performing the MP-1 task. As a consequence, less MP-1 data was collected 

and PRL and Non-PRL means could not be calculated. 
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Figure 10. Average Retinal Sensitivity for PRL and Non-PRL Sections (MD) 
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7.2 Wedge Activity 

Wedge analyses were designed to indicate whether there are differences in 

activity across the retina. Data were grouped into covariates based on wedge location. For 

example, the data from wedges 1-3 were grouped together into a covariate that represents 

the lower left of the retina (lower left quadrant). The same procedure was used to create 

quadrant covariates for wedges 4-6 (upper left quadrant), 7-9 (upper right quadrant), and 

10-12 (lower right quadrant). Average retinal sensitivity values collected from the MP-1 

were used to rank order the sensitivity of the quadrants, where a rank of 1 indicates the 

most sensitive and 4 the least (Figure 11). Within group analyses of these quadrants, for 

the most part, did not show a significant differences in their cortical activity.  

 

A  B  

Figure 11. Quadrants Representing Retinal Sensitivity 

 
Figure A is a retinal map. Figure B represents a rank ordering of retinal quadrants base on their retinal 

sensitivity. The lower right quadrant (1) has the highest sensitivity. 
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7.2.1 MD Wedge Activity 

A repeated measures ANOVA did not show significant differences in activation 

across ROIs, F(3, 29) = .656, p= .592. Figure 12 depicts activation from quadrant 

covariates. Additional paired samples t-tests showed no significant differences between 

the quadrant covariates (Table 7).  
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Figure 12. MD Wedge Activity 

 

Table 7. MD Wedge Paired Samples T-Tests 

 

Quadrant M  SD  SE  t   df Sig 

 

1/2  0.475  2.463  1.005  0.427  6 0.328 

1/3  0.995  2.355  0.961  1.035  6 0.174 

1/4  0.845  1.763  0.720  1.174  6 0.146 

2/3  0.520  1.295  0.528  0.984  6 0.185 

2/4  0.370  1.827  0.746  0.496  6 0.320 

3/4    -0.149  1.360  0.555             -0.270  6 0.394 
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7.2.2 Control Wedge Activity 

A repeated measures ANOVAs for Control participants did not show significant 

differences in activation across ROIs, F(3, 29) = 2.429, p= .099. Figure 13 depicts 

activation from quadrant covariates. Additional paired samples t-tests showed significant 

differences between Quadrant 1 and other quadrants, but no significant differences 

otherwise (Table 8).  
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Figure 13. Control Wedge Activity 

Table 8.  Control Wedge, Paired Samples T-Tests 
 

Quadrant M  SD  SE  t   df Sig 

 

1/2  1.457  1.542  0.582  2.532  6 0.022† 

1/3  1.708  2.114  0.799  2.138  6 0.038† 

1/4  1.528  2.054  0.776  1.968  6 0.048† 

2/3  0.237  1.779  0.672  0.346  6 0.370 

2/4  0.052  1.969  0.744  0.070  6 0.473 

3/4    -0.180  1.888  0.713             -0.253  6 0.404 

†
 p < .05, one-tailed. 



                                                                            

                                                         

63 

7.3 PRL vs Scotoma Activity 

The previous analyses showed that quadrants affected by scotomata do not result 

in reduced activity compared to sections with preserved retina. However, the wedges 

contain both scotomatous and preserved retinal areas. They offer a rough depiction of the 

effect of scotomata on activity in V1. The next analyses tested the same premise, but in a 

more exact way, by comparing sections that specifically correspond to the scotoma and 

PRL. Activity from PRL sections were compared to the average activity of scotoma 

sections from each “ring” of the stimulus template (Figure 14). 

   

Figure 14. The PRL and Scotoma Rings 

 

7.3.1 MD Participants: PRL vs Scotoma Activity 

In MD participants, a repeated measures ANOVA on PRL sections showed there 

was a significant difference of between ROIs, F(4, 29) = 1.736, p  = .018. The PRL 

sections produced differential activity across the calcarine sulcus. To better localize 

where this difference occurs, ROIs were categorized into bins. Each bin contained 10 

ROIs and was representative of the Posterior, Middle, and Anterior calcarine sulcus. Pair-

wise comparisons showed that parameter estimates from the Posterior bin (M = 6.14) 

were significantly higher than those from the Anterior bin (M = .005), t(5) = 2.523, p = 
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.02. This result indicates that PRL stimulation causes significantly more activity in 

posterior ROIs than anterior ROIs. Other bin comparisons (e.g. Posterior/Middle: t(5) = 

0.645, p = .27 and Middle/Anterior: t(5) 1.882, p = .059) were not significantly different. 

In further analyses, activity in the PRL sections was compared to scotoma 

sections. ROIs for the scotoma sections were categorized into bins representing the 

Posterior, Middle, and Anterior calcarine. Pair-wise comparisons demonstrated that 

parameter estimates in the Posterior PRL bin (M = 6.14) were significantly greater than 

parameter estimates in the Posterior Scotoma bin (M = -0.819), t(5) = 2.860, p = .01. 

Comparison of PRL and Scotoma sections in Middle and Anterior bins were not found to 

be significantly different (Middle: t(5) = 1.322, p = .12, Anterior: t(5) = -0.209, p = .42). 

These results indicate that the most prominent difference in activity between PRL and 

scotoma sections is in posterior calcarine. Figure 15 shows PRL and Scotoma parameter 

estimates as a function of ROI location on the calcarine sulcus. 
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Figure 15. MD PRL vs Scotoma Activity 
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7.2.2 Control Participants: PRL vs Scotoma Activity 

A repeated measures ANOVA on control participants showed there was a 

significant effect of ROI across the calcarine sulcus, F(4, 29) = 1.553, p = .053. However, 

pair-wise comparisons on ROI bins showed that there were not significant differences 

between Posterior, Middle, and Anterior ROI bins (Posterior/Middle: t(6) = 1.661, p = 

.07; Posterior/Anterior: t(6) = 0.715, p = .25; Middle/Anterior: t(6) = .-0.282, p = .39). It 

seems that the significant main effect was a result of arbitrary differences between ROIs 

and not a systematic difference in parameter estimates across the calcarine sulcus. 

Activity in PRL sections were also compared to scotoma sections. Pair-wise comparisons 

showed there were no significant differences between PRL and scotoma bins (Posterior: 

t(6) = .141, p = .44; Middle: t(6) = -.518, p = .31; Anterior: t(6) = -.123, p = .45. Figure 

16 depicts PRL and scotoma parameter estimates graphed across the calcarine sulcus. 
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Figure 16. Control PRL vs. Scotoma Activity  
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7.3 MD vs Control 

Between group comparisons investigated whether activity induced by PRL 

sections differed between MD and Control groups. The PRL holds functional significance 

in MD participants. In Controls, however, it simply represents another part of the retina 

with no additional functional purpose. Analyses compared the activity elicited by PRL 

stimulation in MD and Control participants. Figure 17 depicts the PRL isolated form the 

color-coded map. 

  

Figure 17. PRL Color-Coded Section 

 

 

7.3.1 MD vs Control ANOVA 

PRL sections from MD participants were compared to corresponding sections 

from the Controls. A repeated measures ANOVA with ROI as the within-subject variable 

and Group (MD and Control) as the between-subjects factor did not find a significant 

effect between ROIs, F(1, 29) = 0.930, p = .57. There was not a significant between-

group effect, F(1, 29) = 1.033, p = .33, nor a significant interaction effect, F(1,29) = 

0.593, p = .99. Figure 18 depicts the parameter estimates of the MD and Control groups 

for ROIs across the calcarine sulcus.  
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7.3.2 MD vs Control T-Tests 

The lack of difference between MD and Control groups could be due to the fact 

that cortical reorganization may be localized to the posterior area of the calcarine sulcus. 

A difference here would not necessarily yield significant results if the entire calcarine is 

assessed. To examine possible differences more closely, the ROIs were again divided into 

Posterior, Middle, and Anterior bins, and differences in activation between MD and 

Control groups were assessed with independent samples t-tests. Significant differences 

were not observed for any of the three ROI groups; Posterior: t(8.11) = 1.247, p = .12; 

Middle: t(9.96) = .965, p = .35; Anterior: t(8.805) =  .191, p = .42.   

The greatest mean difference, however, was in the posterior ROI group (MD M = 

6.14, Control M = 0.886). This might indicate a real difference between groups that did 

not rise to the level of statistical significance. Additional independent samples t-tests 

were performed on the first 10 ROIs in the Posterior bin. Two of the ROIs compared (4 

and 5) were significantly different between the MD and Control groups; ROI 4: t(7.93) = 

2.265, p = 0.02; ROI 5: t(6.20) = 1.987, p = 0.04. ROI 6 approached significance, 

t(6.758) = 1.732, p = 0.06. In all cases, the mean of the MD group was larger than that of 

the Control. These significant and marginally significant ROIs comprise the greatest 

difference in activation between the two groups (Table 9).  

 



                                                                            

                                                         

68 

-10

-5

0

5

10

15

ROIs (Posterior to Anterior)

B
ra
in
 A
c
ti
v
a
ti
o
n
 (
β
-v
a
lu
e
)

PRL MD PRL Control  

Figure 18. PRL MD vs Control 

 

 

Table 9. MD vs Control Independent Samples T-tests 

 

ROI  M diff  SE diff  t  df         Sig 

 

1  2.309  6.919  0.334  8.523  0.373 

2  2.492  6.631  0.376  8.680  0.358 

3  5.916  4.161  1.422  6.407  0.101 

4  10.672  4.712  2.265  7.939  0.027
†
 

5  8.506  4.281  1.987  6.200  0.046
†
 

6  6.076  3.508  1.732  6.758  0.064
† 

7  4.544  3.997  1.137   9.068  0.142 

8  3.660  4.478  0.817   9.659  0.216 

9  3.703  4.566  0.811  8.468  0.220 

10  4.663  4.727  0.986  7.166  0.178 

 

†
 p < .05, one-tailed. Analyses did not pass Levene’s tests so significant values do not assume equal 

variances. 
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7.4 PRL vs Non-PRL 

Behavioral research indicates that stimulation of the PRL, because of its 

functional relevance, may demonstrate more reorganization than other retinal areas 

(Altpeter, Mackeben, Trauzettel-Klosinski, 2000). In the following analyses, activation 

elicited by PRL and Non-PRL stimulation was compared in MD participants. Figure 19 

depicts PRL and Non-PRL sections. Figure 20 shows the average activity they produce 

across the calcarine sulcus.  

  

Figure 19. PRL and Non-PRL Color-Coded Sections 

 

7.4.1 PRL vs Non-PRL T-tests 

As in the other analyses, PRL and Non-PRL ROIs were divided into three bins 

representing the Posterior, Middle, and Anterior calcarine. Paired t-tests revealed that 

there was a significant difference between PRL and Non PRL sections in the posterior 

part of the calcarine, t(5) = 3.05, p = 0.014. The Middle bin also demonstrated a 

significant difference between PRL and Non-PRL groups, t(5) = 3.209, p = 0.012. 

However, the Anterior bin did not, t(5) = 0.459, p = 0.33. Further t-tests on the first 10 

ROIs in the Posterior bin reveal that 8 of the ROIs show significant differences between 

PRL and Non-PRL groups. Table 10 shows significance values for the first 10 ROIs.  
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Figure 20. MD PRL vs Non-PRL 

 

 

Table 10. MD PRL vs Non-PRL Paired Samples T-tests 

 

ROI M    SD    SE  t  df        Sig  

 

1 5.174  12.059  4.923  1.161  5      0.140  

2 7.947  11.249  4.592  1.731  5      0.072  

3        15.294  7.441  3.037  5.035  5      0.002
†
 

4        13.353  9.403  3.838  3.478  5      0.009
†
 

5          9.991  10.086  4.117  2.426  5      0.030
†
 

6          6.801  7.722  3.152  2.157  5      0.041
†
 

7          4.934  10.405  4.247  1.162  5      0.149 

8         11.038  7.659  3.126  3.530  5      0.008
†
 

9           8.488  9.993  4.080  2.081  5      0.046
†
 

10  4.205             10.710  4.372  0.962  5      0.190 

† p < .05, one-tailed. Analyses did not pass Levene’s tests so significant values do not assume equal 

variances. 
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CHAPTER 8: DISCUSSION 

8.1 Conclusions 

Analysis of MD and control participants showed that both PRL and scotoma 

sections resulted in activity across the calcarine sulcus. However, PRL sections produced 

significantly more activity in the posterior calcarine for MD participants (Figure 15). 

There was no such difference in controls (Figure 16). Further analyses showed that 

sections representing the PRL in MD participants produced greater activation than the 

same sections in controls (Figure 18). This difference was localized to certain ROIs in the 

posterior calcarine. Finally, comparison of PRL and Non-PRL sections within the MD 

participants revealed that PRL sections produced significantly more activity, also 

localized to the posterior calcarine (Figure 20). 

Concerning the PRL and scotoma comparisons, it is not surprising that scotoma 

sections resulted in some activity in the calcarine sulcus. Scotomata are not necessarily 

characterized by the absolute degeneration of all photoreceptors within their bounds. It is 

likely that some photoreceptors remain functional and elicit activity, however modest, in 

the visual cortex. However, because scotoma sections represent diseased retina in MD 

participants, their activity should be less than that of the PRLs.   

PRL sections did, in fact, elicit more activity than scotoma sections in the 

posterior calcarine of MD participants (Figure 15). No such difference was observed 

between PRL and scotoma sections in the controls (Figure 16). These results demonstrate 

a meaningful connection between retinal sensitivity and the magnitude of activation in 

the calcarine sulcus and corroborate previous research that scotomata result in a reduction 
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of activity in the calcarine sulcus compared to preserved retina (Sunness, Lui, & Yantis, 

2002).   

Cortical reorganization was assessed by comparing the activity from PRL 

stimulation in MD participants and corresponding sections in controls. The MD group 

produced significantly more activity in the posterior calcarine than the controls (Figure 

18). This difference was pinpointed to four specific ROIs in the posterior bin. Greater 

activity in the MD group is an indication of the expansion of receptive fields and cortical 

reorganization. The fact that this activity was elicited by sections presented to the 

periphery of the retina is further evidence that the visual cortex has reorganized in 

compensation for retinal deafferentation. 

Analyses within the MD group compared the activity elicited by PRL and Non-

PRL sections. PRL sections produce more activity in the posterior calcarine than Non-

PRLs (Figure 20). This result indicates a relationship between cortical reorganization and 

the functional role of preserved retina. The increased use of the PRL in MD participants 

may result in more cortical reorganization. This result supports an understanding of 

cortical reorganization as an interaction between external input and activity patterns in 

the visual cortex.  

These results supplement growing evidence that the human visual cortex is able to 

reorganize in response to changes in retinal input. Moreover, the results indicate that the 

degree of reorganization differs between preserved retinal areas, evidencing a connection 

between incidence of use and the extent of reorganization.  
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8.2 Implications 

What do these results mean for our understanding of cortical reorganization as a 

form of plasticity? To begin with, it is evidence that visual reorganization in the adult 

human can occur within a short time frame. Pervious thought on this matter has 

categorized reorganization as a decades-long process (Sereno, 2005). Evidence of cortical 

reorganization within months has been observed in animal studies (Kaas, 1990). 

However, human research on the matter has been equivocal. For example, Dilks et al. 

(2006) found evidence of cortical reorganization in individuals who had AMD for less 

than ten years. However, Masuda et. al. (2006) did not demonstrate the same results for a 

similar AMD group.  

The present research conforms to the findings of Dilks et al. (2005) and Baker et 

al. (2006). Individuals in this study had MD for ten years or less. Evidence of cortical 

reorganization from this group lends support to the idea that reorganization yield changes 

in a matter of a few years, rather than decades. However, though fast reorganization 

seems possible, it may be dependent on the interaction of several factors (i.e. age, time 

since onset, disease severity, etc).  

The finding that the PRL induces more reorganization than other peripheral areas 

of the retina also holds many theoretical implications. It is an indication that the process 

of reorganization is intimately tied to environmental input. Theories have been advanced 

to suggest how PRLs develop in patients with MD (reviewed in Cheung & Legge, 2005). 

Differential sensitivity of the retina, changes in input due to training, and cortical factors 

have been proposed. While the present research supports a connection between PRL 
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development and cortical reorganization, there are still unanswered questions as to how 

this process develops.  

It seems logical, however, that reorganization must begin with input. The 

functional difference between a healthy macula, a scotoma, and PRL lies in the amount of 

input they provide primary visual cortex, whether that is due to adaptation or natural 

distinction. An input driven explanation of cortical reorganization means that the primary 

determinant of how reorganization proceeds is where on the retina a MD patient is able to 

obtain usable visual information. Factors such as the extent and severity of the scotoma, 

the sensitivity of the peripheral retina, and training by the patient are all contributing 

elements, but they ultimately interact to determine how V1 receives input. 

Another important consideration of an input-driven understanding is its 

directionality. The development of a PRL may elicit adaptation of neural processing in 

primary visual cortex. The structure of primary visual cortex seems to suggest that it has 

the capacity to deal with whatever changes the environment might bestow. This is 

evidenced by the extensive plexus of horizontal connections that pervade V1. Where ever 

damage might occur on the retina, and however training, necessity, and additional factors 

influence the development of PRLs, the primary visual cortex may respond accordingly, 

because, ultimately, it is the mutable actor in the relationship.  

However, this relationship is not definitive. Alternatively, the capacity for 

reorganization of V1 neurons representing particular part of the visual field regions may 

drive the development of a PRL in that region. The directionality of reorganization 

remains unclear and will require more research investigation of the progression of 

functional reorganization and PRL development. Nonetheless, these findings offer 
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compelling evidence that, no matter the direction, a connection exists between the 

functional and cognitive adaptation and the neuronal reorganization in patients with MD.  

A final consideration that this research brings to light is how reorganization might 

proceed. An interesting aspect of our current results is the lack of activity along the extent 

of calcarine sulcus. The evidence reported here shows that the most posterior aspect of 

the calcarine sulcus responds actively to peripheral retinal stimulation. However, this 

activity is isolated.  

If the expansion of receptive fields is responsible for cortical reorganization, one 

might expect intermediary cortical areas, those in between the PRL and occipital pole, to 

be activated. This was not the case and indicates that the connection between PRL and 

macular cortex cannot be described by what is currently known about receptive fields and 

cortical physiology. For example, the range of connections between individual cortical 

columns is limited to 6 to 8 mm, not long enough to yield posterior activation observed in 

this study.  

Interestingly, in the investigations Baker et al. (2005) also found macular activity 

out of the range of the collateral connections. They postulated that there might be an 

additional type of physiological connection that would allow selective, long range 

reorganization. This connection might only manifest after a long enough period allows 

for the synaptogesis of new axons or the permanence of long-range connections that 

remain in the wake of the initial expansion of receptive fields.   

8.2 Limitations 

This research employed a different method for data analysis than previous work 

on visual reorganization in humans. Most research on retinotopy has employed flat-
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mapping in order to visualize activation in V1. In this process, the cortex is digitally 

unfolded and flattened so that researchers are able to establish the extent of activity 

across the cortex without the distortions caused by cortical folding (Wandell, Chial, 

Backus, 2000).  

In contrast, this study created individuals ROIs that spanned the length of the 

calcarine sulcus and examined activity differences between them for evidence of cortical 

reorganization. This method certainly has it advantages over whole brain analyses in that 

it finds the average activation over a specific area (each ROI). However, how it compares 

to flat mapping procedures is undetermined. ROIs were drawn and divided in the coronal 

plane. Because the calcarine does not have substantial folds in the coronal plane, the 

accuracy of the present results is not questioned. However, flat mapping, may prove a 

more sensitive technique overall. 

This study also used structural guides to draw the ROIs, limiting them to areas 

immediately adjacent to the calcarine sulcus. Studies have shown that V1 activity can 

often occur far way from the calcarine, closer to higher processing areas on the occipital 

(Dougherty, 2003). Phase encoded retinotopy has been used as a means of identifying 

activity representative of V1 and that of other higher processing areas (V2, V3, V4). This 

study did not employ phase-encoded retinotopy to distinguish V1 form other visual 

processing areas. In order to insure examination of just V1, ROIs were drawn in close 

adherence to the morphology of the calcarine sulcus. This tactic reduced the likelihood of 

including areas other than V1 but likely resulted in the exclusion of V1 areas not 

localized around the calcarine.  
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Eye tracking was not employed to monitor participants’ fixation as they were 

scanned. Though possible, eye tracking of individuals with MD is difficult. In addition, a 

number of other technical problems resulted in forgoing eye tracking and informally 

monitoring the eyes with a video camera. Accurate data in this study depended on 

participants keeping their eyes fixated and immobile while stimuli are presented. If a 

participant focused on a peripheral stimulus with their fovea (in the case of controls) or 

their PRL (in the case of MD patients) then the activation observed along the calcarine 

sulcus would not have a true correspondence to the position of the stimulus.  

Eye tracking data would indicate which trials participants’ eyes strayed. Lacking 

eye tracking, participants were instructed to perform the same type of fixation during 

scanning as they did during the MP-1 evaluation. The MP-1 fixation data showed that 

participants, even MD group, were able keep their eyes still while focusing on the logical 

intersection of the fixation crosses. The success at performing this task during the MP-1 

is an indication of participants’ ability to perform it during scanning. Moreover, video 

monitoring revealed that participants were able to keep their eyes stable. 

Moreover, the data suggest that eye movements are unlikely to have contributed 

to the reported results. Increased brain activity in posterior calcarine sulcus was observed 

when patients’ PRLs were stimulated. Ancillary eye movements are least likely in this 

condition because the stimulus falls within the most stable region of fixation in MD 

participants. These results then are likely due to the reorganization of cortical activation 

within posterior calcarine sulcus and not an artifact of extraneous eye movements. 

Finally, although the study produced significant results indicative of cortical 

reorganization, noise in the data was an issue. There was a general trend across 
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participants towards activation in the posterior calcarine from peripheral stimuli. 

However, on an individual basis, not all stimuli demonstrated this. In the future, noise in 

the data could be reduced in a number of ways. More trials could be run in a session. 

Although lengthening the time a participant must spend inside the scanner is not desired. 

In the future, exploratory trials, such as the Wedge scans, could be scarified to make 

room for more Section trials. Another way of improving the quality of the data is to 

strengthen the signal-to-noise ration (SNR) of the volumes. This research used a standard 

circularly polarized (CP) head coil. Future research may employ an 8-channel surface 

coil to image just the occipital lobe and improve SNR.  

8.3 Future Directions 

The results of this study have implications for understanding plasticity in the 

visual cortex. The observance of cortical reorganization in individuals diagnosed with 

macular degeneration for less than ten years (discounting participant CO) indicates that 

reorganization can occur on a short time frame in individuals with AMD. However, how 

factors such as the maturity of the brain, severity of the disease, and training may 

contribute to the extent and rate of reorganization is largely unknown. This study presents 

one of the first steps in a vein of research that will examine these issues. Future research 

will attempt to explicitly describe the progression of reorganization in terms of both 

exogenous and endogenous factors. Understanding how neurophysiology and 

environmental factors contribute to reorganization has implications for both basic science 

and clinical therapy.  

Reorganization may also have implications beyond V1.  The idea that cortical 

reorganization may be tied PRL use is consistent with existing behavioral research 
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demonstrating a functional relationship between cognitive processing and PRL use in 

MD patients. For example, it has been shown that the PRL location may be related to 

variability in attentional acuity across a patient’s visual field (Altpeter, Mackeben, & 

Trauzettel-Klosinski, 2000). It has also been demonstrated that patients’ ability to attend 

to and use stimuli from multiple sensory channels strengthens with MD disease 

progression (Jacko et al., 2003). Such results may mean that reorganization has a 

demonstrable effect on higher order perceptual and attention processes. Future work will 

examine these behavioral effects in the context of reorganization. 

Finally, knowledge of the development of cortical reorganization could inform 

the design of training regimes and other therapies used to improve the visual capacity of 

individuals with MD. For example, rehabilitation programs for early-stage MD patients 

could help induce and direct cortical reorganization toward the formation of an optimal 

PRL. The extent or rate of cortical remapping in such therapies could be monitored by 

fMRI techniques and the efficacy of training evaluated by behavioral standards. Further 

studies may help better understand how and why cortical reorganization occurs and how 

it can aid the MD population. This research hopes to be the first step on path toward an 

extensive investigation of how reorganization occurs in the primary visual cortex and 

how it affects both low and high level vision. It is believed that such knowledge would 

have far reaching basic and clinical implications. 
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8.4 Concluding Remarks 

Investigation of cortical reorganization has great potential for the extension of 

neural plasticity into new theoretical domains. The development of models describing the 

relationship between environmental input, neural change, and psychological experience is 

an approach at the very core of neuroscience and psychology. This hoped that this 

document is only the beginning, a first step toward a comprehensive program of research 

that will inform visual neuroscience and help, in some small way, usher in a new 

understanding of cortical plasticity. 
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APPENDIX A 

MP-1 OUTPUT (MD PARTICIPANTS) 
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APPENDIX B 

MP-1 OUPUT (CONTROL PARTICIPANTS) 
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APPENDIX C 

MP-1 OUPUT AND COLOR CODED SECTIONS 
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