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Abstract Over the years, transfer learning has received much attention in machine
learning research and practice. Researchers have found that a major
bottleneck associated with machine learning and text mining is the lack
of high-quality annotated examples to help train a model. In response,
transfer learning offers an attractive solution for this problem. Various
transfer learning methods are designed to extract the useful knowledge
from different but related auxiliary domains. In its connection to text
mining, transfer learning has found novel and useful applications. In
this chapter, we will review some most recent developments in transfer
learning for text mining, explain related algorithms in detail, and project
future developments of this field. We focus on two important topics:
cross-domain text document classification and heterogeneous transfer
learning that uses labeled text documents to help classify images.
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1. Introduction

Transfer learning refers to the machine learning framework in which
one extracts knowledge from some auxiliary domains to help boost the
learning performance in a target domain. Transfer learning as a new
paradigm of machine learning has achieved great success in various ar-
eas over the last two decades [17, 67], e.g. text mining [8, 26, 23], speech
recognition [95, 52], computer vision (e.g. image [75] and video [100]
analysis), and ubiquitous computing [108, 93].

For text mining, transfer learning can be found in many application
scenarios, e.g., knowledge transfer from Wikipedia documents (auxil-
iary) to Twitter text (target), from WWW webpages to Flick images,
from English documents to Chinese documents in search engine, etc.
One fundamental motivation of transfer learning in text mining is the
so-called data sparsity problem in a target domain, where data sparsity
can be defined by a lack of useful labels or sufficient data in the training
set. For example, Twitter messages are short documents that are gener-
ated by users. These documents are often unlabeled, which are difficult
to classify. Thus, it would be useful for us to transfer the supervised
knowledge from another fully labeled text corpus to help classify Twit-
ter messages. When data sparsity happens, overfitting can easily happen
when we train a model. In the past, many traditional machine learning
methods have been proposed for addressing the data sparsity problem,
including semi-supervised learning [111, 18], co-training [9] and active
learning [91]. However, in many practical situations, we still have to
look elsewhere for additional knowledge for learning in our domain of
interest.

We can take the following two views on knowledge transfer,

1 In theory, transfer learning can be considered as a new learning
paradigm, where most non-transfer learning methods are consid-
ered as a special case when learning happens within a single target
domain only, e.g., text classification in Twitter, and

2 In applications, transfer learning can be considered as a new cross-
domain learning technique, since it explicitly addresses the various
aspects of domain differences, e.g. data distribution, feature and
label space, noise in the auxiliary data, relevance of auxiliary and
target domains, etc. For example, we have to address most of the
above issues when we transfer knowledge from Wikipedia docu-
ments to Twitter text.
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Machine learning algorithms such as classification and regression (e.g.
discriminative learning, ensemble learning) have been widely adopted
in various text mining applications, e.g. text classification [42], senti-
ment analysis [68], named entity recognition (NER) [106], part-of-speech
(POS) tagging [77], relation extraction (RE) [104], etc. In this chapter,
we will survey some recent transfer learning extensions in aforementioned
machine learning and data mining techniques and their applications for
text mining. The organization of the chapter is as follows. We first
give an overview of the scope of text-mining problems that we consider,
and motivate the need for transfer learning in text classification. We
then describe some typical approaches in transfer learning, such that we
can subsequently categorize various text-mining approaches under these
transfer-learning categories. This is followed by an overview of transfer
learning approaches that extracts knowledge from labeled text data for
the benefit of image classification and processing. This latter approach
is known as heterogeneous transfer learning (HTL). Finally, we conclude
the chapter with a summary and discussion of future work.

2. Transfer Learning in Text Classification

We first review the problem formulation in cross-domain text clas-
sification problems. In the next section, we first look at some typical
benchmark data examples where the cross domain classification meth-
ods are needed. We then consider the nature of these problems, their
differences from a traditional text classification problem, as well as how
to formulate these problems into a machine learning problem.

2.1 Cross Domain Text Classification

2.1.1 Support Vector Machines for Text Classification.
Text classification [42] aims to categorize a document to some predefined
categories Y, where a document is usually represented in the form of
bag of words X , denoted as a vector x ∈ R

d×1 with d unique words.
The entries in the feature vector x can be 1/0 indicating whether the
corresponding word appears or not or TF-IDF (term frequency inverse-
document frequency).

There are enormous user-generated contents in online products and
services on social media forums, blogs and microblogs, social networks,
etc. It is very important to be able to summarize consumers’ opinions
on existing products and services. Sentiment analysis (or opinion min-
ing) [68] addresses this problem, by classifying the reviews or sentiments
into positive and negative categories. Similar to text classification, re-
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views or sentiments can be represented as a feature vector x ∈ R
d×1,

and the label space is Y = {±1}.
Extension of text classification has also been done in sequence clas-

sification areas. For example, POS tagging [77] aims to assign a tag to
each word in a text, or equivalently classify each word in a text to some
specified categories such as norm, verb, adjective, etc. POS tagging is
very important for language pre-processing, speech synthesis, word sense
disambiguation, information retrieval, etc. POS tagging can be consid-
ered as a structure prediction problem, and can be reduced to multiple
binary-classification problems.

As support vector machines (SVM) [42] have been recognized as a
state-of-the-art model in text mining, below, we will use SVM as a rep-
resentative base model among various discriminative models to illustrate
how the labeled data in auxiliary domains can be used to achieve knowl-
edge transfer from auxiliary domains to the target domain. We first
consider the text data representation.

In text mining, we assume that the data are represented as a bag-
of-words X = R

d×1 with the same feature space for both auxiliary and
target learning domains. For notational simplicity, we consider binary
classification problems, Y = {±1}, which can be extended to multi-
class classification via common tricks of one-vs-one or one-vs-rest pre-
processing. We generally assume the same feature space and label space
in both auxiliary and target domains, but in Section 3, we mention
some recent works on heterogeneous feature space and/or heterogeneous
label space learning. We use X and Y to denote variables for feature
space and label space, respectively, and we use x, y, x̃, ỹ to denote the
corresponding instantiations of variables in target and auxiliary domains,
respectively.

For each word in a text, we can extract a feature vector based on
the context information that is represented as x ∈ R

d×1. Many text
mining problems can be modeled this way. In POS tagging, for example,
the learning problem is basically a classification problem by assigning a
label y to x. In Named Entity Recognition (NER) problems [106], the
aim is to classify each word in a text to some pre-defined categories, e.g.
location, time, organization, etc. Another interesting problem is relation
extraction [104], where each pair of entities in a sentence is represented
as a feature vector x, which is assigned to a certain type of relation, e.g.
family, user-owner, employer-executive, etc.

Text classification can be addressed by discriminative learning meth-
ods, which explicitly model the conditional distribution Pr(Y |X). We
can find many text mining formulations as variants of this formulation,
e.g., maximum entropy (MaxEnt) [5], logistic regression (LR) [36], con-
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ditional random field (CRF) [47]. With this in mind, we consider the
following basic SVM algorithm for text classification.
Basic SVM for Text Classification Given 	 labeled data points
{(xi, yi)}�i=1 with xi ∈ R

d×1 and yi ∈ {±1} in the target domain, we
have the following optimization problem for the linear SVM with soft
margin [82],

min
w,ξ

1

2
||w||22 + λ

�∑
i=1

ξi (7.1)

s.t. yiw
Txi ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , 	

where w ∈ R
d×1 is the model parameter, ξ ∈ R

�×1 are the slack vari-
ables, and λ > 0 is the tradeoff parameter to balance the model com-
plexity ||w||22 and loss function

∑�
i=1 ξi. Solving the convex optimization

problem in Eq.(7.1), we have a decision function

f(x) = wTx =
d∑

k=1

wkxk. (7.2)

In this section, we will consider how to extend this formulation to include
transfer learning capabilities.

2.1.2 Cross Domain Text Classification Problems. With
the above baseline algorithm in mind, we now consider several problem
domains where we show examples of cross domain text classification.
These examples illustrates some of the benchmark data often used in
transfer learning experiments. They also help demonstrate why trans-
fer learning is needed when the domain difference is large between the
auxiliary and target learning domains.

20 Newsgroups First, we consider the well-known 20-newsgroup data.
The 20-newsgroup [48] is a text collection of approximately 20,000 news-
group documents, which are partitioned across 20 different newsgroups
nearly evenly. This data collection provides an ideal benchmark for
evaluating and comparing different transfer learning algorithms for text
classification. A typical method is to generate six different data sets
from the 20-newsgroup data for evaluating cross-domain classification
algorithms. For each data set, two top categories1 are chosen, one as
positive and the other as negative. Then, we can split the data based on

1Three top categories, misc, soc and alt are removed, because they are too small.



228 MINING TEXT DATA

Data Set D̃ D

comp vs sci

comp.graphics comp.sys.ibm.pc.hardware
comp.os.ms-windows.misc comp.sys.mac.hardware
sci.crypt comp.windows.x
sci.electronics sci.med

sci.space

rec vs talk

rec.autos rec.sport.baseball
rec.motorcycles rec.sport.hockey
talk.politics.guns talk.politics.mideast
talk.politics.misc talk.religion.misc

rec vs sci

rec.autos rec.motorcycles
rec.sport.baseball rec.sport.hockey
sci.med sci.crypt
sci.space sci.electronics

sci vs talk

sci.electronics sci.crypt
sci.med sci.space
talk.politics.misc talk.politics.guns
talk.religion.misc talk.politics.mideast

comp vs rec

comp.graphics comp.os.ms-windows.misc
comp.sys.ibm.pc.hardware comp.windows.x
comp.sys.mac.hardware rec.autos
rec.motorcycles rec.sport.baseball
rec.sport.hockey

comp vs talk

comp.graphics comp.os.ms-windows.misc
comp.sys.mac.hardware comp.sys.ibm.pc.hardware
comp.windows.x talk.politics.guns
talk.politics.mideast talk.politics.misc
talk.religion.misc

Table 7.1. A description of 20-newsgroup data sets for cross-domain classification.

sub-categories. Different sub-categories can be considered as different
domains, while the task is defined as top category classification. The
splitting strategy ensures the domains of labeled and unlabeled data re-
lated, since they are under the same top categories. Table 7.1 shows
details of this data.

SRAA SRAA [61] is a UseNet data set for document classification that
describes documents in Simulated/Real/Aviation/Auto classes. 73,218
UseNet articles are collected from four discussion groups about simu-
lated autos (sim-auto), simulated aviation (sim-aviation), real autos
(real-auto) and real aviation (real-aviation).

For a task to predict labels of instances between real and simulated, we
can use the documents in real-auto and sim-auto as auxiliary domain
data, while real-aviation and sim-aviation as target domain data.
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Data Set D̃ D

auto vs aviation sim-auto & sim-aviation real-auto & real-aviation

real vs simulated real-aviation & sim-aviation real-auto & sim-auto

Table 7.2. The description of SRAA data sets for cross-domain classification.

Data Set KL(D̃||D)
Documents SVM

|X̃| |X| D̃ → D D+CV

real vs simulated 1.161 8,000 8,000 0.266 0.032
auto vs aviation 1.126 8,000 8,000 0.228 0.033

rec vs talk 1.102 3,669 3,561 0.233 0.003
rec vs sci 1.021 3,961 3,965 0.212 0.007
comp vs talk 0.967 4,482 3,652 0.103 0.005
comp vs sci 0.874 3,930 4,900 0.317 0.012
comp vs rec 0.866 4,904 3,949 0.165 0.008
sci vs talk 0.854 3,374 3,828 0.226 0.009

orgs vs places 0.329 1,079 1,080 0.454 0.085
people vs places 0.307 1,239 1,210 0.266 0.113
orgs vs people 0.303 1,016 1,046 0.297 0.106

Table 7.3. Description of the data sets for cross-domain text classification, including
errors given by SVM. “D̃ → D” means training on the auxiliary domain D̃ and testing
on the target domain D; “D+CV” means 10-fold cross-validation using target domain
data only. The performances are in test error rate. The table is quoted from [22].

Then, the data set real vs simulated is generated as shown in Table
7.2. As a result, all the data in the auxiliary domain data set are about
autos, while all the data in the target domain set are about aviation. The
auto vs aviation data set is generated in the similar way as shown in
Table 7.2.

Reuters-21578 Reuters-21578 [49] is a well known test collections for
evaluating text classification techniques. This dataset contains 5 top
categories, among which orgs, people and places are three large ones.
There is also a hierarchical structure which allows us to generate different
data sets such as orgs vs people, orgs vs places, and people vs

places for cross-domain classification in a similar way as what we have
done on the 20-newsgroup and SRAA corpora.

Properties of the Data Sets Table 7.3 gives an overview of applying
the basic SVM algorithm to the above data sets. The first three columns
of the table show the statistical properties of the data sets. The first
two data sets are from SRAA corpus. The next six are generated using
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Figure 7.1. Document-word co-occurrence distribution on the auto vs aviation

data set (quoted from [22]).

20-newsgroup data set. The last three are from Reuters-21578 test col-
lection. To show the distribution differences between the training and
testing data, KL-divergence values are calculated by KL(D̃||D) on all
the data set and are presented in the second column in the table, sorted
in decreasing order from top down. Note that the Kullback-Leibler (KL)
divergence [45] of two distributions of {pi}�i=1 and {qi}�i=1 is defined as

KL({pi}�i=1||{qi}�i=1) =

�∑
i=1

pi ln(pi/qi)+(1−pi) ln((1−pi)/(1−qi)) (7.3)

Here D̃ is the auxiliary domain data and D is the target domain data.
It can be seen that the KL-divergence values for all the data sets are
much larger than the identical-distribution case which has a KL value
of nearly zero. The next column titled “Documents” shows the size of
the data sets used.

Under the column titled “SVM”, we show two groups of classification
results in two sub-columns. First, “D̃ → D” denotes the test error rate
obtained when a classifier trained based on the auxiliary domain data
set D̃ is applied to the target domain data set D. The column titled
“D+CV” denotes the best-case obtained by the corresponding classifier,
where the best case is to conduct a 10-fold cross-validation on the target
domain data set D using that classifier. Note that in obtaining the best
case for each classifier, the training part is labeled data from D and the
test part is also D, according to different folds, which gives the best
result for that classifier. It can be found that the test error rates, given
by SVM, in the case of “D̃ → D” is much worse than those in the case
of “D+CV”. This indicates that for these data sets, it is not suitable to
apply traditional supervised classification algorithms.
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Figure 7.1 shows the document-word co-occurrence distribution on
the auto vs aviation data set. In this figure, documents 1 to 8000 are
from target domain D, while documents 8001 to 16000 are from auxil-
iary domain D̃. The documents are order first by their domains (D̃ or
D), and second by their categories (positive or negative). The words are
sorted by n+(w)/n−(w), where n+(w) and n−(w) represent the number
of word positions w appears in positive and negative document, respec-
tively. From Figure 7.1, it can be found that the distributions of auxil-
iary domain and target domain data are somewhat different, but almost
consistent. That is, in general, the probabilities of a word belongs to a
category in two domains do not differ very much.

2.2 Instance-based Transfer

One of the most intuitive methods is to transfer the knowledge be-
tween the domains by identifying a subset of source instances and insert
them into the training set of the target domain data. We can observe
that some instances in auxiliary domains are helpful for training the
target domain model, while others may do harm to the target learning
task. Thus, we need to select those that are useful and kick out those
that are not. One effective way to achieve this is to perform instance
weighting on the source domain data according to their importance to
learning in the target domain. Taking SVM as an example, suppose

that we have 	̃ labeled data in the auxiliary domain, {(x̃i, ỹi)}�̃i=1 with
x̃i ∈ R

d×1 and ỹi ∈ {±1}, which can be incorporated into the standard
SVM in Eq.(7.1) as follows [96, 54],

min
w,ξ,ξ̃

1

2
||w||22 + λ

�∑
i=1

ξi + λ
�̃∑

i=1

ρ̃iξ̃i (7.4)

s.t. yiw
Txi ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , 	

ỹiw
T x̃i ≥ 1− ξ̃i, ξ̃i ≥ 0, i = 1, . . . , 	̃

where ρ̃i ∈ R is the weight on the data point (x̃i, ỹi) in the auxiliary
domain, which can be estimated via some heuristics [54, 40] or opti-
mization techniques [55]. We can see that the only difference between
the standard SVM in Eq.(7.1) and SVM with instance-based transfer

in Eq.(7.4) is from the loss function λ
∑�̃

i=1 ρ̃iξ̃i and its corresponding
constraints defined on the labeled data in the auxiliary domain. The

auxiliary data {(x̃i, ỹi)}�̃i=1 can be the support vectors of a trained SVM
in the auxiliary domain [54, 40] or the whole auxiliary data set [96, 55].
Note that the approach in [96] uses a slightly different base model of
linear programming SVM (LP-SVM) [59] instead of the standard SVM
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in Eq.(7.1). Similar techniques are also developed in the context of in-
cremental learning [80], where support vectors of a learned SVM in the
auxiliary domain are combined with labeled data in the target domain
with different weight.

Research works have also been done in sample selection bias [35, 103]
with P̃r(X) �= Pr(X), P̃r(Y |X) �= Pr(Y |X), and covariate shift [88] with
P̃r(X) �= Pr(X), P̃r(Y |X) = Pr(Y |X). For example, Bickel et al. [6] ex-
plicitly consider the difference of conditional distributions, P̃r(Y |X) �=
Pr(Y |X), and propose an alternative gradient descent algorithm to auto-
matically learn the weight of the instances besides the model parameter
of Logistic regression. Jiang and Zhai [39] propose a general instance
weighting framework from a distribution view considering differences
from both marginal distributions, P̃r(X) �= Pr(X), and conditional dis-
tributions, P̃r(Y |X) �= Pr(Y |X).

Xiang et al. proposed an algorithm known as BIG (Bridging Informa-
tion Gap) [97], which is a framework to make use of a wolrdwide knowl-
edge base (e.g. Wikipedia) as a bridge to achieve knowledge transfer
from an auxiliary domain with labeled data to a target domain with test
data. Specifically, Xiang et al. [97] study the information gap between
the target domain and auxiliary domain, and propose a margin related
criteria to sample unlabeled data from Wikipedia to fill the informa-
tion gap, which enables more effective knowledge transfer. Transductive
SVM [41] is then trained using the improved data pool of labeled data in
the auxiliary domain, unlabeled data from Wikipedia, and test data in
the target domain. The proposed framework is studied in cross-domain
text classification, sentiment analysis and query classification [97].

2.3 Cross-Domain Ensemble Learning

It is well known in text mining that ensemble methods are very effec-
tive in gaining top performance. AdaBoost [31] and Bagging [11] are two
of the most popular ensemble learning algorithms in machine learning.
In this section, we show how to use AdaBoost [31] as a representative
base algorithm to be extended for transfer learning.

The AdaBoost [31] algorithm, as shown in Figure 7.2, starts with a
uniform distribution of instance weights. It then gradually increases the
weights of misclassified instances and decreases the weights of correctly
classified instances, in order to concentrate more on “hard-to-learn” in-
stances to improve overall classification performance. AdaBoost [31]
finally generates a set of weighted weak learners {(αt,wt)}Γt=1, which
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Input: labeled data in the target domain {(xi, yi)}�i=1
Initialization: initialize instance weight {ρ1i }�i=1
For t = 1 . . .Γ Step 1. Train a model wt using {(xi, yi, ρ

t
i)}�i=1

Step 2. Calculate the error εt of wt on {(xi, yi, ρ
t
i)}�i=1

Step 3. Calculate the weight αt from εt

Step 4. Update instance weight {ρt+1
i }�i=1 using αt: decrease ρt+1

i

for correct predictions in the target domain increase ρt+1
i for

incorrect predictions in the target domain
Output: learned weight and weak models {(αt,wt)}Γt=1.

Figure 7.2. The AdaBoost algorithm [31].

Input: labeled data in the target domain {(xi, yi)}�i=1, labeled

data in the auxiliary domain {(x̃i, ỹi)}�̃i=1

Initialization: initialize instance weight {ρ1i }�i=1, {ρ̃1i }�̃i=1
For t = 1 . . .Γ Step 1. Train a model wt using {(xi, yi, ρ

t
i)}�i=1 and

{(x̃i, ỹi, ρ̃
t
i)}�̃i=1, which minimizes the weighted error only on labeled

target data.
Step 2. Calculate the error εt of wt on {(xi, yi, ρ

t
i)}�i=1

Step 3. Calculate the weight αt from εt

Step 4. Update instance weight {ρt+1
i }�i=1 and {ρ̃t+1

i }�̃i=1 using αt:

decrease ρ̃t+1
i for incorrect predictions in the auxiliary domain

increase ρt+1
i for incorrect predictions in the target domain

Output: learned weight and weak models {(αt,wt)}Γt=�Γ/2�.

Figure 7.3. The TrAdaBoost algorithm [23].

can be used to predict the label of an incoming instance x,

f(x) =

Γ∑
t=1

αtwtTx. (7.5)

TrAdaBoost In order to leverage auxiliary instances, various ensem-
ble learning based transfer learning algorithms are proposed. TrAd-
aBoost [23] is a well-known instance-based transfer learning algorithm,
which is shown in Figure 7.3. The idea behind this algorithm is to pick
those auxilary instances which are similar to the target domain and ig-
nore others. One observation is that we can integrate some unlabeled
data from the target domain, if there are any [23]. Although the detailed
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implementations of “Steps 1, 2, 3” in TrAdaBoost [23] are all different
from that of AdaBoost [31], an interesting part of TrAdaBoost [23] is in
“Step 4”, which has a different instance weight update strategy. TrAd-
aBoost [23] aims at transferring the most useful instances from the aux-
iliary domain. Thus it decreases the weight of misclassified instances in
the auxiliary domain. Furthermore, as in transfer learning, we care more
about the prediction performance on labeled data in the target domain,
thus, TrAdaBoost [23] increases the weights of misclassified instances in
the target domain.

TransferBoost [28] extends TrAdaBoost [23] by considering both an
instance level and set-of-instances level weights of an auxiliary data. By
doing so it allows the model to be more robust.

TrAdaBoost.R2 [69] studies the regression problem based on TrAd-
aBoost [23] and AdaBoost.R2 [27]. It achieves knowledge transfer from
weighted instances from the auxiliary domain. An additional feature is
that TrAdaBoost.R2 [69] proposes a two-stage instance weight update
strategy in order to avoid model overfitting.

MultiSourceTrAdaBoost [102] extends TrAdaBoost [23] for multiple
auxiliary data sources, aiming at alleviating negative transfer that may
happen if we only have a single auxiliary data source. MultiSourceTrAd-
aBoost [102] replaces “Step 1” in the TrAdaBoost algorithm in Figure 7.3
as follows,

“ Step 1. Train a model using {(xi, yi, ρ
t
i)}�i=1 and labeled data from

one of the na auxiliary data sources. Select one model from those na

trained models that minimizes the weighted error on labeled data in the
target domain. The selected model is denoted as wt. ”

MultiSourceTrAdaBoost [102] combines the instance update strategy
of TrAdaBoost [23] for auxiliary data and that of AdaBoost [31] for the
target data.

TrAdaBoost [23] is further extended in [94] by adding an additional
feature selection step. In [94], the authors replace “Step 1” of TrAd-
aBoost in Figure 7.3 with the following step, in order to select the most
discriminative feature in each iteration:

“Step 1. Select a single-feature and train a single-feature model wt

using {(xi, yi, ρ
t
i)}�i=1 and {(x̃i, ỹi, ρ̃

t
i)}�̃i=1, which minimizes the weighted

error on the labeled data in the target domain.”
This feature selection approach based on transfer learning models

achieves very promising results in lunar crater discovery applications,
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as reported in [94], which is quite general and can be adapted for text
classification and ranking.

2.4 Feature-based Transfer Learning for
Document Classification

Feature-based transfer is another main transfer learning paradigm,
where algorithms are designed from the perspective of feature space
transformation. Examples include feature replication [37, 46], feature
projection [8, 7, 64], dimensionality reduction [63, 65, 66, 89, 21], feature
correlation [76, 44, 107], feature subsetting [81], feature weighting [2],
etc.

Feature Replication The feature replication or feature augmenta-
tion approach [37] is basically a pre-processing step on the labeled data

{(x̃i, ỹi)}�̃i=1 in the auxiliary domain and labeled data {(xi, yi)}�i=1 in
the target domain ,

(x̃i, ỹi) → ([x̃T
i x̃T

i 0T ]T , ỹi), i = 1, . . . , 	̃

(xi, yi) → ([xT
i 0T xT

i ]
T , yi), i = 1, . . . , 	

where the feature dimensionality is expanded from R
d×1 to R

3d×1, and
standard supervised learning methods can then be used, e.g. SVM in
Eq.(7.1).

As a follow-up work, Kumar et al. [46] further generalize the idea
of feature replication via incorporating unlabeled data {xi}ni=�+1 in the
target domain,

xi → ([0T xT − xT ]T ,+1), i = 	+ 1, . . . , n

xi → ([0T xT − xT ]T ,−1), i = 	+ 1, . . . , n

where the processed data points are all with labels now.
The relationship of the feature replication method and the model-

based transfer is discussed in [37] and some theoretical results of gen-
eralization bound are given in [46]. Feature replication approach have
been successfully applied in cross-domain named entity recognition [37],
part-of-speech tagging [37] and sentiment analysis [46].

Feature Projection Structured correspondence learning (SCL) [8]
introduces the concept of pivot features, which possess high frequency
and similar meaning in both auxiliary and target domains. Non-pivot
features can be mapped to each other via the pivot features from the
unlabeled data of both auxiliary and target domains. Learning in SCL [8]



236 MINING TEXT DATA

is based on the alternating structure optimization (ASO) algorithm [1].
Typically, SCL [8] goes through the following steps. First, it selects
np pivot features. Then, for each pivot feature, SCL trains an SVM
model in Eq.(7.1) using unlabeled data instances from both domains
with labels indicating whether the pivot feature appears in the data
instance. In this step it obtains np models such that W = [wj ]

np

j=1 ∈
R
d×np . Third, SCL applies Singular Value Decomposition (SVD) to

the model parameters W, [UΣVT ] = svd(W), and it takes the top k
columns of U as the projection matrix θ ∈ R

d×k. Finally, it obtains
the following transformation for each labeled data point in the auxiliary
domain,

(x̃i, ỹi) → ([x̃T
i λ (θT x̃i)

T ]T , ỹi), i = 1, . . . , 	̃ (7.6)

In the above equation, λ > 0 is a tradeoff parameter. The transformed
data points is augmented with k additional features encoded with struc-
tural correspondence information between the features from auxiliary
and target domains. With the transformed labeled data in the auxiliary
domain, SCL can train a discriminative model, e.g. SVM in Eq.(7.1).
For any future data instance x, it is transformed via x → [xT λ (θTx)T ]T

before x is classified by the learned model according to Eq.(7.2).
Blitzer et al. [7] successfully apply SCL [8] to cross-domain sentiment

classification, and Prettenhofer and Stein [70, 71] extend SCL [8] with
an additional cross-language translator to achieve knowledge transfer
from English to German, French and Japanese for text classification
and sentiment analysis. Pan et al. [64] propose a spectral learning al-
gorithm for cross-domain sentiment classification using co-occurrence
information from auxiliary-domain-specific, target-domain-specific and
domain-independent features. They then align domain-specific features
from both domains in a latent space via a learned projection matrix
θ ∈ R

k×d. In some practical cases, the cross-domain sentiment and
review classification performance of [64] is empirically shown to be su-
perior to SCL [8] and other baselines.

Dimensionality Reduction In order to bridge two domains to enable
knowledge transfer, Pan et al. [63] introducemaximum mean discrepancy
(MMD) [10] as a distribution measurement of unlabeled data from aux-
iliary and target domains,

||1
	̃

�̃∑
i=1

φ(x̃i)− 1

n− 	

n∑
i=�+1

φ(x)i||22 (7.7)
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which is used to minimize the distribution distance in a latent space.
The MMD measurement is formulated as a kernel learning problem [63],
which can be solved by SDP (semi-definite programming) by learning

a kernel matrix K ∈ R
(�̃+n−�)×(�̃+n−�). Principal Component Analysis

(PCA) is then applied on the learned kernel matrix K to obtain a low-
dimensional representation,

[UΣUT ] = PCA(K), U ∈ R
(�̃+n−�)×k (7.8)

As a result of the transformation, the original data can now be rep-
resented with a reduced dimensionality of R

k×1 in the corresponding
rows of U. Standard supervised discriminative method such as SVM
in Eq.(7.1) can be used to train a model using the transformed labeled
data in the auxiliary domain.

Note that as a transductive learning method, the algorithm in [63]
cannot be directly used to classify out-of-sample test data, which prob-
lem is addressed in [65, 66] by learning a projection matrix to minimize
the MMD [10] criteria. Si et al. [89] introduce the Bregman divergence
measurement as an additional regularization term in traditional dimen-
sionality reduction techniques to bring two domains together in the la-
tent space.

The EigenTransfer framework [21] introduces a novel approach to
integrate co-occurrence information of instance-feature, instance-label
from both auxiliary and target domains in a single graph. Normalized
cut [85] is then adopted to learn a low-dimensional representation from
the graph to replace original data in both target and auxiliary domains.
Finally, standard supervised discriminative model, e.g. SVM in Eq.(7.1)
is trained using the transformed labeled data in the auxiliary domain.
An advantage of EigenTrasnfer is its ability to unify almost all available
information in auxiliary and target domains, allowing the consideration
of heterogenous feature and label space.

Feature Correlation Transferring feature correlation from auxiliary
domains to a target domain is introduced in [76, 44, 107], where a
feature-feature covariance matrix Σ0 ∈ R

d×d estimated from some aux-
iliary data is taken as an additional regularization term,

λwTΣ−10 w (7.9)

In this equation, the feature-feature correlation information is encoded
in the covariance matrix Σ0, which can be estimated from labeled or
unlabeled data in auxiliary domains. Σ0 will constrain the model pa-
rameters wi and wj of two high-correlated features i and j to be similar,
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and constrain the low-correlated features to be dissimilar. Such a reg-
ularization term is quite general and can be considered in various regu-
larization based learning frameworks to incorporate the feature-feature
correlation knowledge. Feature correlation is quite intuitive, and thus
it has attracted several practical applications. For example, Raina et
al. [76] transfer the feature-feature correlation knowledge from a news-
groups domain to a webpage domain for text classification, and Zhang
et al. [107] study text classification with different time periods.

Feature Subsetting Feature selection via feature subsetting has been
proposed for named entity recognition in CRF [81], which makes use of
labeled data in auxiliary domains and the unlabeled data in the target
domain. To illustrate the idea more clearly, we consider a simplified
case of binary classification, where y ∈ {±1}, instead of sequence label-
ing [81]. We re-write the optimization problem as follows,

min
w̃,ξ̃

1

2
||w̃||22 + λ

�̃∑
i=1

ξ̃i (7.10)

s.t. w̃Tφ(x̃i, ỹi) ≥ 1− ξ̃i, ξ̃i ≥ 0, i = 1, . . . , 	̃
d∑

k=1

|w̃k|γdist(Ẽk, Ek) ≤ ε

Here we have:

Ek =
1

n− 	

n∑
i=�+1

(φk(xi,+1)Pr(+1|xi, w̃) + φk(xi,−1)Pr(−1|xi, w̃))

Furthermore, Ẽk = 1
�̃

∑�̃
i=1 φk(x̃i, ỹi) are expected values of the kth fea-

ture of the joint feature mapping function φ(X,Y ) in the target and
auxiliary data, respectively, and Pr(+1|xi, w̃)) and Pr(−1|xi, w̃)) are
the posterior probabilities of instance xi belonging to classes +1 and
−1, respectively. The parameter γ is used to control the sparsity of the
model parameter w̃, which produces a subset of non-zeros; this is why
it is called feature subsetting. The distance dist(Ẽk, Ek) can be square
distance (Ẽk−Ek)

2 for optimization simplicity [81], which is used to pun-
ish highly distorted features in order to bring two domains closer. The
trained model w̃ will have better prediction performance in the target
domain, especially when some features distort seriously in two domains.

Feature Weighting Arnold et al. [2] propose a feature weighting
(or rescaling) approach to bridge two domains with labeled data in the



Transfer Learning for Text Mining 239

auxiliary domain and test data in the target domain. Specifically, the
kth feature of instance x̃j in the auxiliary domain is weighted as follows,

x̃j,k → x̃j,k
Ek(ỹj |XU , w̃)

Ẽk(ỹj |D̃L)
(7.11)

where Ek(ỹj |XU , w̃) = 1
n−�

∑n
i=�+1 xi,k Pr(ỹj |xi, w̃) is the expected value

of kth feature (belonging to class ỹj) in the target domain using the

trained MaxEnt model w̃ from auxiliary domain. The value Ẽk(ỹj |D̃L) =
1
�̃

∑�̃
i=1 x̃i,k δ(ỹj , ỹi) represents the expected value of kth feature (belong-

ing to class ỹj) in the auxiliary domain. The weighted data (feature) in
the auxiliary domain then have the same expected values of joint distri-
bution about kth feature and class label y, Ẽk(y|D̃L) = Ek(y|XU , w̃), y ∈
Y. As a result, the two domains are brought closer together. Note
that the learning procedure can be iterated with (a) learning w̃ and (b)
weighting the feature, and that is the reason the model is called IFT
(iterative feature transformation) [2]. Since Ek(ỹj |XU , w̃) is only an es-
timated value, [2] adopts a common trick to preserve the original feature,
which works quite well in NER problems. In particular,

x̃j,k → λ x̃j,k + (1− λ) x̃j,k
Ek(ỹj |XU , w̃)

Ẽk(ỹj |D̃L)
(7.12)

where 0 ≤ λ ≤ 1 is a tradeoff parameter.

In the same spirit, other feature-based transfer methods have also been
proposed, such as distance minimization [4], feature clustering [22, 57],
kernel mapping [109], etc.

3. Heterogeneous Transfer Learning

Above we have surveyed transfer learning tasks where both the source
and target domains are text documents in English. Recently, researchers
in transfer learning area have started to consider transfer learning across
heterogeneous feature and/or label space, namely heterogeneous trans-
fer learning (HTL) [101]. HTL can be roughly categorized into two
branches, (1) heterogeneous feature space, e.g. text and image space [20,
101, 87, 112, 72], English and Chinese vocabulary space [56, 105], and
(2) heterogeneous label space, e.g. label space of Open Directory Project
(ODP) 2 and query categories in KDDCUP 2005 3 [84, 83], label space

2http://dmoz.org/
3http://www.sigkdd.org/kdd2005/kddcup.html

http://www.sigkdd.org/kdd2005/kddcup.html
http://dmoz.org/
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Figure 7.4. An intuitive illustration of heterogeneous transfer learning via classifica-
tion of the images of apple and banana (quoted from [101]).

in Yahoo! Directory 4 and ODP [62], “head” (frequent) categories and
“tail” (infrequent) categories in label-frequency distribution, and docu-
ment categories in Newsgroup and categories in Wikipedia [98].

In Figure 7.4, we show different kinds of transfer learning and their
relations to heterogeneous transfer learning. When features (or labels)
are different between different domains, as shown on the left side of the
figure, we have heterogeneous transfer learning when the instances in
different domains lack a direct correspondence.

In general, recent works of heterogeneous transfer learning (HTL) can
be classified into the following categories:

HTL for Image Classification An example is heterogeneous transfer
learning for image classification [112]). In this work Zhu et al.
consider how to use unlabeled text documents that we find on
the Web to help boost the performance of image classification, by
exploiting their semantic level similarity when the labeled images
are in short supply.

HTL for Image Clustering An example of this direction is heteroge-
neous transfer learning for image clustering, where Yang et al. pro-
posed a heterogenous transfer learning algorithm for image clus-
tering by levering auxiliary annotated images ([101]).

HTL Across Different label Space An example is the cross-category
learning in [73]. In this work, it adapts Adaboost with learning
a feature correlation matrix to transfer knowledge from frequent
categories to infrequent categories.

4http://dir.yahoo.com/

http://dir.yahoo.com/
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3.1 Heterogeneous Feature Space

Dai et al. [20] propose a novel approach named translated learning via
risk minimization (TLRisk) to achieve knowledge transfer from text to
image for image classification. The key idea is to bridge heterogeneous
feature space in two domains via the co-occurrence information of image-
feature and text-feature (or feature-level translator [20]) contained in
the annotated auxiliary images, e.g. annotated images in Flickr. The
knowledge in an auxiliary domain is then transferred along the path,

auxiliary-label → auxiliary-feature → target-feature → target-label

The TLRisk model is formulated in the risk minimization framework
combining the feature translator and nearest neighbor learning, and is
empirically studied for both image classification and cross-lingual (from
English to German) text classification.

Yang et al. [101] proposed a probabilistic approach named annotation-
based probabilistic latent semantic analysis (aPLSA) to achieve knowl-
edge transfer from text to image for image clustering. Some multi-view
auxiliary data of images and text is first transformed to a new rep-
resentation of correlations between image-feature and text-feature. The
aPLSA model [101] then discovers latent topics of image features of both
multi-view data and target image data, which are shared as a bridge to
bring two domains together.

Zhu et al. [112] propose a matrix-factorization based approach named
heterogeneous transfer learning for image classification (HTLIC), in or-
der to achieve knowledge transfer from text to image for image classifi-
cation. To enable classification for out-of-sample images, HTLIC adopts
collective matrix factorization [90] to learn an image-feature projection
matrix from the auxiliary data of documents and the multi-view data,
which is then used to obtain a new representation of the target images.
Finally, a classifier (e.g. support vector machine) is trained using the
newly projected target images.

Given a set of images to classify, we often need to have high-quality
labeled images to train a classification model. However, obtaining the la-
beled image data is difficult and costly. In ([112]), the following question
is addressed: is it possible for us to make use of some auxiliary labeled
images and large quantities of unlabeled text to help us build a classifier?
Suppose that we are given a few labeled image instances X = {xi, yi}ni=1
where xi ∈ R

d is an input vector of image features and yi is the corre-
sponding label of image i. We assume that the labeled images are not
sufficient to build a high quality image classifier. In addition, we are
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also given a set of auxiliary annotated images I = {zi, ti}li=1 and a set
of text documents D = {di}ki=1, where zi ∈ R

d is an image represented
by a feature vector as xi, ti ∈ R

h is its corresponding vector of tags, and
h is the number of tags. di ∈ R

m is a document represented by a vector
of bag-of-words, and l and k are the numbers of auxiliary images and
documents respectively. The goal is to learn an accurate image classifier
f(·) from X, I and D to make predictions on X∗, f(X∗).

We can make use of a set of auxiliary images Z ∈ R
l×d with their

corresponding tags T ∈ R
l×h from Web resources such as Flickr. We

can also easily obtain a set of unlabeled text documents D ∈ R
k×m

via a search engine. To help build an image classifier, we need to first
build some connection between image features and text features. To
do this, we construct a two-layer bipartite graph based on images, tags
and text documents. The top layer of the bipartite graph is used to
represent the relationship between images and tags. Each image can be
annotated by some tags, and some images may share one or multiple
tags. If two images are annotated by some common tags, they tend to
be related to each other semantically. Similarly, if two tags co-occur in
annotations of shared images, they tend to be related to each other. This
image-tag bipartite graph is represented by a tag matrix T. The bottom
layer bipartite graph is used to represent the relationship between tags
and documents. If a tag occurs in a text document, there is an edge
connecting the tag and the document.

Based on the bipartite graph, we can then learn semantic features for
images by exploiting the relationship between images and text from the
auxiliary sources. We first define a new matrix G = Z	T ∈ R

d×h to
denote the correlation between low-level image features and annotations
which can be referred to as high-level concepts. We then apply the
Latent Semantic Analysis (LSA) as described in ([25]). Finally, we apply
matrix factorization to decompose G into latent factor matrices as G =
UV	

1 , where U ∈ R
d×g, V1 ∈ R

h×g, and g is the number of latent
factors. Then ui can be treated as a latent semantic representation
of the ith image low-level feature, and v1j can be treated as a latent

semantic representation of jth tag.
Zhu et al. [112] describe a method to learn the best decomposition

via collective matrix factorization, as follows.

min
U,V,W

λ
∥∥∥G−UV�

∥∥∥
2

F
+ (1−λ)

∥∥∥F−WV�
∥∥∥
2

F
+R(U,V,W), (7.13)

where 0≤ λ≤ 1 is a tradeoff parameter to control the decomposition
error between the two matrix factorizations, || · ||F denotes the Frobe-
nius norm of matrix, and R(U,V,W) is the regularization function to
control the complexity of the latent matrices U, V and W. The opti-
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mization problem is an unconstrained non-convex optimization problem
with three matrix variables U, V and W, thus it only has local optimal
solutions. However, (7.13) is convex with respect to any one of the three
matrices while fixing the other two. Thus a common technique to solve
this kind of optimization problem is to fix two matrices and optimize
the left one iteratively until the results converge.

Qi et al. [72] adopt Singular value thresholding (SVT) [14] and support
vector machine to learn a low-rank feature-level correlation matrix (or
translator) using multi-view data (text and images), and then the labels
of text can be propagated (or transferred) to images through the feature-
level translator. Note that both text and images are from the multi-
view data, e.g. annotated images in Flickr. The problem setting of
[72] is different from that of [112], where in [112] the multi-view data is
considered as a bridge to transfer knowledge from auxiliary documents
to target images, while in [72] the multi-view data is considered as a
two-domain data sources in which knowledge is transferred from text to
image.

3.2 Heterogeneous Label Space

Heterogeneous transfer learning may be needed when there is label
mismatch between the auxiliary and target learning domains. The prob-
lem has attracted increasing attention in transfer learning, both in text
mining and image understanding. One of the earliest works in matching
labels across different classification domains is on the KDDCUP 2005
dataset, which task is to classify short, ambiguous and unlabeled search
queries from a search engine log into a set of predefined categories. In
[84, 83], Shen et al. considered the problem of quickly adapting a query
categorization classifier when the target domain label taxonomy changes
in the target learning domain. Their approach was to make the use of
a large intermediate taxonomy to compile a collection of classifiers, and
then adapt these classifiers to the new target label taxonomy in real
time.

Shi et al. presented an approach to solving the label mismatch prob-
lem by a risk-sensitive spectral partition (RSP) algorithm [86]. A multi-
task learning with mutual information (MTL-MI) is developed in [74]
for learning the label correspondence.

Qi et al. [73] use quadratic programming (QP) to learn a diago-
nal feature-level correlation matrix on single-view data (e.g. image or
video), and then use the AdaBoost framework to transfer knowledge
from “head” (frequent) categories to “tail” (infrequent) categories, e.g.
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from mountain images to castle images. In both [72] and [73], the deci-
sion function for a target instance is defined as a weighted linear com-
bination of labels of auxiliary instances, where the weight is represented
as the similarity of the target instance and any auxiliary instance es-
timated via learning a feature-level correlation matrix. The difference
between [72] and [73] is that the former works on heterogeneous feature
space (e.g. text and images) but same label space, while the latter focus
on same feature space (e.g. images) but heterogeneous label space (e.g.
semantically related categories of mountain and castle).

Rohrbach et al. [79] propose to automatically mine semantic relation-
ships between class labels (or equivalently class attributes) from linguis-
tic data (e.g. wikepedia, WordNet, Yahoo image, Flickr), which can be
considered as a label-level translator. The trained classifiers of auxiliary
classes can then be reused by target domain (different) classes through
the label-level translator and Bayesian rules. The proposed approach
allows different label space but assuming same feature space, and is em-
pirically verified for image classification. A follow-up work [78] conducts
extensive and in-depth study of transfer learning for image classification.

Xiang et al. [98] propose a novel approach named source-selection-
free transfer learning (SSFTL) to achieve knowledge transfer from some
large-scale auxiliary data set, e.g. Wikipedia, which does not require
practitioners to manually select some particular part of auxiliary data
to transfer from. The main idea is to bridge large-scale auxiliary label
space and target label space via social tagging data, e.g. Flick. Specif-
ically, each label (scalar) is represented as a vector in a latent space,
where two vectors are similar if the corresponding labels are semantically
correlated. An additional advantage of SSFTL is that the training pro-
cedure of auxiliary classifiers can be implemented offline, which makes
the whole learning approach very efficient.

There are also some other heterogeneous transfer learning settings
in different data domains and scenarios e.g. target domains with few
instances [50], transfer from text to video [51], etc.

3.3 Summary

Heterogeneous transfer learning is mainly based on feature-level trans-
lator and label-level translator, which bridges heterogeneous feature
space and heterogeneous label space of two domains. The techniques
of heterogeneous transfer learning and transfer learning methods in pre-
vious sections are complementary, which enables knowledge transfer in
a much wider application scope with very little limitation.
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Table 7.4. Learning paradigms and techniques. The notation “req.” means that the
test data are required during model training, and “

√
” means the corresponding data

are available to the learner. D̃L and D̃U are labeled and unlabeled data in an auxiliary
domain. DL , DU and DT are labeled, unlabeled and test data in the target domain.
Unsupervised and supervised transfer learning are categorized by the availability of
labeled data in the target domain.

Learning Paradigm
Auxiliary Target

Learning Technique
D̃L D̃U DL DU DT

ML

Unsupervised

N/A

req. Spectral clustering [58], etc.
Transductive

√
req. TSVM [41], etc.

Supervised
√

AdaBoost [31], etc.
Semi-supervised

√ √
SSL [111], etc.

TL

Unsupervised

√
req. STC [24], etc.√
req. LWE [32], etc.√ √

SCL [8], etc.

Supervised

√ √
MTL [30], etc.√ √ √
TrAdaBoost [23], etc.√ √ √ √

req. EigenTransfer [21], etc.√ √
STL [75], etc.

Heterogeneous

across different feature space

Translated learning [20]
aPLSA [101]
TTI [72]
HTLIC [112], etc.

across different label space

RSP [86]
CCTL [73]
Semantic relatedness [79]
SSFTL [98], etc.

4. Discussion

Above we have seen that there are several important applications of
transfer learning. What insights can be gained from these applications
and extensions on transfer learning? Below, we consider a few such is-
sues.

What, How and When to Transfer As pointed out by Pan and
Yang [67], there are three fundamental questions in transfer learning,
namely “what to transfer”, “how to transfer” and “when to transfer”.
We have answered the “what to transfer” question from two perspec-
tives, (1) instance-based transfer and (2) feature-based transfer, where
the corresponding knowledge are selected and weighted instances and
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Table 7.5. Applications in text mining.

Application Transfer learning work

Text classification [29, 76, 22, 107, 63, 65, 66, 89, 21, 97, 70, 71, 57], etc.

Sentiment analysis [46, 7, 71, 97, 64], etc.

Named entity recognition [39, 2, 37, 81], etc.

Part-of-speech tagging [8, 39, 4, 37], etc.

Relation extraction [38], etc.

learned or transformed features. The “how to transfer” question [67]
is quite related to “what to transfer”, and we have surveyed instance
weighting, feature projection and other various techniques adopted in
different works to achieve knowledge transfer. The “when to transfer”
question [67] is related to negative transfer, cross-domain validation and
transfer bounds, where some works focus on empirical study to avoid
negative transfer [28, 102, 16]. Some research works also focus on theo-
retical developments of transfer learning, such as [4, 53, 23, 60, 109, 46].
In addition, researchers have also proposed cross-domain cross-validation
strategies [110, 12] for text mining and other learning tasks.

Learning Paradigms and Techniques Transfer learning can be
considered as a new learning paradigm. One perspective is to consider
transfer learning as an over-arching framework that includes the tradi-
tional learning as a special case, as shown in Table 7.4. Here we can
see that traditional machine learning (ML) methods do not consider
data from auxiliary domains; instead and they study the learning prob-
lems under the same data distribution Pr(X,Y ). In contrast, transfer
learning goes beyond the learning paradigm via transferring knowledge
from auxiliary domains with different distribution P̃r(X,Y ) �= Pr(X,Y ).

Text Mining Applications As we surveyed so far, transfer learning
have been wildly adopted in various text mining applications; a summary
can be found in Table 7.5. Note that many transfer learning methods
surveyed in previous sections have been applied to non-text mining ap-
plications as well; e.g. in speech recognition, in image and video analysis,
etc.

5. Conclusions

In this chapter, we have focused on transfer learning approaches for
text mining. Specifically, we have reviewed transfer learning techniques
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in text related classification tasks, including discriminative learning and
ensemble learning, and heterogeneous transfer. We have considered these
learning approaches from two perspectives, namely, (1) instance-based
transfer and (2) feature-based transfer. Most of the surveyed transfer
learning methods are proposed or can be applied in text mining applica-
tions, e.g. text classification, sentiment analysis, POS tagging, NER and
relation extraction. In addition, the introduced heterogeneous transfer
techniques can explore the knowledge in text to help the learning task
in other domain, such as image classification.

A current research issue is how to apply transfer learning to the
learning-to-rank framework [43, 13, 99], where the ranking model in the
target domain may benefit from knowledge transferred from auxiliary
domains. In this area, works include model-based transfer [34], instance-
based transfer [19, 33, 15] and feature-based transfer [92, 19, 3], which
extend the pairwise ranking algorithms of RankSVM [43], RankNet [13],
or list-wise ranking model of AdaRank [99]. We expect to see much re-
search progress in this new direction, e.g. generalizations of learning to
rank to heterogeneous settings [101].

In the future, we expect to see more extensive applications of transfer
learning in text mining, where the concept of “text” can be more general.
For example, we expect to see transfer learning methods to be applied
to analyzing microblogging contents and structure, in association with
social network mining. We also expect to see more cross-domain trans-
fer learning approaches, for knowledge transfer between very different
domains, e.g., text and videos, etc.
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