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Abstract

This paper is a contribution to the theory of true random number generators based on

sampling phase jitter in oscillator rings. After discussing several misconceptions and apparently

insurmountable obstacles, we propose a general model which, under mild assumptions, will

generate provably random bits with some tolerance to adversarial manipulation and running in

the megabit-per-second range. A key idea throughout the paper is the fill rate, which measures

the fraction of the time domain in which the analog output signal is arguably random. Our

study shows that an exponential increase in the number of oscillators is required to obtain a
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constant factor improvement in the fill rate. Yet, we overcome this problem by introducing a

post-processing step which consists of an application of an appropriate resilient function. These

allow the designer to extract random samples only from a signal with only moderate fill rate

and therefore many fewer oscillators than in other designs. Lastly, we develop fault-attack

models, and we employ the properties of resilient functions to withstand such attacks. All of

our analysis is based on rigorous methods, enabling us to develop a framework in which we

accurately quantify the performance and the degree of resilience of the design.

Key Words: True (and pseudo-) random number generators, resilient functions, cryptography.

1 Introduction

Random number generators have numerous applications in a diverse set of areas ranging from statis-

tics to cryptography to art. For many applications, pseudo-random number generators (PRNGs)

— which take a short random string an expand it into a stream of “random looking” bits using

a deterministic algorithm — are quite satisfactory. However, for cryptographic applications it is

crucial to generate pseudo random bits which will be unpredictable even by the strongest adversary.

Furthermore, even if high quality PRNGs, with their output being computationally indistinguish-

able from the output of a true random number generator (TRNG), may be built, these PRNGs

will still need to be seeded using TRNGs.

Good TRNG design rests on the quality of three components:

• Entropy Source: Various TRNG designs have been proposed for harvesting randomness

present in physical processes such as thermal and shot noise in circuits, brownian motion,

or nuclear decay. The entropy source is the most critical component as it determines the

available entropy. Some sources exhibit biases; these should be eliminated in the collection

or post-processing steps.

• Harvesting Mechanism: The entropy source is tapped using a harvesting mechanism that

does not disturb the physical process above yet “collects” as much entropy as possible. Various
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designs have been proposed to realize this step. A decent harvesting mechanism should come

with rigorous justification with the underlying assumptions regarding the source explicitly

stated.

• Post-Processing: Although this component is not needed in all designs, many TRNG de-

signers strengthen their designs by post-processing the output bits. A post-processor may be

applied to mask imperfections in the entropy source or harvesting mechanism, or to provide

tolerance in the presence of environmental changes and tampering. A post-processor may be

as simple as a von Neumann corrector [4] or may be as complicated as an extractor func-

tion [1] or a one-way hash function such as SHA-1 [4]. One should scrutinize post-processors

which modify the output conditional on its statistical properties. There is great danger in

deterministic methods aimed at improving the “appearance of randomness”.

From a practical standpoint it is essential that TRNGs are built using a commonly available

cheap silicon process. Moreover, it is highly desirable to implement TRNGs using purely digital

design technique. This allows for easier integration with digital microprocessors, and also makes it

possible to implement TRNGs on popular reconfigurable platforms (i.e. FPGAs and CPLDs). To

date, various random number generator designs have been proposed based on mixed or pure digital

electronics. These designs vary significantly according to their entropy sources and the harvesting

techniques they employ. For instance, the design introduced in [6] uses a combination of analog

and digital components for amplification and sampling of white noise. The main problem with this

type of circuit is the amplification stage, which requires significant power to bring the noise level

up a few orders of magnitude to the digital logic level. A similar design was developed by Intel

Corp. [4], where the thermal noise on a junction is amplified and used to drive a voltage-controlled

oscillator which is then sampled by another oscillator. The output sequence is post-processed using

the von Neumann corrector and SHA-1. The design in [7] samples the jitter in a phase-locked loop

(PLL) – an analog component – on a specialized reconfigurable logic platform. The innovative

design introduced in [8] randomly samples the output of an LFSR and a cellular automaton. The
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randomness comes from the jitter in the two oscillator circuits which are used to clock the two

deterministic circuits. Although the design is purely digital and no amplification is needed, it

is difficult to verify the harvesting/sampling technique due to a complicated harvesting scheme.

Moreover, despite the size of the design the entropy source is limited to the two oscillators. In

another design [11], a simple architecture based on metastable circuits is proposed. The design

passes the statistical tests only when a large number of such circuits are combined.

Indeed, all of these designs are validated by running the DIEHARD [12] or NIST Test Suites [13].

Typically, the optimal sampling frequency is determined by trial and error: the sampling frequency

is decreased until the output sequence starts to pass the NIST or DIEHARD tests. Furthermore, due

to the complex harvesting schemes employed, it is very difficult to give a mathematical justification

for proper collection of the entropy. Due to the shortcomings of PRNG tests applied to true random

number generators, new tests and standards are needed. Recently, Schindler and Killman [18]

sketched a methodology for evaluating true random number generators and outlined the pioneering

standardization efforts of the German Department for Security in Information Technology BSI as

described in [20]. In their treatment, Schindler et al. advocate rigorous testing of TRNGs and

note that a statistical blackbox testing strategy may not be employed for this purpose. The AIS

document provides clear evaluation criteria for TRNGs and also allows TRNG designers to present

their own criteria. In [16] Dichtl presents an attack on a TRNG construction underlining the

importance of providing rigorous security proofs or justifications for TRNG designs. In a more

recent work, Bucci and Lucci [19] emphasize the importance of designing for testability and make

the observation that it is difficult and perhaps impossible to test the quality of TRNGs after complex

post-processing techniques have been employed. Hence, the authors propose the use of stateless

TRNG circuits which allow tests to be formulated. Furthermore, the authors of the same reference,

note that robustness against attacks, faults, and production defects should also be considered as

factors when considering the quality of a TRNG design.

Inspired by these works and observations we develop a set of requirements for our TRNG design:
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• The design should be purely digital (no analog components are allowed),

• The harvesting mechanism should be simple (easy to analyze); it should preserve and opti-

mally sample the entropy source. In other words, the unpredictability of the TRNG should

not be based on the complexity of the harvesting mechanism, but only on the unpredictability

of the entropy source.

• A strict mathematical justification of the entropy collection mechanism should be given,

with all assumptions clearly stated and at least empirically justified. The design should be

sufficiently simple to allow rigorous analysis.

• No correction circuits are allowed. Many times an adaptive correction circuit is used either

to “adjust the sampling frequency” or to “smooth the output distribution”. Since most of

such circuits use the characteristic of the output to adaptively process the entropy source,

they introduce further correlations. For instance, a correction circuit that counts the number

of ones and zeroes and accordingly compensates the delay of a sampler will clearly introduce

further bias to the output sequence.

• Compact and efficient design, (high throughput per area and energy spent). No amplifiers

or other analog components are allowed, which would consume more energy and make the

analysis difficult. Note that, since we are not allowing analog components we have to sample

variations in the time domain (such as the design in [8] does) rather than the variations in

the voltage levels. This criteria also means that we cannot use complicated post-processing

schemes (e.g. SHA-1).

We propose a design that meets all of these requirements and allows for fault-tolerant extensions.

In the remainder of this paper we introduce a TRNG design that uses jitter (or random vibra-

tion) in clock signals present in all digital clocked circuits. Since such a signal will be available in

most applications, this approach is particularly attractive. We outline several harvesting techniques

and introduce a sampling method based on resilient functions.
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2 Oscillator Rings

Oscillators provide a simple and effective method to build TRNGs [5]. A simple digital oscillator

may be built by chaining an odd number of inverter gates in a ring configuration. Due to the

feedback path, the output of any of the inverters will oscillate from a logic one to a logic zero and

back. Hence, a square wave signal is obtained by tapping into the oscillator at any point in the

ring. The signal has several characteristics:

• Ideally the output signal Ψ is a periodic square wave with its period determined by the

number of inverters and and the delay of an inverter, i.e. T = n · τ and Ψ(t) = Ψ(t + T ),

where T denotes the period and τ denotes the delay of a single inverter.

• The output signal is not a perfect square wave. For instance, the period vibrates in a random

manner T = T + T̂ where T̂ represents a random variable that takes values in the range

(−T/2, T/2). In a high quality digital circuit the range of T̂ is quite small compared to the

period. The vibration in the clock signal denoted by the random variable T̂ is commonly

called jitter. Jitter is the source of entropy we wish to harvest.

In Figure 1 a typical oscillator output is depicted. The jitter is represented via extra lines at each

transition of the waveform.

. . .

t

Ψ

T 2T

Figure 1: Periodic oscillator signal with transition zones marked as multiple lines.

A practical configuration for harvesting jitter is based on the idea of sampling the output of a

ring oscillator using the output of another oscillator. This configuration is commonly referred to

as coupled oscillators. If the periods of the two oscillators are well matched then it should be that

with high probability we are sampling from the transition zones and not the deterministic part of
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the waveform. Unfortunately, problems arise in practical realization of coupled oscillators:

• Exactly matching the period of the two oscillators is fairly difficult and requires the use of

special layout design techniques at the VLSI level.

• Due to imperfections, the two signals may drift relative to one another. This makes for very

fragile TRNG designs.

To alleviate these two problems, additional circuitry (e.g. a compensator) is sometimes used to

adjust the waveforms to match the transitions. This solution, however, corrupts the randomness

of the jitter and introduces biases. In the next section we consider more sophisticated methods for

combining and sampling oscillators.

3 Combining signals to exploit randomness of phase jitter

Our setting is as follows. We have r distinct oscillator rings arranged on a chip design. The ith ring

is composed of ni inverters where the optimal parameters ni and r are to be determined below.

The analog output signal Ψ of the circuit is the XOR of the outputs Ψj of the r individual rings

R1, . . . , Rr. The XOR function is typically implemented as a binary XOR-tree. The output Ψ is

converted into a digital signal by sampling it at a regular clock frequency fs.

r

...

...

R 1

...

...

R

R

2

1

Ψ

Ψ

Ψ

Ψ
2

f s

D Q

r

Figure 2: Design for combining and sampling oscillator rings

The output of the XOR combines periodic transition zones contributed by each ring. Since

the entire waveforms are XOR-ed the output will also have deterministic regions, and occasionally
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zones where jitter contributed from different rings overlaps. The resulting waveform exhibiting this

effect with only two rings is depicted below in Figure 3. The deterministic parts of the waveform

are not shown for clarity. The two oscillators are on identical phase and their ideal periods are

related by 2T2 = 3T1. Both oscillators contribute a transition zone at t = 2T2 and any other even

multiple of T2 (marked by arrows).

. . .

t

Ψ

T1 2T1 3T1

↓

4T1 5T1 6T1

↓

T2 2T2 3T2 4T2

Figure 3: Output waveform of the XOR of two oscillator outputs with periods T1 and T2.

Our purpose is to populate the entire spectrum with such transition zones and then sample the

waveform only in such zones. Due to the such overlaps we lose out on the entropy. Later we will

tackle this problem, introducing several approaches to its resolution.

4 The Urn Model – a Combinatorial Approach

The combined signal is sampled to provide a random bitstream. The sampling of this combined

signal Ψ is modeled as follows. The behavior of the XOR gate on signals which lie strictly between

zero and one is well-documented to behave as a smooth interpolation. The combined signal is

assumed to lie between L and H volts where L < H. A signal value closer to L is deemed to give

rise to a zero bit and a signal value closer to H volts is recorded as a one.

We take the following axiomatic approach, which for the time being neglects phase drift. Sup-

pose Rj is an oscillator ring with period T = Tj . That is, at times 0, T, 2T, . . ., the signal is designed

to switch from low to high and at times T/2, 3T/2, 5T/2, . . . the signal is designed to switch from

high to low. (Note that we aim to harvest jitter only from the “up” transition zones, allowing a

full period before sampling jitter from the same ring.)
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Assumption: In any open time interval (mT − T/4,mT + T/4), there is a unique point t where

the signal crosses (L+H)/2 volts and this t behaves as a normally distributed random variable with

mean mT and some variance σ2
j .

This hypothesis will be the basis of our claims regarding the random behavior of the overall

system. Of course, such an assumption is unavoidable as any device which purports to produce

random bits must be assumed to have access to some random physical source. Fortunately, the

claim in our axiom is strongly supported by empirical evidence. In [2], for example, over a million

oscilloscope captures (sampling at 4 Giga samples/sec) of jitter from a single oscillator ring with

83 inverters having T ≈ 146.8ns (f = 6.81 Mhz) were displayed and exhibited classical bell curve

behavior.

Consider a time interval I = [a, b] such as [100T, 1100T ] and suppose, for the sake of simplicity,

that our threshold voltage is (L + H)/2 = 2.5V . Here L and H stand for the value of a voltage

that is accepted by a particular technology as logic 0 and logic 1, respectively, e.g. L is 0 V

or GROUND and H is 5 V. Our goal is to “fill up this interval with randomness” using our

combined signal composed of the output of k oscillator rings. More precisely, we would like to

ensure that, for some threshold p, at any point t in interval I, there exists some ring Rj such that

1/4 < Prob[Ψj < 2.5] < 3/4 1.

Appealing to standard probability tables, it therefore suffices to require that, for some integer

m, |t − mTj | < .6745σj . (More explicitly, the area under the normal distribution curve from

µ− .6745σ to µ + .6745σ gives the desired 0.5 probability, where µ represents the mean and σ the

standard deviation.) We will later relax this condition by simply asking that it hold with at least

some probability q (e.g., q = 0.9) when t is chosen uniformly at random from interval I:

Criterion A: With t chosen uniformly at random from the interval I, the probability that there

exist integers j and m with |t−mTj | < .6475σj is at least q.

1The tolerance of 1/4 was chosen arbitrarily. Note that a smaller tolerance gives us more confidence that a sample

near this point will behave like an unbiased coin flip. A smaller tolerance increases the reliability of the design, but

also the decreases the efficiency, as we will see shortly.
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In an ideal model, the above design criterion is not even sufficient to ensure that the output

bitstream be balanced. Indeed, if the circuit consists of a single oscillator ring and the clock is

perfectly calibrated to sample at times mT + ε, then the above model holds but the output will

consist almost entirely of ones. While the model can be refined to eliminate the possibility for such

bias, we will work with it as given with the knowledge that phase drift and the large number of

rings used makes such biased behavior highly improbable.

An extremely useful simplification in this regard is to reduce the problem to a combinatorial

one. Let us consider a long time interval I and partition it into small equal-length subintervals in

such a way that Criterion A is satisfied (with q = 1) for any time t in a subinterval J provided

some ring Rj is in transition at some point t′ in the same subinterval. That is, we discretize the

time domain in such a way that any jitter event occurring in any subinterval J makes Criterion A

hold (with q = 1) for all times t in interval J . We will call these subintervals “urns” because, as

we shall soon see, the problem which now faces us is one well-known to probabilists who study urn

models.

Here are the precise details of how the interval is to be subdivided into “urns”. Let the interval

I = [a, b] be subdivided into ` equal length subintervals J1, . . . , J` where Jh = [a + (h− 1) b−a
` , a +

h b−a
` ]. For the purpose of this discussion, we will refer to each Jh as an urn. An urn J is to be

considered full if there is some ring Rj in the circuit whose signal satisfies Ψj(t) = 2.5 for some real

number t in the urn J . Otherwise, the urn is empty.

Now we see that Criterion A is satisfied provided

• at least q` of the urns are filled, and

• ` > (b− a)/.6475σj for all j = 1, . . . , k.

Ignoring phase drift, we see that ring Rj will fill roughly one out of every πj = `Tj/(b − a)

urns. (We call πj the “combinatorial period” of the ring Rj .) The next step is to decide how many

inverters each ring should have in order to efficiently populate such an interval I with jitter events.

Note that we are not concerned by multiple occupancies — i.e. multiple rings contributing to
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a single urn — since the entropy of an exclusive-OR is always at least the entropy of any of the

inputs. Thus, multiple occupancies can only benefit our model.

5 Relatively Prime Ring Lengths

Looking at Figure 3, one notices that there is “waste” of entropy when two rings are in transition

at the same point in time. One is therefore tempted to find ways to minimize such overlap. It has

been proposed that, in order to fill as many urns as possible and in order to make the behavior

of the r rings as independent as possible, the ring lengths n1, . . . , nr should be pairwise relatively

prime integers. While one experiment with such a design produced a digital output with good

randomness properties (according to the NIST tests), the randomness is apparently not applicable

to the above model. We now show this using the Chinese Remainder Theorem.

Suppose that ring Rj fills urns dj + mπj (m ≥ 0). It is reasonable to assume that, if the ring

lengths nj are pairwise relatively prime, then the combinatorial periods πj are close to relatively

prime as well. Then, with N = π1π2 · · ·πr, we have an urn Jh filled if there exists a j with h ≡ dj

(mod πj). The urn is therefore empty whenever h 6≡ dj (mod πj) for all j = 1, . . . , r. Modulo

period πj , there are πj − 1 values not equal to dj . So an integer h with 0 ≤ h < N represents an

unfilled urn whenever h ≡ ej (mod πj) for all j unless some ej = dj modulo πj . For any such

system of congruences, there is a unique solution h modulo N . So among the N urns,
∏r

j=1(πj −1)

will be left unfilled. In other words, a randomly chosen urn will be left unfilled with probability(
1− 1

π1

)(
1− 1

π2

)
· · ·
(

1− 1
πr

)
,

requiring, for example, over 800 rings when all πj are distinct primes with πj ≥ 25 and with a fill

rate of 2/3. Moreover, the entire motivation for the relatively prime ring length model is unclear.

Under our axiomatic assumption, the location of the transition point for the jth ring is a normally

distributed random variable. Ignoring phase drift, it carries no memory; there is no correlation

between consecutive bits influenced by this single ring. Thus this feature of the model is not only

impractical, but its value to the model is questionable to begin with.

11



6 Identical Ring Lengths

Our proposal is to take advantage of the random delays dj as well as the phase drift of the signals

relative to one another by making all ring lengths identical. Indeed, it is possible that two rings

with equal number of inverters will exhibit a great deal of overlap in their transition zones. These

non-deterministic elements (initial delay and phase drift) make it highly likely that two such rings

will have no overlap in their contributions to the jitter.

In what follows we will show that, using identical ring lengths, we can achieve reasonable fill

rates with only a moderate number of rings, thereby keeping the total number of inverters down

and allowing for portability of the hardware to fairly compact platforms.

Based on our combinatorial urn model, the problem of filling a long time interval I with jitter

using identical ring lengths becomes one quite familiar to probabilists. This is the so-called “Coupon

Collector’s Problem” and it has been well-studied in discrete probability.

The Coupon Collector’s Problem falls under the category of “urn models” in probability and

is given as follows. There are N different coupons, but an unlimited supply of each of these. A

coupon collector collects one coupon per day, choosing a coupon from among the N uniformly at

random, with replacement2. The challenge is to compute the expected number of days, r, which

will pass before the collector has at least one copy of each of the N distinct coupons. We will need

to delve deeper and estimate the number of days before the collector has 80% confidence that she

has at least 95% of the coupons, or more generally confidence c out of 100 that the current number

of coupons in her possession is at least fN where 0 < f ≤ 1.

6.1 Urn width

Before we get into the combinatorics of the coupon collector’s problem, we need to know a bit about

the actual numbers involved. A crucial parameter for the design is the width of these intervals we

are calling urns. Suppose we have a design where each ring has a fixed number n of inverters.
2Since two transition zones may overlap, our model must allow more than one ring to fill the same urn. This why

filled urns are “replaced”.
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This determines a period T for the ring and, depending on the specifics of the hardware, a “jitter

width” w which is technically the standard deviation of the associated random variable. Based on

our desired entropy per bit of output, our urn width may differ from this value. Here is a small

table:

Target p = H−1(E) A−1(p) num. urns

entropy (E) min Pr[X = 0] tolerance (w = 0.02T )

0.99 0.441198 0.145σ 173

0.97 0.398388 0.258σ 97

0.95 0.269128 0.335σ 75

0.90 0.316019 0.479σ 52

0.80 0.243004 0.699σ 36

0.50 0.110028 1.229σ 20

Table 1: Urn width for various levels of entropy per output bit

µ−0.699σ µ+0.699σ

A sample in here yields
at least 0.8 bits of entropy

t

with uncertain transition

idealized waveform

Figure 4: A single jitter event; sampling close to the mean yields a bit with high entropy
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For a target entropy E per sampled bit, we take the inverse of the binary entropy function

H(p) = −p log2 p − (1 − p) log2(1 − p) to find how close to 0.5 the probability of sampling a zero

must lie. The column A−1(p) is half the desired width of our urn3. If sampling occurs within the

interval (µ−A−1(p), µ + A−1(p)), then we are guaranteed the prescribed entropy per sampled bit.

So the number of urns (using the example where the standard deviation w is two percent of the

period), is given by 50/2A−1(p). For other ratios of standard deviation to period, ω = σ/T , we

simply multiply the above number of urns by 0.2/ω.

6.2 Phase Drift

Whereas in the model involving relatively prime ring lengths phase drift of one component relative

to another constitutes a major complication, phase drift can only improve the randomness of the

identical ring length model. Indeed, in each sequence of π consecutive urns, we are assuming that

each ring fills one randomly chosen urn (that urn whose index is congruent to dj modulo π) and that

these dj are independently chosen uniformly at random. Experimental evidence suggests exactly

that phase drift, if it does occur in any non-negligible way, is independent from one ring to another

[3]. In our model, this is simply interpreted as ring Rj choosing a slightly different delay dj in each

interval I of π urns. The delays remain uniformly distributed and independently chosen, so the

model still applies.

The only complication is that, in the event that some ring has its transition point close to

the end of I (i.e., that dj is close to zero modulo π), a ring may fill no urns or two urns in some

consecutive sequence of N urns. This can be compensated for by making a slight increase in the

total number of rings so that in any such sequence of N consecutive urns, the number of rings

filling at least one urn is at least the desired number in the above table with very high probability.
3Here A(z) denotes the area under the normal density function (the bell curve) between µ and z.
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6.3 Coupon Collecting

With all ring lengths identical, the time spectrum gets partitioned into equal-length subintervals,

which we call “urns”. If we focus on the urns within one period of the ring, we wish to fill as many

of these as possible using as few rings as possible. Allowing for the randomness of phase shifts and

owing to uncontrollable phase drift, we model each oscillator ring as filling one urn per period with

a jitter event in such a way that sampling at any point in this subinterval is assumed to yield a

random bit.

Our problem can therefore be modeled as one in discrete probability: the coupon collector

problem, where one selects one urn from a set of N uniformly at random until each urn has been

“filled”, or selected at least once. The power and limitation of this approach is already evident

from the most elementary analysis of the coupon collector problem.

Let us add rings to the design one at a time and view these as uniformly random selections

of one urn from among N . Suppose that, at some point in time, all but a fraction qN of the N

urns have been filled. Then there is a probability q that the next selection will fill a new urn and a

probability (1− q)k−1q that it will require exactly k more selections before a new urn is filled. So

the expected number of selections required to fill the next urn is

∞∑
k=1

(1− q)k−1 · q · k =
1
q
.

For example, when half the urns are filled, the expected number of additional rings required to fill

the next one is two and when 3/4 are filled, it is four.

Therefore the expected number of rings needed to fill all N urns is

r =
N∑

s=1

N

s
= N

N∑
s=1

1
s
≈ N log N. (1)

where log(.) denotes the natural logarithm function.

Clearly this suggests that we need a very large number of rings. Of course, we are penalized

the most for our desire to fill even the last few urns. For example, with N = 50, 100 and 200,

Table 2 gives the expected number of rings required to fill fN urns for various values of f . The
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table is built by computing the exact summation using Equation (1). For instance, to compute the

number of rings r needed for N = 100 urns, to obtain a fill rate of f = 0.70, we use the summation

r = 100 ·
∑100

s=31 1/s.

f

N 0.50 0.60 0.70 0.80 0.90 1.00

50 34.2 45.1 59.0 78.5 110.8 224.9

100 68.8 90.9 119.2 159.0 225.8 518.7

200 138.1 182.5 239.6 319.9 456.0 1175.6

Table 2: The expected number of rings required to fill fN urns for various values of the fill rate f .

So our strategy, of course, is to aim for a fill rate, f , less than 1.0 and to compensate for the

resulting fraction of non-random samples.

6.4 A more detailed analysis of fill rates

For a given number N of urns, a given fill rate 0 < f ≤ 1, and a given level of confidence 0 < p < 1,

we would like to determine the minimum number r = M(N, f, p) of rings necessary so that, among

the m urns, the event that at least fN are filled has probability at least p. For f = 1, this is the

Coupon Collector’s Problem.

For our application, the numbers M(N, 1, p) are too high for practical implementation unless

p is taken so small as to seriously impact the robust design features we seek. So we will prefer to

keep the confidence p close to one while decreasing the fill rate f and we will present a rigorous

post-processing strategy in Section 7 to recover full confidence in the quality of the bits generated

by the overall design.

Unfortunately, there is no known closed form expression for M(N, f, p). But the following

related function is well-studied. Let P (N, r, f) denote the probability that at least fN out of N
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urns are filled with exactly r rings. Then

M(N, f, p) = min {r : P (N, r, f) ≥ p}

and these values can be quickly generated by a computer algebra system.

Let us re-phrase this last problem in the language of surjective functions. There are N r functions

from an r-set to an N -set. This is the total number of ways to associate each ring in our design

to one of the N urns. (Of course, with variability in periods, there is a non-zero probability that

some ring will not be in transition in a given interval and also a chance that some ring will exhibit

two transitions in a given interval; we take these as negligible.) The number of surjections (onto

functions) among these N r is given by inclusion-exclusion:

J(r, N) :=
N∑

h=0

(−1)h

(
N

h

)
(N − h)r.

To prove this, simply note that each function f : [r] → [N ] is a surjection onto some non-empty

subset of [N ] := {1, 2, . . . , N} and that this is a partition of all functions into surjections. It

immediately follows that the number of functions f : [r] → [N ] with an image of size at least fN is

N∑
k=dfNe

(
N

k

)
J(r, k).

The probability that the image has size at least fN is then this value divided by N r, the total

number of functions. This gives us our desired value P (N, r, f).

In Table 3, we give M(N, f, p) for N = 36 urns. (See Appendix for similar tables for N = 52

and 100.) For each value of N , for each r and f we compute the probability P (N, r, f) and use a

reverse lookup table to obtain the values given in Tables 3, 11 and 11.

7 Resilient Functions

Even in our model with identical ring lengths, in order to keep the number of rings within a practical

range, we have been forced to compromise on the number of filled urns. A sampler which merely

measures the signal at regular intervals and turns these readings into zeros and ones will have, say,
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f

p 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.50 26 30 35 41 48 52 61 74 94 142

0.55 27 31 36 42 49 53 62 76 96 147

0.60 27 31 37 42 50 54 64 77 99 153

0.65 27 32 37 43 51 55 65 79 101 159

0.70 28 33 38 44 52 56 66 81 104 165

0.75 29 33 39 45 53 57 68 83 108 173

0.80 29 34 40 46 54 59 70 86 111 182

0.85 30 35 41 48 56 61 72 89 116 193

0.90 31 36 42 49 58 63 75 93 122 208

0.95 33 38 45 52 61 67 80 99 132 233

0.99 36 42 50 58 68 75 90 113 153 291

Table 3: For the case N = 36 urns shows the number r of rings necessary to fill at least fN of the

urns with probability at least p.

90% random bits (each with at least 25% chance of being a zero and at least 25% chance of being

a one) and 10% of the samples will hit every ring in a “flat range”. That is, these few samples

will be deterministic functions of time. But we don’t know which are the random ones and which

are deterministic. In what follows, we based our model on the assumption that the random bits

behave as unbiased coin flips, while being aware that is a non-trivial simplification.

While this level of randomness may be satisfactory for some applications, we seek to eliminate

these non-random components to our output by boiling down the bitstream to a shorter, more

random sequence of bits. We accomplish this using resilient functions.

Definition 1 An (n, m, t)-resilient function is a function

F (x1, x2, . . . , xn) = (y1, y2, . . . , ym)
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from Zn
2 to Zm

2 enjoying the property that, for any t coordinates i1, . . . , it, for any constants

a1, . . . , at from Z2 and any element y of the codomain

Prob[F (x) = y|xi1 = a1, . . . , xit = at] =
1

2m
.

In the computation of this probability all xi for i 6∈ {i1, . . . , it}, are viewed as independent random

variables each of which takes on the value 0 or 1 with probability 0.5.

In more informal terms, knowledge of any t values of the input to the function does not allow

one to make any better than a random guess at the output. Resilient functions are used in a number

of cryptographic applications.

In our setting, the input to the resilient function is the sequence of bits generated by the chip

as described above. We have argued that the output is composed of a large number (e.g., 0.9L)

of random bits infiltrated by a small number (e.g., 0.1L) of bits which are deterministic functions

of the circuit. If we feed these L bits into an (L,m,L/10) resilient function, the output must

necessarily consist of m truly random bits.

We now show how resilient functions may be obtained from error-correcting codes. A simple

technique for constructing resilient functions is given in the following theorem:

Theorem 1 (e.g., [15]) Let G be a generator matrix for an [n, m, d] linear code C. Define a

function f : {0, 1}n 7→ {0, 1}m by the rule f(x) = xGT . Then f is an (n, m, d − 1)-resilient

function.

For more information on resilient functions, and their connections to codes and designs see [9] and

[10].

Equipped with a construction for resilient functions, we can choose from two approaches in our

TRNG design:

• In the urn model, since we do not have control over which urns will filled by the jitter from

any given ring, we may over-compensate by adding a large number of extra rings so that we

have a reasonable chance of filling out the spectrum. From the above discussion of the coupon
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collector problem, we need to use N log2 N rings to fill N urns. To be precise, N denotes the

ratio between a clock period and the standard deviation of the transition at the edges (i.e.,

the effective jitter width).

• Alternatively, we can use a reduced number of rings and have only a portion of the spectrum

filled with jitter. This means that we will occasionally sample from the deterministic portions

of the signal. To filter out these deterministic bits we use a resilient function with appropriate

parameters. The output of the resilient function will give us purely random bits with high

probability.

The second approach is clearly preferable, since it drastically reduces the number of rings we

need to use in our design. On the other hand, we now have to implement a resilient function.

Note that we do not necessarily need to build the resilient function in hardware. Since it is a

purely deterministic function, it may easily implemented in software as a post-processing step.

On the other hand, if one wishes to implement the resilient function in hardware this can still be

achieved efficiently. All one has to do is to implement a vector times a (constant) matrix product

as described in Theorem 1. Hence, the presented method does not require full error decoding, but

is rather akin to calculation of a syndrome. Moreover, if a cyclic code is used to construct the

resilient function, one may use a simple linear feedback shift register (LFSR) to obtain an even

more compact implementation. Since such constructions are well known and published we do not

go into the implementation details any further.

There is a trade-off between code length the size of the buffers we need to use in the implemen-

tation of the resilient function. A code of short length is easy to implement and requires smaller

buffers, but using such a code runs a higher risk of being compromised when there is a burst of

errors created by natural causes or by an intelligent attacker. For example, a code with minimum

distance d = n/2 used with 80% fill rate has a per-block failure rate at most 7×10−52 for n = 1024.

But a code with n = 8 will fail roughly 13.2% of the time with same input stream, giving a 4-bit

sequence of entirely deterministic output. (The 80% fill rate on a long input stream is here modeled
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as a 0.2 per bit probability of determinism so that the resilient function fails on an n-bit input block

with probability
∑n

k=n/2

(n
k

)
0.2k.)

At this point we introduce a very simple code that is suitable for our application.

Definition 2 The simplex code H⊥
m, the dual of the Hamming code Hm, is a [2m − 1,m, 2m−1]

linear code.

Note that the minimum distance and the resilience of a resilient function build from a simplex code

is roughly half of the block length. Although the output length is logarithmically related to the

length of the input, this provides a class of resilient functions with particularly strong resistance

against faults.

8 Entropy Analysis

In this section we present an entropy estimate based on the analysis in Section 6.4 and we examine

the effect of the resilient function on this estimate.

We first analyze the output entropy without the resilient function. Assuming the fill rate f is

achieved with probability at least p and for purposes of simplification, assuming the output is all

zeroes when the fill rate is not achieved we obtain the following probabilities qa of observing each

N bit string a4

qa =


p · 2−fN + (1− p), if a = 0

p · 2−fN , if ai = 0 for i > fN and a 6= 0

0, otherwise

Now, writing w = p · 2−fN + (1− p) we compute the Shannon entropy as follows

H = −
∑
a

qa log2(qa)

4Note that, for notational convenience, we are assuming that the unfilled urns are the last ones, and a sample of

an unfilled urn returns a zero. The analysis will be identical to that which assumes (1− f)N arbitrary deterministic

bits distributed arbitrarily across the window.
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= −w log2(w)− (2fN − 1) · p · 2−fN (−fN + log2(p))

= p(1− 2−fN ) log2(w)− log2(w) +

(
2fN − 1

2fN

)
· p · (fN − log2(p))

≈ pfN

for large fN and p > 0.5.

Now we consider the output entropy of the TRNG with the resilient function. Suppose the fill

rate exceeds the threshold of the resilient function, i.e. f > N−d
N with probability p. Then, p of the

time, the output is perfectly uniform. In the worst case, the output is all zeroes with probability

1− p. The entropy is bounded below by

H =
∑

a∈{0,1}∗
−qa log2(qa) ≥ −(2m − 1) · p · 2−m · log2(2

−m)− w log2(w)

were w = q0 = p · 2−m + (1− p). Set σ = p2m−1
2m . Then since w log2(w) < 0,

H ≥ mσ ≈ mp .

9 Tolerance Against Attacks

We only consider fault-introduction attacks since they are significantly more powerful and more

easily implemented on true random number generators than bit-deduction attacks. Simply stated,

one can say that it is sufficient to introduce a bias in the output of a TRNG for an attack to be

considered successful. We analyze the tolerance of our design against attacks in two categories:

Non-invasive attacks: The types of attacks we consider under this category have to do with

external influences that an attacker might employ including but not limited to, improperly biasing

input and/or output bits (e.g. introducing spikes in the power supply), applying electromagnetic

shocks to the chip, forcing abrupt temperature changes etc. For most of the attacks in this category

the duration of the adversaries’ influence is limited. Since our design is stateless, only a finite

number of bits at the output are influenced. This allows the design to eliminate the corrupted

bits by simply using a stronger resilient function (i.e., employ an error-correcting code with larger

minimum distance).
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Invasive attacks: Attacks of this type are more demanding of resources from the attacker’s point

of view. However, invasive attacks are more powerful and usually have permanent effect on a

circuit. For instance, an attacker may insert a pin (or burn a hole by using a strong laser) into the

chip and thereby introduce permanent defects, e.g. cause a short or open circuit by taking out a

transistor. Since the attacker’s goal is to damage the TRNG and thereby bias its output bits, his

job is easy — complex under-the-microscope work that requires high precision is not necessary for

him.

To counter such powerful attacks we need to analyze our design in parts and make sure all parts

display the same level of resistance.

• Oscillator Rings: An attacker may introduce a permanent fault by taking out one or more

oscillators, and thereby turning one or more of the ring outputs into deterministic/constant

signals. As in the case of non-invasive attacks our design can easily handle a number of such

faults determined by increasing the strength of the resilient function, i.e., by a certain amount

of over-engineering in the original design.

• XOR-tree: We assume that, in the realization of the design, an XOR-tree is used to hash

the ring outputs into a single bit which is later sampled. The intuition behind using such a

structure is that, as long as any one of the input bits is random, the output of the tree will be

random. A four bit version of a binary XOR-tree is shown on the left in Figure 5. In the first

level the ring outputs are XOR-ed together in a pairwise manner. If any single one of these

XOR gates are faulted by the adversary fixing its output to either a zero or one output bits,

the effect may be seen as two of the ring outputs have become deterministic and as before the

bias will be eliminated by the resilient function as much as the built-in strength parameter

t permits. If any single XOR-gate in the second level is faulted, the effect is stronger since

now the output of that XOR gate comes from four rings outputs. The effect of such faults

clearly doubles at each level and reaches its optimum (as a threat to performance) at the

last level, where there is a single XOR-gate. This is a serious problem, since now we have
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a much weaker spot in the design than the rest of the circuit. One way to get around this

problem is to simply replicate the XOR-tree and generate the output bit multiple times to

meet any desired fault-tolerance criterion, but this is a highly wasteful method. For example,

a single XOR-tree to hash outputs from r rings will require r XOR-gates (assuming r is a

power of two). The direct r-fold replication would require r2 gates to provide the same level

of fault-tolerance at the last level as at the top.

Ψ

Ψ1
ΨΨΨ

Ψ

234 Ψ1
ΨΨΨ

Ψ

234

ΨΨ

Figure 5: The original binary tree (left) and the redundant tree (right)

To alleviate this problem we propose to replace of the binary XOR-tree with the expanded

XOR trellis shown on the right of Figure 5. As easily seen from the diagram, each XOR-gate

contributes now the same level entropy. However, since we still need a single stream of output

bits, we need to change the sampling mechanism. That is, the output lines should be sampled

one after another in a sequential scheme. Hence, each output line is sampled once in each

clock cycle. When compared to the original scheme the sampling rate remains the same.

Only the location of the sampling is changed.

We briefly remark that the trellis depicted is easily scalable. For r = 2k, we have one node

for each pair (a, i) where a is a binary k-tuple and 0 ≤ i ≤ k. Node (a, 0) corresponds to the

signal Ψa and there is a wire from node (a, i) to (b, i + 1) when the binary k-tuples a and b

agree in all but possibly the ith position.
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• Sampler: The sampler for the original binary XOR-tree circuit output would be implemented

as a simple D-flip flop with its clock input set to a signal switching at the sampling frequency.

The problem with this approach is, as before, we have a single point of failure. Since we want

to protect the circuit from invasive attacks, the only way to get around this problem is to

sample all output lines in the expanded tree by simultaneously using r flip-flops, and then

connecting their output lines to the chip pins. Consequently, the number of output lines may

become too excessive even for a moderate number of rings. In this case, one may employ a

strategy where a pruned expanded trellis is employed which would have a reduced number of

output lines. Such a circuit can be easily constructed by removing some of the output lines

from the trellis in Figure 5 as well as the sub-circuits feeding them in the diagram. In the

resulting design, the weakest gates in the circuit will again be those gates at the output stage.

• Resilient function: If the resilient function is implemented as part of post-processing in

software then there is no problem since we assume that the post-processing step is performed

on a trusted system. Otherwise, similar precautions need to be taken to implementation of

the resilient function as well. Since the resilient function, in general, will have an irregular

structure compared to the XOR-tree, making it tolerant to invasive attacks is more of an

ad hoc process. For example, one may use redundant logic expressions (by avoiding logic

minimization) as a means of making it fault-tolerant. On the other hand, if cyclic codes are

employed, the resilient function may be realized by using an LFSR circuit. If this is the case,

taking advantage of the regularity, one may easily replicate the storage elements to achieve

fault-tolerance.

10 Putting it all together – a sample design

In this section we develop a sample design by picking realistic parameters. We quantify the entropy

rate and the throughput of the random bit stream generated by our circuit.

If our rings use 13 inverters, then experimental evidence shows that the period is roughly 25
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ns and the standard deviation for the jitter random variable is σ = 0.5 ns [2]. So σ = 0.02T .

Now we want all samples to be within 1
4σ of the mean of some jitter event. So, with tolerance

(µ − 1
4σ, µ + 1

4σ), we can say that 1% of the spectrum is filled with jitter for each ring. So we

have N = 100 urns in our combinatorial model. We note that the tolerance 1
4σ ensures that each

generated bit will yield at least 0.97 bits of entropy per sampled bit.

With these parameters, the formulae developed in Section 6.4 (or last row, third entry in Table

5) tell us that r = 114 rings will be enough to fill at least 0.60N of the urns with probability at

least 0.99. The output is sampled from the 114 rings and fed into a resilient function. Now, for

our resilient function, we employ a [256, 16, 113]-code which is a known extended BCH code [14]. 5

This means that the samples are grouped into blocks of 256 bits and fed into the resilient function

which returns only 16 bits. The code we selected has minimum distance d = 113 and therefore the

resilience of the associated resilient function is t = 112. With a block length of 256 and fill rate of

0.60, out of the 256 bits which go into our resilient function (1− 0.60) · 256 = 102.4 ≈ 103 bits will

be deterministic. Since our resilient function can tolerate up to 112 corrupted bits, the design has

an additional margin to resist additional (adversarial and non-adversarial) faults and errors of up

to 9 bits. The error margin or tolerance may be increased by either increasing the number of rings

or by using an error-correcting code with larger minimum distance.

The output is 16 bits per each 256 bits sampled. These 16 bits each have 0.97 bits of entropy.

Since the frequency of the circuit is 1
25ns = 40 Mhz, this model gives us a random stream with bit

rate of 16
25640 = 2.5 Mbps where each bit carries 0.97 bits of entropy. Thus, with modest parameters,

we obtain a rather fast random bit generator with provably secure behavior.

11 Conclusion

In this work we have outlined the design of a true random number generator which can be built

using purely digital logic. We developed design principles that lead to a small footprint design.
5Although there are many choices for the code we use as our resilient function as discussed above, we choose here

a good cyclic code which is not a simplex code.
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The elements are simple to analyze and implement. At the same time, our scheme allows one to

increase fault tolerance of the random bit generator against active adversaries to any desired level.

One rare feature of the design is that it is given in a framework which allows one to exactly quantify

the performance and the degree of resilience of the design. We identify further experimentation,

especially across a variety of reconfigurable (FPGA, CPLD) and ASIC platforms, as future work.
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Appendix

f

p 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.50 37 44 51 57 66 74 88 107 126 179

0.55 38 44 52 57 67 75 89 109 128 183

0.60 38 45 53 58 68 76 91 111 131 188

0.65 39 46 53 59 69 78 93 113 134 194

0.70 39 46 54 60 71 79 94 116 137 199

0.75 40 47 55 61 72 80 96 118 140 206

0.80 41 48 56 63 74 82 99 121 144 213

0.85 42 49 58 64 75 84 101 125 149 223

0.90 43 51 59 66 78 87 105 130 155 235

0.95 45 53 62 69 81 91 110 137 164 255

0.99 49 57 68 75 89 100 121 152 185 299

Table 4: For the case N = 52 urns shows the number n of rings necessary to fill at least fN of the

urns with probability at least p.
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f

p 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.50 70 81 93 106 122 140 163 192 234 307

0.55 71 82 94 108 123 142 165 195 237 312

0.60 72 83 95 109 125 144 167 197 241 317

0.65 73 84 96 110 126 145 169 200 244 323

0.70 73 85 97 111 128 147 171 203 248 329

0.75 74 86 98 113 129 149 174 206 253 336

0.80 75 87 100 114 131 152 177 210 258 344

0.85 77 88 101 116 134 155 180 214 263 354

0.90 78 90 104 119 137 158 185 220 271 366

0.95 81 93 107 123 141 164 191 228 283 386

0.99 86 99 114 131 151 175 205 246 307 427

Table 5: For the case N = 100 urns shows the number n of rings necessary to fill at least fN of

the urns with probability at least p.
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