

Implementing Closed-Form Expressions on FPGAs Using the NAL, with

Comparison to CUDA GPU and Cell BE Implementations

Robin Bruce
1,3

, Javier Setoain
2
, Richard Chamberlain

3
, Malachy Devlin

3
, Rosa M. Badia

4

1
Institute for System Level Integration,

2
Universidad Complutense de Madrid,

3
Nallatech Ltd,

4
Barcelona Supercomputing

Center

robin.bruce@sli-institute.ac.uk, jsetoain@pdi.ucm.es, r.chamberlain@nallatech.com, m.devlin@nallatech.com,

rosa.m.badia@bsc.com

Abstract

This paper outlines the Nallatech Accelerator Layer

(NAL) and its relationship to Intel’s Accelerator

Abstraction Layer. The NAL is looked at in its academic

context. Hardware platforms that support the NAL are

discussed: the Nallatech H101, the Intel FSB-FPGA

Module and the BenOne PCIe. The Intel QuickAssist

Technology initiative and its associated Accelerator

Abstraction Layer (AAL) are introduced.

To demonstrate the NAL system, two closed-form

expressions are implemented. These functions are single-

precision floating-point, and make use of arithmetic

operations and elementary functions. The functions

selected were the probability density function (PDF) and

the Black-Scholes-Merton options pricing formula (BSM).

These functions were implemented on a dual-core

Opteron, a Nallatech H101 card using the NAL, a

Nallatech BenOne PCIe card, an NVIDIA G80 using

CUDA and a Cell BE system. The GPU system showed

the best silicon performance for the implementation of

these kernels. Including data transfer times, the BenOne

PCIe had the highest performance.

1. Introduction

A general-purpose reconfigurable computer uses

programmable logic for its principal processing elements.

The concept of a reconfigurable computer is credited to

Gerald Estrin who first described the concept in 1960 [1].

Reconfigurable computers today use field-programmable

gate arrays (FPGAs) as their programmable logic element.

Though not designed with reconfigurable computers in

mind, SRAM-based FPGAs from Xilinx and Altera

provide the most practical mix of configurability, density,

performance, availability and affordability. Silicon

architectures intended to be better suited to reconfigurable

computing have been conceived, an example being

Ambric’s processor array [2]. However, their long-term

commercial viability is not proven. FPGAs are capable of

extraordinarily high performance in certain areas of

computation when compared to conventional commodity

microprocessors. El-Ghazawi et al give an overview of the

state of the art in a recent paper [3]. Speedups of between

1 and 4 orders of magnitude are reported in the areas of

DNA and protein sequencing and in cryptographic secret-

key deduction for a range of ciphers. These applications

operate at the bit-manipulation level. FPGAs are

undoubtedly the most capable commodity devices for such

parallel, bit-manipulation applications. Similarly, FPGAs

can lag commodity microprocessors by orders of

magnitude in applications that are inherently serial and

iterative in execution, given the commodity

microprocessor’s ~15x advantage in clock rate, and its

unparalleled on-chip SRAM memory structure.

Figure 1 below gives a graphical representation of the

relative advantages of FPGAs when compared to stored-

program processors, of which commodity microprocessors

are a subclass. This representation is the authors’

reinterpretation of Cantle’s view on the subject [4].

Cantle’s view was itself influenced by a project of the US

Air Force Research Laboratory’s Advanced Computing

Technology Branch (IFTC), which looked at advanced

computing technologies for novel information processing

paradigms [5]. The diagram shows the efficiency of a

selection of modern processing technologies for

application data types that range from bit-level processing

to symbolic processing. Efficiency is an admittedly

subjective composite of size, weight, energy consumption,

absolute performance and time to solution. The diagram

demonstrates how, with each generation, stored-program

processors and FPGAs are evolving from their respective

symbolic and bit-level roots to become ever more capable

vector/streaming processors.

Figure 1: FPGAs versus stored-program
processors

Researchers who have worked with reconfigurable

computers over the last two decades have reported on the

perennial difficulties in programming them. Many papers

have been published on these difficulties and in the efforts

and progress being made to overcome them [6],[7]. The

fundamental problem in programming reconfigurable

computers is in how to abstract the complexities of

designing hardware. The aim is to have a process that

resembles software development in its program

development and debug, without excessively sacrificing

performance.

This paper looks at the Nallatech Accelerator Layer

(NAL). The NAL is a set of C++ classes that functions as

a system-level design environment for Nallatech

reconfigurable computing platforms. The NAL was

designed to complement Intel’s Accelerator Abstraction

Layer (AAL) as a programming environment for the FSB-

FPGA accelerator. The FSB-FPGA is a reconfigurable

computing platform that has been developed in a

partnership between Intel, Nallatech and Xilinx, and a

separate partnership between Intel, XtremeData and

Altera. The FSB-FPGA and the AAL are components in

Intel’s wider QuickAssist technology intitiative. The Intel

AAL provides consistent libraries and a consistent

development interface to hardware accelerators, to allow

software portability between accelerators. In addition to

Intel AAL compatibility, the Nallatech Accelerator Layer

was designed with backwards compatibility to Nallatech’s

FUSE runtime services API and Nallatech’s hardware

products such as the H101 FPGA-based accelerator, and

BenOne PCIe. Nallatech’s high-level language compiler

DIME-C is a prominent component of the NAL. It allows

for the compilation of ANSI C code to VHDL targeted at

Xilinx FPGAs. DIME-C is discussed in greater detail in a

previous paper [8].

2. Related Work

The design goals of the Nallatech Accelerator Layer

(NAL) are mirrored by those of the USURP project [9].

Holland et al recognize that “the current reliance on

custom hardware wrappers and proprietary software APIs

is detrimental to the efficiency of FPGA-accelerated

application development”. To overcome the custom

hardware wrappers problem, the NAL automatically

generates the HDL code that bridges the gap between an

algorithm implementation and the hardware-driver

boundary. The proprietary software API problem is

addressed firstly by abstracting away the underlying

runtime service APIs within the NAL, and secondly by the

development of the Intel AAL runtime service API, which

aims to provide a vendor-neutral API for accelerators in

Intel-based platforms. The USURP framework is intended

by its developers to help lay the foundation for a standard

API for the FPGA industry. This would place the AAL

API layer below the USURP software API in the

abstraction hierarchy.

Andrews et al have developed hthreads [10]. The

authors advocate managing the co-operation of software

and hardware in reconfigurable computers by having

asynchronous software and hardware threads that interact

as peers, with shared global memory. POSIX threads

(pthreads) are the basis for their work to which they have

added hardware threads and named the result hthreads.

The authors are looking to take operating systems and

middleware layer abstraction across the CPU/FPGA

boundary and into the FPGA itself. The hthreads system is

limited to a single chip, with the microprocessor located

on the FPGA die. In the systems the NAL targets, the host

microprocessor or microprocessors are separated from the

FPGA fabric by a communications channel, such as PCI-

X or the Intel FSB. There are similarities in approach to

hthreads, and in many ways a NAL-implemented

accelerator functional unit (AFU) behaves as a hardware

thread. Certainly, hardware and software threads in the

NAL communicate through shared memory, in a zero-

copy fashion.

A team of researchers, based primarily at Northeastern

University, has developed Vforce [11] (VSIPL++ for

Reconfigurable Computing). Vforce is designed to allow

the same application code to run on different

reconfigurable computing platforms, and to permit the

runtime binding of applications to hardware. The authors

believe that application-level code needs to be separated

from platform-specific code, so that no hardware-specific

code is required in the application code. Vforce is based

on VSIPL++, the Vector, Signal and Image Processing

Library, which provides an object-oriented library of

commonly used signal and image processing algorithms

via a C++ API. VSIPL++ is a standard API designed to

provide application-level portability between

microprocessor-based platforms. NAL complements the

Vforce approach in that it is primarily aimed at providing

a single source environment for the development of

reconfigurable computing accelerated kernels, inclusive of

bitstream generation. There is however significant overlap

between the aims of Vforce, and the aims of the Intel

AAL. Vforce remains unique in its links to VSIPL++, and

its neutrality with respect to microprocessor vendor.

3. NAL-Compatible Hardware Platforms

The Nallatech H101 card is shown below in Figure 2. The

card accommodates either a Xilinx Virtex-4 LX100 or

LX160 as the user FPGA. The card connects with a host

computer via the PCI-X interface. The NAL supports the

H101 card. The non-expert version of the NAL will allow

a user to interface DIME-C compatible ANSI C code with

a host C++ program. The DIME-C either runs in

emulation mode on the host processor, or it is

implemented on the FPGA hardware, with communication

occurring via the PCI-X interface. When communicating

across the PCI-X interface, the NAL abstracts away the

details of the underlying FUSE Application Programming

Interface (API). The FUSE API handles all aspects of

finding, registering and binding the H101 accelerator card

as well as managing the DMA transfers across the PCI-X

interface.

Figure 2 – Nallatech H101 card

The NAL is also compatible with the Nallatech

BenOne PCIe platform. The BenOne can host a number of

Nallatech DIME-II modules, giving users a range of

FPGA, memory and I/O options in building a

reconfigurable computing platform. The BenOne PCIe has

a full duplex communications bandwidth of 1 Gbyte/s

Figure 3 below shows an abstraction model of the FSB-

FPGA accelerator module, connected by a front-side bus

(FSB) connection to its Intel Xeon host processor via

shared system memory. In the diagram, elements that are

developed by the end user or a third-party library

developer are shown in white boxes. Light grey denotes

elements for which Intel is responsible, or Intel and Xilinx

in the case of the Accelerated Hardware Module (AHM)

core that manages communication across the FSB

connection. Dark grey shows elements for which

Nallatech is responsible. Elements in dashed-line boxes

are optional elements in the construction of an FPGA-

accelerated application. Section 5 gives more detail of the

hierarchy on the FPGA in the case of NAL-implemented

acceleration.

Figure 3 – FSB-FPGA abstraction model

Figure 4 below shows the common and distinguishing

elements of the FSB-FPGA and H101 hardware platforms.

Intel Xeon

System
Memory

FSB-FPGA Module

Application

Accelerated Function Library

Nallatech Accelerator Layer (NAL)

Accelerator Abstraction Layer (AAL)

Driver

FSB

FSB

User
Space

Kernel
Space

Workspace

AHM Core

AFU

Figure 4 – Comparison of FSB-FPGA and H101
platforms

4. Intel Accelerator Abstraction Layer

(AAL)

This section summarizes publicly-available material on

the AAL [12],[13].

At present, accelerator vendors must develop their

own platform-level services. This adds to the cost of

developing accelerators, and prevents inter-accelerator

migration by users. The AAL defines common protocols

for communicating data and instructions to and from FSB-

FPGA accelerators, as well as common policies for

managing memory and dealing with exceptions. The AAL

handles canonical functionalities. Discovery, registration,

and binding are examples of canonical functionalities. The

AAL is intended to remain constant in the face of

unforeseen developments in hardware accelerators. The

AAL programming model will also allow an accelerator to

be shared among multiple applications. In addition, the

AAL does not place limits on the number of threads or

cores, meaning that it is thread and multi-core safe. The

AAL has two major components: a common Unified

Accelerator Interface (UAI) and Accelerator Abstraction

Services (AAS). Intel aim to provide compatibility for the

AAL with the most commonly used operating systems and

programming environments. Applications will have access

to a range of acceleration technologies without requiring

any changes at the application level. For FSB-coupled

accelerators Intel will provide register transfer logic

(RTL) and drivers necessary to develop FSB solutions.

The key features of the AAL are:

• A high-performance, low-level software framework to

support communications between the CPU and the

accelerator

• Optimal management of shared memory

• Zero-copy memory transfer between host and FPGA

module

• Shared memory blocks are mapped and locked into

user space and accessible to the accelerator module

• Accelerator developers freed from developing the

optimal software stack for each OS

• Compatible with the popular programming

environments and languages

• Accelerated application is insulated from the

acceleration technology, so it is possible to migrate

from one technology to another

• Allows for portable application domain-specific APIs

to abstract away hardware complexities and

specificities

• Allows lower level service API access, for lower level

interactions with hardware

• AAL configuration database manages bitstreams and

associated metadata of accelerated functional units

• First hardware platform for the AAL is the FSB-FPGA

range of accelerators

5. Nallatech NAL

The NAL is a set of C++ classes that functions as a

system-level design environment for Nallatech

reconfigurable computing platforms. The NAL approach

permits the system-level modeling of multiple DIME-C

blocks, something that in the previous DIMETalk-based

system could not be reliably modeled at the software

level. Figure 5 shows how the NAL sits atop the AAL. In

this diagram, the AAL is split into its two components, the

Accelerator Abstraction Services (AAS) and the

Accelerator Interface Adaptor (AIA). This diagram shows

the shim layer that sits between the user side of the FSL

interface. The shim layer consists of VHDL generated at

compile time that interfaces between the FSL interface

and the DIME-C interface buffers that vary with the

function of the DIME-C block.

The NAL allows for mixed software-hardware

applications to be written from a single source

environment. The computational kernel to be accelerated

on the FPGA is written in the DIME-C compatible subset

of ANSI C. Code that represents the system-level design

on the FPGA is written using the relevant NAL C++

classes. The system-level design process connects

computational kernels to each other and to memory

resources such as FIFOs and memory blocks. All other

aspects of communication from host computer to attached

FPGA accelerator are also written using the NAL’s C++

classes. This same C++ environment is where the user can

write conventional application code to run on the

microprocessor, in parallel to the FPGA accelerator.

PCI-X/
PCIe

• DIME-C
Compatible

• Unified Object-
Based
Programming

• Software
Emulation

• C++ FPGA
Subsystem
Design

• PCI-X/PCIe
Bus

• FUSE API

• DIMETalk

• Virtex 4

• 2006 Vintage
(PCI-X)

• 2008 Vintage
(PCIe

• Zero-Copy Data
Transfer

• FSB Bandwidth

• Master Mode

• AAL

• Virtex 5

• 2008 Vintage

FSB-
FPGA

Figure 5: System overview of an application
using an FSB-FPGA accelerator module

Table 1 below shows the elements that makes up the

Nallatech Accelerator Layer non-expert tool flow.

Table 1: Elements of non-expert tool flow

Nallatech

Accelerator

Library

Nallatech accelerator libraries required

for creating a new AFU.

Board package

libraries

Nallatech Accelerator Library board

packages to support all available

accelerators.

Xilinx FSB

Interface

AFU FSB interface netlist provided by

Xilinx.

Shim Layer The shim interface provides a more

convenient interface to the FSB.

Makefile Makefile for creating bitstream for

appropriate accelerator technology.

DIME-C DIME-C compiler.

XML to

VHDL binary

Converts system XML description to

equivalent VHDL.

AAL &

Drivers

The AAL will be used to control the

host interface software and includes the

device drivers for communication to the

FSB module.

6. Closed-Form Expression Implementation

As examples of the type of application that can be

implemented using only the NAL high-level design

environment and its associated low-level libraries now

follows.

Two closed-form mathematical expressions were

implemented using DIME-C, the Probability Density

Function and the Black-Scholes-Merton options pricing

formula. These functions are closed form in the sense that

the function outputs depend only on their input and they

can be computed using standard arithmetic operators and

elementary functions. The performance results for the

implementation of these functions is given for two

Nallatech cards compatible with the NAL, the PCI-X

H101 card, with a Xilinx Virtex-4 LX160 FPGA and the

PCI Express BenOne card with a BenADC-3G module,

also with an LX160 FPGA. To implement the functions

on the FPGA, the Nallatech math library was used [14].

The same kernel source code used for the DIME-C code

was recompiled for three other architectures.

The first is a pure software compilaton running on a

dual-core AMD Opteron 280 2.4 GHz with 2GiB of RAM

running Windows XP with the gcc 3.4.2 compiler. The

implementation is multithreaded using pthreads to make

best use of the two cores on the processor die. The

programs ran with real-time priority to increase

performance and reduce OS interference, and the results

were averaged over multiple runs. To the authors’ best

knowledge the kernel code is not structured in manner that

would disadvantage the microprocessor. In fact, it has

been the authors’ experience that kernel code restructured

with the DIME-C compiler in mind has actually improved

software performance. When code is written in a manner

that benefits a vectorizing compiler such as DIME-C, it

seems logical that it would also improve caching

The second alternative platform was an NVIDIA G80

GPU platform. CUDA was used to program the device.

The GPU card was attached via the PCI Express bus,

providing a nominal 1.6 GBytes/s data transfer bandwidth.

The card had 768MiB of RAM. The G80 GPU used

supports CUDA capability 1.0, meaning that overlapped

memory transfer and computation were not possible, as is

the case with newer capability 1.1 cards. Given that data

transfer time dominated in calculations, this had minimal

effect on the results.

The third and final architecture targeted was an IBM

Cell blade with 4 Cell BE processors and 1 GiB of RAM,

which was programmed using the CellSs high-level

language framework [15].

In all the implementations presented here, a single

processing die was used, i.e. one LX160 FPGA, one dual-

core processor, one Cell BE processor and one G80 GPU.

All implementations used single-precision IEEE754

format floating-point numbers and operators. Although all

used the IEEE754 format, the GPU, Cell and FPGA

 DIME-C Design

Low- Level Drivers

implementations are not fully compliant to the IEEE754

standard. It is not known to the authors if the Opteron

carried out the single-precision operations to the full

IEEE754 specification, though support for denormal

numbers is presumed.

The scenario for the results presented here is that

there is a fictional application running on the host

processor(s) that has a constant stream of input values for

which its need output values from the closed-form

function implemented on the attached accelerator. The

throughput measurement in terms of mega operations per

second (MOPS) is desired. Results are presented both

taking bandwidth limitations into account, to show the

performance the host application would experience, and

without bandwidth limitations to show the silicon

potential that could be tapped with higher bandwidth

interconnect. For both of the functions implemented, there

are inputs that are considered to be parameters, as they

require updating so irregularly as to make a negligible

impact on the data transfer bandwidth consumption.

The first closed-form expression implemented was

the probability density function, shown below in equation

(1). On the LX160 FPGAs targeted in both the H101 and

BenOne implementations, six probability engines could

fit, running at 100 MHz. The units are fully-pipelined,

giving an aggregate throughput potential of 600 MOPS.

However, given the bandwidth of the PCI-X and PCI

express connection between the FPGA boards and the

microprocessor system, the engines cannot be kept busy.

For each result for this function, 4 bytes of input must be

transferred from the host to the attached accelerator, and

four bytes of output must be transferred back to the host.

2

2

2

)(

2

1
),,(σ

µ

πσ
σµ

−
−

=

x

exP (1)

The second function implemented was the Black-Scholes-

Merton options pricing formula shown below in equation

(2). The formula gives the price C of a European call

option with exercise price K on a stock currently trading at

price S, i.e., the right to buy a share of the stock at price K

after T years. The constant risk-free interest rate is r, and

the constant stock volatility is σ.

Tdd

T

TrKS
d

deKdSTSC rT

⋅−=

⋅

⋅++
=

Φ⋅⋅−Φ⋅= −

σ

σ

σ

12

2

1

21

)2()ln(

)()(),(

(2)

Φ is the standard normal cumulative distribution

function, shown in equation (3). The error function,

though not theoretically closed form, can be adequately

evaluated in single-precision arithmetic by means of a

Taylor expansion, making it closed-form from a

computational perspective.

















+=Φ

2
erf1

2

1
)(

x
x (3)

In the implementations we assume that there is a large

portfolio of options on a relatively small number of

stocks. This is realistic, as there are only a limited number

of openly-traded securities (e.g. IBM common stock) on

which a large number European-style options can be

written. For the FPGA implementation, two such engines

could fit onto the LX160 FPGA, each fully pipelined

running at 100MHz, for a total potential throughput of

200 MOPS. For each execution of the function, 8 bytes of

input data are written from the host to the accelerator, and

4 bytes of output data are written from the accelerator to

the host.

7. Results

The results are shown below in Table 2. They show

that the Opteron had the weakest performance for the

functions. The GPU had the strongest silicon

performance, the performance discounting data transfer.

When taking into account the data transfer, then the

outcome depended on the method of interconnect used.

Amongst the accelerators, the PCI-X H101 FPGA

accelerator card had the lowest overall, transfer-inclusive

performance, followed by the Cell Processor and the

GPU, with the BenOne implementation coming out on

top. Cell had the lowest silicon potential of the

accelerators, but was most balanced in terms of silicon

potential and data transfer bandwidth.

 Table 2 – Peak Streaming Performance for
Various Architectures

Probability Density

Function

Black Scholes

Merton

Without

Data

Transfer

(MOPS)

With

Data

Transfer

(MOPS)

Without

Data

Transfer

(MOPS)

With

Data

Transfer

(MOPS)

Opteron N/A 4.75 N/A 3.4

H101

PCI-X

(LX160)

600 74.4 200 49

Cell BE 195 189 27.7 26.2

G80 5959 205 1276 110

BenOne

PCIe

(LX160)

600 250 200 125

8. Conclusions

The Nallatech Accelerator Layer (NAL), a high-level

programming framework for Nallatech FPGA accelerator

platforms, has been presented. The relationship of the

NAL to Intel’s Quickassist initiative and its Accelerator

Abstraction Layer (AAL) have been detailed. Relevant

comparisons have been made to existing academic efforts

in this area.

The results indicate that NVIDIA GPU silicon

outperforms FPGA fabric for the computation of closed-

form mathematical expressions on large datasets. Both

outperformed the Cell BE processor in this case, though

the authors do not feel confident to make generalized

conclusions about this result. All three accelerator

technologies significantly outperformed the Opteron

processor. For both the FPGA and the GPU, the

performance of the accelerators was not limited by the

silicon but by the interconnect. It is reasonable to expect

this situation to persist with evolutions in GPUs, FPGAs

and interconnects. In the results presented here, FPGAs

have outperformed GPUs, in the case of the BenOne. This

can be attributed to the higher data transfer bandwidth of

the BenOne card versus the G80 graphics card used. In

concluding on the relative merits of FPGAs and GPUs for

the implementation of closed-form expressions such as are

presented here, one may wish to consider power

consumption (significantly lower for FPGAs), compile

time (significantly higher for FPGAs), cost (lower for

GPUs), ability to connect to varied I/O (a strength of the

FPGA) and context switch times (significantly higher for

the FPGA). The functions implemented here exhibit high

levels of data-level parallelism and suit the GPU well.

FPGAs and the Cell Processor have functional parallelism

advantages not addressed in this example.

9. Future Work

It would be useful to compare performances between

FPGA, GPU, Cell and Multicore processors with respect

to their power consumption, and the error of the results

when compared to a benchmark implementation. FSB-

FPGA results are to be added in due course. Future work

might investigate improving the Cell results, with the

possible use of alternate development environments.

10. Acknowledgements

The lead author’s research is sponsored by Nallatech, and

partially funded by the UK Engineering and Physical

Sciences Research Council. The Institute for System

Level Integration and Strathclyde University, both in

Scotland, provide academic and logistical support. This

work has been also supported by the Spanish government

through the research contracts CICYT-TIN 2005/5619

and Ingenio 2010 Consolider CSD00C-07-20811

11. References

[1] G. Estrin, "Organization of Computer Systems—The Fixed

Plus Variable Structure Computer," Proc. Western Joint

Computer Conf., New York, 1960, pp. 33-40.

[2] M. Butts, A.M. Jones, and P. Wasson, “A Structural Object

Programming Model, Architecture, Chip and Tools for

Reconfigurable Computing”, Proc. 15th Annual IEEE

Symposium on Field-Programmable Custom Computing

Machines (FCCM 2007), Napa, CA, USA, 23-25 April 2007,

pp. 55-64

[3] T. El-Ghazawi, E. El-Araby, M. Huang, K. Gaj, V.V.

Kindratenko, and D. Buell, “The Promise of High-Performance

Reconfigurable Computing”, Computer, Volume 41 , Issue 2,

IEEE Computer Society Press Los Alamitos, CA, USA,

February 2008, pp. 69-76

[4] A. Cantle, “Is it Time for Von Neumann and Harvard to

Retire?”, Reconfigurable Systems Summer Insitute, National

Centre for Supercomputer Applications, Urbana-Champaign,

Illinois, USA, July 12th 2005

[5] C. Thiem, S. Drager, C. Flynn, D. Burns, and T. Renz,

“Advanced Computer Technology for Novel Information

Processing Paradigms”, Journal of Aerospace Computing,

Information, and Communication 2004, vol.1 no.7, American

Institute of Aeronautics and Astronautics, pp. 308-317

[6] V.V. Kindratenko, C.P. Steffen, and R.J. Brunner,

“Accelerating Scientific Applications with Reconfigurable

Computing: Getting Started”, Computing in Science &

Engineering, Volume 9, Issue 5, Sept.-Oct. 2007, pp. 70-77

[7] V.V. Kindratenko, R.J. Brunner, and A.D. Myers, “Mitrion-

C Application Development on SGI Altix 350/RC100”, Proc.

15th Annual IEEE Symposium on Field-Programmable Custom

Computing Machines (FCCM 2007), Napa, CA, USA, 23-25

April 2007, pp. 239-250

[8] G. Genest, R. Chamberlain, and R. Bruce, “Programming an

FPGA-Based Super Computer Using a C-to-VHDL Compiler:

DIME-C”, Proc. Second NASA/ESA Conference on Adaptive

Hardware and Systems, Edinburgh, Scotland, 5-8 Aug. 2007,

pp. 280-286

[9] B.M. Holland, J. Greco, I.A. Troxel, G. Barfield, V.

Aggarwal, and A.D. George, “Compile- and Run-time Services

for Distributed Heterogeneous Reconfigurable Computing”,

Proc. of the 2006 International Conference on Engineering of

Reconfigurable Systems & Algorithms (ERSA 2006), Las Vegas,

Nevada, USA, June 26-29, 2006, pp. 33-41

[10] D. Andrews, R. Sass, E. Anderson, J. Agron, W. Peck, J.

Stevens, F. Baijot, E. Komp, “Achieving Programming Model

Abstractions for Reconfigurable Computing”, IEEE

Transactions on Very Large Scale Integration (VLSI) Systems,

Volume 16, Issue 1, San Francisco, CA, USA, Jan. 2008,

pp.34-44

[11] N. Moore, A. Conti, M. Leeser, and L.S. King, "Writing

Portable Applications that Dynamically Bind at Run Time to

Reconfigurable Hardware," Proc. 15th Annual IEEE Symposium

on Field-Programmable Custom Computing Machines (FCCM

2007), Napa, CA, USA, 23-25 April 2007, pp. 229-238

[12] N. Palaniswamy, “Intel QuickAssist Technology”,

Technology@Intel Magazine, Volume 4, Issue 10, Intel

Corporation, May 2007

[13] I. McCallum, “Intel QuickAssist Technology

Accelerator Abstraction Layer (AAL)”, unpublished, 2007

[14] R Bruce, M Devlin, S Marshall, “An Elementary

Transcendental Function Core Library for Reconfigurable

Computing”, RSSI, Urbana-Champaign, July 17-20 2007

[15] Pieter Bellens, Josep M. Perez, Rosa M. Badia, Jesus

Labarta, "CellSs: a Programming Model for the Cell BE

Architecture," sc, p. 5, ACM/IEEE SC 2006 Conference

(SC'06), 2006

