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Abstract 

This paper outlines the Nallatech Accelerator Layer 

(NAL) and its relationship to Intel’s Accelerator 

Abstraction Layer. The NAL is looked at in its academic 

context. Hardware platforms that support the NAL are 

discussed: the Nallatech H101, the Intel FSB-FPGA 

Module and the BenOne PCIe. The Intel QuickAssist 

Technology initiative and its associated Accelerator 

Abstraction Layer (AAL) are introduced. 

To demonstrate the NAL system, two closed-form 

expressions are implemented. These functions are single-

precision floating-point, and make use of arithmetic 

operations and elementary functions. The functions 

selected were the probability density function (PDF) and 

the Black-Scholes-Merton options pricing formula (BSM). 

These functions were implemented on a dual-core 

Opteron, a Nallatech H101 card using the NAL, a 

Nallatech BenOne PCIe card, an NVIDIA G80 using 

CUDA and a Cell BE system. The GPU system showed 

the best silicon performance for the implementation of 

these kernels. Including data transfer times, the BenOne 

PCIe had the highest performance. 

1. Introduction 

A general-purpose reconfigurable computer uses 

programmable logic for its principal processing elements. 

The concept of a reconfigurable computer is credited to 

Gerald Estrin who first described the concept in 1960 [1]. 

Reconfigurable computers today use field-programmable 

gate arrays (FPGAs) as their programmable logic element. 

Though not designed with reconfigurable computers in 

mind, SRAM-based FPGAs from Xilinx and Altera 

provide the most practical mix of configurability, density, 

performance, availability and affordability. Silicon 

architectures intended to be better suited to reconfigurable 

computing have been conceived, an example being 

Ambric’s processor array [2]. However, their long-term 

commercial viability is not proven. FPGAs are capable of 

extraordinarily high performance in certain areas of 

computation when compared to conventional commodity 

microprocessors. El-Ghazawi et al give an overview of the 

state of the art in a recent paper [3]. Speedups of between 

1 and 4 orders of magnitude are reported in the areas of 

DNA and protein sequencing and in cryptographic secret-

key deduction for a range of ciphers. These applications 

operate at the bit-manipulation level. FPGAs are 

undoubtedly the most capable commodity devices for such 

parallel, bit-manipulation applications. Similarly, FPGAs 

can lag commodity microprocessors by orders of 

magnitude in applications that are inherently serial and 

iterative in execution, given the commodity 

microprocessor’s ~15x advantage in clock rate, and its 

unparalleled on-chip SRAM memory structure.  

Figure 1 below gives a graphical representation of the 

relative advantages of FPGAs when compared to stored-

program processors, of which commodity microprocessors 

are a subclass. This representation is the authors’ 

reinterpretation of Cantle’s view on the subject [4]. 

Cantle’s view was itself influenced by a project of the US 

Air Force Research Laboratory’s Advanced Computing 

Technology Branch (IFTC), which looked at advanced 

computing technologies for novel information processing 

paradigms [5]. The diagram shows the efficiency of a 

selection of modern processing technologies for 

application data types that range from bit-level processing 

to symbolic processing. Efficiency is an admittedly 

subjective composite of size, weight, energy consumption, 

absolute performance and time to solution. The diagram 

demonstrates how, with each generation, stored-program 

processors and FPGAs are evolving from their respective 

symbolic and bit-level roots to become ever more capable 

vector/streaming processors.  

 



Figure 1: FPGAs versus stored-program 
processors 

 

Researchers who have worked with reconfigurable 

computers over the last two decades have reported on the 

perennial difficulties in programming them. Many papers 

have been published on these difficulties and in the efforts 

and progress being made to overcome them [6],[7]. The 

fundamental problem in programming reconfigurable 

computers is in how to abstract the complexities of 

designing hardware. The aim is to have a process that 

resembles software development in its program 

development and debug, without excessively sacrificing 

performance. 

This paper looks at the Nallatech Accelerator Layer 

(NAL). The NAL is a set of C++ classes that functions as 

a system-level design environment for Nallatech 

reconfigurable computing platforms. The NAL was 

designed to complement Intel’s Accelerator Abstraction 

Layer (AAL) as a programming environment for the FSB-

FPGA accelerator. The FSB-FPGA is a reconfigurable 

computing platform that has been developed in a 

partnership between Intel, Nallatech and Xilinx, and a 

separate partnership between Intel, XtremeData and 

Altera. The FSB-FPGA and the AAL are components in 

Intel’s wider QuickAssist technology intitiative. The Intel 

AAL provides consistent libraries and a consistent 

development interface to hardware accelerators, to allow 

software portability between accelerators. In addition to 

Intel AAL compatibility, the Nallatech Accelerator Layer 

was designed with backwards compatibility to Nallatech’s 

FUSE runtime services API and Nallatech’s hardware 

products such as the H101 FPGA-based accelerator, and 

BenOne PCIe. Nallatech’s high-level language compiler 

DIME-C is a prominent component of the NAL. It allows 

for the compilation of ANSI C code to VHDL targeted at 

Xilinx FPGAs. DIME-C is discussed in greater detail in a 

previous paper [8]. 

 

2. Related Work 
 

The design goals of the Nallatech Accelerator Layer 

(NAL) are mirrored by those of the USURP project [9]. 

Holland et al recognize that “the current reliance on 

custom hardware wrappers and proprietary software APIs 

is detrimental to the efficiency of FPGA-accelerated 

application development”. To overcome the custom 

hardware wrappers problem, the NAL automatically 

generates the HDL code that bridges the gap between an 

algorithm implementation and the hardware-driver 

boundary. The proprietary software API problem is 

addressed firstly by abstracting away the underlying 

runtime service APIs within the NAL, and secondly by the 

development of the Intel AAL runtime service API, which 

aims to provide a vendor-neutral API for accelerators in 

Intel-based platforms. The USURP framework is intended 

by its developers to help lay the foundation for a standard 

API for the FPGA industry. This would place the AAL 

API layer below the USURP software API in the 

abstraction hierarchy. 

Andrews et al have developed hthreads [10]. The 

authors advocate managing the co-operation of software 

and hardware in reconfigurable computers by having 

asynchronous software and hardware threads that interact 

as peers, with shared global memory. POSIX threads 

(pthreads) are the basis for their work to which they have 

added hardware threads and named the result hthreads. 

The authors are looking to take operating systems and 

middleware layer abstraction across the CPU/FPGA 

boundary and into the FPGA itself. The hthreads system is 

limited to a single chip, with the microprocessor located 

on the FPGA die. In the systems the NAL targets, the host 

microprocessor or microprocessors are separated from the 

FPGA fabric by a communications channel, such as PCI-

X or the Intel FSB. There are similarities in approach to 

hthreads, and in many ways a NAL-implemented 

accelerator functional unit (AFU) behaves as a hardware 

thread. Certainly, hardware and software threads in the 

NAL communicate through shared memory, in a zero-

copy fashion.  

A team of researchers, based primarily at Northeastern 

University, has developed Vforce [11] (VSIPL++ for 

Reconfigurable Computing). Vforce is designed to allow 

the same application code to run on different 

reconfigurable computing platforms, and to permit the 

runtime binding of applications to hardware. The authors 

believe that application-level code needs to be separated 

from platform-specific code, so that no hardware-specific 

code is required in the application code. Vforce is based 

on VSIPL++, the Vector, Signal and Image Processing 

Library, which provides an object-oriented library of 

commonly used signal and image processing algorithms 

via a C++ API. VSIPL++ is a standard API designed to 

provide application-level portability between 

microprocessor-based platforms.  NAL complements the 

Vforce approach in that it is primarily aimed at providing 

a single source environment for the development of 

reconfigurable computing accelerated kernels, inclusive of 



bitstream generation. There is however significant overlap 

between the aims of Vforce, and the aims of the Intel 

AAL. Vforce remains unique in its links to VSIPL++, and 

its neutrality with respect to microprocessor vendor.  

 

3. NAL-Compatible Hardware Platforms 
 

The Nallatech H101 card is shown below in Figure 2. The 

card accommodates either a Xilinx Virtex-4 LX100 or 

LX160 as the user FPGA. The card connects with a host 

computer via the PCI-X interface. The NAL supports the 

H101 card. The non-expert version of the NAL will allow 

a user to interface DIME-C compatible ANSI C code with 

a host C++ program. The DIME-C either runs in 

emulation mode on the host processor, or it is 

implemented on the FPGA hardware, with communication 

occurring via the PCI-X interface. When communicating 

across the PCI-X interface, the NAL abstracts away the 

details of the underlying FUSE Application Programming 

Interface (API). The FUSE API handles all aspects of 

finding, registering and binding the H101 accelerator card 

as well as managing the DMA transfers across the PCI-X 

interface. 

 

 

Figure 2 – Nallatech H101 card 

The NAL is also compatible with the Nallatech 

BenOne PCIe platform. The BenOne can host a number of 

Nallatech DIME-II modules, giving users a range of 

FPGA, memory and I/O options in building a 

reconfigurable computing platform. The BenOne PCIe has 

a full duplex communications bandwidth of 1 Gbyte/s 

Figure 3 below shows an abstraction model of the FSB-

FPGA accelerator module, connected by a front-side bus 

(FSB) connection to its Intel Xeon host processor via 

shared system memory. In the diagram, elements that are 

developed by the end user or a third-party library 

developer are shown in white boxes. Light grey denotes 

elements for which Intel is responsible, or Intel and Xilinx 

in the case of the Accelerated Hardware Module (AHM) 

core that manages communication across the FSB 

connection. Dark grey shows elements for which 

Nallatech is responsible. Elements in dashed-line boxes 

are optional elements in the construction of an FPGA-

accelerated application. Section 5 gives more detail of the 

hierarchy on the FPGA in the case of NAL-implemented 

acceleration. 

 

 

Figure 3 – FSB-FPGA abstraction model 

Figure 4 below shows the common and distinguishing 

elements of the FSB-FPGA and H101 hardware platforms. 

 

Intel Xeon  

 

System 
Memory 

 

 

FSB-FPGA Module 

Application 

Accelerated Function Library 

Nallatech Accelerator Layer (NAL) 

Accelerator Abstraction Layer (AAL) 

Driver 

FSB 

FSB 

User 
Space 

Kernel 
Space 

Workspace 

AHM Core 

AFU 



 
 

Figure 4 – Comparison of FSB-FPGA and H101 
platforms 

 

4. Intel Accelerator Abstraction Layer 

(AAL) 
 

This section summarizes publicly-available material on 

the AAL [12],[13]. 

At present, accelerator vendors must develop their 

own platform-level services. This adds to the cost of 

developing accelerators, and prevents inter-accelerator 

migration by users. The AAL defines common protocols 

for communicating data and instructions to and from FSB-

FPGA accelerators, as well as common policies for 

managing memory and dealing with exceptions. The AAL 

handles canonical functionalities. Discovery, registration, 

and binding are examples of canonical functionalities. The 

AAL is intended to remain constant in the face of 

unforeseen developments in hardware accelerators. The 

AAL programming model will also allow an accelerator to 

be shared among multiple applications. In addition, the 

AAL does not place limits on the number of threads or 

cores, meaning that it is thread and multi-core safe. The 

AAL has two major components: a common Unified 

Accelerator Interface (UAI) and Accelerator Abstraction 

Services (AAS). Intel aim to provide compatibility for the 

AAL with the most commonly used operating systems and 

programming environments. Applications will have access 

to a range of acceleration technologies without requiring 

any changes at the application level. For FSB-coupled 

accelerators Intel will provide register transfer logic 

(RTL) and drivers necessary to develop FSB solutions. 

The key features of the AAL are: 

• A high-performance, low-level software framework to 

support communications between the CPU and the 

accelerator 

• Optimal management of shared memory 

• Zero-copy memory transfer between host and FPGA 

module 

• Shared memory blocks are mapped and locked into 

user space and accessible to the accelerator module 

• Accelerator developers freed from developing the 

optimal software stack for each OS 

• Compatible with the popular programming 

environments and languages 

• Accelerated application is insulated from the 

acceleration technology, so it is possible to migrate 

from one technology to another 

• Allows for portable application domain-specific APIs 

to abstract away hardware complexities and 

specificities 

• Allows lower level service API access, for lower level 

interactions with hardware 

• AAL configuration database manages bitstreams and 

associated metadata of accelerated functional units 

• First hardware platform for the AAL is the FSB-FPGA 

range of accelerators 

 

5. Nallatech NAL 
 

The NAL is a set of C++ classes that functions as a 

system-level design environment for Nallatech 

reconfigurable computing platforms. The NAL approach 

permits the system-level modeling of multiple DIME-C 

blocks, something that in the previous DIMETalk-based 

system could not be reliably modeled at the software 

level. Figure 5 shows how the NAL sits atop the AAL. In 

this diagram, the AAL is split into its two components, the 

Accelerator Abstraction Services (AAS) and the 

Accelerator Interface Adaptor (AIA). This diagram shows 

the shim layer that sits between the user side of the FSL 

interface. The shim layer consists of VHDL generated at 

compile time that interfaces between the FSL interface 

and the DIME-C interface buffers that vary with the 

function of the DIME-C block.  

The NAL allows for mixed software-hardware 

applications to be written from a single source 

environment. The computational kernel to be accelerated 

on the FPGA is written in the DIME-C compatible subset 

of ANSI C. Code that represents the system-level design 

on the FPGA is written using the relevant NAL C++ 

classes. The system-level design process connects 

computational kernels to each other and to memory 

resources such as FIFOs and memory blocks. All other 

aspects of communication from host computer to attached 

FPGA accelerator are also written using the NAL’s C++ 

classes. This same C++ environment is where the user can 

write conventional application code to run on the 

microprocessor, in parallel to the FPGA accelerator. 
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Figure 5: System overview of an application 
using an FSB-FPGA accelerator module 

Table 1 below shows the elements that makes up the 

Nallatech Accelerator Layer non-expert tool flow.  

Table 1: Elements of non-expert tool flow 

Nallatech 

Accelerator 

Library 

Nallatech accelerator libraries required 

for creating a new AFU. 

Board package 

libraries 

Nallatech Accelerator Library board 

packages to support all available 

accelerators. 

Xilinx FSB 

Interface 

AFU FSB interface netlist provided by 

Xilinx. 

Shim Layer The shim interface provides a more 

convenient interface to the FSB. 

Makefile Makefile for creating bitstream for 

appropriate accelerator technology. 

DIME-C DIME-C compiler. 

XML to 

VHDL binary 

Converts system XML description to 

equivalent VHDL. 

AAL & 

Drivers 

The AAL will be used to control the 

host interface software and includes the 

device drivers for communication to the 

FSB module. 

 

6. Closed-Form Expression Implementation 
 

As examples of the type of application that can be 

implemented using only the NAL high-level design 

environment and its associated low-level libraries now 

follows.  

Two closed-form mathematical expressions were 

implemented using DIME-C, the Probability Density 

Function and the Black-Scholes-Merton options pricing 

formula. These functions are closed form in the sense that 

the function outputs depend only on their input and they 

can be computed using standard arithmetic operators and 

elementary functions. The performance results for the 

implementation of these functions is given for two 

Nallatech cards compatible with the NAL, the PCI-X 

H101 card, with a Xilinx Virtex-4 LX160 FPGA and the 

PCI Express BenOne card with a BenADC-3G module, 

also with an LX160 FPGA. To implement the functions 

on the FPGA, the Nallatech math library was used [14].  

The same kernel source code used for the DIME-C code 

was recompiled for three other architectures.  

The first is a pure software compilaton running on a 

dual-core AMD Opteron 280 2.4 GHz with 2GiB of RAM 

running Windows XP with the gcc 3.4.2 compiler. The 

implementation is multithreaded using pthreads to make 

best use of the two cores on the processor die. The 

programs ran with real-time priority to increase 

performance and reduce OS interference, and the results 

were averaged over multiple runs. To the authors’ best 

knowledge the kernel code is not structured in manner that 

would disadvantage the microprocessor. In fact, it has 

been the authors’ experience that kernel code restructured 

with the DIME-C compiler in mind has actually improved 

software performance. When code is written in a manner 

that benefits a vectorizing compiler such as DIME-C, it 

seems logical that it would also improve caching  

The second alternative platform was an NVIDIA G80 

GPU platform. CUDA was used to program the device. 

The GPU card was attached via the PCI Express bus, 

providing a nominal 1.6 GBytes/s data transfer bandwidth. 

The card had 768MiB of RAM. The G80 GPU used 

supports CUDA capability 1.0, meaning that overlapped 

memory transfer and computation were not possible, as is 

the case with newer capability 1.1 cards. Given that data 

transfer time dominated in calculations, this had minimal 

effect on the results.  

The third and final architecture targeted was an IBM 

Cell blade with 4 Cell BE processors and 1 GiB of RAM, 

which was programmed using the CellSs high-level 

language framework [15]. 

In all the implementations presented here, a single 

processing die was used, i.e. one LX160 FPGA, one dual-

core processor, one Cell BE processor and one G80 GPU. 

All implementations used single-precision IEEE754 

format floating-point numbers and operators. Although all 

used the IEEE754 format, the GPU, Cell and FPGA 
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implementations are not fully compliant to the IEEE754 

standard. It is not known to the authors if the Opteron 

carried out the single-precision operations to the full 

IEEE754 specification, though support for denormal 

numbers is presumed.  

The scenario for the results presented here is that 

there is a fictional application running on the host 

processor(s) that has a constant stream of input values for 

which its need output values from the closed-form 

function implemented on the attached accelerator. The 

throughput measurement in terms of mega operations per 

second (MOPS) is desired. Results are presented both 

taking bandwidth limitations into account, to show the 

performance the host application would experience, and 

without bandwidth limitations to show the silicon 

potential that could be tapped with higher bandwidth 

interconnect. For both of the functions implemented, there 

are inputs that are considered to be parameters, as they 

require updating so irregularly as to make a negligible 

impact on the data transfer bandwidth consumption.  

The first closed-form expression implemented was 

the probability density function, shown below in equation 

(1). On the LX160 FPGAs targeted in both the H101 and 

BenOne implementations, six probability engines could 

fit, running at 100 MHz. The units are fully-pipelined, 

giving an aggregate throughput potential of 600 MOPS. 

However, given the bandwidth of the PCI-X and PCI 

express connection between the FPGA boards and the 

microprocessor system, the engines cannot be kept busy. 

For each result for this function, 4 bytes of input must be 

transferred from the host to the attached accelerator, and 

four bytes of output must be transferred back to the host.  
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The second function implemented was the Black-Scholes-

Merton options pricing formula shown below in equation 

(2). The formula gives the price C of a European call 

option with exercise price K on a stock currently trading at 

price S, i.e., the right to buy a share of the stock at price K 

after T years. The constant risk-free interest rate is r, and 

the constant stock volatility is σ.  
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Φ is the standard normal cumulative distribution 

function, shown in equation (3). The error function, 

though not theoretically closed form, can be adequately 

evaluated in single-precision arithmetic by means of a 

Taylor expansion, making it closed-form from a 

computational perspective. 
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In the implementations we assume that there is a large 

portfolio of options on a relatively small number of 

stocks. This is realistic, as there are only a limited number 

of openly-traded securities (e.g. IBM common stock) on 

which a large number European-style options can be 

written. For the FPGA implementation, two such engines 

could fit onto the LX160 FPGA, each fully pipelined 

running at 100MHz, for a total potential throughput of 

200 MOPS. For each execution of the function, 8 bytes of 

input data are written from the host to the accelerator, and 

4 bytes of output data are written from the accelerator to 

the host. 

7. Results 

The results are shown below in Table 2. They show 

that the Opteron had the weakest performance for the 

functions. The GPU had the strongest silicon 

performance, the performance discounting data transfer. 

When taking into account the data transfer, then the 

outcome depended on the method of interconnect used. 

Amongst the accelerators, the PCI-X H101 FPGA 

accelerator card had the lowest overall, transfer-inclusive 

performance, followed by the Cell Processor and the 

GPU, with the BenOne implementation coming out on 

top. Cell had the lowest silicon potential of the 

accelerators, but was most balanced in terms of silicon 

potential and data transfer bandwidth. 

 

   Table 2 – Peak Streaming Performance for 
Various Architectures 

 

Probability Density 

Function 

Black Scholes 

Merton 

Without 

Data 

Transfer 

(MOPS) 

With 

Data 

Transfer 

(MOPS) 

Without 

Data 

Transfer 

(MOPS) 

With 

Data 

Transfer 

(MOPS) 

Opteron N/A 4.75 N/A 3.4 

H101 

PCI-X 

(LX160) 

600 74.4 200 49 

Cell BE 195 189 27.7 26.2 

G80 5959 205 1276 110 

BenOne 

PCIe 

(LX160) 

600 250 200 125 



8. Conclusions 

The Nallatech Accelerator Layer (NAL), a high-level 

programming framework for Nallatech FPGA accelerator 

platforms, has been presented. The relationship of the 

NAL to Intel’s Quickassist initiative and its Accelerator 

Abstraction Layer (AAL) have been detailed. Relevant 

comparisons have been made to  existing academic efforts 

in this area. 

The results indicate that NVIDIA GPU silicon 

outperforms FPGA fabric for the computation of closed-

form mathematical expressions on large datasets. Both 

outperformed the Cell BE processor in this case, though 

the authors do not feel confident to make generalized 

conclusions about this result. All three accelerator 

technologies significantly outperformed the Opteron 

processor. For both the FPGA and the GPU, the 

performance of the accelerators was not limited by the 

silicon but by the interconnect. It is reasonable to expect 

this situation to persist with evolutions in GPUs, FPGAs 

and interconnects. In the results presented here, FPGAs 

have outperformed GPUs, in the case of the BenOne. This 

can be attributed to the higher data transfer bandwidth of 

the BenOne card versus the G80 graphics card used. In 

concluding on the relative merits of FPGAs and GPUs for 

the implementation of closed-form expressions such as are 

presented here, one may wish to consider power 

consumption (significantly lower for FPGAs), compile 

time (significantly higher for FPGAs), cost (lower for 

GPUs), ability to connect to varied I/O (a strength of the 

FPGA) and context switch times (significantly higher for 

the FPGA). The functions implemented here exhibit high 

levels of data-level parallelism and suit the GPU well. 

FPGAs and the Cell Processor have functional parallelism 

advantages not addressed in this example.  

 

 

 

9. Future Work 
 

It would be useful to compare performances between 

FPGA, GPU, Cell and Multicore processors with respect 

to their power consumption, and the error of the results 

when compared to a benchmark implementation. FSB-

FPGA results are to be added in due course. Future work 

might investigate improving the Cell results, with the 

possible use of alternate development environments.  
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