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Abstract

This paper provides an extensive review of studies related to expert estimation of software development effort. The main goal and

contribution of the review is to support the research on expert estimation, e.g., to ease other researcher’s search for relevant expert

estimation studies. In addition, we provide software practitioners with useful estimation guidelines, based on the research-based

knowledge of expert estimation processes. The review results suggest that expert estimation is the most frequently applied estimation

strategy for software projects, that there is no substantial evidence in favour of use of estimation models, and that there are sit-

uations where we can expect expert estimates to be more accurate than formal estimation models. The following 12 expert estimation

‘‘best practice’’ guidelines are evaluated through the review: (1) evaluate estimation accuracy, but avoid high evaluation pressure; (2)

avoid conflicting estimation goals; (3) ask the estimators to justify and criticize their estimates; (4) avoid irrelevant and unreliable

estimation information; (5) use documented data from previous development tasks; (6) find estimation experts with relevant domain

background and good estimation records; (7) Estimate top-down and bottom-up, independently of each other; (8) use estimation

checklists; (9) combine estimates from different experts and estimation strategies; (10) assess the uncertainty of the estimate; (11)

provide feedback on estimation accuracy and development task relations; and, (12) provide estimation training opportunities. We

found supporting evidence for all 12 estimation principles, and provide suggestions on how to implement them in software orga-

nizations.

� 2002 Elsevier Inc. All rights reserved.
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1. Introduction

Intuition and judgment––at least good judgment––

are simply analyses frozen into habit and into the
capacity for rapid response through recognition.

Every manager needs to be able to analyze prob-

lems systematically (and with the aid of the modern

arsenal of analytical tools provided by management

science and operations research). Every manager

needs also to be able to respond to situations rap-

idly, a skill that requires the cultivation of intuition

and judgment over many years of experience and
training. (Simon, 1987)
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In this paper, we summarize empirical results related

to expert estimation of software development effort. The

primary goal and contribution of the paper is to support

the research on software development expert estimation

through an extensive review of relevant papers, a brief

description of the main results of these papers, and the

use of these results to validate important expert esti-

mation guidelines. Although primarily aimed at other
researchers, we believe that most of the paper, in par-

ticular the validated guidelines, are useful for software

practitioners, as well.

We apply a broad definition of expert estimation, i.e.,

we include estimation strategies in the interval from

unaided intuition (‘‘gut feeling’’) to expert judgment

supported by historical data, process guidelines and

checklists (‘‘structured estimation’’). Our main criteria
to categorize an estimation strategy as expert estimation

is that the estimation work is conducted by a person
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Table 1

Contents of paper

Section Description of topic Main results

2 Frequency of use of expert

estimation

Expert estimation is the dominant strategy when estimating software development effort

3 Performance of expert

estimation in comparison

with estimation models

The design of the empirical studies comparing expert and model-based software development effort

estimate seems to have had a strong impact on the results. It is not possible to conclude that expert

estimation or estimation model, in general, are more accurate. However, expert estimates seems to

be more accurate when there are important domain knowledge not included in the estimation

models, when the estimation uncertainty is high as a result of environmental changes not included

in the model, or when simple estimation strategies lead to relatively accurate estimates

4 Reduce situational

and human biases

Empirical validation of the expert estimation principles

1. Evaluate estimation accuracy, but avoid high evaluation pressure

2. Avoid conflicting estimation goals

3. Ask estimators to justify and criticize their estimates

4. Avoid irrelevant and unreliable estimation information

5. Use documented data from previous development tasks

6. Find estimation experts with relevant domain background and good estimation records

5 Support the estimation

process

7. Estimate top-down and bottom-up, independently of each other

8. Use estimation checklists

9. Combine estimates from different experts and estimation strategies

10. Assess the uncertainty of the estimate

6 Provide feedback and

training opportunities

11. Provide feedback on estimation accuracy and task relations

12. Provide estimation training opportunities

7 Conclusions and

further research

All 12 principles are based on empirical evidence. There is, however, still a need for more

knowledge about how to apply them in various software estimation situations
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recognized as an expert on the task, and that a signifi-

cant part of the estimation process is based on a non-

explicit and non-recoverable reasoning process, i.e.,

‘‘intuition’’. Most estimation processes have both intu-
itive and explicit reasoning elements, as reported in the

business forecasting study described in Blattberg and

Hoch (1990). In fact, even formal software development

estimation models may require expert estimates of im-

portant input parameters (Pengelly, 1995), i.e., require

non-explicit and non-recoverable reasoning. Estimation

strategies where a formal model is at the core of the es-

timation process are, however, not the topic of this paper.
There are relatively few studies discussing software

development effort expert estimation. For example, a

search for estimation papers in the journals IEEE

Transactions on Software Engineering, Journal of Sys-

tems and Software, Journal of Information and Soft-

ware Technology, and Journal of Empirical Software

Engineering resulted in exactly 100 papers on software

effort or size estimation. 1 Of these, only 17 (17%) in-
clude analyses or discussions of expert estimation;

(Kusters, 1990; Taff et al., 1991; van Genuchten and

Koolen, 1991; Betteridge, 1992; Goodman, 1992; Abdel-

Hamid et al., 1993; Londeix, 1995; Hughes, 1996; H€oost
and Wohlin, 1997; Lederer and Prasad, 1998; Ohlsson

et al., 1998; Chulani et al., 1999; Myrtveit and Stensrud,
1 Search conduced March 2002.
1999; Verner et al., 1999; Walkerden and Jeffery, 1999;

Mizuno et al., 2000; Jørgensen and Sjøberg, 2001a).

Similarly, while there have been several surveys of

software development effort estimation models, e.g.,
Mohanty (1981), Boehm (1984), Hihn and Habib-Agahi

(1991b), Fairley (1992), Heemstra (1992), Walkerden

and Jeffery (1997), Boehm and Sullivan (1999), Boehm

et al. (2000), Briand and Wieczorek (2002), we found

only one survey on expert estimation research results

(Hughes, 1996). Fortunately, there are many relevant

studies on expert estimation in other domains, e.g.,

medicine, business, psychology, and project manage-
ment. To evaluate, understand, and extend the software

development expert estimation results, we therefore try

to transfer selected expert estimation research results

from other domains.

We have structured the large amount of empirical

results around a discussion and empirical validation of

12 ‘‘best practice’’ expert estimation principles. The se-

lection of those principles was based on three sources:
(1) what we have observed as best expert estimation

practice in industrial software development projects; (2)

the list of 139 forecasting principles described in Arm-

strong (2001d); and, (3) the nine software estimation

principles described in Lederer and Prasad (1992). The

selected 12 estimation principles do, of course, not cover

all aspects of software development effort expert esti-

mation. They provide, however, a set of principles that
we believe are essential for successful expert estimation.
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Table 1 describes the topics and main result of each

section of this paper.
2. Frequency of use of expert estimation

Published surveys on estimation practice suggest that

expert estimation is the dominant strategy when esti-

mating software development effort. For example, the

study of software development estimation practice at Jet

Propulsion Laboratory reported in Hihn and Habib-

Agahi (1991a) found that 83% of the estimators used

‘‘informal analogy’’ as their primary estimation tech-

niques, 4% ‘‘formal analogy’’ (defined as expert judg-
ment based on documented projects), 6% ‘‘rules of

thumb’’, and 7% ‘‘models’’. The investigation of Dutch

companies described in Heemstra and Kusters (1991)

conclude that 62%, of the organizations that produced

software development estimates, based the estimates on

‘‘intuition and experience’’ and only 16% on ‘‘formal-

ized estimation models’’. Similarly, a survey conducted

in New Zealand, Paynter (1996), reports that 86% of the
responding software development organizations applied

‘‘expert estimation’’ and only 26% applied ‘‘automated

or manual models’’ (an organization could apply more

than one method). A study of the information systems

development department of a large international finan-

cial company Hill et al. (2000) found that no formal

software estimation model was used. Jørgensen (1997)

reports that 84% of the estimates of software develop-
ment projects conducted in a large Telecom company

were based on expert judgment, and Kitchenham et al.

(2002) report that 72% of the project estimates of a

software development company were based on ‘‘expert

judgment’’. In fact, we were not able to find any study

reporting that most estimates were based on formal es-

timation models. The estimation strategy categories and

definitions are probably not the same in the different
studies, but there is nevertheless strong evidence to

support the claim that expert estimation is more fre-

quently applied than model-based estimation. This

strong reliance on expert estimation is not unusual.

Similar findings are reported in, for example, business

forecasting, see Remus et al. (1995) andWinklhofer et al.

(1996).

There may be many reasons for the reported low use
of formal software development effort estimation mod-

els, e.g., that software organizations feel uncomfortable

using models they do not fully understand. Another

valid reason is that, as suggested in our survey in Section

3, we lack substantial evidence that the use of formal

models lead to more accurate estimates compared with

expert estimation. The strong reliance on the relatively

simple and flexible method of expert estimation is
therefore a choice in accordance with the method se-

lection principle described in ‘‘Principles of Forecast-
ing’’ (Armstrong, 2001c, pp. 374–375): ‘‘Select simple

methods unless substantial evidence exists that complexity

helps. . . . One of the most enduring and useful conclusions

from research on forecasting is that simple methods are

generally as accurate as complex methods’’. However,

even if we had substantial evidence that the formal
models led to, on average, more accurate estimates, this

may not be sufficient for widespread use. Todd and

Benbasat (2000), studying people’s strategies when

conducting decisions based on personal preferences,

found that a decision strategy also must be easier to

apply, i.e., demand less mental effort, than the alterna-

tive (default) decision strategy to achieve acceptance by

the estimators. Similarly, Ayton (1998) summarizes
studies from many domains where experts were resistant

to replace their judgments with simple, more accurate

decision rules.
3. Performance of expert estimation in comparison with

estimation models

We found 15 different empirical software studies

comparing expert estimates with estimates based on

formal estimation models. Table 2 briefly describes the

designs, the results and the, from our viewpoint, limi-

tations of the studies in a chronological sequence. We do

not report the statistical significance of the differences in

estimation accuracy, because most studies do not report

them, and because a meaningful interpretation of sig-
nificance level requires that: (1) a population (of pro-

jects, experts, and estimation situations) is defined, and,

(2) a random sample is selected from that population.

None of the reported studies define the population, or

apply random samples. The samples of projects, experts

and estimation situations are better described as ‘‘con-

venience samples’’. We use the term ‘‘expert’’ (alterna-

tively, ‘‘software professional’’ or ‘‘project leader’’) in
the description of the estimators, even when it is not

clear whether the estimation situation, e.g., experimental

estimation task, enables the expert to apply his/her ex-

pertise. Consequently, experts may in some of the

studies be better interpreted as novices, even when the

participants are software professionals and not students.

The results of the studies in Table 2 are not conclu-

sive. Of the 15 studies, we categorize five to be in favour
of expert estimation (Studies 1, 2, 5, 7, and 15), five to

find no difference (Studies 3, 4, 10, 11, and 13), and five

to be in favour of model-based estimation (Studies 6, 8,

9, 12, and 14).

Interesting dimensions of the studies are realism

(experiment versus observation), calibration of models

(calibrated to an organization or not), and level of ex-

pertise of the estimator (students versus professionals).
A division of the studies into categories based on these

dimensions suggests that the design of the empirical



Table 2

Software studies on expert estimation of effort

No. References Designs of studies Results and limitations

1 Kusters et al.

(1990)

Experimental comparison of the estimation accuracy of 14

project leaders with that of estimation models (BYL and

Estimacs) on 1 finished software project.

The project leaders’ estimates were, on average, more ccurate than the estimation models. Limitations:

(1) The experimental setting. (2) The estimation mode were not calibrated to the organization.

2 Vicinanza et al.

(1991)

Experimental comparison of the estimation accuracy of

five software professionals with that of estimation models

(function points and COCOMO) on 10 finished software

projects.

The software professionals had the most and least acc rate estimates, and were, on average, more

accurate than the models. Limitation: (1) The experim ntal setting. (2) The project information was

tailored to the estimation models, e.g., no requirement ecification was available, and (3) The estimation

models were not calibrated to the organization.

3 Heemstra and

Kusters (1991)

Questionnaire based survey of 597 Dutch companies. The organizations applying function points-based estim tion models had the same estimation accuracy as

those not applying function points (mainly estimates b sed on ‘‘intuition and experience’’) on small and

medium large projects, and lower accuracy on large p jects. The use of function points reduced the

proportion of very large (>100%) effort overruns. Limi tions: (1) The questionnaire data may have a low

quality,a (2) The relationship is not necessarily causal, .g., the organizations applying estimation models

may be different to other organizations. (3) Response ate not reported.

4 Lederer and

Prasad (1992,

1993, 1998,

2000) (reporting

the same study)

Questionnaires based survey of 112 software organiza-

tions.

The algorithmic effort estimation models did not lead o higher accuracy compared with ‘‘intuition,

guessing, and personal memory’’. Limitations: (1) The estionnaire data may have a low quality. (2) The

relationship is not necessarily causal, e.g., the organiza ons applying estimation models may be different

to other organizations. (3) Response rate of only 29%, e., potential biases due to differences between the

organizations that answered and those that did not.

5 Mukhopadhyay

et al. (1992)

Experimental comparison of the estimation accuracy of 1

expert with that of estimation models (case-based rea-

soning model based on previous estimation strategy of the

expert, function points, and COCOMO) on five finished

software projects.

The expert’s estimates were the most accurate, but no much better than the case-based reasoning

estimation model. The algorithmic estimation models OCOMO and function points) were the least

accurate. Limitations: (1) The experimental setting. (2 The algorithmic estimation models were not

calibrated to the organization. (3) Only one expert.

6 Atkinson and

Shepperd (1994)

Experimental comparison of the estimation accuracy of

experts (students?) with that of estimation models (anal-

ogy and function points) on 21 finished projects.

One of the analogy-based estimation models provided he most accurate estimates, then the expert

judgments, then the two other analogy based models, nd finally, the function point based estimation

model. Limitations: (1) The experimental setting. (2) M sing information about the expert estimators and

the models.b

7 Pengelly (1995) Experimental comparison of the estimation accuracy of

experts (activity-based estimates) with that of estimation

models (Doty, COCOMO, function point, and Putnam

SLIM) on 1 finished project.

The expert estimates were the most accurate. Limitatio : (1) The experimental setting. (2) The estimation

models were not calibrated to the organization. (3) O y one project was estimated.

8 Jørgensen

(1997)

Observation of 26 industrial projects, where five applied

the function point estimation model, and 21 were based

on expert estimates (bottom-up-based estimates).

The function point based estimates were more accura , mainly due to avoidance of very large effort

overruns. Limitations: (1) Most projects applying the f ction point model did also provided a bottom-up

expert judgment-based effort estimate and combined t ese two estimates, (2) The relationship is not

necessarily causal, e.g., the projects applying an estim ion model may be different from the other

projects.

9 Niessink and

van Vliet (1997)

Observations of 140 change tasks of an industrial software

system. Comparison of the original expert estimates with

estimates from formal estimation models (function points

and analogy).

The analogy based-model had the most accurate estim es. The expert estimates were more accurate than

the function point estimates. Limitations: (1) The exp t estimates could impact the actual effort, the

formal models could not. (2) The formal models used t whole data set as learning set (except the task to

be estimated), the expert estimates had only the previ s tasks.
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10 Ohlsson et al.

(1998)

Observation of 14 student software projects developing

the same software.

The projects applying data from the experience database had no more accurate estimates than those

which did not use the experience database. Estimation models based on previous projects with same

requirement specification (analogy-based models) did not improve the accuracy. Limitations: (1) The

competence level of the estimators (students), (2) The artificial context of student projects, e.g., not real

customer.

11 Walkerden and

Jeffery (1999)

Experimental comparison of the estimation accuracy of 25

students with that of estimation models (analogy and

regression based models) on 19 projects.

The experts’ estimates had the same accuracy as the best analogy based model and better than the

regression-based and the other analogy-based models. Estimates based on expert selected analogies, with

a linear size adjustment, provided the most accurate effort estimates. Limitations: (1) The experimental

setting. (2) The competence level of the estimators (students). (3) The project information was tailored to

the estimation models, e.g., no requirement specification was available.

12 Myrtveit and

Stensrud (1999)

Experimental comparison of the estimation accuracy of 68

software professionals with that of a combination of

expert estimates and models (analogy and regression), and

models alone on 48 COTS projects (each participant

estimated 1 project).

The models had the same or better accuracy than the combination of model and expert, and better

accuracy than the unaided expert. Limitations: (1) The experimental setting, (2) The project information

was tailored to the estimation models, e.g., no requirement specification was available.

13 Bowden et al.

(2000)

Experimental comparison of students’ ability to find

‘‘objects’’ as input to an estimation model in comparison

with an expert system.

There was no difference in performance. Limitations: (1) The experimental setting, (2) The competence

level of the estimators (students). (3) Study of input to effort estimation models. not effort estimation.

14 Jørgensen and

Sjøberg (2002b)

Observation of experts’ ability to predict uncertainty of

effort usage (risk of unexpected software maintenance

problems) in comparison with a simple regression-based

estimation model. Study based on interviews with 54

software maintainer before start and after completion of

maintenance tasks.

The simple regression model predicted maintenance problems better than software maintainers with long

experience. Limitations: (1) Assessment of effort estimation uncertainty, not effort estimation.

15 Kitchenham

et al. (2002)

Observations of 145 maintenance tasks in a software

development organization. Comparison of expert esti-

mates with estimates based on the average of two

estimation methods, e.g., the average of an expert

estimates and a formal model-based estimate. The actual

projects estimates were also compared with the estimates

from estimation models (variants of a regression+ func-

tion point-based model) based on the observed mainte-

nance tasks.

There was no difference in estimation accuracy between the average-combined and the purely expert-

based estimates. The expert estimates were more accurate than the model-based estimates. Limitations:

(1) The relationship is not necessarily causal, e.g., the project combining estimation methods may be more

complex than the other projects. (2) The expert estimates could impact the actual effort, the formal models

could not.c

aWe include this comment on both studies applying questionnaires, because questionnaire studies typically have limited control over the quality of their data, see Jørgensen (1995).
bWe were only able to locate a preliminary version of this paper (from one of the authors). It is possible that the final version provides more information about the expert estimation process.
c The authors conclude that the estimates did not impact the actual effort.
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studies has a strong impact on the result. All experi-

ments applying estimation models not calibrated to the

estimation environment (Studies 1, 2, 5 and 7) showed

that the expert estimates were the most accurate. On the

other hand, all experiments applying calibrated estima-

tion models (Studies 10–13) showed a similar or better
performance of the models. The higher accuracy of the

experts in the first experimental situation can be ex-

plained by the estimation models’ lack of inclusion of

organization and domain specific knowledge. 2 The

similar or better accuracy of the models in the second

experimental situation can be explained by the lack of

domain-specific knowledge of the experts, i.e., in Studies

10, 11 and 13 the estimators were students, and in Study
12 the estimation information seems to have been at a,

for the software professional, unfamiliar format.

Three of the studies (Studies 8, 9, and 14) where the

model-based estimates were calibrated, and both expert

and model estimates were applied by software projects,

i.e., the five observational studies (Studies 3, 4, 8, 9, and

14), show results in favour of model-based estimation.

The remaining two studies of that category (Studies 3,
and 4), report similar accuracy of the models and the

experts. A possible explanation for the similar or higher

accuracy of model-based estimates of the observational

studies is that the real-world model-based estimates

frequently were ‘‘expert adjusted model estimates’’, i.e.,

a combination of model and expert. The model-based

estimates of Study 8, for example, seem to be of that

type. A typical ‘‘expert adjusted model estimation’’––
process may be to present the output from the model to

the experts. Then, the domain experts adjust the effort

estimate according to what she/he believes is a more

correct estimate. If this is the typical model-based esti-

mation process, then the reported findings indicate that

a combination of estimation model and expert judgment

is better than pure expert estimates. More studies are

needed to examine this possibility.
The above 15 studies are not conclusive, other than

that there is no substantial evidence in favour of either

model or expert-based estimates. In particular, we be-
2 There is an on-going discussion on the importance of calibrating

an estimation model to a specific organization. While the majority of

the empirical software studies, e.g., Cuelenaere et al. (1987), Marouane

and Mili (1989), Jeffery and Low (1990), Marwane and Mili (1991),

Murali and Sankar (1997) and Jeffery et al. (2000) report that

calibration of estimation models to a specific organization led to more

accurate estimates, the results in Briand et al. (1999, 2000) suggest that

use of multi-organizational software development project data were

just as accurate. However, the results in Briand et al. (1999, 2000) do

not report from studies calibrating general estimation products. For

example, the difference between the projects on which the original

COCOMO model was developed (Boehm, 1981) and projects con-

ducted in the 1990s may be much larger than the difference between

multi-organizational and organization specific project data. The

evidence in favour of calibration of general estimation models in

order to increase the estimation accuracy is, therefore, strong.
lieve that there is a need for comparative studies in-

cluding a description of the actual use of estimation

models and the actual expert estimation processes in real

software effort estimation situations.

None of the studies in Table 2 were designed for the

purpose of examining when we can expect expert esti-
mation to have the same or better estimation accuracy

compared with estimation models. This is however the

main question. Clearly, there exist situations were the

use of formal estimation models leads to more accurate

estimates, and situations where expert estimation results

in higher accuracy, e.g., the two types of experimental

situations described earlier. To increase the under-

standing of when we can expect expert estimates to have
an acceptable accuracy in comparison with formal esti-

mation models, we have tried to derive major findings

from relevant human judgment studies, e.g., time esti-

mation studies, and describe the consistence between

these findings and the software-related results. This

turned out to be a difficult task, and the summary of the

studies described in Table 3 should be interpreted

carefully, e.g., other researchers may interpret the results
from the same studies differently.

An interesting observation is that the software de-

velopment expert estimates are not systematically worse

than the model-based estimates, such as the expert es-

timates in most other studied professions. For example,

Dawes (1986) reports that the evidence against clinical

expert judgment, compared with formal models, is

overwhelming. Many of the studies described in Table 2,
on the other hand, suggest that software development

experts have the same or better accuracy as the formal

estimation models. We believe that the two most im-

portant reasons for this difference in results are

• The importance of specific domain knowledge (case-

specific data) is higher in software development pro-

jects than in most other studied human judgment do-
mains. For example, while most clinical diseases are

based on stable biological processes with few, well-

established diagnostic indicators, the relevant indica-

tors of software development effort may be numerous,

their relevance unstable and not well-established. For

example, Wolverton (1974) found that: ‘‘There is a

general tendency on the part of designers to gold-plate

their individual parts of any system, but in the case of
software the tendency is both stronger and more diffi-

cult to control than in the case of hardware.’’ How

much a particular project member tend to gold-plate,

i.e., to improve the quality beyond what is expected by

the customer, is hardly part of any estimation model,

but can be known by an experienced project leader.

According to Hammond et al. (1987) a ‘‘fit’’ between

the type of estimation (human judgment) task and the
selected estimation approach is essential, i.e., if a task

is an expert estimation (intuition) inducing task, then



Table 3

Expert versus model estimates

Findings Strength of

evidence

Sources of evidence Consistence between the findings and the results described in

software studies?

Expert estimates are more accu-

rate than model estimates when

the experts possess (and effi-

ciently apply) important domain

knowledge not included in the

estimation models. Model esti-

mates are more accurate when

the experts do not possess (or

efficiently apply) important do-

main knowledge not included in

the estimation models.

Strong These findings are supported by ‘‘common sense’’, e.g., it is obvious that there

exists important case-specific domain knowledge about software developers

and projects that cannot be included in a general estimation model. The

finding is also supported by a number of studies (mainly business forecasting

studies) on the importance of specific domain knowledge in comparison with

models, see Lawrence and O’Connor (1996), Webby and O’Connor (1996),

Johnson (1998) and Mendes et al. (2001) for reviews on this topic. However, as

pointed out by Dawes (1986), based on studies of clinical and business

judgment, the correspondence between domain knowledge and estimation

skills is easily over-rated. Meehl (1957) summarizes about 20 studies

comparing clinical judgment with judgment based on statistical models. He

found that the models had the same or better performance in all cases. The

same negative result was reported by Dawes (1986). The results in favour of

models seems to be less robust when the object to be estimated include human

behavior, e.g., traffic safety (Hammond et al., 1987).

Yes. All studies where the models were not calibrated to the

organizational context and the estimators had domain

knowledge (Studies 1, 2, 5 and 7) report that the expert

estimates were more accurate. All studies were the estimators

had little relevant domain knowledge (due to the lack of

requirement specification, lack of experience or project

information tailored to the estimation models), and the

estimation models were calibrated to the organizational

context (Studies 10, 11, 12 and 13) report that the models had

the same or better performance.

Expert estimates are more accu-

rate than model estimates when

the uncertainty is low. Model

estimates are more accurate

when the uncertainty is high.

Medium The majority of studies (mainly business forecasting studies) support this

finding, e.g., Braun and Yaniv (1992), Shanteau (1992), O’Connor et al.

(1993), Hoch and Schkade, 1996 and Soll, 1996. However, a few studies

suggest that uncertain situations favour expert judgment, e.g., the study

described in Sanders and Ritzman (1991) on business related time series

forecasting.

Mixed. Study 3 reports that high uncertainty did not favour

the use of (function point-based) estimation model. Similarly,

Study 9 reports results suggesting that low uncertainty

(homogeneous tasks) did not favour expert estimates com-

pared with an analogy-based model. An investigation of the

available studies on this topic suggests that high uncertainty

favour the estimation models only if the uncertainty is

included in the estimation model. If, however, a new software

task is uncertain because it represents a new type of situation

not included in model’s learning data set, e.g., reflects the

development of a project much larger than the earlier projects,

then the models are likely to be less accurate. Similar results

on how uncertainty impacts the expert estimation perfor-

mance are reported in Goodwin and Wright (1990) on time

series forecasting.

Experts use simple estimation

strategies (heuristics) and per-

form just as well or better than

estimation models when these

simple estimation strategies

(heuristics) are valid. Otherwise,

the strategies may lead to biased

estimates.

Strong The results reported in Josephs and Hahn (1995) and Todd and Benbasat

(2000), describing studies on time planning and general decision tasks, indicate

that the estimation strategies used by unaided experts were simple, even when

the level of expert knowledge was high. Increasing the time pressure on the

estimators may lead the experts to switch to even simpler estimation strategies,

as reported in the business forecasting study described in Ordonez and Benson

III (1997). Gigerenzer and Todd (1999) present a set of human judgment

studies, from several domains, that demonstrate an amazingly high accuracy

of simple estimation strategies (heuristics). Kahneman et al. (1982), on the

other hand studied similar judgment tasks and found that simple strategies

easily led to biased estimates because the heuristics were applied incorrectly,

i.e., they demonstrated that there are situations where the simple estimation

strategies applied by experts are not valid. Unfortunately, it may be difficult to

decide in advance whether a simple estimation strategy is valid or not.

Yes. The software development estimation experiment re-

ported in Jørgensen and Sjøberg (2001b) suggests that the

experts applied the so-called ‘‘representativeness heuristic’’,

i.e., the strategy of finding the most similar previous projects

without regarding properties of other, less similar, projects

(see also discussion in Section 4.5). Most of the estimators

applied a valid version of this, but some of them interpreted

representativeness too ‘‘narrow’’, which lead to biased esti-

mates. Similarly, Study 14 suggests that the low performance

in assessing estimation uncertainty of experienced software

maintainers were caused by misuse of the ‘‘representativeness

heuristic’’.
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the experts provide the most accurate estimates and

when the task is a model estimation (analysis) induc-

ing task then the models provided the most accurate

estimates. As we interpret Hammond et al., many

software development effort estimation tasks are ex-

pert estimation inducing tasks.
• The performance of the software development esti-

mation models is poorer than estimation models in

most other studied human judgment domains. For

example, although there has been much research on

the shape of the software ‘‘production function’’,

i.e., relation between input and output parameters,

for several years, no agreement has been reached. Do-

lado (2001), for example, investigated the relationship
between software size and effort on 12 data sets using

regression analysis and genetic programming. He re-

ported that it was hard to conclude on a relationship

between effort and size, and that we could only expect

moderately good results of size-based estimation

models. Currently, most software development effort

estimation models are size-based.

On the other hand, we do not believe that the soft-

ware development experts are more skilled estimators

than experts in other domains. On the contrary, as re-

ported in Jørgensen and Sjøberg (2001a) and Jørgensen

and Sjøberg (2002b), the focus on learning estimation

skills from software development experience seems to be

very low.

Many of the shortcomings of expert estimation may
be reduced when following well-documented estimation

principles. In the following sections we present and

discuss 12 expert estimation principles that have im-

provement of expert estimation as goal.
4. Reduce situational and human biases

Lederer et al. (1990) describe a ‘‘rational’’ and a

‘‘political’’ model of the estimation process, based on

interviews with 17 software managers. The rational

model describes the estimation process as in most text-

books on estimation, i.e., as a rational process with es-

timation accuracy as the only goal, while the political

model describes the estimation process more as a ‘‘tug-

of-war’’ with individual motives, differing goals, and
power conflicts. While some of the biases resulting from

a ‘‘tug-of-war’’ are situational, e.g., the wish to get a

contract, others are more inherent human, e.g., the

general need for positive feedback from other people.

This section suggests six estimation principles aiming at

reducing the size of situational and human biases.

• Evaluate estimation accuracy, but avoid high evalua-
tion pressure.

• Avoid conflicting estimation goals.



M. Jørgensen / The Journal of Systems and Software 70 (2004) 37–60 45
• Ask the estimators to justify and criticize their esti-

mates.

• Avoid irrelevant and unreliable estimation informa-

tion.

• Use documented data from previous development

tasks.
• Find estimation experts with highly relevant domain

background and good estimation records. A general

framework for identifying and handling the situa-

tional and human biases is described in Meyer and

Booker (1991, pp. 44–53).

4.1. Evaluate estimation accuracy, but avoid high evalu-

ation pressure

Several human judgment studies suggest that a high

motivation for accuracy, for example when people feel

personally responsible, perceive that the estimation task

is very important or receive monetary rewards for ac-

curate estimates, actually decreases the estimation ac-

curacy (Sieber, 1974; Armstrong et al., 1975; Cosier and

Rose, 1977). Pelham and Neter (1995) suggest that this
decrease in human judgment accuracy is mainly a

problem in the case of difficult judgments, whereas high

motivation for accuracy increases the estimation accu-

racy in cases with easy judgments. Their findings are

consistent with the large number of studies on the effect

of ‘‘evaluation apprehension’’, e.g., Sanders (1984). An

increased awareness of being evaluated seems to increase

the level of so-called ‘‘dominant responses’’ (instincts)
on cost of reflective responses (Zajonc, 1965), i.e.,

evaluation leads to more instinct and less reflection.

That effect may be very robust, e.g., Zajonc et al. (1969)

measured a decrease in performance by cockroaches

completing a maze when other cockroaches were pre-

sent. When reflections and analyses are important and

the task is difficult, as in many software development

estimation situations, a strong perception of evaluation
may therefore lead to less accurate estimates.

These results are, at first sight, not consistent with the

results reported from the empirical software develop-

ment studies on this topic. For example, Lederer and

Prasad (1998) report that the factor with the highest

impact on the estimation accuracy was the use of the

estimation accuracy in the evaluation of the perfor-

mance of the software professionals. Similarly, the
software estimation studies (Weinberg and Schulman,

1974; Jørgensen and Sjøberg, 2001a) found that induc-

ing estimation accuracy as an important performance

measure improved the estimation accuracy compared

with situations where the projects were evaluated ac-

cording to, e.g., time precision or quality.

The different findings are, in our opinion, not in

conflict. There is no reason to believe that software
professionals are different from other estimators, i.e., an

increased perception of accuracy evaluation may easily
lead to decreased estimation accuracy of software pro-

jects. However, evaluations may also lead to (1) the

‘‘self-fulfilling prophecy’’ effect of software effort esti-

mates, e.g., that an over-optimistic initial estimate and a

high focus on estimation accuracy lead to actions that

make that estimate more realistic as reported in the
software project simulation study (Abdel-Hamid et al.,

1999), and (2) an increase in ‘‘self-critical thinking’’ as in

the study of first-job salary and exam results prediction

of students reported in Shepperd et al. (1996). For ex-

ample, when the accountability is high people may be

motivated to spend more time and collect more relevant

information to achieve an accurate estimate. The total

effect of accuracy evaluation, therefore, depends on the
strength of the pressure due to the accuracy evaluation,

the flexibility of the work (determining the possible effect

from the ‘‘self-fulfilling prophecy’’), and the increased

degree of ‘‘self-critical thinking’’ as a consequence of the

evaluation. Software managers should focus on achiev-

ing the benefits from accuracy evaluation, while avoid-

ing the disadvantages. In our opinion, this means that

the estimation accuracy should be part of the projects’
evaluation criteria, but that a strong pressure from ac-

curacy accountability or reward/punishment should be

avoided. In addition, means to ensure ‘‘self-critical

thinking’’ should be introduced, e.g., through estimation

checklists and described estimation processes.

4.2. Avoid conflicting goals

There are conflicting estimation goal in situations

where the estimation process is impacted by other goals

(evaluations) than the accuracy of the estimate. This

section focuses on two important instances of conflicting

estimation goals: (1) the conflicts between ‘‘bid’’,

‘‘planned effort’’ and ‘‘most likely effort’’, and (2) the

conflict between ‘‘wishful thinking’’ and ‘‘realism’’.

Jørgensen and Sjøberg (2001a) report that, fre-
quently, there was no distinction between ‘‘bid’’,

‘‘planned effort’’ and ‘‘most likely effort’’ when esti-

mating software development effort. Similar results, i.e.,

that the distinction between planning and estimation are

‘‘blurred’’, are reported in the time-estimation studies

described in Edwards and Moores (1994) and Goodwin

(1998). The decisions on ‘‘bid’’, ‘‘planned effort’’ and

‘‘most likely effort’’, however, have conflicting goals. A
bid should, optimally, be low enough to get the job and

high enough to maximize profit, the planned effort

should enable a successful project and motivate to effi-

cient work, and the estimate of the most likely effort

should represent the most realistic use of effort. The

conflict between these goals, together with the lack of

separation of them, may hinder realism of the expert

estimates. We have not found any software studies on
the impact of this conflict on accuracy of effort estimate.

However, applying common sense and the results
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described in the human judgment studies (Cosier and

Rose, 1977; Keen, 1981; Buehler et al., 1997), where

conflicting goals were reported to reduce the realism of

the estimates, we believe that the evidence against mix-

ing the goals of ‘‘bid’’, ‘‘planned effort’’ and ‘‘most likely

effort’’ are fairly strong.
The results from many human judgment studies in-

dicate that people get over-optimistic when predicting

own performance, i.e., they have problems separating

‘‘wish’’ and ‘‘realism’’. A summary of these studies is

described by Harvey (2001). Potential reasons for this

over-optimism, or ‘‘planning fallacy’’ (Kahneman and

Tversky, 1979), are the ‘‘I am above average’’––bias

(Klein and Kunda, 1994), and the lack of distinction
between ‘‘best case’’ and ‘‘most realistic case’’ (Newby-

Clark et al., 2000). A general phenomenon seems to be

that the level of over-optimism increases with the level of

control (Koehler and Harvey, 1997), e.g., a software

developer responsible for the whole task to be estimated

is supposed to be more over-optimistic than a project

leader that plans and supervises the work of other pro-

ject members. This over-optimism may be difficult to
reduce, and in Newby-Clark et al. (2000), it was found

that the only effective method was to let someone other

than the executing person predict the work. The same

conclusion is reported in Harvey (2001): someone other

than the person(s) responsible for developing and imple-

menting a plan of action should estimate its probability of

success. Buehler et al. (1994) found that the cause of an

increased realism, when estimating other peoples work,
was the increase in use of previous experience, i.e., while

estimating own work induces mental work on how to

complete the task (construction), estimating other peo-

ple’s work induces reflections on how much effort simi-

lar tasks required (history reflections). Unfortunately,

we have not been able to find any published software

development estimation specific study on the topic of

estimating own work or other people’s work. 3

Similarly to the discussion in Section 4.1, there are

advantages of estimating own work. For example, if there

is a high level of flexibility in how to implement a software

specification, then an initially over-optimistic estimate of

own work may lead to actions that make the estimate

more realistic. The decision whether to estimating own

work or not may therefore be a trade-off between the

potential advantages, e.g., higher motivation for low use
of effort, and the disadvantages, e.g., the strong tendency

of over-optimism. In situations where there are small

opportunities for ‘‘self-fulfilling prophecies’’, e.g., when

the flexibility of the project work is strongly limited, then

the software developers should, optimally, not estimate
3 In a recent, unpublished, study of 60 small and medium large

software development tasks, we find supporting evidence for this

difference between estimation own and other peoples work. The

difference in level of over-optimism was significant, but not very large.
their own work. In real projects, however, estimation of

own work may be the only option, e.g., because there are

no other experts on a particular task or not sufficient

knowledge about the productivity of other developers. In

such cases, it is especially important to be aware of the

typical over-optimism and apply the de-biasing estima-
tion principles described in this paper.

An illustrative example of a conflict between wishful

thinking and realism when predicting own performance

is described in Griffin and Buehler (1999)

Canadians expecting an income-tax refund were

asked to predict when they would complete and

mail in their tax forms. These respondents had indi-
cated that they typically completed this chore about

2 weeks before the due rate; however, when asked

about the current year, they predicted that they

would finish, on average, about 1 month in advance

of the due date. In fact, only 30% of the respon-

dents were finished by their predicted data––on av-

erage they finished, as usual, about 2 weeks before

the deadline.

There are other, obviously unfortunate, variants of

the conflict between ‘‘wishful thinking’’ and ‘‘realism’’,

e.g., the ‘‘software estimation game’’ described in

Thomsett (1996)

Boss: Hi, Mary. How long do you think it will take

to add some customer enquiry screens to the Aard-
vark System?

Mary: Gee . . . I guess about six weeks or so.

Boss: WHAAT?!!!! That long?!!! You’re joking, right?

Mary: Oh! Sorry. It could be done perhaps in four

weeks . . .

This type of situation both puts an unfortunate pressure
on the estimator and leads to conflicting goals, i.e., a

conflict between ‘‘be realistic’’ and ‘‘please the man-

ager’’.

Software professionals should learn to identify esti-

mation goals different from accuracy, and try to avoid

or at least reduce the impact from them. In particular,

software professionals should learn to identify when a

person has a particularly strong interest in the outcome,
e.g., when a person strongly want the project to be

started. In this kind of conflicting goals situation, the

highly involved person cannot be expected to provide

realistic estimates, even when she/he is the person with

the longest and most relevant experience.

4.3. Ask estimators to justify and criticize their estimates

Expert estimation of effort is frequently a ‘‘con-

structive’’ process. The estimators try to imagine how to
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build the software, which pieces that are necessary to

develop and the effort needed to implement and inte-

grate the pieces. Empirical results from human judgment

studies suggests that this type of process easily lead the

estimator into the mode of ‘‘confirming theories on how

to complete the project’’, rather than ‘‘reject incorrect
hypotheses and assumptions’’ Brehmer (1980) and

Koehler (1991). This means that the estimators’ confi-

dence in their estimates depend more on the amount of

effort they spent working on it, than on the actual ac-

curacy of the estimate. Justification and critique of own

estimates may have several important advantages re-

lated to this problem. It may

• increase of the accuracy of the estimate, particularly

in high uncertainty situations (Hagafors and Breh-

mer, 1983),

• lead to a more analytical estimation process and re-

duce the risk of using too simple estimation strategies

(Hammond, 1996),

• improve the level of confidence in the estimate (Ko-

riat et al., 1980), and
• improve the compensation for missing information

(Brenner et al., 1996).

All the above studies were general human judgment

studies, e.g., studies based on real-world clinical judg-

ment tasks, business tasks, or estimates of so-called

‘‘almanac quantities’’. We have found no published

software development estimation study on this topic.
However, as part of an experiment conducted by the

author of this paper, we asked 13 software professionals

to estimate the effort they would need to implement a

specified timeshift-swapping system for hospital nurses.

When the effort estimates were completed, the estima-

tors were asked to list reasons why their estimate could

be wrong, i.e., a critique of their own estimates. The

average number of reasons listed were 4.3, ranging from
2 to 8. Finally, the estimators were asked to consider a

change of their original estimates in light of their cri-

tique. Nine out of the thirteen software professionals

increased their estimates of most likely effort, four of

them more than 25%. The average increase in effort es-

timate was, however, only 10%, and four of the partic-

ipants actually decreased their estimates. We had no

opportunity to let the software professionals develop the
software, i.e., we had no information about the realism

of their estimates. However, the small, on average, ad-

justments suggested by our results mean that, although

potentially helpful to improve estimation realism, we

should not expect that justification and criticism im-

prove the realism of estimates very much. If the initial

estimate is hugely over-optimistic, a justification and

critique may only improve the realism to some extent. A
possible reason for this limited impact is described in

Einhorn and Hogarth (1978), based on studies on clin-
ical judgment and probability assessments. Estimators

are typically not very skilled in searching for weakening

information when evaluating their own estimates.

In spite of the expected small impact on the realism of

the estimate, we believe that justification and criticism

are sound and low-cost elements of improvements of
expert estimates.

4.4. Avoid irrelevant and unreliable estimation informa-

tion

It is easy to accept that irrelevant and unreliable in-

formation should be avoided. However, we have yet to

see a checklist or estimation process effectively imple-
menting this estimation principle. This may reflect the

belief that expert estimators are able to filter out irrel-

evant and unreliable information when facing it. There

are, however, several human judgment studies that

suggest that this is not always the case, and that expert

estimates may be strongly impacted by irrelevant in-

formation, even when the estimators know that the in-

formation is irrelevant. For example

• Whitecotton et al. (1998) report that people are just

as good as models to provide financial forecasts when

presented with the same highly relevant information,

but less accurate when irrelevant information is in-

cluded.

• Lim and O’Connor (1996) report from business re-

lated time series predictions that an adjustment of
an estimate for new information was not sufficient

when the initial estimate was highly inaccurate, i.e.,

that the unreliable initial estimate strongly impacted

the subsequent estimates. The software development

estimation study described by Abdel-Hamid et al.

(1993) confirms this result.

• Tversky and Kahneman (1974) report, based on gen-

eral knowledge tasks, that the estimators were im-
pacted by irrelevant information, because it was

included in the question, i.e., people may have an im-

plicit tendency to regard information as important

when it is presented in the same context as the estima-

tion problem.

• Ettenson et al. (1987) report that domain experts (fi-

nancial auditing) were better than novices to focus on

the most relevant information, i.e., the experts ap-
plied less information compared with the novices. Se-

lection of proper experts may, therefore, be

important to avoid strong impact from irrelevant in-

formation.

• Jørgensen and Sjøberg (2002a) report that the infor-

mation about the software development cost expected

by the customer had a strong impact on the estimate

even when the estimators were told that the customer
knew nothing about the realistic costs and that the in-

formation should be regarded as irrelevant for the
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estimation task. More surprisingly, this impact from

the customer expectation was strongly underesti-

mated by the software professionals.

Consequently, it is may not be sufficient to warn

against irrelevant information or instruct people to
consider information as unreliable. The only safe ap-

proach seems to avoid irrelevant and unreliable infor-

mation. For example, it may be difficult to provide

realistic effort estimates if the customer expects an un-

realistically low level of cost, and the estimator knows

this. Then, the only safe option may be to find a new

estimator, without that knowledge.

4.5. Use documented data from previous development

tasks

Use of documented data means that that the expert

estimators have the opportunity to apply a more analytic

estimation strategy and consequently, be less prone to

human and situational biases. Benefits from use of doc-

umented software project data are reported by Lederer
and Prasad (1992), who found that software project

cost overruns were associated with lack of documented

data from previous tasks, i.e., high reliance on ‘‘personal

memory’’. Without documented data people seem to

both over-react to immediate past information, as

reported in the time series prediction study (Remus et al.,

1995), and rely too much on the ‘‘representativeness’’

estimation strategy, see the software development esti-
mation study (Jørgensen and Sjøberg, 2002b). The

‘‘representativeness’’ estimation strategy means, for ex-

ample, that people use the actual effort of the most

similar (most representative) recalled task as staring

point for the estimate without regarding the distribution

of effort of other similar tasks. This strategy works well

when the most similar task is sufficiently similar, repre-

sents the typical use of effort on such tasks, and the
estimation uncertainty is low. The strategy may, how-

ever, lead to inaccurate estimates when the need for

adjustment is large, as illustrated in the business fore-

casting study (Blattberg and Hoch, 1990), or the ex-

pected impact from the ‘‘regression toward the mean’’ 4

is high, as reported in the human judgment and software

estimation studies (Kahneman and Tversky, 1973;

Nisbett and Ross, 1980; Jørgensen, 2003).
A similar argument for the importance of docu-

mented data is reported in the time usage estimation
4 The impact from ‘‘regression toward the mean’’ is based on the

observation that high or low performance tends to be followed by

more average performance, in particular when the variance (uncer-

tainty) is high. This means, for example, that when the most similar

task had an unusual high performance and the estimation uncertainty

is high, then we should estimate effort closer to the average

performance than the effort value of the most similar task (Jørgensen,

2003).
study (Kahneman and Lovallo, 1993). That study claims

that people tend to adopt an ‘‘internal’’ or ‘‘inside’’

perspective on the estimation task, when relying on

their own memory, instead of documented data. This

‘‘inside’’ perspective leads to a concentration on case-

specific planning and a neglect of ‘‘background’’ infor-
mation, such as the distribution of completion times for

similar projects or the robustness of the construction

plan. An ‘‘inside’’ perspective may work well when the

estimator has strongly relevant task experience and the

situation does not induce biases, but may otherwise lead

to a high degree of estimation inaccuracy. The results

described in Kahneman and Lovallo (1993) may explain

the reduction of high effort overruns from use of models
reported in the software development estimation studies

(Heemstra and Kusters, 1991; Jørgensen, 1997). The use

of estimation models increases the use of historical data

and, consequently, removes the potentially large biases

from expert estimators’ ‘‘inside view’’ and the use of the

‘‘representativeness’’ estimation strategy.

The software development estimation results reported

in Walkerden and Jeffery (1999) indicate that a semi-
automated use of documented data leads to the best

estimation accuracy. They found, similar to the business

forecasting results reported by Blattberg and Hoch

(1990), that people were good at finding analogies, but

did not adjust properly for large differences between

the task to be estimated and the most similar tasks. A

semi-automated process of using people to find the

relevant analogues and a simple formula for adjust-
ments for differences had the best estimation accuracy.

If the need for adjustments is large, simple models

supporting the adjustments seem to be especially im-

portant.

Overall, we believe that the potential benefits from

use of documented data are similar to the potential

benefits from use of estimation models, i.e., avoidance of

very inaccurate estimates and reduction of human bi-
ases.

4.6. Find experts with relevant domain background and

good estimation records

Recently we conducted an estimation survey of the

estimation processes of eighteen experienced software

project leaders. Included in that survey was a question
about how the project leaders selected experts to provide

the effort estimates. While all the project leaders de-

scribed that they emphasized domain and development

experience, only four of them described that they ap-

plied information about the peoples’ previous estima-

tion accuracy, and only two that they tried to get

information about the estimation process applied by the

estimator. An underlying assumption of the selection of
estimation experts was, as we interpreted it, that ‘‘the

people most competent in solving the task should esti-
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mate it’’. While this assumption can be true, see Sanders

and Ritzman (2001) for an overview of supporting ex-

pert judgment studies from various domains, we believe

that the following refinements of the assumption are

important.

• The relevance of experience is sometimes very ‘‘nar-

row’’, i.e., only applicable in very similar situations,

see Skitmore et al. (1994) and Ericsson and Lehmann

(1996) for overviews from different domains.

• Jørgensen and Sjøberg (2002b) report that software

maintainers with application specific experience had

fewer maintenance problems, but did not predict their

own work more accurately. Similarly, Lichtenstein
and Fischhoff (1977) report that the level of over-

optimism when estimating the quality of their own

answers on ‘‘general knowledge’’ questions was inde-

pendent of the actual correctness of the answers, i.e.,

the level of expertise. These findings conflict those re-

ported in statistical forecasting studies, e.g., Sanders

and Ritzman (2001). An examination of the studies

suggests that the explanation is the difference between
involved and uninvolved estimators. While all the re-

sults described in Sanders and Ritzman (2001) are de-

rived from studies where the estimators were

uninvolved observers, the results described in Lich-

tenstein and Fischhoff (1977) and Jørgensen and Sjø-

berg (2002b) are from studies where own work was

estimated. A large benefit from domain experience

on estimation accuracy may, consequently, require
that the estimator is an uninvolved observer.

• Klayman et al. (1999) report, based on tasks from

several domains, that people get over-confident in

the accuracy of their estimates when receiving a set

of estimation tasks more difficult than what they usu-

ally get.

• Stone and Opel (2000) report that having estimation

expertise is not the same as being skilled in knowing
the uncertainty of an estimate. Their experiment,

based on art history related judgment tasks, suggest

that these two types of expertise require different

types of feedback and training.

Consequently, we cannot safely assume that people

knowing much about a task are good at estimating it,

nor can we assume that people good at estimating are
good at knowing how uncertain their estimates are. For

this reason, there should be separate records on these

three characteristics (know-how, know-how much, and

know-how uncertain) for each individual. Knowing

much about a task may, for example, be useful for the

development of the work breakdown structure. People

with good estimation records should be consulted when

estimating the most likely effort. People good at esti-
mating uncertainty should be consulted when assessing

the uncertainty of the estimate. These three skills are
different and may require different estimators, training,

and feedback, see Section 6.
5. Support the estimation process

There are many ways of supporting the experts’ es-

timation processes. This section provides and discusses

the expert estimation principles.

• Estimate both top-down and bottom-up, indepen-

dently of each other

• Use estimation checklists

• Combine estimates from different sources
• Assess the uncertainty of the estimate

5.1. Estimate both top-down and bottom-up, indepen-

dently of each other

There are different strategies of decomposing the es-

timation problem, e.g., phase-based decomposition,

functionality-based decomposition, additive, multipli-
cative, or combinations of these types. Most studies

support the, on average, improvement from decompos-

ing an estimation problem, see for example the multi-

domain survey on this topic in MacGregor (2001). There

are, however, studies that indicate no benefits of de-

composition. For example, Connolly and Dean (1997)

found that the estimation accuracy improved from

software task decomposition in only one out of two
experiments. Vicinanza et al. (1991) found that the ex-

pert applying a top-down (analogy)-based software de-

velopment estimation process was more accurate than

the experts relying on a decomposition-based process.

Moløkken (2002) found that the software professionals

applying a bottom-up software development estimation

process were more over-optimistic than those applying a

more top-down estimation process. Similarly, no bene-
fits were found from applying the function point soft-

ware development estimation model ‘‘bottom-up’’,

instead of the common ‘‘top-down’’ application (Yau

and Gan, 1995). It is common sense that some tasks are

too complex to understand and estimate as a whole, i.e.,

that decomposition is necessary to understand some

problems. The results from the software estimation

studies, however, suggest that there are potential prob-
lems with decomposing the software development esti-

mation problem applying the ‘‘bottom-up’’ (additive

decomposition) that are avoided through a top-down

estimation process.

We suggest that a bottom-up estimation process, e.g.,

estimation of the activities described in a work break-

down structure (Tausworthe, 1980), should be combined

with a top-down estimation process, e.g., the process of
estimating the project as a whole through comparison

with similar completed projects. We believe that these



Table 4

Top-down versus bottom-up

Top-down (as a whole) Bottom-up (decomposed)

Strengths More robust with respect to forgotten activities and unexpected

events. Encourages ‘‘distributional’’ (history-based) thinking.

Leads to increased understanding of the execution and

planning of the project (how-to knowledge).

Weaknesses Does not lead to increased understanding of the execution and

planning of the project. Depends strongly on the proper selection

and availability of similar projects from memory or project

documentation.

Easy to forget activities and underestimate unexpected

events. Depends strongly on selection of software devel-

opers with proper experience. Does not encourage history-

based criticism of the estimate and its assumptions.
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two estimation processes should be conducted inde-

pendently of each other, to avoid the ‘‘anchoring ef-

fect’’, 5 i.e., that one estimate gets strongly impacted by

the other as reported in the software development effort

study (Jørgensen and Sjøberg, 2001a). If there are large

deviations between the estimates provided by the dif-

ferent processes, and estimation accuracy is important,

then more estimation information and/or independent
estimation experts should be added. Alternatively, a

simple average of the two processes can be applied

(more on the benefits of different strategies of combining

estimates in Section 5.3). Our belief in the usefulness of

this ‘‘do-both’’ principle is based on the complementary

strengths and weaknesses of top-down and bottom-up-

based expert estimates as described in Table 4.

The claimed benefits and weaknesses in Table 4 are
supported by results reported in, e.g., the software

studies (Hill et al., 2000; Moløkken, 2002). Buehler et al.

(1994) report a study where the difference between in-

structing people to use their past experience, instead of

only focusing on how to complete a task, reduced the

level of over-optimism in time estimation tasks. This

result supports the importance of applying a strategy

that induces distributional (history-based) thinking, e.g.,
top-down estimation strategies. Perhaps the most im-

portant part of top-down estimation is not that the

project is estimated as a whole, but that it encourages

the use of history. Other interesting results on impacts

from decomposition strategies include

• decomposition is not useful for low-uncertainty esti-

mation tasks, only for high-uncertainty, as reported
in several forecasting and human judgment studies

(Armstrong et al., 1975; MacGregor, 2001);

• decomposition may ‘‘activate’’ too much knowledge

(including non-relevant knowledge). For this reason,

predefined decompositions, e.g., predefined work

breakdown structures, activating only relevant

knowledge should be applied. The human judgment

study reported in MacGregor and Lichtenstein
(1991) supports this result;
5 Anchoring: ‘‘the tendency of judges’ estimates (or forecasts) to be

influenced when they start with a �convenient’ estimate in making their

forecasts. This initial estimate (or anchor) can be based on tradition,

previous history or available data.’’ (Armstrong, 2001b).
In sum, the results suggest that bottom-up-based es-

timates only lead to improved estimation accuracy if the

uncertainty of the whole task is high, i.e., the task is too

complex to estimate as a whole, and, the decomposition

structure activates relevant knowledge only. The validity

of these two conditions is, typically, not possible to

know in advance and applying both top-down and

bottom-up estimation processes, therefore, reduces the
risk of highly inaccurate estimates.
5.2. Use estimation checklists

The benefits of checklists are not controversial and

are based on, at least, four observations.

• Experts easily forget activities and underestimate the
effort required to solve unexpected events. Harvey

(2001) provides an overview of forecasting and hu-

man judgment studies on how checklists support peo-

ple in remembering important variables and

possibilities that they would otherwise overlook.

• Expert estimates are inconsistent, i.e., the same input

may result in different estimates. For example, ex-

perts seem to respond to increased uncertainty with
increased inconsistency (Harvey, 2001). Checklists

may increase the consistency, and hence the accuracy,

of the expert estimates.

• People tend to use estimation strategies that require

minimal computational effort, at the expense of accu-

racy, as reported in the time estimation study de-

scribed in Josephs and Hahn (1995). Checklists may

‘‘push’’ the experts to use more accurate expert esti-
mation strategies.

• People have a tendency to consider only the options

that are presented, and underestimate the likelihood

of the other options, as reported in the ‘‘fault tree’’

study described in Fischhoff et al. (1978). This means

that people have a tendency to ‘‘out of sight, out of

mind’’. Checklists may encourage the generation of

more possible outcomes.

Interestingly, there is evidence that checklists can

bring novices up to an expert level. For example, Getty

et al. (1988) describe a study were general radiologists

were brought up to the performance of specialist

mammographers using a checklist.



6 This is no shortcoming of Hogarth’s model, since his model

assumes that the combined estimate is based on the average of the

individual estimates.
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Although we have experienced that many software

organizations find checklists to be one of their most

useful estimation tools, we have not been able to find

any empirical study on how different types of checklists

impact the accuracy of software effort estimation.

Common sense and studies from other domains leave,
however, little doubt that checklists are an important

means to improve expert estimation. An example of a

checklist (aimed at managers that review software pro-

ject estimates) is provided in Park (1996). (1) Are the

objectives of the estimates clear and correct? (2) Has the

task been appropriately sized? (3) Are the estimated cost

and schedule consistent with demonstrated accom-

plishments on other projects? (4) Have the factors that
affect the estimate been identified and explained? (5)

Have steps been taken to ensure the integrity of the es-

timating process? (6) Is the organization’s historical

evidence capable of supporting a reliable estimate? (7)

Has the situation changed since the estimate was pre-

pared? This type of checklist clearly supports the esti-

mation reviewer to remember important issues, increases

the consistency of the review process, and ‘‘pushes’’ the
reviewer to apply an appropriate review process.

A potential ‘‘by-product’’ of a checklist is the use of it

as a simple means to document previous estimation

experience. The aggregation of the previous estimation

experience into a checklist may be easier to use and have

more impact on the estimation accuracy compared with

a large software development experience databases

containing project reports and estimation data
(Jørgensen et al., 1998).

5.3. Obtain and combine estimates from different experts

and approaches

When two or more experts provide estimates of the

same task, the optimal approach would be to use only

the most accurate estimates. The individuals’ estimation
accuracies are, however, not known in advance and a

combination of several estimates has been shown to be

superior to selecting only one of the available estimates.

See Clemen (1989) for an extensive overview of empiri-

cal studies from various domains on this topic. The two

software studies we were able to find on this topic are

consistent with the findings from other domains. These

studies report an increase in estimation accuracy
through averaging of the individual estimate (H€oost and
Wohlin, 1998) and group discussions (Jørgensen and

Moløkken, 2002). Based on the extensive evidence in

favour of combining estimates the question should not

be whether we should combine or not, but how?

There are many alternative combination approaches

for software project estimates. A software project leader

can, for example, collect estimates of the same task from
different experts and then weight these estimates ac-

cording to level of the experts’ level of competence.
Alternatively, the project leader can ask different experts

to discuss their estimates and agree on an estimate. The

benefits from combined estimates depend on a number

of variables. The variables are, according to Hogarth’s

model (1978): (1) number of experts; (2) the individuals’

(expected) estimation accuracy; (3) the degree of biases
among the experts; and (4) the inter-correlation between

the experts’ estimates. A human judgment study vali-

dating Hogarth’s model is described in Ashton (1986).

Our discussion on combination of estimates will be

based on these four variables, and, a fifth variable not

included in Hogarth’s model: 6 (5) the impact of com-

bination strategy.

Number of experts (1). The number of expert esti-
mates to be included in the combined estimate depends

on their expected accuracy, biases and inter-correlation.

Frequently, the use of relatively few (3–5) experts with

different backgrounds seems to be sufficient to achieve

most of the benefits from combining estimates, as re-

ported in the study of financial and similar types of

judgments described in Libby and Blashfield (1978).

The accuracy and biases of the experts (2þ 3). A
documented record of the experts’ previous estimation

accuracy and biases is frequently not available or not

relevant for the current estimation task. However, the

project leaders may have informal information indicat-

ing for example the level of over-optimism or expertise

of an estimator. This information should be used, with

care, to ensure that the accuracy of the experts is high

and that individual biases are not systematically in one
direction.

The inter-correlation between the experts (4). A low

inter-correlation between the estimators is important to

exploit the benefits from combining estimates. Studies

reporting the importance of this variable in business

forecasting and software development estimation con-

texts are Armstrong (2001a) and Jørgensen and Mo-

løkken (2002). A low inter-correlation can be achieved
when selecting experts with different backgrounds and

roles, or experts applying different estimation processes.

Combination process (5). There are several ap-

proaches of combining expert estimates. One may take

the average of individual software development effort

estimates (H€oost and Wohlin, 1998), apply a structured

software estimation group process (Taff et al., 1991),

select the expert with the best estimate on the previous
task (Ringuest and Tang, 1987), or apply the well-doc-

umented Delphi-process (Rowe and Wright, 2001). A

comprehensive overview of combination strategies is

described in Chatterjee and Chatterjee (1987). While the

choice of combination strategy may be important in

some situations, there are studies, e.g., the forecasting



7 The industrial projects did not have a consistent use of confidence

level, but, typically, let the estimators decide how to interpret

minimum and maximum effort. Nevertheless, most meaningful inter-

pretations of minimum and maximum effort should lead to higher hit

rates than 40–50%.
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study described in Fisher (1981), that suggest that most

meaningful combination processes have similar perfor-

mance. Other human judgment and forecasting studies,

however, found that averaging the estimates was the

best combination strategy (Clemen, 1989), or that a

group-based processes led to the highest accuracy
(Reagan-Cirincione, 1994; Henry, 1995; Fischer and

Harvey, 1999). In Moløkken (2002) it is reported that a

group discussion-based combination of individual soft-

ware development effort estimates was more accurate

than the average of the individual estimates, because the

group discussion led to new knowledge about the in-

teraction between people in different roles. Similar re-

sults, on planning of R&D projects, were found in
Kernaghan and Cooke (1986) and Kernaghan and

Cooke (1990). This increase in knowledge through dis-

cussions is an important advantage of group-based es-

timation processes compared with ‘‘mechanical’’

combinations, such as averaging. However, the evidence

in favour of group-based combinations is not strong.

For example, group discussion may lead to more biased

estimates (either more risky or more conservative) de-
pending on the group processes and the individual goals,

as illustrated in the financial forecasting study described

in Maines (1996).

In summary, it seems that the most important part of

the estimation principle is to combine estimates from

different sources (with, preferably, high accuracy and

low inter-correlation), not exactly how this combination

is conducted.

5.4. Assess the uncertainty of the estimate

Important reasons for the importance of assessing the

uncertainty of an effort estimate are

• the uncertainty of the estimate is important informa-

tion in the planning of a software project (McConnel,
1998);

• an assessment of the uncertainty is important for the

learning from the estimate, e.g., low estimation accu-

racy is not necessarily an indicator of low estimation

skills when the software development project work is

highly uncertain (Jørgensen and Sjøberg, 2002b);

• the process of assessing uncertainty may lead to more

realism in the estimation of most likely software de-
velopment effort. The software estimation study re-

ported in Connolly and Dean (1997) supports this

finding, but there are also contradictory findings,

e.g., time usage estimation study described in New-

by-Clark et al. (2000).

We recommend, similarly to the forecasting principles

described by Armstrong (2001d), that the uncertainty of
an estimate is assessed through a prediction interval.

For example, a project leader may estimate that the
most likely effort of a development project is 10,000

work-hours and that it is 90% certain (confidence level)

that the actual use of effort will be between 5000 and

20000 work-hours. Then, the interval ½5000; 20; 000�
work-hours is the 90% prediction interval of the effort

estimate of 10,000 work-hours.
A confidence level of K% should, in the long run,

result in a proportion of actual values inside the pre-

diction interval (hit rate) of K%. However, Connolly

and Dean (1997) report that the hit rates of students’

effort predictions intervals were, on average, 60% when

a 90% confidence level was required. Similarly, Jørgen-

sen et al. (2002) report that the activity effort hit rates of

several industrial software development projects were all
less than 50%, 7 i.e., the intervals were much too narrow.

This type of over-confidence seems to be found in

most other domains, see for example, Alpert and Raiffa

(1982), Lichtenstein et al. (1982), McClelland and Bol-

ger (1994), Wright and Ayton (1994) and Bongaarts and

Bulatao (2000). As reported earlier, Lichtenstein and

Fischhoff (1977) report that the level of over-confidence

was unaffected by differences in intelligence and exper-
tise, i.e., we should not expect that the level of over-

confidence is reduced with more experience. Arkes

(2001) gives a recent overview of studies from different

domains on over-confidence, supporting that claim.

Potential reasons for this over-confidence are

• Poor statistical knowledge. The statistical assump-

tions underlying prediction intervals and probabilities
are rather complex, see for example Christensen

(1998). Even with sufficient historical data the estima-

tors may not know how to provide, for example, a

90% prediction interval of an estimate.

• Estimation goals in ‘‘conflict’’ with the estimation accu-

racy goal. The software professionals’ goals of ap-

pearing skilled and providing ‘‘informative’’

prediction intervals may be in conflict with the goal
of sufficiently wide prediction intervals, see for exam-

ple the human judgment studies (Yaniv and Foster,

1997; Keren and Teigen, 2001) and our discussion

in Section 4.1.

• Anchoring effect. Several studies from various do-

mains, e.g., Kahneman et al. (1982) and Jørgensen

and Sjøberg (2002a), report that people typically pro-

vide estimates influenced by an anchor value and that
they are not sufficiently aware of this influence. The

estimate of the most likely effort may easily become

the anchor value of the estimate of minimum and

maximum effort. Consequently, the minimum and
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maximum effort will not be sufficiently different from

the most likely effort in high uncertainty situations.

• Tendency to over-estimate own skills. Kruger and

Dunning (1999) found a tendency to over-estimate

one’s own level of skill in comparison with the skill

of other people. This tendency increased with de-
creasing level of skill. A potential effect of the ten-

dency is that information about previous estimation

inaccuracy of similar projects has insufficient impact

on a project leaders uncertainty estimate, because

most project leaders believe to be more skilled than

average.

In total, there is strong evidence that the traditional,
unaided expert judgment-based assessments of estima-

tion uncertainty through prediction intervals are biased

toward over-confidence, i.e., too narrow prediction in-

tervals. An uncertainty elicitation process that seems to

reduce the over-confidence in software estimation con-

texts is described in Jørgensen and Teigen (2002). This

process, which is similar to the method proposed by

Seaver et al. (1978), proposes a simple change of the
traditional uncertainty elicitation process.

1. Estimates the most likely effort.

2. Calculate the minimum and maximum effort as fixed

proportions of the most likely effort. For example, an

organisation could base these proportions on the

NASA-guidelines (NASA, 1990) of software develop-

ment project effort intervals and set the minimum ef-
fort to 50% and the maximum effort to 200% of the

most likely effort.

3. Decide on the confidence level, i.e., assess the proba-

bility that the actual effort is between the minimum

and maximum effort.

Steps 2 and 3 are different from the traditional un-

certainty elicitation process, where the experts are in-
structed to provide minimum and maximum effort

values for a given confidence level, e.g., a 90% confi-

dence level. The differences may appear minor, but in-

clude a change from ‘‘self-developed’’ to ‘‘mechanically’’

developed minimum and maximum values. Minimum

and maximum values provided by oneself, as in the

traditional elicitation process, may be used to indicate

estimation skills, e.g., to show to other people that ‘‘my
estimation work is of a high quality’’. Mechanically

calculated minimum and maximum values, on the other

hand, may reduce this ‘‘ownership’’ of the minimum and

maximum values, i.e., lead to a situation similar to when

experts evaluate estimation work conducted by other

people. As discussed in Section 4.2, it is much easier to

be realistic when assessing other peoples performance,

compared with own performance. In addition, as op-
posed to the traditional process, there is no obvious

anchor value that influences the prediction intervals
toward over-confidence when assessing the appropriate

confidence level of a mechanically derived prediction

interval. Other possible explanations for the benefits of

the proposed approach, e.g., easier learning from his-

tory, are described in Jørgensen and Teigen (2002). The

proposed approach was evaluated on the estimation of a
set of maintenance tasks and found to improve the

correspondence between confidence level and hit rate

significantly (Jørgensen and Teigen, 2002).

An alternative elicitation method, not yet evaluated

in software contexts, is to ask for prediction intervals

based on low confidence levels, e.g., to ask a software

developer to provide a 60% instead of a 90% prediction

interval. This may reduce the level of over-confidence,
because, as found by Roth (1993), people are generally

better calibrated in the middle of a probability distri-

bution than in its tails.
6. Provide estimation feedback and training opportunities

It is hard to improve estimation skills without feed-
back and training. Lack of estimation feedback and

training may, however, be a common situation in soft-

ware organizations (Hughes, 1996; Jørgensen and Sjø-

berg, 2002b). The observed lack of feedback of software

organizations means that it is no large surprise that in-

creased experience did not lead to improved estimation

accuracy in the studies (Hill et al., 2000; Jørgensen and

Sjøberg, 2002b). Similarly, many studies from other
domains report a lack of correlation between amount of

experience and estimation skills. Hammond (1996, p.

278) summarizes the situation: ‘‘Yet in nearly every

study of experts carried out within the judgment and

decision-making approach, experience has been shown

to be unrelated to the empirical accuracy of expert

judgments’’.

Learning estimation skills from experience can be
difficult (Jørgensen and Sjøberg, 2000). In addition to

sufficient and properly designed estimation feedback,

estimation improvements may require the provision of

training opportunities (Ericsson and Lehmann, 1996).

This section discusses feedback and training principles

for improvement of expert estimates.

6.1. Provide feedback on estimation accuracy and devel-

opment task relations

There has been much work on frameworks for

‘‘learning from experience’’ in software organizations,

e.g., work on experience databases (Basili et al., 1994;

Houdek et al., 1998; Jørgensen et al., 1998; Engelkamp

et al., 2000) and frameworks for post-mortem (project

experience) reviews (Birk et al., 2002). These studies
do not, as far as we know, provide empirical results on

the relation between type of feedback and estimation
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accuracy improvement. The only software study on this

topic (Ohlsson et al., 1998), to our knowledge, suggest

that outcome feedback, i.e., feedback relating the actual

outcome to the estimated outcome, did not improve the

estimation accuracy. Human judgment studies from

other domains support this disappointing lack of esti-
mation improvement from outcome feedback, see for

example Balzer et al. (1989), Benson (1992) and Stone

and Opel (2000). This is no large surprise, since there is

little estimation accuracy improvement possible from

the feedback that, for example, the effort estimate was

30% too low. One situation were outcome feedback is

reported to improve the estimation accuracy is when the

estimation tasks are ‘‘dependent and related’’ and the
estimator initially was under-confident, i.e., underesti-

mated her/his own knowledge on general knowledge

tasks (Subbotin, 1996). In spite of the poor improve-

ment in estimation accuracy, outcome feedback is use-

ful, since it improves the assessment of the uncertainty

of an estimate (Stone and Opel, 2000; Jørgensen and

Teigen, 2002). Feedback on estimation accuracy should,

for that reason, be included in the estimation feedback.
To improve the estimation accuracy, several studies

from various domains suggest that ‘‘task relation ori-

ented feedback’’, i.e., feedback on how different events

and variables were related to the actual use of effort, are

required (Schmitt et al., 1976; Balzer et al., 1989; Ben-

son, 1992; Stone and Opel, 2000). A possible method to

provide this type of feedback is the use ‘‘experience re-

ports’’ or ‘‘post mortem’’ review processes.
When analysing the impacts from different variables

on the use of effort and the estimation accuracy, i.e., the

‘‘task relation oriented feedback’’, it important to un-

derstand interpretation biases and the dynamics of

software projects, e.g.,

• The ‘‘hindsight bias’’, e.g., the tendency to interpret

cause–effect relationships as more obvious after it
happen than before, see Fischhof (1975) and Stahl-

berg et al. (1995) for general human judgement stud-

ies on this topic.

• The tendency to confirm rules and disregard conflict-

ing evidence, as illustrated in the human judgement

studies (Camerer and Johnson, 1991; Sanbonmatsu

et al., 1993) and our discussion in Section 4.3.

• The tendency to apply a ‘‘deterministic’’ instead of a
‘‘probabilistic’’ learning model. For example, assume

that a software project introduces a new development

tool for the purpose of increasing the efficiency and

that the project has many inexperienced developers.

The actual project efficiency turns out to be lower

than that of the previous projects and the actual ef-

fort, consequently, becomes much higher than the es-

timated effort. A (na€ııve) deterministic interpretation
of this experience would be that ‘‘new tools decrease

the development efficiency if the developers are inex-
perienced’’. A probabilistic interpretation would be

to consider other possible scenarios (that did not hap-

pen, but could have happen) and to conclude that it

seems to be more than 50% likely that the combina-

tion of new tools and inexperienced developers lead

to a strong decrease in efficiency. This ability to think
in probability-based terms can, according to Brehmer

(1980), hardly be derived from experience alone, but

must be taught. Hammond (1996) suggest that the

ability to understand relationships in terms of proba-

bilities instead of purely deterministic connections is

important for correct learning in situations with high

uncertainty.

• The potential impact of the estimate on the actual ef-
fort as reported in the software estimation studies

(Abdel-Hamid and Madnik, 1983; Jørgensen and Sjø-

berg, 2001a), i.e., the potential presence of a‘‘self-ful-

filling prophecy’’. For example, software projects that

over-estimate the ‘‘most likely effort’’ may achieve

high estimation accuracy if the remaining effort is ap-

plied to improve (‘‘gold-plate’’) the product.

• The potential lack of distinction between ‘‘plan’’ and
‘‘estimate’’, see discussion in Section 4.2.

• The variety of reasons for high or low estimation ac-

curacy, as pointed out in the industrial software esti-

mation study (Jørgensen et al., 2002). Low estimation

accuracy may, for example, be the results of poor

project control, high project uncertainty, low flexibil-

ity in delivered product (small opportunity to ‘‘fit’’

the actual use of effort to the estimated), project
members with low motivation for estimation accu-

racy, high project priority on time-to-market, ‘‘bad

luck’’, or, of course, poor estimation skills.

• A tendency to asymmetric cause-effect analyses de-

pendent on high or low accuracy, i.e., high estimation

accuracy is explained as good estimation skills, while

low estimation accuracy is explained as impact from

external uncontrollable factors. Tan and Lipe (1997)
found, in a business context, that

Those with positive outcomes (e.g., strong profits)

are rewarded; justification or consideration of rea-

sons as to why the evaluatee performed well are

not necessary. In contrast, when outcomes are neg-

ative (e.g. losses suffered), justifications for the poor

results are critical. . . . Evaluators consider control-
lability or other such factors more when outcomes

are negative than when they are positive.

In many human judgment situations with high un-

certainty and unstable task relations, there are indica-

tions on that even task relation-oriented feedback is not

sufficient for learning (Schmitt et al., 1976; Bolger and

Wright, 1994), i.e., the situations do simply not enable
learning from experience. For this reason, it is important

to recognize when there is nothing to learn from expe-
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rience, as reported in the software estimation study

(Jørgensen and Sjøberg, 2000).

A problem with most feedback on software devel-

opment effort estimates is that it takes too much time

from the point-of-estimation to the point-of-feedback.

This is unfortunate, since it has been shown that im-
mediate feedback strongly improves the estimation

learning and accuracy, as illustrated in the human

judgment studies (Bolger and Wright, 1994; Shepperd

et al., 1996). Interestingly, Shepperd et al. (1996) also

found that when the feedback is rapid, people with low

confidence start to under-estimate their own perfor-

mance, maybe to ensure that they will not be disap-

pointed, i.e., there may be situations where the feedback
can be too rapid too stimulate to realistic estimates.

Although it is easy to over-rate the possibility to learn

from feedback, it is frequently the only realistic oppor-

tunity for learning, i.e., even if the benefits are smaller

than we like to believe, software organizations should

do their best to provide properly designed estimation

feedback.

6.2. Provide estimation training opportunities

Frequently, real software projects provide too little

information to draw valid conclusions about cause-

effects (Jørgensen and Sjøberg, 2000). Blocher et al.

(1997) report similar results based on studies of people’s

analytical procedures. Bloher et al. attribute the cause-

effect problems to the lack of learning about what would
have happened if we had not done what we did, and the

high number of alternative explanation for an event.

Furthermore, they argue that learning requires the de-

velopment of causal models for education, training and

professional guidance. The importance of causal domain

models for training is supported by the human judgment

results described in Bolger and Wright (1994). Similar

reasons for learning problems, based on a review of
studies on differences in performance between experts

and novices in many different domains, are provided by

Ericsson and Lehmann (1996). They claim that it is not

the amount of experience but the amount of ‘‘deliberate

training’’ that determines the level of expertise. They

interpret deliberate training as individualized training

activities especially designed by a coach or teacher to

improve specific aspects of an individual’s performance

through repetition and successive refinement. This im-

portance of training is also supported by the review of

human judgment studies described in Camerer and

Johnson (1991), suggesting that while training had an

effect on estimation accuracy, amount of experience had

almost none.

We suggest that software companies provide estima-

tion training opportunities through their database of
completed projects. An estimation training session

should include estimation of completed projects based
on the information available at the point-of-estimation

applying different estimation processes. This type of

estimation training has several advantages in compari-

son with the traditional estimation training.

• Individualized feedback can be received immediately
after completion of the estimates.

• The effect of not applying checklists and other estima-

tion tool can be investigated on one’s own estimation

processes.

• The validity of own estimation experience can be ex-

amined on different types of projects, i.e., projects

much larger than those estimated earlier.

• Reasons for forgotten activities or underestimated
risks can be analyzed immediately, while the hind-

sight bias is weak.

• The tendency to be over-confidence can be under-

stood, given proper coaching and training projects.

As far as we know, there are no reported studies of

organizations conducting estimation training in line

with our suggestions. However, the results from other
studies, in particular those summarized in Ericsson and

Lehmann (1996), strongly support that this type of

training should complement the traditional estimation

courses and pure ‘‘learning from experience’’.
7. Conclusions and further research

The two main contributions of this paper are:

• A systematic review of papers on software develop-

ment effort expert estimation.

• An extensive examination of relevant human judg-

ment studies to validate expert estimation ‘‘best prac-

tice’’ principles.

The review concludes that expert estimation is the

dominant strategy when estimating the effort of software

development projects, and that there is no substantial

evidence supporting the superiority of model estimates

over expert estimates. There are situations where expert

estimates are more likely to be more accurate, e.g., sit-

uations where experts have important domain knowl-

edge not included in the models or situations when
simple estimation strategies provide accurate estimates.

Similarly, there are situations where the use of models

may reduce large situational or human biases, e.g., when

the estimators have a strong personal interest in the

outcome. The studies on expert estimation are summa-

rized through an empirical evaluation of the 12 princi-

ples: (1) evaluate estimation accuracy, but avoid high

evaluation pressure; (2) avoid conflicting estimation
goals; (3) ask the estimators to justify and criticize their

estimates; (4) avoid irrelevant and unreliable estimation
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information; (5) use documented data from previous

development tasks; (6) find estimation experts with rel-

evant domain background and good estimation record;

(7) estimate top-down and bottom-up, independently of

each other; (8) use estimation checklists; (9) combine

estimates from different experts and estimation strate-
gies; (10) assess the uncertainty of the estimate; (11)

provide feedback on estimation accuracy and task re-

lations; (12) provide estimation training opportunities.

We find that there is evidence supporting all these

principles and, consequently, that software organiza-

tions should apply them.

The estimation principles are to some extent based on

results from other domains than software development,
or represent only one type of software projects and ex-

perts. For this reason there is a strong need for better

insight into the validity and generality of many of the

discussed topics. In particular we plan to continue with

research on

• when to use expert estimation and when to use esti-

mation models;
• how to reduce the over-optimism bias when estimat-

ing own work applying expert estimation;

• how to select and combine a set of expert estimates;

• the benefits of ‘‘deliberate’’ estimation training;
Acknowledgement

Thanks to professor in psychology at the University

of Oslo, Karl Halvor Teigen, for his very useful sug-

gestions and interesting discussions.
References

Abdel-Hamid, T.K., Madnik, S.E., 1983. The dynamics of software

project scheduling. Communications of the ACM 26 (5), 340–346.

Abdel-Hamid, T.K., Sengupta, K., Ronan, D., 1993. Software project

control: an experimental investigation of judgment with fallible

information. IEEE Transactions on Software Engineering 19 (6),

603–612.

Abdel-Hamid, T.K., Sengupta, K., Swett, C., 1999. The impact of

goals on software project management: an experimental investiga-

tion. MIS Quarterly 23 (4), 531–555.

Alpert, M., Raiffa, H., 1982. A progress report on the training of

probability assessors. In: Tversky, A. (Ed.), Judgment under

Uncertainty: Heuristics and Biases. Cambridge University Press,

Cambridge, pp. 294–305.

Arkes, H.R., 2001. Overconfidence in judgmental forecasting. In:

Armstrong, J.S. (Ed.), Principles of Forecasting: A Handbook for

Researchers and Practitioners. Kluwer Academic Publishers, Bos-

ton, pp. 495–515.

Armstrong, J.S., 2001a. Combining forecasts. In: Armstrong, J.S.

(Ed.), Principles of Forecasting: A Handbook for Researchers and

Practitioners. Kluwer Academic Publishers, Boston, pp. 417–440.

Armstrong, J.S., 2001b. The forecasting dictionary. In: Armstrong,

J.S. (Ed.), Principles of Forecasting: A Handbook for Researchers
and Practitioners. Kluwer Academic Publishers, Boston, pp. 761–

824.

Armstrong, J.S., 2001c. Selecting forecasting methods. In: Armstrong,

J.S. (Ed.), Principles of Forecasting: A handbook for Researchers

and Practitioners. Kluwer Academic Publishers, Boston, pp. 365–

386.

Armstrong, J.S., 2001d. Standards and practices for forecasting. In:

Armstrong, J.S. (Ed.), Principles of Forecasting: A Handbook for

Researchers and Practitioners. Kluwer Academic Publishers, Bos-

ton, pp. 679–732.

Armstrong, J.S., Denniston Jr., W.B., Gordon, M.M., 1975. The use of

the decomposition principle in making judgments. Organizational

Behavior and Human Decision Processes 14 (2), 257–263.

Ashton, R.H., 1986. Combining the judgments of experts: How many

and which ones? Organizational Behaviour and Human Decision

Processes 38 (3), 405–414.

Atkinson, K., Shepperd, M., 1994. Using function points to find cost

analogies. European Software Cost Modelling Meeting, Ivrea,

Italy.

Ayton, A., 1998. How bad is human judgment? In: Wright, G.,

Goodwin, P. (Eds.), Forecasting with Judgment. Johh Wiley &

Sons, New York, pp. 237–268.

Balzer, W.K., Doherty, M.E., O’Connor, R.J., 1989. Effects of

cognitive feedback on performance. Psychological Bulletin 106

(3), 410–433.

Basili, V., Caldierea, H., Rombach, D., 1994. The Experience Factory.

In: Marciniak, J.J. (Ed.), Encyclopedia of Software Engineering.

Wiley, New York, pp. 469–476.

Benson, P.G., 1992. The effects of feedback and training on the

performance of probability forecasters. International Journal of

Forecasting 8 (4), 559–573.

Betteridge, R., 1992. Successful experience of using function points to

estimate project costs early in the life-cycle. Information and

Software Technology 34 (10), 655–658.

Birk, A., Dingsøyr, T., Stalhane, T., 2002. Postmortem: Never leave a

project without it. IEEE Software 19 (3), 43–45.

Blattberg, R.C., Hoch, S.J., 1990. Database models and managerial

intuition: 50% modelþ 50% manager. Management Science 36,

887–899.

Blocher, E., Bouwman, M.J., Daves, C.E., 1997. Learning from

experience in performing analytical procedures. Training Research

Journal 3, 59–79.

Boehm, B.W., 1981. Software Engineering Economics. Prentice-Hall,

New Jersey.

Boehm, B.W., 1984. Software engineering economics. IEEE Transac-

tions on Software Engineering 10 (1), 4–21.

Boehm, B., Sullivan, K., 1999. Software economics: status and

prospects. Information and Software Technology 41, 937–946.

Boehm, B., Abts, C., Chulani, S., 2000. Software development cost

estimation approaches––a survey. Annals of Software Engineering

10, 177–205.

Bolger, F., Wright, G., 1994. Assessing the quality of expert judgment:

Issues and analysis. Decision Support Systems 11 (1), 1–24.

Bongaarts, J., Bulatao, R.A., 2000. Beyond Six Billion: Forecasting

the World’s Population. National Academy Press, Washington,

DC.

Bowden, P., Hargreaves, M., Langensiepen, C.S., 2000. Estimation

support by lexical analysis of requirements documents. Journal of

Systems and Software 51 (2), 87–98.

Braun, P.A., Yaniv, I., 1992. A case study of expert judgment:

economists’ probabilities versus base-rate model forecasts. Journal

of Behavioral Decision Making 5 (3), 217–231.

Brehmer, B., 1980. In one word: not from experience. Acta Psycho-

logica 45, 223–241.

Brenner, L.A., Koehler, D.J., Tversky, A., 1996. On the evaluation of

one-sided evidence. Journal of Behavioral Decision Making 9 (1),

59–70.



M. Jørgensen / The Journal of Systems and Software 70 (2004) 37–60 57
Briand, L.C., El Emam, K., Surmann, D., Wieczorek, I., Maxwell,

K.D., 1999. An assessment and comparison of common software

cost estimation modeling techniques. In: International Conference

on Software Engineering, Los Angeles, USA. ACM, New York,

pp. 313–323.

Briand, L.C., Langley, T., Wieczorek, I., 2000. A replicated assessment

and comparison of common software cost modeling techniques. In:

International Conference on Software Engineering, Limerick,

Ireland. ACM, New York, pp. 377–386.

Briand, L.C., Wieczorek, I., 2002. Resource estimation in software

engineering. In: Marcinak, J.J. (Ed.), Encyclopedia of Software

Engineering. John Wiley & Sons, New York.

Buehler, R., Griffin, D., MacDonald, H., 1997. The role of motivated

reasoning in optimistic time predictions. Personality and Social

Psychology Bulletin 23 (3), 238–247.

Buehler, R., Griffin, D., Ross, M., 1994. Exploring the ‘‘Planning

fallacy’’: Why people underestimate their task completion times.

Journal of Personality and Social Psychology 67 (3), 366–381.

Camerer, C.F., Johnson, E.J., 1991. The process-performance paradox

in expert judgment: How can experts know so much and predict so

badly? In: Ericsson, K.A., Smith, J. (Eds.), Towards a General

Theory of Expertise. Cambridge University Press, pp. 195–217.

Chatterjee, S., Chatterjee, S., 1987. On combining expert opinion.

American Journal of Mathematical and Management Sciences 7 (3

& 4), 271–295.

Christensen, R., 1998. Analysis of variance, design and regression.

Applied statistical methods. Chapman & Hall/CRC.

Chulani, S., Boehm, B., Steece, B., 1999. Bayesian analysis of empirical

software engineering cost models. IEEE Transactions on Software

Engineering 25 (4), 573–583.

Clemen, R.T., 1989. Combining forecasts: a review and annotated

bibliography. International Journal of Forecasting 5 (4), 559–583.

Connolly, T., Dean, D., 1997. Decomposed versus holistic estimates of

effort required for software writing tasks. Management Science 43

(7), 1029–1045.

Cosier, R.A., Rose, G.L., 1977. Cognitive conflict and goal conflict

effects on task performance. Organizational Behaviour and Human

Performance 19 (2), 378–391.

Cuelenaere, A.M.E., Genuchten, M.J.I.M., Heemstra, F.J., 1987.

Calibrating a software cost estimation model: why and how.

Information and Software Technology 29 (10), 558–567.

Dawes, R.M., 1986. Proper and improper linear models. International

Journal of Forecasting 2, 5–14.

Dolado, J.J., 2001. On the problem of the software cost function.

Information and Software Technology 43 (1), 61–72.

Edwards, J.S., Moores, T.T., 1994. A conflict between the use of

estimating and planning tools in the management of information

systems. European Journal of Information Systems 3 (2), 139–147.

Einhorn, H.J., Hogarth, R.M., 1978. Confidence in judgment: persis-

tence of the illusion of validity. Psychological Review 85 (5), 395–

416.

Engelkamp, S., Hartkopf, S., Br€oossler, P., 2000. Project experience

database: a report based on first practical experience. In: PROFES,

Oulu, Finland. Springer-Verlag, Berlin, pp. 204–215.

Ericsson, K.A., Lehmann, A.C., 1996. Expert and exceptional perfor-

mance: Evidence of maximal adaptation to task constraints.

Annual Review of Psychology 47, 273–305.

Ettenson, R., Shanteau, J., Krogstad, J., 1987. Expert judgment: Is

more information better. Psychological Reports 60 (1), 227–238.

Fairley, R.E., 1992. Recent advantages in software estimation

techniques. In: International Conference on Software Engineering,

Melbourne, Australia, pp. 382–391.

Fischer, I., Harvey, N., 1999. Combining forecasts: what information

do judges need to outperform the simple average. International

Journal of Forecasting 15 (3), 227–246.

Fischhof, B., 1975. Hindsight <> foresight: the effect of outcome

knowledge on judgement under uncertainty. Journal of Experi-
mental Psychology: Human Perception and Performance 1, 288–

299.

Fischhoff, B., Slovic, P., Lichtenstein, S., 1978. Fault trees: sensitivity

of estimated failure probabilities to problem representation. Jour-

nal of Experimental Psychology: Human Perception and Perfor-

mance 4 (2), 330–334.

Fisher, G.W., 1981. When oracles fail––a comparison of four

procedures for aggregating subjective probability forecasts. Orga-

nizational Behaviour and Human Performance 28 (1), 96–110.

Getty, D.J., Pickett, R.M., D’Orsi, S.J., Swets, J.A., 1988. Enhanced

interpretation of diagnostic images. Investigative Radiology 23,

244–252.

Gigerenzer, G., Todd, P.M., 1999. Simple Heuristics that Make us

Smart. Oxford University Press, New York.

Goodman, P.A., 1992. Application of cost-estimation techniques:

industrial perspective. Information and Software Technology 34

(6), 379–382.

Goodwin, P., 1998. Enhancing judgmental sales forecasting: the role of

laboratory research. In: Wright, G., Goodwin, P. (Eds.), Forecast-

ing with Judgment. John Wiley & Sons, New York, pp. 91–112.

Goodwin, P., Wright, G., 1990. Improving judgmental time series

forecasting: a review of the guidance provided by research.

International Journal of Forecasting 9, 147–161.

Griffin, D., Buehler, R., 1999. Frequency, probability, and prediction:

easy solutions to cognitive illusions? Cognitive Psychology 38 (1),

48–78.

Hagafors, R., Brehmer, B., 1983. Does having to justify one’s

judgments change nature of the judgment process? Organizational

Behaviour and Human Decision Processes 31 (2), 223–232.

Hammond, K.R., 1996. Human judgement and social policy: irreduc-

ible uncertainty, inevitable error, unavoidable injustice. Oxford

University Press, New York.

Hammond, K.R., Hamm, R.M., Grassia, J., Pearson, T., 1987. Direct

comparison of the efficacy of intuitive and analytical cognition in

expert judgment. IEEE Transactions on Systems, Man, and

Cybernetics 17 (5), 753–770.

Harvey, N., 2001. Improving judgment in forecasting. In: Armstrong,

J.S. (Ed.), Principles of Forecasting: A Handbook for Research-

ers and Practitioners. Kluwer Academic Publishers, Boston, pp.

59–80.

Heemstra, F.J., 1992. Software cost estimation. Information and

Software Technology 34 (10), 627–639.

Heemstra, F.J., Kusters, R.J., 1991. Function point analysis: evalua-

tion of a software cost estimation model. European Journal of

Information Systems 1 (4), 223–237.

Henry, R.A., 1995. Improving group judgment accuracy: information

sharing and determining the best member. Organizational Behav-

iour and Human Decision Processes 62, 190–197.

Hihn, J., Habib-Agahi, H., 1991a. Cost estimation of software

intensive projects: a survey of current practices. In: International

Conference on Software Engineering. IEEE Computer Society

Press, Los Alamitos, CA, USA, pp. 276–287.

Hihn, J., Habib-Agahi, H., 1991b. Cost estimation of software

intensive projects: a survey of current practices. In: International

Conference on Software Engineering, pp. 276–287.

Hill, J., Thomas, L.C., Allen, D.E., 2000. Experts’ estimates of task

durations in software development projects. International Journal

of Project Management 18 (1), 13–21.

Hoch, S.J., Schkade, D.A., 1996. A psychological approach to decision

support systems. Management Science 42 (1), 51–64.

Hogarth, R.M., 1978. A note on aggregating opinions. Organizational

Behaviour and Human Performance 21 (1), 40–46.

Houdek, F.S.K., W.E, 1998. Establishing experience factories at

Daimler-Benz. An experience report. In: International Conference

on Software Engineering, Kyoto, Japan, pp. 443–447.

Hughes, R.T., 1996. Expert judgement as an estimating method.

Information and Software Technology 38 (2), 67–75.



58 M. Jørgensen / The Journal of Systems and Software 70 (2004) 37–60
H€oost, M., Wohlin, C., 1997. A subjective effort estimation experiment.

Information and Software Technology 39 (11), 755–762.

H€oost, M., Wohlin, C., 1998. An experimental study of individual

subjective effort estimations and combinations of the estimates.

In: International Conference on Software Engineering, Kyoto,

Japan. IEEE Computer Society, Los Alamitos, CA, USA, pp. 332–

339.

Jeffery, D.R., Low, G., 1990. Calibrating estimation tools for software

development. Software Engineering Journal 5 (4), 215–221.

Jeffery, D.R., Ruhe, M., Wieczorek, I., 2000. A comparative study of

two software development cost modeling techniques using multi-

organizational and company-specific data. Information and Soft-

ware Technology 42 (14), 1009–1016.

Johnson, E.J., 1998. Expertise and decision under uncertainty:

performance and process. In: Chi, M.T.H., Glaser, R., Farr, M.J.

(Eds.), The Nature of Expertise. Lawrence Erlbaum, Hillsdale, NJ,

pp. 209–228.

Josephs, R., Hahn, E.D., 1995. Bias and accuracy in estimates of task

duration. Organizational Behaviour and Human Decision Pro-

cesses 61 (2), 202–213.

Jørgensen, M., 1995. The quality of questionnaire based software

maintenance studies. ACM SIGSOFT––Software Engineering

Notes 20 (1), 71–73.

Jørgensen, M., 1997. An empirical evaluation of the MkII FPA

estimation model. In: Norwegian Informatics Conference, Voss,

Norway, Tapir, Oslo, pp. 7–18.

Jørgensen, M., 2003. Software Effort Estimation by Analogy and

Regression Toward the Mean. Journal of Systems and Software 68

(3), 253–262.

Jørgensen, M., Moløkken, K., 2002. Combination of software

development effort prediction intervals: Why, when and how? In:

Fourteenth IEEE Conference on Software Engineering and

Knowledge Engineering (SEKE’02), Ischia, Italy.

Jørgensen, M., Sjøberg, D., 2000. The importance of not learning from

experience. In: European Software Process Improvement 2000

(EuroSPI’2000), Copenhagen, pp. 2.2–2.8.

Jørgensen, M., Sjøberg, D.I.K., 2001a. Impact of effort estimates on

software project work. Information and Software Technology 43

(15), 939–948.

Jørgensen, M., Sjøberg, D.I.K., 2001b. Software process improvement

and human judgement heuristics. Scandinavian Journal of Infor-

mation Systems 13, 99–121.

Jørgensen, M., Sjøberg, D.I.K., 2002a. The impact of customer

expectation on software development effort estimates. International

Journal of Project Management (submitted).

Jørgensen, M., Sjøberg, D.I.K., 2002b. Impact of experience on

maintenance skills. Journal of Software Maintenance and Evolu-

tion: Research and practice 14 (2), 123–146.

Jørgensen, M., Teigen, K.H., 2002. Uncertainty intervals versus

interval uncertainty: an alternative method for eliciting effort

prediction intervals in software development projects. In: Proceed-

ings of the International conference on Project Management

(ProMAC), Singapore, pp. 343–352.

Jørgensen, M., Sjøberg, D.I.K., Conradi, R., 1998. Reuse of software

development experience at Telenor Telecom Software. In: Euro-

pean Software Process Improvement Conference (EuroSPI’98),

Gothenburg, Sweden, pp. 10.19–10.31.

Jørgensen, M., Moen, L., Løvstad, N., 2002. Combining quantitative

software development cost estimation precision data with qualita-

tive data from Project Experience Reports at Ericsson Design

Center in Norway. In: Proceedings of the Conference on Empirical

Assessment in Software Engineering, Keele, England, Keele Uni-

versity.

Jørgensen, M., Teigen, K.H., Moløkken, K., 2002. Better sure than

safe? Overconfidence in judgment based software development

effort prediction intervals. Journal of Systems and Software

(submitted).
Kahneman, D., Lovallo, D., 1993. Timid choices and bold forecasts: a

cognitive perspective on risk taking. Management Science 39 (1),

17–31.

Kahneman, D., Slovic, P., Tversky, A., 1982. Judgment under

Uncertainty: Heuristics and biases. Cambridge University Press,

Cambridge, UK.

Kahneman, D., Tversky, A., 1973. On the psychology of prediction.

Psychological Review 80 (4), 237–251.

Kahneman, D., Tversky, A., 1979. Intuitive predictions: biases and

corrective procedures. TIMS Studies in Management Science 12,

313–327.

Keen, P.G.W., 1981. Information systems and organizational change.

Social Impacts of Computing 24 (1), 24–33.

Keren, G., Teigen, K.H., 2001. Why is p ¼ 0:90 better than p ¼ 0:70?

preference for definitive predictions by lay consumers of proba-

bility judgments. Psychonomic Bulletin and Reviews 8 (2), 191–

202.

Kernaghan, J.A., Cooke, R.A., 1986. The contribution of the group

process to successful project planning in R & D settings. IEEE

Transactions on Engineering Management 33 (3), 134–140.

Kernaghan, J.A., Cooke, R.A., 1990. Teamwork in planning innova-

tive projects: improving group performance by rational and

interpersonal interventions in group process. IEEE Transactions

on Engineering Management 37 (2), 109–116.

Kitchenham, B., Pfleeger, S.L., McColl, B., Eagan, S., 2002. A case

study of maintenance estimation accuracy. Journal of Systems and

Software 64 (1), 57–77.

Klayman, J., Soll, J.B., Gonzalez, V.C., Barlas, S., 1999. Overconfi-

dence: it depends on how, what and whom you ask. Organizational

Behaviour and Human Decision Processes 79 (3), 216–

247.

Klein, W.M., Kunda, Z., 1994. Exaggerated self-assessments and the

preference for controllable risks. Organizational Behavior and

Human Decision Processes 59 (3), 410–427.

Koehler, D.J., 1991. Explanation, imagination, and confidence in

judgment. Psychological Bulletin 110 (3), 499–519.

Koehler, D.J., Harvey, N., 1997. Confidence judgments by actors

and observers. Journal of Behavioral Decision Making 10 (3), 221–

242.

Koriat, A., Lichtenstein, S., Fischhoff, B., 1980. Reasons for

confidence. Journal of Experimental Psychology: Human Learning

and Memory 6 (2), 107–118.

Kruger, J., Dunning, D., 1999. Unskilled and unaware of it: how

difficulties in recognizing one’s own incompetence lead to inflated

self-assessments. Journal of Personality and Social Psychology 77

(6), 1121–1134.

Kusters, R.J., 1990. Are software cost-estimation models accurate?

Information and software technology 32, 187–190.

Kusters, R.J., Genuchten, M.J.I.M., Heemstra, F.J., 1990. Are

software cost-estimation models accurate? Information and Soft-

ware Technology 32 (3), 187–190.

Lawrence, M., O’Connor, M., 1996. Judgement or models: the

importance of task differences. Omega, International Journal of

Management Science 24 (3), 245–254.

Lederer, A.L., Mirani, R., Neo, B.S., Pollard, C., Prasad, J.,

Ramamurthy, K., 1990. Information system cost estimating: a

management perspective. MIS Quarterly 14 (2), 159–176.

Lederer, A.L., Prasad, J., 1992. Nine management guidelines for better

cost estimating. Communications of the ACM 35 (2), 51–59.

Lederer, A.L., Prasad, J., 1993. Information systems software cost

estimating: a current assessment. Journal of Information Technol-

ogy 8 (1), 22–33.

Lederer, A.L., Prasad, J., 1998. A causal model for software cost

estimating error. IEEE Transactions on Software Engineering 24

(2), 137–148.

Lederer, A.L., Prasad, J., 2000. Software management and cost

estimating error. Journal of Systems and Software 50 (1), 33–42.



M. Jørgensen / The Journal of Systems and Software 70 (2004) 37–60 59
Libby, R., Blashfield, R.K., 1978. Performance of a composite as a

function of the number of judges. Organizational Behaviour and

Human Performance 21 (2), 121–129.

Lichtenstein, S., Fischhoff, B., 1977. Do those who know more also

know more about how much they know. Organizational Behaviour

and Human Decision Processes 20 (2), 159–183.

Lichtenstein, S., Fischhoff, B., Phillips, L.D., 1982. Calibration of

probabilities: the state of the art to 1980. In: Tversky, A. (Ed.),

Judgment under Uncertainty: Heuristics and Biases. Cambridge

University Press, Cambridge.

Lim, J.S., O’Connor, M., 1996. Judgmental forecasting with time series

and causal information. International Journal of Forecasting 12

(1), 139–153.

Londeix, B., 1995. Deploying realistic estimation (field situation

analysis). Information and Software Technology 37 (12), 655–670.

MacGregor, D.G., 2001. Decomposition for judgmental forecasting

and estimation. In: Armstrong, J.S. (Ed.), Principles of Forecast-

ing: A Handbook for Researchers and Practitioners. Kluwer

Academic Publishers, Boston, pp. 107–123.

MacGregor, D.G., Lichtenstein, S., 1991. Problem structuring aids for

quantitative estimation. Journal of Behavioral Decision Making 4

(2), 101–116.

Maines, L.A., 1996. An experimental examination of subjective

forecast combination. International Journal of Forecasting 12 (2),

223–233.

Makridakis, S., Wheelwright, S.C., Hyndman, R.J., 1998. Forecasting:

Methods and Applications. John Wiley & Sons, New York.

Marouane, R., Mili, A., 1989. Economics of software project

management in Tunisia: basic TUCOMO. Information and Soft-

ware Technology 31 (5), 251–257.

Marwane, R., Mili, A., 1991. Building tailor-made software cost

model: Intermediate TUCOMO. Information and Software Tech-

nology 33 (3), 232–238.

McClelland, A.G.R., Bolger, F., 1994. The calibration of subjective

probabilities: theories and models 1980–94. In: Ayton, P. (Ed.),

Subjective Probability. John Wiley, Chichester.

McConnel, S., 1998. Software Project Survival Guide. Microsoft Press.

Meehl, P.E., 1957. When shall we use our heads instead of the

formula? Journal of Counseling Psychology 4 (4), 268–273.

Mendes, E., Counsell, S., Mosley, N., 2001. Measurement and

effort prediction for Web applications. Springer-Verlag, Berlin,

Germany.

Meyer, M.A., Booker, J.M., 1991. Eliciting and Analyzing Expert

Judgment: A Practical Guide. SIAM, Philadelphia, Pennsylvania.

Mizuno, O., Kikuno, T., Inagaki, K., Takagi, Y., Sakamoto, K., 2000.

Statistical analysis of deviation of actual cost from estimated cost

using actual project data. Information and Software Technology

42, 465–473.

Mohanty, S.N., 1981. Software cost estimation: Present and future.

Software––Practice and Experience 11 (2), 103–121.

Moløkken, K., 2002. Expert estimation of Web-development effort:

individual biases and group processes (Master Thesis). Department

of Informatics, University of Oslo.

Mukhopadhyay, T., Vicinanza, S.S., Prietula, M.J., 1992. Examining

the feasibility of a case-based reasoning model for software effort

estimation. MIS Quarterly 16 (2), 155–171.

Murali, C.S., Sankar, C.S., 1997. Issues in estimating real-time data

communications software projects. Information and Software

Technology 39 (6), 399–402.

Myrtveit, I., Stensrud, E., 1999. A controlled experiment to assess the

benefits of estimating with analogy and regression models. IEEE

Transactions on Software Engineering 25, 510–525.

NASA, 1990. Manager’s handbook for software development. God-

dard Space Flight Center, Greenbelt, MD, NASA Software

Engineering Laboratory.

Newby-Clark, I.R., Ross, M., Buehler, R., Koehler, D.J., Griffin, D.,

2000. People focus on optimistic scenarios and disregard pessimistic
scenarios when predicting task completion times. Journal of

Experimental Psychology: Applied 6 (3), 171–182.

Niessink, F., van Vliet, H., 1997. Predicting maintenance effort with

function points. In: International Conference on Software Main-

tenance, Bari, Italy. IEEE Computer Society, Los Alamitos, CA,

USA, pp. 32–39.

Nisbett, R.E., Ross, L., 1980. Human inference: Strategies and short-

comings of social judgment. Prentice-Hall, Englewood Cliffs, NJ.

O’Connor, M., Remus, W., Griggs, K., 1993. Judgmental forecasting

in times of change. International Journal of Forecasting 9 (2), 163–

172.

Ohlsson, N., Wohlin, C., Regnell, B., 1998. A project effort estimation

study. Information and Software Technology 40 (14), 831–839.

Ordonez, L., Benson III, L., 1997. Decisions under time pressure: how

time constraint affects risky decision making. Organizational

Behaviour and Human Decision Processes 71 (2), 121–140.

Park, R.E., 1996. A manager’s checklist for validating software cost

and schedule estimates. American Programmer 9 (6), 30–35.

Paynter, J., 1996. Project estimation using screenflow engineering. In:

International Conference on Software Engineering: Education and

Practice, Dunedin, New Zealand. IEEE Computer Society Press,

Los Alamitos, CA, USA, pp. 150–159.

Pelham, B.W., Neter, E., 1995. The effect of motivation of judgment

depends on the difficulty of the judgment. Journal of Personality

and Social Psychology 68 (4), 581–594.

Pengelly, A., 1995. Performance of effort estimating techniques in

current development environments. Software Engineering Journal

10 (5), 162–170.

Reagan-Cirincione, P., 1994. Improving the accuracy of group

judgment: a process intervention combining group facilitation,

social judgment analysis, and information technology. Organiza-

tional Behaviour and Human Decision Processes 58 (2), 246–270.

Remus, W., O’Connor, M., Griggs, K., 1995. Does reliable informa-

tion improve the accuracy of judgmental forecasts? International

Journal of Forecasting 11 (2), 285–293.

Ringuest, J.L., Tang, K., 1987. Simple rules for combining forecasts:

Some empirical results. Socio-Economical Planning Science 21 (4),

239–243.

Roth, P.L., 1993. Research trends in judgment and their implications

for the Schmidt–Hunter global estimation procedure. Organiza-

tional Behaviour and Human Decision Processes 54 (2), 299–319.

Rowe, G., Wright, G., 2001. Expert opinions in forecasting: The role

of the Delphi process. In: Armstrong, J.S. (Ed.), Principles of

Forecasting: A Handbook for Researchers and Practitioners.

Kluwer Academic Publishers, Boston, pp. 125–144.

Sanbonmatsu, D.M., Sharon, A.A., Biggs, E., 1993. Overestimating

causality: Attributional effects of confirmatory processing. Journal

of Personality and Social Psychology 65 (5), 892–903.

Sanders, D.E., Ritzman, L.P., 1991. On knowing when to switch from

quantitative to judgemental forecasts. International Journal of

Forecasting 11 (6), 27–37.

Sanders, G.S., 1984. Self-presentation and drive in social facilitation.

Journal of Experimental Social Psychology 20 (4), 312–322.

Sanders, N.R., Ritzman, L.P., 2001. Judgmental adjustment of

statistical forecasts. In: Armstrong, J.S. (Ed.), Principles of

Forecasting: A Handbook for Researchers and Practitioners.

Kluwer Academic Publishers, Boston, pp. 405–416.

Schmitt, N., Coyle, B.W., King, L., 1976. Feedback and task

predictability as determinants of performance in multiple cue

probability learning tasks. Organizational Behaviour and Human

decision processes 16 (2), 388–402.

Seaver, D.A., Winterfeldt, D., Edwards, W., 1978. Eliciting subjective

probability distributions on continuous variables. Organizational

Behaviour and Human Decision Processes 21 (3), 379–391.

Shanteau, J., 1992. Competence in experts: the role of task character-

istics. Organizational Behaviour and Human Decision Processes 53

(2), 252–266.



60 M. Jørgensen / The Journal of Systems and Software 70 (2004) 37–60
Shepperd, J.A., Fernandez, J.K., Quellette, J.A., 1996. Abandoning

unrealistic optimism: performance estimates and the temporal

proximity of self-relevant feedback. Journal of Personality and

Social Psychology 70 (4), 844–855.

Sieber, J.E., 1974. Effects of decision importance on ability to generate

warranted subjective uncertainty. Journal of Personality and Social

Psychology 30 (5), 688–694.

Simon, H.A., 1987. Making management decisions: the role of intuition

and emotion. Academy of Management Executive 1, 57–63.

Skitmore, R.M., Stradling, S.G., Tuohy, A.P., 1994. Human effects in

early stage construction contract price forecasting. IEEE Transac-

tions on Engineering Management 41 (1), 29–40.

Soll, J.B., 1996. Determinants of overconfidence and miscalibration:

the roles of random error and ecological structure. Organizational

Behaviour and Human Decision Processes 65 (2), 117–137.

Stahlberg, D., Eller, F., Maass, A., Frey, D., 1995. We knew it all

along: hindsight bias in groups. Organizational Behaviour and

Human Decision Processes 63 (1), 46–58.

Stone, E.R., Opel, R.B., 2000. Training to improve calibration and

discrimination: the effects of performance and environmental

feedback. Organizational Behaviour and Human Decision Pro-

cesses 83 (2), 282–309.

Subbotin, V., 1996. Outcome feedback effects on under- and overcon-

fident judgments (general knowledge tasks). Organizational Behav-

iour and Human Decision Processes 66 (3), 268–276.

Taff, L.M., Borchering, J.W., Hudgins, J.W.R., 1991. Estimeetings:

development estimates and a front-end process for a large project.

IEEE Transactions on Software Engineering 17 (8), 839–849.

Tan, H.-T., Lipe, M.G., 1997. Outcome effects: the impact of decision

process and outcome controllability. Journal of Behavioral Deci-

sion Making 10 (4), 315–325.

Tausworthe, R.C., 1980. The work breakdown structure in software

project management. Journal of Systems and Software 1 (3), 181–

186.

Thomsett, R., 1996. Double Dummy Spit and other estimating games.

American Programmer 9 (6), 16–22.

Todd, P., Benbasat, I., 2000. Inducing compensatory information

processing through decision aids that facilitate effort reduction: an

experimental assessment. Journal of Behavioral Decision Making

13 (1), 91–106.

Tversky, A., Kahneman, D., 1974. Judgment under uncertainty:

Heuristics and biases. Science 185, 1124–1131.
van Genuchten, M., Koolen, H., 1991. On the use of software cost

models. Information and Management 21, 37–44.

Verner, J.M., Overmyer, S.P., McCain, K.W., 1999. In the 25 years

since The Mythical Man-Month what have we learned about

project management. Information and Software Technology 41,

1021–1026.

Vicinanza, S.S., Mukhopadhyay, T., Prietula, M.J., 1991. Software

effort estimation: an exploratory study of expert performance.

Information Systems Research 2 (4), 243–262.

Walkerden, F., Jeffery, D.R., 1997. Software cost estimation: a review

of models, process, and practice. Advances in Computers 44, 59–

125.

Walkerden, F., Jeffery, R., 1999. An empirical study of analogy-based

software effort estimation. Journal of Empirical Software Engi-

neering 4 (2), 135–158.

Webby, R.G., O’Connor, M.J., 1996. Judgemental and statistical time

series forecasting: a review of the literature. International Journal

of Forecasting 12 (1), 91–118.

Weinberg, G.M., Schulman, E.L., 1974. Goals and performance in

computer programming. Human Factors 16 (1), 70–77.

Whitecotton, S.M., Sanders, D.E., Norris, K.B., 1998. Improving

predictive accuracy with a combination of human intuition and

mechanical decision aids. Organizational Behaviour and Human

Decision Processes 76 (3), 325–348.

Winklhofer, H., Diamantopoulos, A., Witt, S.F., 1996. Forecasting

practice: a review of the empirical literature and an agenda for

future research. International Journal of Forecasting 12 (2), 193–

221.

Wolverton, R.W., 1974. The cost of developing large-scale software.

IEEE Transactions on Software Engineering C-23 (6), 615–

636.

Wright, G., Ayton, P., 1994. Subjective probability. John Wiley, West

Sussex, England.

Yaniv, I., Foster, D.P., 1997. Precision and accuracy of judgmental

estimation. Journal of Behavioral Decision Making 10, 21–32.

Yau, C., Gan, L.-Y., 1995. Comparing the top-down and bottom-up

approaches of function point analysis: a case study. Software

Quality Journal 4 (3), 175–187.

Zajonc, R.B., 1965. Social facilitation. Science 149, 269–274.

Zajonc, R.B., Heingarner, A., Herman, E.M., 1969. Social enhance-

ment and impairment of performance in the cockroach. Journal of

Personality and Social Psychology 13 (2), 83–92.


	A review of studies on expert estimation of software development effort
	Introduction
	Frequency of use of expert estimation
	Performance of expert estimation in comparison with estimation models
	Reduce situational and human biases
	Evaluate estimation accuracy, but avoid high evaluation pressure
	Avoid conflicting goals
	Ask estimators to justify and criticize their estimates
	Avoid irrelevant and unreliable estimation information
	Use documented data from previous development tasks
	Find experts with relevant domain background and good estimation records

	Support the estimation process
	Estimate both top-down and bottom-up, independently of each other
	Use estimation checklists
	Obtain and combine estimates from different experts and approaches
	Assess the uncertainty of the estimate

	Provide estimation feedback and training opportunities
	Provide feedback on estimation accuracy and development task relations
	Provide estimation training opportunities

	Conclusions and further research
	Acknowledgements
	References


