
Energy Redistribution Path Tracing

David Cline Justin Talbot Parris Egbert ∗

Brigham Young University

Abstract

We present Energy Redistribution (ER) sampling as an unbiased
method to solve correlated integral problems. ER sampling is a hy-
brid algorithm that uses Metropolis sampling-like mutation strate-
gies in a standard Monte Carlo integration setting, rather than re-
sorting to an intermediate probability distribution step. In the con-
text of global illumination, we present Energy Redistribution Path
Tracing (ERPT). Beginning with an inital set of light samples taken
from a path tracer, ERPT uses path mutations to redistribute the
energy of the samples over the image plane to reduce variance.
The result is a global illumination algorithm that is conceptually
simpler than Metropolis Light Transport (MLT) while retaining its
most powerful feature, path mutation. We compare images gener-
ated with the new technique to standard path tracing and MLT.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration; I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism.

Keywords: Monte Carlo integration, correlated integrals, energy
redistribution, global illumination, path tracing, Metropolis light
transport.

1 Introduction

Today, a number of rendering programs exist that can produce
photorealistic output. Methods that create such “synthetic pho-
tographs” by measuring light transport are collectively known as
global illumination algorithms. The distinguishing characteristic of
a global illumination algorithm, as opposed to an ad-hoc lighting
algorithm, is the goal of accounting for all light scattering events
that lead to the creation of an image. In a very real sense, the pro-
cess of global illumination is a physical simulation in which light
transport paths are followed through a virtual scene and recorded
on a virtual film plane.

The most versatile global illumination algorithms currently
available are based on ray tracing and numerical integration. [Ka-
jiya 1986] was the first to publish a global illumination algorithm of
this type. Drawing on heat transfer literature and Monte Carlo inte-
gration theory, Kajiya described the now classic path tracing algo-
rithm, which samples the light reaching the image plane by tracing
potential light paths backwards from the eye point.

Despite the generality of path tracing, it can be quite inefficient
even in common lighting situations. The reason for this inefficiency
is variance in the Monte Carlo light estimate, which shows up as

∗cline@rivit.cs.byu.edu, jft2@email.byu.edu, egbert@cs.byu.edu

noise in a rendered image. Practically speaking, the Monte Carlo
sampler does not have enough global context to quickly find all
of the important light transport paths. Importance sampling tech-
niques, such as [Veach and Guibas 1995] and [Lawrence et al. 2004]
can provide some of this context, but usually only in a local way.

Noting the difficulty of finding all of the significant light trans-
port paths starting at the eye point, [Lafortune and Willems 1993]
and [Veach and Guibas 1994] independently developed bidirec-
tional path tracing, which generates paths starting at the light
sources as well as the eye point. Some parts of path space are better
sampled this way, so variance is reduced.

Other techniques cache and interpolate portions of the light
transport that are similar between pixels, reducing variance at the
expense of biasing the solution. Irradiance caching [Ward et al.
1988], density estimation [Shirley et al. 1995] and photon mapping
[Jensen 1996] all take this approach.

An innovative global illumination algorithm that has received a
lot of attention in recent years is Metropolis Light Transport (MLT)
[Veach and Guibas 1997]. MLT replaces the Monte Carlo integrator
used in path tracing with a Metropolis sampler. The main advan-
tage of the Metropolis algorithm over Monte Carlo integration is the
ability to preserve the sampling context. This is done by using path
mutation to explore path space in a localized way. Thus, when high
contribution paths are found, nearby paths will likely be explored
as well.

Since the original 1997 paper, researchers have sought to ex-
tend the MLT algorithm in a number of ways. [Pauly et al. 2000]
added mutation strategies to MLT that handle participating media
such as smoke and fog. [Kelemen et al. 2002] simplified the MLT
algorithm, and increased the mutation acceptance rate, by defining
mutation over an abstract space of random numbers rather than the
geometric space of ray paths. Other work has focused on the statis-
tical properties of MLT. [Szirmay-Kalos et al. 1999] characterized
the start-up bias problem of the algorithm, and [Ashikhmin et al.
2001] analyzed its variance.

Combining path tracing and MLT. In this paper we propose a
new global illumination algorithm that combines Monte Carlo path
tracing with Metropolis Light Transport mutation strategies. The
algorithm works by redistributing the energy of initial path traced
samples over the image plane, so we call it Energy Redistribution
path tracing, or ERPT.

Our motivation for combining path tracing and MLT comes from
the observation that Monte Carlo integration tends to be easy to
stratify and control, whereas Metropolis has better convergence
properties in many hard sampling situations. However, even though
Metropolis sampling may exhibit better convergence properties at
low sampling densities, it will still have a worse order of conver-
gence than stratified Monte Carlo sampling if the dimensionality of
the integral is low enough. This effect becomes readily apparent
when comparing MLT to path tracing for direct lighting.

The ERPT algorithm begins with a set of Monte Carlo samples
taken from a path tracer. It then uses a filter step based on path mu-
tation to spread the energy of the MC samples over the image plane
in an unbiased way. Unlike the Metropolis algorithm, which uses a
single, very long Markov chain of sample locations, our algorithm
generates shorter sample chains starting at each path traced sam-
ple. We can use short chains because the initial Monte Carlo step
eliminates startup bias.

Paper organization. The remainder of this paper is organized
as follows: section 2 reviews a number of ideas leading up to ER
sampling, including a brief review of Monte Carlo integration, cor-
related integrals and energy flow. Section 3 describes the ER sam-
pling algorithm in detail. Section 4 presents Energy Redistribution
Path Tracing, followed by comparisons between ERPT, standard
path tracing and MLT in section 5. Finally, section 6 concludes and
suggests ways to improve the algorithm.

2 Sampling Issues

This section gives an overview of sampling ideas leading up to ER
sampling. We give a brief overview of Monte Carlo integration, and
present the concepts of correlated integrals, energy flow, and gen-
eral and detailed balance. Finally, Metropolis sampling is reviewed,
and we show how it relates to energy flow and detailed balance.

2.1 Monte Carlo Integration

Consider the problem of integrating the function f over some do-
main Ω:

∫

Ω
f (x̄) dµ(x̄).

We place a bar over the x to indicate that it may be a vector rather
than just a scalar quantity. Monte Carlo integration solves this inte-
gral by creating a random variable X f with expected value equal to
the integral:

E[X f] =
∫

Ω
f (x̄) dµ(x̄).

X f is constructed starting with a sampling procedure Sp which gen-
erates samples from Ω according to some probability distribution,
p. To complete X f , a sample location x̄ is chosen using Sp, and
X f (x̄) is evaluated

X f (x̄) =
f (x̄)

p(x̄)
. (1)

This expression forms an unbiased estimate of the integral, which
may have a high variance. The usual way to reduce the variance is
to average a number of samples taken from X f . We will refer to the
quantity X f (x̄) as the “initial energy” deposited at point x̄.

Equation 1 can also be rearranged to obtain values of f in terms
of X f and p:

X f (x̄) p(x̄) = f (x̄). (2)

We will refer to X f (x̄)p(x̄) as the “expected energy” at x̄.

2.2 Correlated Integrals

A good number of integration problems involve the estimation of
not just one, but a large number of integrals. Path tracing is a par-
ticularly pertinent example. Each pixel in a path traced image is
an integral that is evaluated using Monte Carlo integration. A stan-
dard path tracer evaluates the pixel integrals independently, but it
is well known that the integrals have highly correlated integrands
(see figure 1). The most successful correlated integral solutions
tend to exploit the correlation between integrals to reduce variance.
In fact, the correlation between pixel integrands is the implied ba-
sis for many of the global illumination algorithms currently in use,
including irradiance caching [Ward et al. 1988], photon mapping
[Jensen 1996] and Metropolis Light Transport [Veach and Guibas
1997]. Irradiance caching and photon mapping take adavantage of
inter-pixel correlation by caching incident light values, which are
later used to approximate parts of the pixel integrals that are diffi-
cult to evaluate independently. MLT leverages the correlation be-
tween pixel integrals in a different way, using mutation strategies

Figure 1: Correlated integrals in path tracing. A path tracer must
integrate the light incident on surface points seen from the camera.
Nearby pixels often have very similar integrands, as can be seen
above. The right images show the incident light at the two pixels
marked by the red dots in the left image.

to share integrand information between pixels. Our work takes a
similar approach, utilizing path mutations to spread the energy of
initial Monte Carlo pixel estimates over the image plane.

2.3 Energy Flow

One way to coordinate sampling efforts between correlated inte-
grals is to use a process of energy flow. (By energy, we simply
mean the value of a real-valued function. For a color-valued func-
tion, such as an image, energy refers to the luminance.) Energy flow
allows a sampling procedure to perform a directed search between
similar points in the domains of correlated integrals. To see why
this can be useful, consider two correlated integrals, I1 and I2, with
domains Ω1 and Ω2. Suppose that in the process of sampling, a
high contribution point x̄ is found in Ω1 (i.e. X f (x̄) is large). Since
I1 and I2 are correlated, it is likely that a high contribution point ȳ
will exist in a location similar to x̄ in Ω2. Energy flow establishes a
connection between points x̄ and ȳ and transfers some of the energy
at x̄ to ȳ. Figure 2 shows this graphically. Often, energy flow can
be more efficient than standard Monte Carlo sampling because the
cost of finding high contribution points is amortized over multiple
integrals.

x yW1 W2

Figure 2: Energy flow connects points in correlated integrals, and
transfers function energy between them. When done properly, en-
ergy flow provides a mechanism for directed searching within the
domains of correlated integrals without biasing the integral esti-
mates.

The expected energy flow. In practice, energy flow is created
by perturbing or “mutating” a source point, x̄, to produce a desti-
nation point, ȳ. (Imagine laying a pipe from x̄ to ȳ along which
energy can flow.) Some of the energy at x̄ is then tranferred to ȳ.
Let T (x̄→ ȳ) be the transition probability from x̄ to ȳ, that is, the
probability that ȳ is chosen as the destination point given that x̄ is
the source point. In this situation, the expected flow from x̄ to ȳ is

E[φ(x̄→ ȳ)] = E[X f (x̄) p(x̄) T (x̄→ ȳ) q(x̄→ ȳ)], (3)

where φ(x̄→ ȳ) denotes the energy flow from x̄ to ȳ, E[·] is the
expected value, X f (x̄)p(x̄) is the expected energy located at x̄ from
an initial Monte Carlo estimate (equation 2), and q(x̄→ ȳ) is the
percentage of energy at x̄ that flows to ȳ once a connection has been
established.

General and detailed balance. Astonishingly, energy flow can
occur without biasing the integral estimates, as long as certain con-
ditions on the flow amount are met. In particular, the integral esti-
mates will remain unbiased as long as the expected flow of energy
out of any point x̄ equals the expected flow back in. We will re-
fer to this property as general balance. More formally, we say that
general balance holds if

E

[

∫

φ(x̄→ ȳ) dµ(ȳ)

]

= E

[

∫

φ(ȳ→ x̄) dµ(ȳ)

]

∀ x̄. (4)

An even stronger constraint that guarantees unbiased-ness is called
detailed balance. Detailed balance requires that the expected flow
between any two points be equal. In other words,

E[φ(x̄→ ȳ)] = E[φ(ȳ→ x̄)] ∀ x̄, ȳ. (5)

Figure 3 shows the two kinds of balance graphically.

x
x

y

General balance Detailed balance

Figure 3: General and detailed balance of energy flow. General
balance (left) requires the total expected flow out of a point to equal
the expected flow back in. Detailed balance (right) requires that the
expected energy flow between any two points be equal.

2.4 Review of Metropolis Sampling

Here we provide a brief overview of Metropolis sampling, also
called the Metropolis algorithm or the Metropolis-Hastings algo-
rithm. We refer the reader to [Pharr 2003] for a more thorough
introduction to Metropolis sampling and its application to render-
ing.

Suppose that it is desired to evaluate a set of correlated integrals,
I1 . . . In. Monte Carlo integration would solve this problem by tak-
ing a separate set of samples from each of the integral domains.
Sampling the integrals separately can be inefficient, however, since
the high contribution points in each integral domain must be found
independently. The Metropolis algorithm [Metropolis et al. 1953]
takes a different approach that allows sampling efforts to be coor-
dinated among the different integrals. The main idea is to create a
probability distribution (pdf) that is proportional to the correlated
integrals and then draw samples from this distribution. Metropo-
lis sampling does this by using detailed balance to migrate a single
sample through the domains of the correlated integrals, Ω1 . . .Ωn.
As the sample moves, a histogram is kept of its location, and the
number of samples deposited in the domain of each integral ends
up being proportional to the value of the integral (see figure 4).

Metropolis sampling and detailed balance. Instead of us-
ing detailed balance to define the amount of flow in the system,
Metropolis sampling uses it to define the acceptance probability,
the probability that flow will occur given a proposed mutation.
When flow does occur, a single unit of energy is transferred. Thus,

. . .W1 W2 W3 Wn

Figure 4: The Metropolis algorithm evaluates a set of correlated in-
tegrals by moving a sample through the domains of the integrals,
tracing out a distribution proportional to the integral values. Sam-
pling efforts are coordinated because the moving sample can jump
between similar locations in the domains of different integrals.

the expected number of flow events between any two points, x̄ and
ȳ, must be equal for detailed balance to hold, and the ratio of the
acceptance probabilities between points x̄ and ȳ is given by

a(x̄→ ȳ)

a(ȳ→ x̄)
=

f (ȳ)T (ȳ→ x̄)

f (x̄)T (x̄→ ȳ)
.

In practice, it is usually best to maximize the acceptance probabili-
ties, so the actual acceptance probability used is

a(x̄→ ȳ) = min

(

1,
f (ȳ)T (ȳ→ x̄)

f (x̄)T (x̄→ ȳ)

)

.

Limitations of the Metropolis algorithm. Although Metropo-
lis sampling has proven useful in a variety of sampling contexts, it
has several limitations that make it difficult to use in a global illu-
mination setting. For example, the Metropolis algorithm is based
on the idea of drawing samples from a probability distribution,
even though it doesn’t explicitly calculate a pdf. This framework
tends to be less flexible than working directly with function ener-
gies. Metropolis also exhibits the so called “startup bias” problem,
which in practice means that it can only be used if a large number of
samples will be taken. Furthermore, Metropolis sampling does not
stratify well, and its convergence characteristics are hard to analyze.

Metropolis versus ER sampling. As will be seen in the next
sections, Energy Redistribution sampling attempts to do away with
some of the limitations of Metropolis sampling while maintaining
its most powerful features. ER sampling works directly with func-
tion energies. It eliminates the startup bias problem because it be-
gins with an unbiased Monte Carlo estimator. Consequently, ER
sampling does not require a complete set of mutation strategies to
work (ergodicity is ensured by the initial MC samples). Further-
more, since it is an extension of Monte Carlo integration, ER sam-
pling can leverage stratified sampling and other Monte Carlo vari-
ance reduction techniques.

3 Energy Redistribution Sampling

In the last section we saw that Metropolis sampling is closely re-
lated to the ideas of energy flow and detailed balance. In this sec-
tion, we describe Energy Redistribution sampling, a new algorithm
that exploits these same principles, but directly in a Monte Carlo
integration setting.

Energy Redistribution sampling evaluates a set of correlated in-
tegrals in a two step process. In the first step, Monte Carlo samples
are taken from the integral domains. The second step uses a pro-
cess of energy flow to redistribute the energy of the MC samples
over the domains of the correlated integrals in an unbiased way.
Figure 5 summarizes this process. The heart of ER sampling lies in
choosing a flow filter to redistribute the energy of the MC samples.
This section describes several balanced energy flow filters (rules
that define energy flow in such a way that general balance holds)
We start with the detailed balance flow rule and then modify it to
produce the equal deposition flow rule, which forms the basis of
our ER sampling algorithm.

EnergyRedistributionSampling ()
for each integral domain, Ωi

for j = 1 to m
create an MC sample, x̄, in Ωi according to Sp

evaluate X f (x̄) = f (x̄)/p(x̄)
if X f (x̄) > 0

redistribute the energy of X f (x̄) using
a balanced energy flow filter.

Figure 5: The Energy Redistribution sampling algorithm.

3.1 The Detailed Balance Flow Rule

To work, ER sampling must define a set of mutation strategies and
determine the amount of energy transferred during flow events (q
from equation 3). The main objective is to define a flow rule that
reduces the variance of a set of Monte Carlo estimates while sat-
isfying general balance. As an initial attempt, we follow the lead
of Metropolis, and use detailed balance directly to define q. Bor-
rowing the standard acceptance probability used by the Metropolis
algorithm, we derive

q(x̄→ ȳ) = min

(

1,
X f (ȳ)p(ȳ)T (ȳ→ x̄)

X f (x̄)p(x̄)T (x̄→ ȳ)

)

. (6)

We call this flow rule the detailed balance flow rule for obvious rea-
sons. In practice, we mutate the original Monte Carlo samples mul-
tiple times and transfer some energy to each of the mutated samples.
For example, if the MC sample x̄ is mutated n times, it will produce
n mutated samples, ȳ1 . . . ȳn, and the amount of energy transferred
to each of the ȳi will be X f (x̄)q(x̄→ ȳi)/n.

After flow occurs, any energy that has not flowed out of x̄ stays
there, and contributes to the integral estimate at that point. Con-
sequently, the detailed balance flow rule is unbiased, but has the
serious drawback that a large portion of the energy may not flow
anywhere. Thus, if a bright spot exists in one of the initial integral
estimates, it will likely continue to exist after flow has occurred,
and the variance will remain high.

3.2 The Equal Deposition Flow Rule

The main problem with the detailed balance flow rule is that some
of the energy of the Monte Carlo estimates does not flow anywhere.
A modification that partially solves this problem is to apply the de-
tailed balance rule recursively on the original sample and all the
mutated samples that are created. Each time the rule is applied,
some of the energy at x̄ gets “whittled off” so that after a few flow
events very little of the original energy remains at that point. Un-
fortunately, iterating in this manner results in an exponential growth
in the number of samples. In essence, the recursion creates a tree
of splitting Markov chains that multiplies the number of samples
at each iteration. Another problem with this approach is that the
amount of energy in the mutated samples will vary wildly, leading
to increased variance.

Equal deposition. A better solution is to create linear Markov
chains that emanate from each MC sample point rather than split-
ting chains. Sample chains can be prevented from splitting by
probabilistically keeping all of the energy at the current location or
transferring all of it to the mutated location. These chains of sam-
ples create a set of unbiased estimates of the correlated integrals,
one for each flow iteration. (Note that in order for the estimates
to remain unbiased, the sample chains must all be the same length.)

EqualDepositionFlow (x̄, e, m, ed)
numChains = ⌊random(0,1)+ e/(m× ed)⌋
for i = 1 to numChains

ȳ = x̄
for j = 1 to m

z̄ = mutate(ȳ)
if q(ȳ→ z̄) ≥ random(0,1)

ȳ = z̄
deposit ed energy at ȳ

Figure 6: The equal deposition flow rule. x̄ is the location of a
Monte Carlo sample, e is the initial energy at x̄, X f (x̄), m is the
sample chain length, and ed is the deposition energy.

To reconstruct the integrals, the ER sampler desposits an equal frac-
tion of the original energy imparted to the sample chains after each
iteration. Hence, we call this rule the equal deposition flow rule.

To see that the equal deposition flow rule is unbiased, notice that
the sample chains, taken as a whole, form n unbiased estimates of
the correlated integrals. Although each sample is processed sep-
arately, the end result is nothing more than the average of the n
unbiased estimates, and is therefore unbiased as well.

Equal deposition and Metropolis sampling. In the special
case where all of the sample chains start with the same amount of
energy, the equal deposition flow rule becomes a form of Metropo-
lis sampling that does not exhibit startup bias. To put it another way,
since the amount of energy deposited by each sample chain on each
flow iteration is equal, the sampler is implicitly taking draws from
a distribution proportional to f , which is exactly what Metropolis
does. This process is very similar to how [Veach and Guibas 1997]
eliminate startup bias, except that in addition, our algorithm uses
the Monte Carlos samples to provide initial coverage of the entire
sample space.1 Pseudo-code for this form of the algorithm is given
in figure 6.

Starting the sample chains with the same energy is not the only
option, however. Any number of sample chains (even zero) can
be started from a given MC sample as long as the expected energy
imparted to the chains equals the sample’s initial energy. Another
point is that there are situations in which the sample chains do not
all have to have the same length. This happens when the set of
available mutations splits the domains of the integrals into disjoint
sets. As long as the chains in these disjoint sets are all the same
length, the integral estimates will remain unbiased.

The deposition energy. An essential part of the equal deposi-
tion flow rule is the deposition energy, or how much energy will
be deposited after flow events. To determine the deposition energy,
we estimate the expected energy of MC samples within the sam-
pling domain and divide by the desired number of mutations per
integrand as follows:

ed = eave/k, (7)

where ed is the deposition energy, eave is the average energy of a
number of samples taken with the Monte Carlo sampler, and k is the
desired number of mutations per correlated integrand. Note that a
poor estimate of eave will not change the accuracy of the algorithm,
only its run time. Contrast this with Metropolis sampling, in which
a value similar to eave acts as a global scale factor for the integral
estimates.

1These results also imply that if Veach’s resampling algorithm to elimi-

nate startup bias is used, and multiple sample chains are created, we cannot

use the energy of the original MC samples to determine the sample chain

length without reintroducing bias.

4 Energy Redistribution Path Tracing

This section gives the details of our Energy Redistribution path trac-
ing algorithm, which we will refer to as ER path tracing or ERPT.
Conceptually, the algorithm is nothing more than Energy Redis-
tribution sampling with a path tracer as the Monte Carlo sampler.
Figure 7 gives pseudocode for ERPT. Notice that the algorithm is
quite similar to a path tracer. The only difference is that the step
that deposits the energy onto the image plane has been replaced
by a balanced energy flow filter. The remainder of this section de-

ERPathTracing(mc)
determine the deposition energy, ed // equation 7
for each pixel in the image

for j = 1 to n
create a path, x̄, in the current pixel
X f (x̄) = f (x̄)/p(x̄) // evaluate the path
if X f (x̄) > 0

EqualDepositionFlow(x̄, X f (x̄), mc, ed)

Figure 7: The ER path tracing algorithm. The code above specifies
the equal deposition flow rule, but any balanced energy flow filter
could be used. The value mc is the user-specified sample chain
length. In practice, we found values between about 100 and 1000
to work well.

scribes several essential details of ER path tracing. We give a brief
overview of the rendering equation in the context of path tracing,
and then discuss the idea of Monte Carlo path density. Next we
give a set of rules to determine the relative Monte Carlo sampling
density between two ray paths, which is needed to calculate the
value of q. We also discuss the specific mutation strategies used by
our algorithm.

4.1 Ray Paths and Monte Carlo Path Density

A path tracer creates an image by sampling the incoming light over
the area of each pixel on the image plane. This incoming light is
described by the rendering equation [Kajiya 1986], one form of
which is given below:

x

Wx

N

Y
Q

q

L(x→Ψ) = Le(x→Ψ)+
∫

Ωx

L(x← -Θ) fr(Ψ↔Θ)|cosθ |dωΘ. (8)

In brief, the rendering equation describes the light coming from a
surface point x in a particular direction, Ψ, L(x→Ψ). The term
Le(x→Ψ) is the light emitted directly from from x in direction Ψ,
Ωx is the hemisphere above point x, and fr(Ψ↔Θ) is the BRDF
function at x. We refer the reader to [Dutré et al. 2003] for a com-
plete discussion of the various forms of the rendering equation.

A path tracer samples the rendering equation by means of ray
paths that connect the eye point to a light source through a number
of scattering events (reflections or refractions). To build a path,
a path tracer sends out a ray from the eye point into the scene.
The path tracer then extends the ray through a number of scattering
events to produce an eye subpath, using a probabilistic sampling
function to choose the outgoing direction at intersection points. We

will call this function pd . The path tracer may connect the eye sub-
path to a light source in one of two ways. First, pd may happen to
choose a direction that hits a light source. We will refer to this kind
of path as an implicit path. Second, the path tracer may connect the
eye subpath directly to a point on a light source. We will refer to
paths created in this way as explicit paths.

Since the ray paths created by a path tracer are Monte Carlo sam-
ples of the rendering equation, the path tracer evaluates them in
such a way that the expected value of the paths that contribute to a
given pixel is equal to the pixel brightness. To see how this is done,
consider the path in figure 8 below that connects the eye point to a
light source:

.x0
x1

x2

xn-1

xn

Figure 8: A ray path.

To form an unbiased estimate of the light reaching the eye along
direction x1→ x0, the MC sampler in a path tracer multiplies the
pertinent terms of the rendering equation together (i.e. fr, cosθ and
Le), and divides by the probability that the path was generated by
the sampler. For an implicit path, the estimate is given by

Le(xn→Ψn)

plength(n)
×

n−1

∏
i=1

fr(Ψi↔Θi) |cosθi|

pd(Ψi→Θi)
, (9)

where Ψi and Θi are the incoming and outgoing directions at xi, θi

is the angle between Θi and the surface normal at xi, plength(n) is
the probability that the MC sampler chose to create a path of length
n, and pd is defined with respect to solid angle.

Explicit paths are evaluated similarly, except that the term
pd(Ψn−1→Θn−1) is replaced by a term that converts area sam-
pling on the surface of a light source to sampling over the solid an-
gle. Suppose that the ray path in figure 8 was made by connecting
an eye subpath to light k. The path would then be evaluted

Le(xn→Ψn)

plength(n)
×

n−2

∏
i=1

fr(Ψi↔Θi) |cosθi|

pd(Ψi→Θi)
×

fr(Ψn−1↔Θn−1) |cosθn−1 cosφn|

plight (k) parea(xn) d2
. (10)

As can be seen, the first two terms are nearly identical to the im-
plicit case. The third term converts sampling over the surface of
light source k to sampling over the solid angle from point xn−1.
The new terms in the expression are as follows: cosφn describes
the angle between the normal at point xn on the light source and
the incoming direction Ψn; d is the distance between xn−1 and xn;
plight(k) is the probability that light k was chosen by the MC sam-
pler, and parea(xn) is the probability that point xn was chosen on the
light source with respect to surface area.

Monte Carlo path density. The product of all of the terms re-
lated to probability in a ray path (plength, pd , plight and parea) can
be thought of as the path density in path space with respect to the
given MC sampler. In section 4.2 we will use this fact to compute
the relative sampling density in different parts of path space.

4.2 Mutation and Changes in Path Density

ER path tracing relies on two fundamental sampling steps: an initial
Monte Carlo step, and an Energy Redistribution step that uses path
mutation. To allow energy flow between a path x̄ and a mutated
path ȳ during the energy redistribution step, the ER sampler must
compute the ratio of the path density at ȳ to the path density at
x̄ with respect to the path tracer’s sampling routines (p(ȳ)/p(x̄)).

[Cline and Egbert 2005] give a set of rules that describe these path
density changes for ideal diffuse and specular surfaces sampled in a
particular way. Here we give an extended set of rules that are valid
for arbitrary BRDFs for the mutation types that we use.

Rule 1: Changes to pixel coordinates. Explicit changes to the
pixel coordinates of a path do not change the relative path density,
unless the MC sampler samples different image coordinates with
different densities. Note that this rule is only applied if the pixel
coordinates of the path are explicitly manipulated. Rule 5 handles
incidental changes to the pixel coordinates of a path.

Rule 2: Changes to directions. When the MC sampler
chooses an outgoing direction at a surface, it does so according
to the probability distribution pd , which was described in section
4.1. Perturbing an outgoing direction at a surface changes the path
density in a manner proportional to the relative density of samples
taken by the MC sampler in the original outgoing direction and the
mutated direction. In the case of a diffuse surface sampled with a
cosine-weighted distribution about the normal, the density change
is proportional to the ratio of the cosines of the two angles. In the
case of an ideal specular surface, perturbing the outgoing direction
to lie in the specular direction changes the path density proportional
to ps, the probability that the MC sampler would choose to send a
ray in the specular direction. (The value of ps might change if, for
example, the MC sampler uses a Fresnel term to decide whether
to send a reflection or refraction ray.) Equation 11 summarizes all
three cases.

Qx

Qy
pd Qx

Qy N

qy qx Qx

Qy

general case ideal diffuse ideal specular

Yy
Yx

Yy

Yx Yx

Yy

pd(Ψy→Θy)

pd(Ψx→Θx)

|cosθy|

|cosθx|

ps(Ψy→Θy)

ps(Ψx→Θx)
(11)

Rule 3: Connecting points in the middle of a path. Connect-
ing two non-specular vertices in a path is a way of sampling surface
areas instead of directions, and thus we must convert between area
sampling and directional sampling. If we are sampling directions
according to a cosine-weighted distribution about the surface nor-
mal, the density change is proportional to the familiar geometry
term |cosθ cosφ/d2|. On the other hand, if some other method
is used to sample directions, the density change replaces the cosθ
term with with the probability of sampling different directions, as
shown in equation 12.

pd
pd

fyfx
Qx

Qy

dx

dyYx

Yy

pd(Ψy→Θy)|cosφy|

d2
y

×
d2

x

pd(Ψx→Θx)|cosφx|
(12)

Rule 4: Connecting points to light sources. For explicit
paths, connecting to an established or perturbed point on a light
source does not change the path density if the light source is sam-
pled uniformly with respect to area. Otherwise the density change
is proportional to the ratio of probabilities of choosing the mutated
and original points on the light. Implicit paths, on the other hand,
incur the same change in path density as connecting points in the
middle of a path.

Rule 5: Connecting a point to the viewer. Assuming a pin-
hole camera model, if a connection is made in which one of the
vertices is the eye point, the density change is proportional to the
modified geometry term |cosφ/(d2 cos3 θ)|. The actual change in
density for this case is given in equation 13.

fy
fxqy

qx

dy
dx

|cosφy|

d2
y |cos3 θy|

×
d2

x |cos3 θx|

|cosφx|
(13)

Applying the density change rules. The path density change
rules just described must be applied beginning at the eye point re-
gardless of the manner in which the mutated path was generated.
This is a consequence of the fact that we are trying to capture path
density changes with respect to the MC sampler used by the path
tracer.2 To compute the total density change between two paths of
the same length, we apply all of the pertinent rules, and multiply
their results together. Appendix A gives several examples of how
to apply the rules.

4.3 Mutation Strategies

Our implementation uses two mutation types, which correspond to
lens and caustic perturbations as described in [Veach and Guibas
1997]. We are able to get away with such a small set of mutations
because the path tracing step provides complete coverage of path
space, and roughly distributes path energy over the image plane.
Besides our descriptions here, [Veach and Guibas 1997] and [Cline
and Egbert 2005] provide descriptions of lens and caustic perturba-
tions as well as other mutation types.

Lens perturbations. A lens perturbation is a mutation that cre-
ates a new path ȳ from an existing path x̄ beginning at the eye point.
To start the mutation, the pixel coordinates of x̄ are perturbed by a
random amount on the image plane.3 A ray is cast from the eye
point through this new pixel coordinate, and the new eye subpath is
propagated through the same number and types of specular bounces
as the original path, arriving at a non-specular vertex. If the next
vertex in the original path is non-specular, ȳ is completed by con-
necting the eye subpath directly to the next vertex in the original
path. If the next vertex is specular, however, the outgoing direction
from the diffuse vertex is perturbed, and the eye subpath is extended
through another specular chain looking for two non-diffuse vertices
in a row. This process repeats until either two non-diffuse vertices
or the light source are found. Appendix A gives an example lens
perturbation, and shows how to compute the relative path density
between x̄ and ȳ.

2It is not necessary to use the same MC sampler as the path tracer. Any

valid sampler will work, as long as it is used to compute all parts of q.
3Our implementation mutates uniformly within a small square (9× 9

pixels) centered on the current location.

Caustic perturbations. Caustic perturbations are created in
much the same way as lens perturbations, except that they start
at the light source, or second diffuse vertex in the path (from the
eye point). For example, consider the path LSSDE. The caustic
mutation starts by perturbing the direction L→ S by a random an-
gle.4 The new light subpath is propagated through two specular
bounces, and arrives at a non-specular vertex, producing the light
subpath LSSD This subpath is then connected directly to the
eye point. Note that this type of mutation can only be used on paths
in which the eye point is connected to a non-specular vertex. Ap-
pendix A gives an example of a caustic perturbation and the path
density change that it incurs.

Mutation probabilities. In practice, our strategy is to choose
caustic perturbations exclusively for paths of the type L . . .SDE,
and lens perturbations in all other cases. Another reasonable strat-
egy would be to choose randomly between the two mutation types
when they are both valid.

4.4 Noise Filtering
Since ER path tracing is a stochastic process, it can naturally intro-
duce noise into a rendered image. Here we describe two filters that
can significantly reduce the noise of images produced by ERPT. Al-
though they are theoretically biased, we have found the filters to be
effective at eliminating noise while producing few visible artifacts.

Proposed mutations noise filtering. One of the main causes
of noise in ERPT is an imbalance in the number of potential flow
events into different pixels. We can compensate for this imbalance
by keeping a tally of the number of proposed mutations to each
image pixel. This “proposed mutations” image is then blurred to
produce an approximate expected number of proposed mutations
into each pixel. Our current implementation uses a box filter to
compute this “expected proposed mutations” image. The rendered
image is then de-noised by scaling the pixel values by the ratio of
the expected number of proposed mutations at the pixel to the actual
number. Figure 9 shows the “proposed mutations” and ”expected
proposed mutations” images for a simple scene along with the effect
of applying the filter.

We have been quite pleased with the results of this filter, but
there may be room for improvement. For example, a median filter
might be a better choice than a box filter to smooth the “proposed
mutations” image. Also, since the expected proposed mutations
image is essentially a convolution of the luminance image, it may
be better to blur the unfiltered luminance to produce the “expected
proposed mutations” image.

Consecutive sample filtering. A second noise filter that works
well in practice is to refuse to accumulate more than a small num-
ber of consecutive samples on a given pixel, say 10 or 20. During
energy redistribution, the ERPT sampler counts how many times in
a row a sample chain deposits energy onto the same pixel. Once
the maximum number has been reached, the sampler continues mu-
tating the sample chain, but it throws away any energy that would
normally be deposited until the sample chain migrates off of the of-
fending pixel, at which time energy deposition begins again. This
filter tends to clean up speckles that occur when the sampler gets
stuck on a given pixel.

5 Results
This section demonstrates different aspects of the ERPT algorithm,
and compares ERPT to standard path tracing and MLT. To make the
comparison as fair as possible, the functions that mutate paths are
shared between MLT and ERPT.

4When perturbing the angle, we follow the formulation of [Veach and

Guibas 1997], and mutate in an exponential distribution between 0.0001

and 0.1 radians. [Cline and Egbert 2005] describes this procedure in detail.

(a) (b)

Figure 9: Proposed mutation noise filtering. (a) The right half of
the image shows the number of proposed mutations into each pixel,
the “proposed mutations” image. The left half of the image was
produced by convolving the proposed mutations image with a 7×7
smoothing kernel. This is the “expected proposed mutations” im-
age. (b) The left half of the image has been smoothed with our
proposed mutations noise filter, and the right half has not. In spite
of the large kernel applied to determine the expected number of
proposed mutations, edges in the filtered image remain sharp. Very
large kernel sizes can produce ringing artifacts, however.

Comparison of flow rules. We experimented with the different
flow filters described in section 3, plugging them in as the flow filter
for our ER path tracer. One of these experiments is summarized in
figure 10. In virtually every case, the equal deposition flow rule was
superior to the others, so we use it for all of the other examples in
the paper.

Figure 10: The effect of different flow rules. The images show
the indirect lighting from the scene in figure 9, using different flow
filters for the Energy Redistribution step of ERPT. (Left) The de-
tailed balance flow rule works poorly because energy cannot mi-
grate away from the MC sample site. (Middle) An iterated version
of detailed balance works better, but the splitting sample chains
produced by the rule are too short to spread evenly over the im-
age plane. (Right) Equal deposition flow, while not perfect at this
sample density, spreads the energy of the MC samples more evenly
than the other two rules.

Sample chain length. We have found that the sample chains
emanating from the Monte Carlo samples need to be fairly long to
produce good results. Values between about one hundred and one
thousand seem to work well. As a general rule, very short chains
produce an uneven appearance, and very long chains start to lose the
stratifying properies of the initial MC samples as more and more of
the initial samples do not have any sample chains assigned to them.
Figure 11 shows the effect of varying the sample chain length.

Approximate stratification of path space. In most lighting
situations, MLT and ERPT produce similar results. However, ERPT
tends to stratify a little better over the image plane. For example,
consider the images in figure 12 showing indirect lighting of a yel-
low dragon placed on a red ground plane. The left image gives the
desired result, computed by path tracing using a large number of
samples. The middle image was produced by MLT using two mu-
tations per pixel, and the right image was produced with ER path
tracing using one Monte Carlo sample and one mutation per pixel.

Figure 11: Sample chain length. In the scene above, light reflects
off of three colored mirrors onto a diffuse wall. The desired image
(left) is reproduced with ERPT using sample chains of length 10
(middle), and 100 (right).

Note that the ERPT image more faithfully reproduces the contours
of the dragon than MLT, and the lighting in the MLT image has
more bright artifacts. This is because ERPT creates an initial distri-
bution of energy that covers path space evenly. By contrast, MLT
must rely on large mutations to fully account for all contributing
paths.

Figure 12: Comparison of stratification over the image plane be-
tween MLT (middle) using 2 samples per pixel and ERPT (right)
using one MC sample and one mutation per pixel.

Indirect lighting example. Figure 13 shows renderings of a
gallery scene with strong indirect lighting, taking approximately
equal time, for path tracing, MLT and ERPT. The only direct illu-
mination visible in the scene comes from the overhead spot light
shining on the dragon. Image (a) was computed with standard path
tracing. Since path tracing cannot coordinate sampling efforts be-
tween pixels, it wastes a lot of time sampling unimportant regions
of the path space, resulting in a very noisy image. Image (b) was
produced with Metropolis Light Transport. MLT is able to coor-
dinate sampling efforts between pixels, producing a better image;
however, some noise is still visible. The bottom row shows ERPT
without (c) and with (d) the noise filters described in section 4.4.
ERPT without the noise filters achieves a slightly better result than
MLT in this scene. Adding the flow filters further reduces the noise,
producing a much smoother result.

Difficult caustic lighting. Figure 14 compares ERPT to MLT
and path tracing for a difficult lighting situation in which a large
portion of the lighting comes from implicit caustic paths seen
through a glass surface. Even the “direct” lighting on the torus
is made up of these paths. (b) Path tracing produces a very noisy
image. (c) MLT does much better, but still results in a splotchy ap-
pearance. A more full set of mutation strategies might remedy this
problem; however, ERPT using the exact same set of mutations (d)
has a much smoother appearance. This is because the deposition
energy of any given sample chain is limited. Image (e) shows the
effect of applying the noise filters from section 4.4. The top image
(a) shows a higher quality ERPT rendering of the same scene.

6 Conclusion and Ideas for Future Study

This paper presented Energy Redistribution path tracing as an al-
gorithm to solve the general global illumination problem. The al-
gorithm has at its core a novel sampling technique called Energy

Redistribution sampling, which can efficiently solve correlated in-
tegral problems. We compared images generated by ER path trac-
ing to images created with standard path tracing and Metropolis
Light Transport, and demonstrated several situations in which the
new algorithm outperforms standard path tracing and MLT.

In addition to the algorithmic contributions of the paper, we feel
that some of the most important contributions of this work are ped-
agogical. The concepts of correlated integrals and energy flow offer
profound insights into the inner workings of Metopolis as well as
ER sampling, and a new perspective from which to view numerical
intergration problems in general.

We have only scratched the surface in comparing ER to Metropo-
lis sampling. Because it works directly with function energy, we
have found the ER sampling framework to be more malleable than
Metropolis sampling. For example, ER sampling can be easily
adapted to handle negative-valued functions as well as all positive
ones. Are there domains besides global illumination that would
benefit from ER sampling rather than Metropolis sampling? In what
situations does ER sampling work better?

There are a number of questions that remain in regards to ER
sampling flow rules. For example, are there ways to define better
flow rules based on the less restrictive general balance condition
rather than detailed balance? What is the optimal tradeoff between
Monte Carlo samples and ER samples? Can flow rules and mutation
strategies be defined which stratify better?

Noise filtering also seems to be a good avenue for further explo-
ration. We were quite pleased with the results of the two simple
filters presented in the paper, and are currently looking at the use of
other simulation statistics besides “proposed mutations” to reduce
the noise. Finally, we note that the noise filters that were defined
in this paper are biased. Ideally, we would like to create effective
noise filters that are unbiased.

Acknowledgements. We would like to thank the Siggraph re-
viewers for their many helpful comments and suggestions, the Stan-
ford 3D Scanning Repository for the dragon model, and everyone
in the “Siggraph support group” who read early drafts of the paper.

References

ASHIKHMIN, M., PREMOŽE, S., SHIRLEY, P., AND SMITS, B. 2001. A Variance

Analysis of the Metropolis Light Transport Algorithm. Computers and Graphics

25, 2, 287–294.

CLINE, D., AND EGBERT, P. 2005. A Practical Introduction to Metropolis Light

Transport. Technical Report: Department of Computer Science, Brigham Young

University, 1–19.

DUTRÉ, P., BEKAERT, P., AND BALA, K. 2003. Advanced Global Illumination. A.

K. Peters.

JENSEN, H. W. 1996. Global Illumination Using Photon Maps. In Rendering Tech-

niques ’96 (Proceedings of the Seventh Eurographics Workshop on Rendering),

Springer-Verlag/Wien, New York, NY, 21–30.

KAJIYA, J. T. 1986. The Rendering Equation. In Computer Graphics (Proceedings of

ACM SIGGRAPH 86), ACM Press, 20, 4, 143–150.

KELEMEN, C., SZIRMAY-KALOS, L., ANTAL, G., AND CSONKA, F. 2002. A Sim-

ple and Robust Mutation Strategy for the Metropolis Light Transport Algorithm.

Computer Graphics Forum 21, 3, 1–10.

LAFORTUNE, E. P., AND WILLEMS, Y. D. 1993. Bi-directional Path Tracing. In

Proceedings of the Third International Conference on Computational Graphics and

Visualization Techniques (Compugraphics ’93), H. P. Santo, Ed., 145–153.

LAWRENCE, J., RUSINKIEWICZ, S., AND RAMAMOORTHI, R. 2004. Efficient BRDF

Importance Sampling Using a Factored Representation. ACM Transactions on

Graphics 23, 3, 494–503.

METROPOLIS, N., ROSENBLUTH, A., ROSENBLUTH, M., TELLER, A., AND

TELLER, E. 1953. Equations of State Calculations by Fast Computing Machines.

Chemical Physics 21, 1087–1091.

(a) (b)

(c) (d)

Figure 13: Comparison of a scene with strong indirect lighting. All render times are approximately 20 minutes. (a) Standard path tracing
with 84 paths per pixel has a hard time finding the indirect lighting paths, resulting in a very noisy image. (b) MLT with 200 mutations per
pixel produces a much better result, but some noise is still visible. (c) ERPT with 36 MC samples and 200 mutations per pixel achieves a
slight improvement over MLT. (d) Adding the noise filters described in section 4.4 to ERPT removes most of the remaining noise.

PAULY, M., KOLLIG, T., AND KELLER, A. 2000. Metropolis Light Transport for

Participating Media. In Rendering Techniques 2000 (Proceedings of the Eleventh

Eurographics Workshop on Rendering), Springer Wien, New York, NY, B. Peroche

and H. Rushmeier, Eds., 11–22.

PHARR, M. 2003. Chapter 9: Metropolis Sampling. In Monte Carlo Ray Tracing,

SIGGRAPH 2003 Course 44, course notes.

SHIRLEY, P., WADE, B., HUBBARD, P. M., ZARESKI, D., WALTER, B., AND

GREENBERG, D. P. 1995. Global Illumination via Density Estimation. In Render-

ing Techniques 1995 (Proceedings of the Sixth Eurographics Workshop on Render-

ing), Springer-Verlag, New York, NY, P. M. Hanrahan and W. Purgathofer, Eds.,

219–230.

SZIRMAY-KALOS, L., DORNBACH, P., AND PURGATHOFER, W. 1999. On the Start-

up Bias Problem of Metropolis Sampling. Technical Report: Department of Con-

trol Engineering and Information Technology, Technical University of Budapest,

1–8.

VEACH, E., AND GUIBAS, L. J. 1994. Bidirectional Estimators for Light Transport.

In Rendering Techniques 1994 (Proceedings of the Fifth Eurographis Workshop on

rendering), 147–162.

VEACH, E., AND GUIBAS, L. J. 1995. Optimally Combining Sampling Techniques

for Monte Carlo Rendering. In Proceedings of ACM SIGGRAPH 1995, ACM Press,

419–428.

VEACH, E., AND GUIBAS, L. J. 1997. Metropolis Light Transport. In Proceedings

of ACM SIGGRAPH 1997, ACM Press, 65–76.

WARD, G. J., RUBINSTEIN, F. M., AND CLEAR, R. D. 1988. A Ray Tracing So-

lution for Diffuse Interreflection. In Computer Graphics (Proceedings of ACM

SIGGRAPH 88), ACM, 22, 4, 85–92.

A Computing Path Density Change

Since computing the change in path density is essential to ERPT,
we give several examples of how to do it here.

As a first example, let us assume that we are mutating a path of
the form LDE using a caustic mutation, as shown below:

x
y

connection to
viewer (rule 5) connection to

light (rule 4)

D

L

E

The direction starting at the light source is perturbed, and a ray is
cast from the light source in this direction, creating the light sub-
path LD This subpath is connected to the eye point, once again
creating a path of the form LDE. Note that even though the mu-
tation was generated starting at the light source, the path density
change rules must be applied starting at the eye point. From the
eye point, we apply the following rules: A connection was made
from the eye point, so we apply rule 5. Now note that even though
the mutation was generated by perturbing a direction from the light
source, from the point of view of the path tracer, we must make a
direct connection to the light source from the D vertex. Thus, we
apply rule 4.

(a)

(b) (c) (d) (e)

Figure 14: Difficult caustic lighting. In this scene, a large portion of the light transport comes from implicit “caustic” paths. (b) Path tracing
with 100 paths per pixel produces a very noisy image. (c) MLT, using 100 mutations per pixel, gets stuck on some of the caustic paths,
producing a splotchy appearance. (d) ERPT using 36 MC samples and 50 mutations per pixel. Although some bright spots are visible, they
are much less pronounced than in the MLT case. This is so despite the fact that both algorithms use the same mutation strategies. (e) Adding
the noise filters to ERPT removes most of the small speckles in the image. (a) A high quality ERPT rendering of the scene using 192 MC
samples and 800 mutations per pixel, again using the noise filters. The bottom row images were rendered at a 640 × 480 resolution in about
fifteen minutes, and the top image was rendered at a resolution of 1200 × 800 in about seven and a half hours on a 3.2 Ghz Pentium 4.

As another example, consider a lens subpath mutation on a path
of the form LDDSDE:

x

y
specular bounce

(rule 2)

connection
(rule 3)D

S

D

D

direction change
(rule 2)

image coordinate
change (rule 1)

E L

In this case, the pixel coordinates of the ray from the eye are

changed, and we cast a ray in the new direction. The ray hits a
diffuse surface, which is followed by a specular surface. In this
case, the outgoing direction from this D vertex is perturbed, and
extended through a specular bounce to produce the eye subpath of
the form . . .DSDE. This eye subpath is then connected directly
to the next vertex in the path, to once again produce a path of the
form LDDSDE. Now we apply the density change rules. First,
we changed the pixel coordinates, so we apply rule 1. Next, we
perturbed the outgoing direction, so we apply rule 2. Then, we ex-
tended the path through a specular bounce, so we apply rule 2 again.
Finally, we connected two diffuse vertices in the middle of the path,
so we apply rule 3.

