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Abstract

Recently, Hallinan [1] proposed a low dimensional
lighting model for describing the variations in face im-
ages due to altering the lighting conditions. It was
found that five eigenimages were sufficient to model
these variations. This report shows that this model
can be extended to other objects, in particular to those
with diffuse specularities and shadows. We find that
sharp specularities and shadows cannot be well rep-
resented by a low dimensional model. However, both
effects can be adequately described as residuals to such
a model. We can deal with occluders in a similar way.
We conclude that low dimensional models, using 5+2
eigenimages, can be usefully extended to represent ar-
bitrary lighting for many different objects. We discuss
applications of these results to object recognition.

1 Introduction

In object recognition, the two most common ap-
proaches to handling the problem of lighting varia-
tions have been (1) extracting lighting invariant fea-
tures and (2) using a collection of templates or feature
sets spanning the entire range of anticipated condi-
tions. Neither approach has proved tenable [1], [2]. A
third approach, verified for human faces in [1}, [3] is
to model all the possible images of an arbitrarily lit
face of fixed pose using a small number of parameters.
This lighting model can then be augmented to handle
geometric distortions and used to recognize faces un-
der general lighting conditions [4]. This paper extends
the previous work of {1], [3] from faces to arbitrary ob-
jects.

Recently [5] and [6] observed that if an object is
Lambertian then an image of it under arbitrary light-
ing conditions can be obtained by taking a linear com-
bination of three basis images. Though this result
has some empirical support [6], it not only excludes
reflectance functions having significant specular lobes
and spikes (see Nayar et. al.[7]), but also ignores crit-
ical effects of shadows, mutual inter-reflections, and
occlusions [8]. Any generally applicable approach to
modeling arbitrary objects must account for these ef-
fects. Our strategy, therefore, is to investigate exper-
imentally the variations of images of objects caused
by changes of lighting conditions. We study objects
which contain sharp specularities and shadows, and
investigate the effect of partial occlusions.

The key idea underlying our lighting model is that
any lighting condition can be decomposed into a sum
of point light sources. Therefore, all the possible im-
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ages of an object under different lighting conditions
can be represented as linear combinations of images
formed from point light sources, assuming viewpoint
and object pose remain constant. By taking the prin-
cipal components of these point light source images,
one gets a low-dimensional space in which all light-
ing conditions can be represented. Unlike other PCA
analyses (eg [9]) that have confounded intensity and
geometric variations, our approach explicitly isolates
highting variations and guarantees that all significant
lighting effects are captured. For faces, [1] found that
five eigenvectors sufficed to represent most of the vari-
ance in lighting.

Our results demonstrate that, as long as the pose,
surface properties (e.g. texture), and surface geometry
of an object are held constant, then:

o the first few eigenvectors describe the lambertian
component,

o the next few eigenvectors encode the specular
lobe,

e the remaining eigenvectors encode specular
spikes, small scale cast shadows, and other irreg-
ularities such as partial occlusions.

As a result, we conclude that for many objects,

e 5+ 2 eigenvectors will suffice to model the lam-
bertian and specular lobes,

o specular spikes, small shadows and occluders can
be treated as residuals and eliminated by project-
ing the original image onto the low dimensional
eigenvector model,

¢ the sampling of lighting directions required in the
training set increases with both the specularity
and the complexity of the surface geometry.
2 Constructing the Lighting Models
The following methodology was used to construct
the lighting models for each object. Seventy images
were taken of each object under different lighting con-
ditions. The lighting in each image was from a small
area source (floodlight) at a distance of about six feet
(see [3] for details.) This light could be moved along
the surface of a sphere whose center was the object
and whose North Pole was directly above the object.
The light was moved along the sphere’s lines of lati-
tude and longitude in 15 degree intervals such that the



lighting direction varied over the entire right front side
of the object. These images formed the dense training
set. ‘The sparse training set was a subset of 20 images
from the dense set. The lighting for the images of the
sparse set varied in 30 degree intervals.

Two eigenimage models were constructed for each
object by performing principal component analysis on
the sparse and the dense data sets. Additional images
of the objects were taken under ambient lighting con-
ditions. These images were used to evaluate the mod-
els’ ability to reconstruct novel images which were not
in the training sets. In addition, when the sparse data
alone was used, the remaining images of the dense set
were used to test the sparse model.

The quality of the eigenimage models was measured
by using a goodness of fit criterion as follows. First de-
fine the reconstruction of a preprocessed input image
J* from an eigenimage basis {S;;} as

k
b = Z < J4N S > Sip

i=1

)

where £k is the number of eigenvectors in the basis and
b labels the different bases corresponding to different
sample sets. Then the quality of the reconstruction
can be measured by the goodness of fit function
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Since both R’}c’b and J® have already had the mean

image subtracted from them, and since ||-|| is an L2
norm, this criteria severely penalizes mismatches. It
also provides us with a clearcut method to trade model
accuracy for fit.

Figure 1 contains graphs showing the mean good-
ness of fits (i.e. the original images minus the recon-
structions) across both training and test data sets for
bases constructed from the sparse samples only. These
graphs show clearly that, with the exception of highly
specular objects, improvements in both average and
worst case performance begins to taper off at around
5 eigenvectors. The results for bases constructed from
denser sample sets were comparable. (For more de-
tails, see [10].)

3 Objects Without Specular Spikes

We start by examining a basketball, an object with
a very simple geometry, no self-shadowing, and few
specularities. The eigenvectors calculated from the 20
images of the sparse set are shown in Figure 2. Table 1
demonstrates that a very small number of eigenvectors
are necessary to account for most of the variance in the
data— three eigenvectors are sufficient to account for
94% of the training data while five account for 98%.
Thus, the training set data is easily represented by a
low dimensional eigenspace.

This eigenspace should be able to represent images
taken under all possible lighting conditions, not just
those in the training set. To examine this, we make use

109

of images from the dense set. Figure 3 shows the re-
sults of reconstructing these images using three eigen-
vectors. These reconstructions are almost impossible
to distinguish from the original set. Three eigenvec-
tors are quite sufficient to represent the lighting for
this object.

However, all of the first five eigenvectors for the ball
are interesting because they are similar to the eigen-
vectors found for faces (see [3], [1]). For faces these
five eigenvectors formed a stable set, very similar be-
tween different people, which corresponded to lighting
from the front, side, top/bottom, corners, and extreme
side (though not necessarily in this order). The results
for the ball suggest that this result holds generally for
smoothly curved objects with little specular compo-
nent.

Table 1 shows that the lower eigenvectors account
for more of the variance for the ball than they do for
faces. Five eigenvectors only account for 94% of the
variance for faces, as opposed to 98% for the ball. Fig-
ure 4 explains the difference. On the left is an image
not in the training set. The second image is the pro-
Jjection of this image onto the first three eigenvectors.
Observe that the specular lobe on the forehead is im-
perfectly reproduced. The third image is the projec-
tion onto the first five eigenvectors; here the specular
lobe is more prominent. Thus, the face requires more
eigenvectors than the ball largely because the face is
more specular. Observe also that the shadow under
the nose is also imperfectly reproduced in the pro-
Jection. This is because the face has more complex
geometry than the ball and hence has more shadows.
In particular, the shadow under the nose causes prob-
lems because it varies significantly in shape and po-
sition as the lighting direction changes. So it cannot
be well modeled by a linear combination of images,
because linear combination does not allow for geomet-
ric interpolation between the basis images (see discus-
sion in [11].) This problem is even more pronounced
with objects having more prominent specularities and
shadows. The fourth image is the residual image, ob-
tained by taking the difference between the original
image and its projection onto the first five eigenim-
ages. (In other words, the fourth image shows the
absolute value of the difference between the first and
third images.) The difference between the two images
is actually quite small, corresponding to an average
over all pixels of 4.687 greyscale levels, with a maxi-
mum pixel difference of 75 greyscale levels. (To com-
pare, the pixels of the original image range over 207
greyscale levels, with a standard deviation of 33.4.)
The areas of greatest difference are the shadow under
the nose, and the hairline, both of which are not well
represented by five eigenvectors.

To investigate this further we calculated the eigen-
vectors for the images of an artificial stuffed parrot.
This object has more complex geometry than a face
and also more specularities. Its first five eigenvectors,
see Figure 5, are somewhat similar to those obtained
for the ball and face, but their contribution to the
total variance, see Table 1, is less due to the greater
geometric interpolation.



4 Objects With Specular Spikes

We examined two extremely specular objects: a
motorcycle helmet and a fire extinguisher. Both ob-
jects have almost “mirror-like” surfaces. Most of
the images contain diffuse specularities and several of
them have very bright specular spikes which are prac-
tically mirrored reflections of the light source. See,
for example, the left image of Figure 6. It is precisely
these specular spikes which will cause trouble for an
eigenspace approach because they will change their lo-
cation and shape dramatically as the lighting direction
is changed.

The left image in Figure 6 is a member of the dense
set, but not of the sparse set. In the center is the pro-
jection onto the first 18 eigenvectors calculated from
the dense set. The image is well reproduced, which is
not surprising since the image was a member of the
training set from which the eigenvectors were calcu-
lated, and the first 18 eigenvectors account for 92%
of the variance. (See Table 1.) However, when the
image is projected onto the first 18 eigenvectors cal-
culated from the sparse set, the results, as shown on
the right, are terrible. Not only does the projection
fail to represent the specular spike, it contains a faint
“ghost” specular spike in the wrong location! Figure 7,
which shows the first five eigenvectors calculated from
the sparse set, shows the source of the problem. The
sparse set does not contain an image with the specu-
lar spike in the center of the visor, so its eigenvectors
cannot reproduce this spike. However, the sparse set
does include an image with a specular spike near the
top of the visor, and this particular spike is repre-
sented prominently in the fifth eigenvector. So when
we attempt to project the image in Figure 6 onto the
eigenspace, the reconstruction shows a “ghost” spec-
ular spike instead of the real specular spike. The im-
age in Figure 6 and the image in the sparse dataset
are similar to each other—the difference in lighting di-
rection between them is only 15 degrees. However,
this change in lighting direction has caused a signifi-
cant “movement” of the specular spike-and the linear
combination model is unable to make a geometric in-
terpolation.

Figure 8 shows the eigenvectors calculated from the
dense set, with lighting from both sides. The first
five eigenvectors do roughly correspond to those for
the face, ball, and parrot. But their contribution to
the total variance is small, see Table 1, because of
the large amount of specularities. Something very in-
teresting happens with the higher eigenvectors here.
Rather than representing single specular spikes, these
eigenvectors tile the space in a regular way such that
spikes at different locations can be represented (one
is reminded of a Fourier transform.) This general
representation scheme for single specular spikes was
observed again in the eigenvectors for the fire extin-
guisher. (See [10].) We have a nice progression from
wide specular lobes in the lower eigenvectors to nar-
rower specular lobes in the higher eigenvectors.

Of course, not all lighting conditions result in a
single specular spikes. Figure 9 shows a picture of the
helmet taken under ambient lighting conditions. In-
stead of one specular spike, we now have several. The
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middle image shows what happens when we project
this image onto the first 5 eigenvectors— the specular
spikes are not very well reproduced at all.

This implies that representing specularities will re-
quire a very large number of eigenimages. Accord-
ingly, since the goal is object recognition and not im-
age representation, it is preferable to use the first few
eigenimages to represent the Lambertian and specular
lobes, while treating the specular spikes as residuals.
If these residuals are sufficiently small then they will
have little effect on matching. It might also be possi-
ble to obtain a probabilistic model for the specularities
themselves in isolation, but we will not attempt this
here.

But can we find eigenvectors that describe the Lam-
bertian and specular lobe components but which ig-
nore the spikes? Observe in Figure 8 that the lower
eigenvectors represent spatially diffuse lighting effects—
only the higher eigenvectors represent specular spikes.
As Figure 9 demonstrates, projecting an image with
specular spikes onto the first five eigenvectors largely
eliminates specular spikes—at least, they no longer
dominate the image. Instead they show up in the
residuals.

Thus, we can characterize the first five eigenvec-
tors as corresponding to the Lambertian and specular
lobe components. The remaining eigenvectors corre-
sponding to the specular spikes, which are best treated
as residuals. This characterization is only approxi-
mate but, encouragingly, the bigger the training set
the more accurate it appears to be — it 1s far more ac-
curate for the dense model than for the sparse model.

5 Objects With Shadows

Our results for faces suggest that sharp shadows
might be a problem for our model. To investigate
this, we examine several objects with surface geome-
tries that cast distinct shadows. One of these objects,
a function generator-shown in Figure 11-has two in-
teresting characteristics: a bright but quite localized
specularity on the big knob, and sharp shadows cast
by the other knobs.

Figure 10 shows the first 10 eigenvectors calculated
from the sparse set for this object. The first few eigen-
vectors have similar interpretations to those of the ball
and the face—as frontal, top, side, and extreme-side
lighting. Because there is only one specularity —on
the knob-these eigenvectors can reproduce it. Higher
eigenvectors capture more precisely the shadows cast
by the smaller knobs.

Figure 11 shows the results of projecting an image
from the dense set onto the first 5 and the first 10
eigenvectors calculated from the sparse set. Although
the specularity on the knob is well represented in the
reconstruction from the projection onto 5 eigenvec-
tors, the small shadows are lost. The shadows start
to appear in the reconstruction from the projection
onto 10 eigenvectors, though they are not quite cor-
rect. Nevertheless, in neither of the projections does
the absence of correct small shadows change the gen-
eral appearance of the object very much. Perceptually,
small shadows do not seem to be very salient.



The amount of variance accounted for by the first
10 eigenvectors is shown in Table 1. Note that the first
eigenvector accounts for almost 80% of the variance!
This is because the object is, on a rough scale, just a
flat lambertian surface. The images formed by such a
surface under different lighting conditions are all just
multiples of a single vector.

Another object with distinct shadows—an infrared
detector—is shown in Figure 12. This object has two
distinct types of shadow— a large shadow cast by the
handle on the top right, and some local shadows cast
by the knobs at the bottom. The second image shows
a reconstruction from the projection of the original
image onto the first five eigenvectors calculated from
the dense set. This is too few eigenvectors to recon-
struct the shadow cast by the handle. Nevertheless,
the residuals, shown in the third image, are not very
prominent.

The fourth image shows the reconstruction from
projection onto the first 18 eigenvectors calculated
from the dense set. The geometry of the shadow
cast by the handle is correctly reproduced, but the
shadow is not as distinct as it was in the original im-
age. The fifth image shows the results of projection
onto 5 eigenvectors from the sparse model. The in-
put image is not a member of the sparse set, so we
would expect that these eigenvectors will not correctly
reproduce the geometry of the shadow—in fact, with-
out the higher eigenvectors, the shadow can hardly
be reproduced at all. The last image in Figure 12
shows the results of projecting onto the first 18 eigen-
vectors calculated from the sparse set. We do get
a sharp shadow-however, careful examination of the
shadow shows that its shape is different in this pro-
jection. This is exactly the same phenomenon we saw
with the specularity on the helmet—projection onto
a set of eigenvectors which was not calculated using
the image in question can result in spurious specular-
ities and shadows—shadows which are not quite in the
right place. Note, however, that the spurious shadow
is much less noticeable than the spurious specularity.
Note also that, for all the projections in Figure 12, the
shadows near the knobs are more or less correctly re-
produced. The implication is as follows: even though
one gets the same geometric problems with shadows
as one gets with specularities, the shadows are much
less salient and much less of a problem.

This is borne out in Figure 13, which shows the
results of projecting an ambient image of this object
onto the eigenvectors. On the left is the original image.
In the center is the result of projecting onto 5 eigenvec-
tors from the sparse set. On the right is the result of
projecting onto 18 eigenvectors from the dense set. As
can be seen, both projections are reasonable. This is
because, under ambient lighting conditions, shadows
are not very prominent.

We conclude that, as for specular objects, only the
lower eigenimages need to be used to construct the
model.

6 Residual Analysis

In the previous sections, we have shown that five
eigenvectors are consistently sufficient to form a use-
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ful representation of the lighting of an object. This
claim was based on the following observations: (1)
lambertian and specular-lobe reflectance can be well
represented in a five-dimensional space, (2) specular
spikes can be eliminated by projecting onto this space,
and (3) localized shadows are not prominent enough
to cause problems. In order to further support this
contention, it will be instructive to examine the resid-
uals formed by taking the difference between the origi-
nal image and its projection onto the five-dimensional
space. Our claim, then, is that the five eigenvector
model is a good representation because these residu-
als are (1) small, and 82) correspond to easily inter-
preted features of the lighting, such as specularities
and shadows. This claim was illustrated for faces by
Figure 4.

The residuals for the helmet are shown in Figure 9.
As can be seen the specularities stands out promi-
nently. Most of the rest of the image is fairly well
matched. Despite the specularity, the average resid-
ual is quite small. The mean pixel difference between
the two images is only 5.8 greyscale levels.

This demonstrates that the low-dimensional model
can be useful for the identification and separation of
specular spikes, sharp shadows, and “transient” fea-
tures. In a sense, these phenomena can be thought
of as “painted over” the underlying image. A natural
extension of this would be to use the low-dimensional
model to distinguish occluding objects from the un-
derlying image. Figure 14 shows how this is done. On
the left is the original image—-the helmet with a large
occluding object. The second image is the result of
projecting this onto 5 eigenvectors. Note that both
the occluder and the specularity have been eliminated
in the projection. The third image is the residual,
which largely identifies the occluder and the specular-
ity. The right image is the result of thresholding the
third image such that pixels with intensity differences
of greater than 35 greyscale levels are black. The spec-
ular spike and the occluder can be easily isolated.

One might imagine that local shadows could be lo-
calized and eliminated in the same way, but, as dis-
cussed above, this is not the case. The first three
images Figure 12 show the results of projecting an im-
age with shadows onto five eigenvectors. The residuals
are slight— the mean value of the difference between
the original image and the projection is 4.4 greyscale
levels. Though the missing shadow on the top right
shows up in the residual, it 1s not very prominent. We
conclude that residuals for shadows are too slight to
be of much bother.

The fact that we can isolate specularities by using
a low-dimensional ecigenspace suggests a further ex-
tension of this work. The specularities on the helmet
are compact geometric entities, therefore it may be
possible to come up with a geometric model for the
specularities. This may allow the specularities to be
used as a cue for object recognition, since the specular-
ities on many objects are confined to distinct regions
of the object (recall the specularity on the knob of
the voltmeter in Figure 11). In order to better sepa-
rate specularities from the rest of the image, a method
of robust statistics would be useful. In this case, the



specularities would be eliminated as outliers, while the
rest of the image is projected onto the eigenspace. We
experimented with such a system, see Figure 15. Al-
though we found it straightforward to extract spec-
ularities, using the EM algorithm, we did not find
any advantage in distinguishing between specularity
and non-specularity during projection. The results
obtained using the robust model were practically in-
distinguishable from those using the standard model.
It is, however, probably desirable to represent the ex-
tracted specularities using a geometric model, but this
is beyond the scope of this paper.

7 Conclusion

We have shown that, for a range of objects, only a
small number of eigenimages are needed to approxi-
mately represent the intensity changes caused by vari-
ations in the lighting conditions. The precise number
of eigenimages required depends on the type of object.
For the degenerate case of a flat, lambertian surface,
one eigenvector suffices, while for very simple curved
objects without specularities three will suffice. When
the object has specular lobes, additional eigenvectors
are needed. In the extreme case when the object is
very highly specular, no low dimensional model ex-
ists that can reconstruct all the highlights accurately.
However, provided the sampling of lighting directions
in the training set is dense, a low dimensional model
can be built that does capture the lambertian and
specular lobes. Specular spikes, sharp shadows and
occluders can be treated as residuals in this model.

These results are demonstrated by visual inspec-
tion of the reconstructions, shown in the figures, and
by plots of the goodness of fit and by analysis of the
residuals. These residuals are typically small and can
be easily identified as specular spikes, sharp shadows
or occluders.

We summarize the results with the heuristic that,
for a wide range of images, b + 2 eigenvectors suf-
fice to build low dimensional spaces that accurately
capture the intensity variations caused by different
lighting conditions. Moreover, the number of training
images required is relatively small (lighting directions
can be sampled every 30 degrees) for objects with-
out much specularity or self-shadowing. Though such
a low dimensional model cannot be used to recon-
struct intensity features such as specular spikes and
small, sharp cast shadows that vary geometrically as
the lighting direction changes, the model can be used
to eliminate and/or localize such features. Thus, our
lighting model eliminates specular spikes and ignores
sharp shadows, while representing the gross shading
correctly. For purposes of object recognition, we can
therefore use a low dimensional model and treat spec-
ular spikes, sharp shadows, and occluders as residuals

(See [4)).
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Eigen- ball | parrot | phone face | helmet | helmet | helmet fire | function | infrared
vector ext | generator | detector

sparse dense dense | sparse | sparse dense dense dense dense dense

(right) | (both) | (right) | (right) | (right) | (right) | (both) (right) (right) (right)
#1 0.482 0.428 0.679 0.537 0.320 0.340 0.388 0.536 0.806 0.624
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#3 0.944 0.763 0.882 0.902 0.651 0.628 0.581 0.765 0.922 0.885
#4 0.965 0.815 0.920 0.921 0.728 0.746 0.655 0.816 0.936 0.915
#5 0.979 0.847 0.941 0.935 0.798 0.772 0.722 0.852 0.948 0.927
#6 0.989 0.872 0.952 0.945 0.845 0.794 0.750 0.882 0.956 0.939
#7 0.991 0.885 0.963 0.953 0.881 0.816 0.795 0.901 0.962 0.948
#38 0.993 0.897 0.968 0.958 0.905 0.833 0.811 0.913 0.968 0.954
#9 0.995 0.907 0.972 0.963 0.924 0.848 0.824 0.925 0.972 0.960
#10 0.996 0.917 0.975 0.966 0.943 0.861 0.837 0.933 0.975 0.965

Table 1: The variance (cumulative) accounted for by each eigenvector for several different objects, both for sparse
and dense training sets.
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Figure 1: Plots of the mean goodness of fit vs the number of eigenvectors for training and test sets of several
different objects. All models were constructed using a sparse data set. The letter U’ appended to an object’s
name indicates the background was unmasked.

Figure 2: Eigenvectors calculated from the sparse set for the ball, arranged from left to right, top to bottom, in
order of importance as determined by their eigenvectors.
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Figure 3: Left two images are data images from the dense set for the ball. These images were not used to calculate
the eigenvectors. Right two images are reconstructions of the left two images from their projections onto the first
3 eigenvectors calculated from the sparse set.

Figure 4: On the left is an image of a face from the dense set. The second image is the reconstruction from
the projection onto the first 3 eigenvectors calculated from the sparse set. The third image is the reconstruction
from its projection onto the first five eigenvectors calculated from the sparse set. The rightmost image shows
the difference between the first and third images, where differences of greater than 30 greyscale levels have been
highlighted in black (if the original image is darker than the reconstruction from the projection), or white (if the
original image is brighter than the reconstruction from the projection).

Figure 5: First five eigenvectors calculated from the dense set for an artificial stuffed parrot.

Figure 6: On the left is an image from the dense set. In the center is the reconstruction from the projection
onto the first eighteen eigenvectors calculated from the dense set. The image is well reproduced. On the right is
the reconstruction from the projection onto the first 18 eigenvectors calculated from the sparse set, of which the
image is not a member. The specular spike cannot be reproduced in the correct location.

Figure 7: First five eigenvectors calculated for the helmet from the sparse set of images. Lighting was varied over
the right side only
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Figure 8: Eigenvectors calculated for the helmet from the dense set; lighting from both sides.

Figure 9: First image is helmet under ambient lighting conditions. Second image is reconstruction from projection
onto first 5 eigenvectors. Note the specularities have been eliminated. Third image is the difference between
original image and reconstruction. (Differences less than zero have been set to zero.) The specularities are easily
isolated. Fourth, fifth and sixth image show the same effect for an image from the dense data set.

Figure 10: Eigenvectors calculated from the sparse set.

Figure 11: Left is a data image from the dense set. Center is its reconstruction from projection onto first five
eigenvectors calculated from the sparse set. Right is reconstruction from projection onto first ten eigenvectors

calculated from the sparse set.
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Figure 12: On the left is the original image from the dense set. Second image is reconstruction from projection
onto the first 5 eigenvectors from the dense set. Third image shows the difference between the first two images.
The residuals are very slight. Fourth image is reconstruction from projection onto the first 18 eigenvectors from
the dense set. Fifth image is reconstruction from projection onto the first 5 eigenvectors from the sparse set.
Sixth image is reconstruction from projection onto the first 18 eigenvectors from the sparse set. See text for
commentary.

Figure 13: On the left is the IR detector under ambient lighting conditions. Center is reconstruction from
projection onto 5 eigenvectors calculated from the sparse set. Right is projection onto 18 eigenvectors calculated

from the dense set.

Figure 14: The left image is the helmet with an occluding object. The second image is the result of projecting
onto five eigenvectors. Both the occluder and the specularity have been eliminated. The third image shows the
residual- the absolute value of the difference between the first and second images. The rightmost image shows the
result of thresholding the residual. Black pixels have a difference of more than 35 greyscale levels. The specular
spike and the occluder are well isolated.

Figure 15: On the left is the original image. The center shows the outliers extracted by a robust statistics
process; these pixels were not used in the projection onto the eigenspace. Right is the result of the projection.
The specularities are easily extracted; however, the result of the projection is no better than in Figure 9.
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